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Abstract 

While rapid shifts in climate are seen throughout Earth’s 
history, the dynamics which give rise to them are still 
obscured. This limits our ability to predict potential tipping 
points caused by human activity. In this paper, we discuss 
how Artificial Intelligence (AI) could be used to address the 
challenge of understanding tipping points by reducing the 
dimensionality of the Earth System, allowing for the isolation 
of key mechanisms and critically important parameters. We 
consider two examples of how AI might be used to examine 
such tipping points, one involving the ocean overturning 
circulation, the other involving ocean biogeochemical 
cycling. 

 Introduction    

From the layering of rocks such as those seen in the Grand 

Canyon, to shifts in fossil assemblages within those layers, 

geologists have long realized that environments can change 

rapidly and irreversibly. As more work has been done on the 

history of atmospheric greenhouse gasses and orbital 

dynamics, it has become clear that such changes can occur 

as a result of relatively small variations in external forcing. 

For purposes of this paper we define such “tipping points” 

as occurring whenever some statistical property of the Earth 

System exhibits a disproportionate change as some 

threshold of forcing is passed. A number of these tipping 

points have occurred within the last 18,000 years as the 

Earth emerged from glaciation. The Younger Dryas, an 

approximately 1300-year period during which much of the 

Northern Hemisphere experienced a strong cooling, is 

thought to have been initiated over a period of less than 30 

years (Severinghaus et al., 1998).  Subsequent warming 

temperatures led to a greening of the Sahara Desert, which 

then reverted to a desert state about 5500 years ago 

(deMenocal et al., 2000). Over this same time period, there 
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is evidence that the mode of tropical variability known as 

the El Niño-Southern Oscillation ceased, and then restarted 

(Carré et al., 2014). Understanding the vulnerability of the 

Earth System to such tipping points is made particularly 

urgent by the fact that the changes in forcing associated with 

increasing greenhouse gasses in the atmosphere are similar 

in magnitude to some of the forcings thought to have driven 

these recent tipping points.   

Understanding these changes, however, is difficult. When 

it comes to the historical record, there are many indications 

that a particular change has happened, but not always 

indications of exactly when. For example, the disappearance 

of a species of tree from a region could be due to a change 

in mean wintertime temperatures, mean summertime aridity, 

increased climate variability or disease. Correlating changes 

on land to changes in the ocean is tricky because the primary 

way of dating oceanic proxies since the last glacial period 

(radiocarbon age) is offset from atmospheric radiocarbon 

ages by centuries, and this offset depends on circulation. 

This means that the direction of causality can be difficult to 

deduce. 

An alternative approach is to use dynamical climate 

models. These models combine computational codes for 

simulating the evolution of atmosphere, ocean, cryosphere, 

and in some cases, the biosphere. “Dynamical cores” within 

these models divide each domain up into a grid, specify 

some “state variables” (i.e. sea surface height, temperature, 

and salinity in the ocean) and use these variables to construct 

a pressure field that varies in space. The resulting forces then 

drive velocities which redistribute the state variables and the 

system evolves in a self-consistent way. Biologically 

important variables like the concentration of oxygen or 

biomass of photosynthesizing organisms are transported by 

the resulting flows and have sources and sinks which can be 

mathematically codified. While such models are started  

 



 

Figure 1: NASA image of clouds and phytoplankton over  

the Bering Sea. Image is about 1000 km on a side. 

from modern conditions, they are generally spun up for 

hundreds to thousands of years to generate self-consistent 

estimates of the state of the Earth System. Tipping points are 

then sought by perturbing these quasi-equilibrium states by 

altering climate forcings such as greenhouse gasses. 

A key shortcoming of such models is that critical climate 

processes occur over a vast range of scales, as illustrated by 

the image in Figure 1 which shows an ~1000x1000 km 

section of the Bering Sea. Both clouds in the atmosphere and 

blooms of plankton in the ocean show the imprint of 

processes on scales far smaller than the 100 km grid scale of 

most modern climate models. As a result, these processes 

must be “parameterized” in terms of state variables that can 

be simulated at coarse resolution. One of the simplest such 

parameterizations covers the impact of the eddies that create 

the impression of swirling cream in the figure as they advect 

and mix blooms of microscopic marine phytoplankton. The 

bulk impact of the mixing accomplished by such eddies is 

often represented as a lateral diffusion, where the flux of a 

quantity C is proportional to and down the gradient of the 

quantity (mathematically expressed as  𝐹𝐶 = −𝐴𝑅𝑒𝑑𝑖∇ ∗ 𝐶).  

As discussed in Abernathey et al. (2022), the value of the 

coefficient 𝐴𝑅𝑒𝑑𝑖  is extremely uncertain and in the current 

generation of Earth System Models it varies from less than 

200 m2/s to 2000 m2/s. Observational estimates run as high 

as 10000 m2/s in some regions, but this may not matter if 

gradients are low there. The parameter 𝐴𝑅𝑒𝑑𝑖  is only one of 

dozens of weakly constrained parameters- ranging from the 

number of cloud condensation nuclei over the ocean to the 

rooting depth of plants to the reflectivity of melting ice that 

contribute to the emergent behavior of climate models. 

Some of these may be important in setting a particular 

tipping point, while others are completely irrelevant.  

As Earth System Models are constructed by coupling 

together models of individual component systems errors 

induced by incorrect values of one parameter or numerical 

schemes can be compensated by errors in other parameters 

or numerical schemes. As a result, the resulting codes 

represent both scientific and sociological compromises 

between the different groups of experts that contribute to the 

different components. Each group tries to make its own 

component as “realistic” as possible by including particular 

physics or biological processes (usually those of central 

interest to the model developer) and by focusing on 

particular metrics. However, this may result in 

compensating errors. For example, a high value of 𝐴𝑅𝑒𝑑𝑖  

may compensate the tendency of the jet stream to be located 

too close to the equator, resulting in a Gulf Stream that fails 

to penetrate far enough to the north.  

Worse yet, these metrics may not all give the same results. 

For example, Gnanadesikan and Stouffer (2006) found that 

evaluating physical climate models based on whether they 

predicted the right terrestrial biomes gave a very different 

skill ranking than looking at the errors in temperature or 

precipitation alone. This was because the biome 

classification represents a nonlinear filter on temperature 

and precipitation: an overestimate of rainfall in the 

rainforest or underestimate of temperature in the tundra 

makes little difference in the predicted biome, while small 

errors at the edge of temperate regions can be much more 

important.  

The metrics used by Earth System modelers to make 

judgements about how to represent key processes in the 

climate system are generally chosen to produce a 

“reasonable” simulation of the current climate when started 

from modern conditions and run for long periods of time. 

This raises the possibility that errors in one parameterization 

may be compensated by errors in others when the climate is 

close to its initial state, but that this compensation may not 

accurately capture tipping points when the model moves far 

from its initial state (Gnanadesikan, Kelson and Sten, 2018). 

But insofar as tipping points represent an emergent property 

of the climate system, how can we properly explore this 

question? And can AI methods help us to do so? In this 

manuscript, we present two examples of systems where we 

are exploring the use of AI methods to probe the nonlinear 

dynamics inherent in the Earth System, providing a means 

of interrogating the mechanisms within complex models.  

 

Example 1: The ocean overturning 

circulation-dimensionality reduction as a way 

of exploring parameter sensitivity 

Since the top few meters of the ocean hold as much thermal 

energy as the entire overlying atmosphere, changes in how 

the ocean circulates have the potential to redistribute large 

amounts of heat. One such circulation believed to have 

changed in the past is referred to as the Atlantic Meridional 

Overturning Circulation (AMOC). It is the result of a 



complex pattern of currents whereby warm, salty tropical 

waters move northward in the Atlantic into the area around 

Greenland, where they lose heat, become dense, and sink. 

The heat flux associated with this circulation adds about 30-

40 W/m2 to the subpolar North Atlantic and Arctic Oceans, 

about half of ~85 W/m2 added by absorbed sunlight (Yu, Jin 

and Weller, 2006). The overturning also plays an important 

role in setting the chemical structure of the ocean, as water 

moving away from the surface experiences a consumption 

of oxygen as organic material produced by phytoplankton 

falls into it and rots. The resulting apparent oxygen 

utilization (AOU) in the deep ocean (Figure 2) shows a clear 

global pattern, with local minima in the North Atlantic and 

Southern Ocean indicating that surface waters enter the deep 

ocean there, while a maximum in the North Pacific indicates 

that deep waters do not form there. However, in the modern 

generation of Earth System Models the overturning shows a 

wide range of mean values and sensitivities to global 

warming (Weijer et al., 2020; Romanou et al., 2023). 

 
Figure 2: Oxygen utilization at 3000m. Low values in the 

North Atlantic indicate water has been in recent contact with 

the surface. Higher values moving in to the Indian and 

Pacific are the result of organic material falling into these 

waters and rotting, and broadly indicative of “age”. Data 

taken from the World Ocean Atlas (Locarnini et al., 2019). 

  

For decades it has been thought that the atmospheric 

water cycle shapes both the geometry and stability of the 

overturning circulation, (Johnson et al., (2019) provides a 

nice review of this). Net evaporation from the tropics and 

net precipitation in high latitudes drives the high latitudes to 

become fresh and light relative to the salty tropics. This 

tends to oppose sinking in polar regions.  Within the 

Southern Ocean it actually results in transforming dense 

deep water to light water, balancing the cooling-induced 

sinking in the Northern Hemisphere (Gnanadesikan, 1999).  

Similarly, a net freshwater flux between the Atlantic and 

Pacific results in the Pacific becoming fresher and lighter. 

As the North Pacific becomes lighter than both the Southern 

Ocean and the North Atlantic, a positive feedback is 

triggered in which the export of salt associated with 

overturning to the deep drops, allowing the Pacific to 

become fresher and lighter and limiting overturning yet 

further. Similar feedback associated with meltwater coming 

off of North America remains the leading candidate to 

explain the Younger Dryas (Pico, Mitrovica and Mix 2020).   

 
Figure 3: Schematic of (a) four box and (b) six box models 

of the ocean circulation. Curved lines show atmospheric 

freshwater fluxes while straight lines show mass exchanges 

between boxes.  

 

 These insights can be codified into so-called “box” 

models, which divide the ocean up into a finite number of 

well-mixed boxes. One example, described in 

Gnanadesikan, Kelson and Sten (2018), is shown in Figure 

3a. In this model the ocean is broken down into a low-

latitude box whose depth is allowed to increase as dense 

water is converted into light water (as we argue occurs in the 

Southern Ocean), and decrease as light water is converted 

into dense water (as occurs in the North Atlantic). 

Exchanges of water between boxes include a wind-driven 

upwelling of deep waters in the Southern Ocean (𝑀𝑒𝑘), a 

vertical exchange of water within the Southern Ocean 

associated with the formation of deep Antarctic waters 

(𝑀𝑠𝑑), turbulent exchanges between surface boxes 

(𝑀𝐿𝑆, 𝑀𝐿𝑁 governed by the eddy coefficient 𝐴𝑅𝑒𝑑𝑖  

previously referred to), an additional net mass transfer of 

light water into the Southern Ocean associated with 

turbulent eddies (𝑀𝑒𝑑𝑑𝑦), upwelling of dense water into the 

low latitude surface boxes as heat is diffused downward 

(𝑀𝑢𝑝𝑤), and the conversion of light water to dense water in 

the North Atlantic associated with the AMOC (𝑀𝑛) which 

is proportional to the density difference between the high 

northern and low latitude box and the square of the depth of 

the low-latitude box (𝐷𝑙𝑜𝑤).  

Each of these seven fluxes either represents or is 

associated with a free parameter which may vary between 

Earth System Models. There are five free parameters 

associated with geometry corresponding to choices about 

what areas are covered by the different boxes. There are 

eight free parameters associated with the fluxes of heat and 

moisture through the ocean surface corresponding to what 



temperatures the surface boxes are restored to and how 

quickly this occurs plus two atmospheric fluxes of 

freshwater (𝐹𝑤
𝑛 and 𝐹𝑤

𝑠). Finally, there are nine initial 

conditions corresponding to the temperature and salinity in 

the four boxes plus the depth of the low-latitude box.  

The original Gnanadesikan, Kelson and Sten (2018) paper 

focused on how the response of the overturning 𝑀𝑛 to 

changes in the freshwater flux between the low-latitude and 

northern surface boxes 𝐹𝑤
𝑛 was modulated by 𝐴𝑅𝑒𝑑𝑖  (which 

scales 𝑀𝐿𝑁 and 𝑀𝐿𝑆) and similar scaling coefficients 

governing 𝑀𝑒𝑑𝑑𝑦, 𝑀𝑢𝑝𝑤 and 𝑀𝑛 given present-day initial 

conditions. However it changed only one variable at a time. 

It is known that by changing combinations of parameters, 

initial conditions and boundary conditions we can generate 

simulations that predict very similar equilibrium 

temperatures and salinities, but which may have rather 

different overall stabilities. But how do we explore this 

multidimensional space?  

 
Figure 4: Top, AMOC overturning 𝑀𝑛 in Sverdrups (1 

Sv=106 m3s-1, slightly less than all the worlds rivers added 

together). Black from NCAR CESM2 Large Ensemble and 

gray from the fitted four-box model. Bottom, pycnocline 

depth in meters, with zero at the air-sea interface, same 

colors. All model output has a one-year moving mean 

applied. 

 

One way to explore the space is to fit the box models to full 

general circulation models and evaluate whether the 

resulting models can predict changes in the overturning. 

Brett et al. (2023) demonstrate that this is feasible in theory. 

The box model in Figure 3a was fit to a flagship American 

climate model developed by the National Center for 

Atmospheric Research (NCAR CESM2, Danabasoglu et al., 

2020). Monthly 𝑀𝑒𝑘, 𝑀𝑒𝑑𝑑𝑦 , 𝑀𝑛, 𝐹𝑤 and density were 

derived from the first 11 ensemble members of the CESM2 

large ensemble (Rodgers et al. 2021), which runs from 1850 

to 2100 using historical and then SSP3-7.0 forcing for 

climate change. The parameters controlling 𝑀𝑒𝑑𝑑𝑦 , 𝑀𝑢𝑝𝑤 

were fitted using least-square errors for the first ensemble 

member. The four-box model was then run using derived 

fluxes (except 𝑀𝑛), densities, fitted parameters, and initial 

pycnocline depth. As shown in Figure 4, the model largely 

captures the evolution of the overturning and pycnocline 

depth, with mean correlation coefficients of 0.89 for 𝑀𝑛 and 

0.84 for 𝐷𝑙𝑜𝑤 . 

 Additional work reported in Sleeman et al. (2022) has 

used this box model to train a novel implementation of a 

Generative Adversarial Network (GAN), known as TIP-

GAN, to explore the parameter space. In this framework, 

generators vary initial conditions and parameters to turn the 

overturning off and a discriminator “learns” to predict which 

sets of parameters and initial conditions will return in 

overturning off or on.  The result of this adversarial game is 

the shape of the manifold separating the different states. 

Figure 5 shows one result from the GAN, in which the initial 

depth of the pycnocline 𝐷𝑙𝑜𝑤, the Northern Hemisphere 

freshwater flux 𝐹𝑤
𝑛 and coefficient 𝐴𝑅𝑒𝑑𝑖  are varied together. 

An interesting result from this figure is that by varying the 

initial conditions and eddy mixing coefficient together we 

can extend the “off” state to much lower levels of freshwater 

flux than if we vary only one of the parameters. This has 

implications for easily the overturning recovers from 

shutoff. 

 

 

Figure 5. Predictions of the NH overturning in which 

northern hemisphere freshwater flux (horizontal axis) is 

varied. Upper branch of predictions shows “on” state, lower 

branch “off” state, which occurs when freshwater flux is 

strong enough to make the high northern latitude sufficiently 

light. Points show simulations in which the initial depth of 

the pycnocline 𝐷𝑙𝑜𝑤 and the mixing coefficient 𝐴𝑅𝑒𝑑𝑖  were 

varied separately. 



 Another early result of this work was the realization that 

the overturning was capable of switching off and then 

switching back on again, even when the forcing is constant. 

This behavior differs from that seen in the classic box model 

of Stommel (1961) which exhibits a fold bifurcation. We are 

currently exploring the reasons for this behavior. We are 

also extending this work to the six-box model shown in 

Figure 3b, which distinguishes between overturning in the 

Atlantic and Pacific. This model shows a rich 

phenomenology with collapses in overturning in the 

Atlantic capable of restarting overturning the in Pacific. We 

believe the GAN approach will be particularly useful is 

scoping out this model when we add stochastic forcing, 

allowing us to focus on the probability distribution of 

tipping near the separatrix.  

. 

Example 2: Ocean biological cycling-using 

machine learning to compare apparent 

relationships 

 

Another example where AI methods may be of use is in 

examining the emergent behavior of ecosystems. As already 

noted, ecosystems represent nonlinear filters on physical  

climate. They tend to be very sensitive to whatever factor 

(light, nutrients, water, temperature) is limiting, but 

insensitive to factors that are not. This means that not all 

errors are equivalent- a frozen tundra that is too cold will be 

unproductive regardless of the size of the error, On the other 

hand in many systems, once plankton or plants have a 

surplus of one key nutrient, they will grow until they run out 

of another nutrient. 

Many ecosystems, both terrestrial and marine, show clear 

linkages with climate. One such example is provided in 

Figure 6a, which shows the annual mean distribution of 

biomass of phytoplankton, which make up the base of the 

marine food web.  High values are seen at both high and 

equatorial latitudes, while low values are found in the ocean 

interiors at latitudes between 20 and 40 degrees. The key 

controls on this distribution are well known. Phytoplankton 

need both light and nutrients, but as they are consumed the 

organic matter produced sinks away from the sunlit surface, 

so that there is a constant flow of nutrients to depth. High 

levels of biomass are found in regions where upwelling and 

mixing bring nutrient into surface waters, while low levels 

are found where surface waters converge.  

Understanding the relationship between circulation and 

phytoplankton distribution, however, is challenging. 

Phytoplankton are extremely diverse, but the vast majority 

of them cannot be cultured in the laboratory, so that we do 

not understand their response to changes in different 

nutrients. Phytoplankton must make different tradeoffs to  

 
Figure 6: Phytoplankton biomass in the ocean. (a) log10 

phytoplankton biomass in mol C/m3 from the satellite 

dataset of Kostadinov et al. (2016). (b) Relationship 

between biomass and ammonium, a key nutrient for 

phytoplankton in the North Atlantic during the month of 

July. Colors show solar radiation in W/m2.  While a potential 

“tipping point” is seen when ammonium drops below 10-4 

mol N/m3 for high light, it is not seen for low light. Line 

shows a potential nonlinear relationship that relates biomass 

to environmental growth rate as described in the text 

 

maximize growth on the one hand and minimize loss 

through sinking and predation on the other. On monthly 

timescales, however, the growth and loss are approximately 

in balance, as individual phytoplankton divide at rates of 

O(1/day) but total phytoplankton biomass may only see one 

or two doublings in a month (Behrenfeld, 2010). This means 

that on an ecosystem average, growth rates (𝜇) must 

approximately balance loss rates. Insofar as loss rates tend 

to be some function 𝐹(𝐵)of phytoplankton biomass 𝐵 this 

implies that 

𝜇~𝐹(𝐵) → 𝐵~𝐹−1(𝜇)     (1) 

(see Dunne et al., 2005 for more discussion of this). 

Phytoplankton growth often has the general relationship 

with nutrient N 𝜇~ 𝑁 (𝐾𝑁 + 𝑁)⁄  (assuming that all other 

growth factors are available) and many models encode such 

a relationship for several phytoplankton groups. If F then 

takes the simple form 𝐹 = 𝜆0(𝐵 − 𝐵𝑐𝑟𝑖𝑡) 𝐵∗⁄  where 𝐵𝑐𝑟𝑖𝑡  is 

a critical value below which the consumers of 

phytoplankton cannot grow we find a form 

𝐵~ 𝐵𝑐𝑟𝑖𝑡 +  𝜇𝑁 (𝜆0(𝐾𝑁 + 𝑁)) ∗ 𝐵∗⁄      (2) 

Figure 6b shows the relationship between one such nutrient 

(ammonium) and phytoplankton for the North Atlantic 



during the month of July. While there is clearly structure to 

this plot, so that one can draw a line of the form shown in 

Equation (2) (black line) through the lower point cloud, the 

response to ammonium is clearly also mediated by how 

much light is supplied to the ecosystem (colors). There is 

some suggestion that in waters with more light, biomass 

might experience a tipping point as ammonium drops below 

0.1 mmol/m3. But in waters with less light (gray points) this 

effect of reducing ammonium is significantly attenuated.  

 

 
Figure 7: Sensitivity for the full domain of solar radiation 

and ammonium concentration with all other predictors held 

at median values. (a) Observational dataset of Kostadinov et 

al. (2016). (b) Same but for the NCAR CESM model 

(Danabasoglu et al., 2020). (c) Same but for the GFDL 

ESM4 (Dunne et al., 2020). (d) Same but for the IPSL-

CM5A2-INCA model (Sepulchre et al.,2020) 

 

AI methods have the potential to significantly improve our 

understanding of such systems (Holder and Gnanadesikan, 

forthcoming). By systematically examining the impact of 

individual environmental correlates with phytoplankton 

biomass, we can identify when and where tipping points 

might occur. We can also evaluate whether these apparent 

relationships are well-simulated by Earth System Models.   

 In Holder and Gnanadesikan (forthcoming), random 

forests (Breiman, 2001) were used to predict the log of 

phytoplankton biomass for observations and 13 Earth 

System Models. As discussed in this paper, the random 

forests turn out to predict a large fraction of the variability 

in our observational dataset (~90% of the observed variance 

in log biomass) and an even larger fraction in the models 

(>94%).  In Figure 7 we examine what happens when 

median values of all predictors except ammonium and solar 

radiation are fed to the random forest. Qualitatively all of 

the plots show an increase in biomass as we move away 

from low levels of ammonium and radiation. However, 

differences appear in the overall dynamics. The 

observations (Figure 7a) show sharp drops, essentially 

tipping points, for both solar radiation and ammonium at 

low values of both light (-40 W/m2) and ammonium (<5x10-

3 mol/m3). Similar analysis for three Earth System Models 

shows rather different patterns (Figure 7b-d). The NCAR 

CESM2 model (Figure 7b)-shows a very steep fall off at low 

light, but with a gradual increase in biomass as light 

increases out to over 200 W/m2. A second flagship 

American Model, the Geophysical Fluid Dynamics 

Laboratory’s Earth System Model 4 (GFDL ESM4, Figure 

7c) shows relatively little dependence on ammonium and 

strong dependence on light. Finally, a flagship French 

model, the Institute Pierre et Simone Laplace’s Coupled 

Model Version 5A2 (IPSL-CM5A2-INCA) shows a strong 

dependence on light, but limits the dependence on 

ammonium to high light cases, as opposed to the low-light 

dependence seen in the observations. While the reasons for 

this emergent behavior are not clear, it is obvious that AI 

methods can be used to predict differences in the conditions 

under which tipping points would occur. We are currently 

exploring whether these predictions from the random forest 

models explain inter-model differences in the response of 

phytoplankton biomass to global warming. 

 

Conclusions 

The great degree of complexity and nonlinearity in the Earth 

System might suggest that it is impossible to model tipping 

points in a system whose fundamental dynamics are poorly 

understood. This is supported by the wide divergence in the 

ability of Earth System Models to both simulate modern 

phenomena such as the global overturning circulation or the 

distribution of phytoplankton biomass and the divergence 

between such models in predicting future behavior of such 

phenomena under global warming. 

 However, as we have argued in this manuscript, AI 

methods may offer some pathways for reducing this 

uncertainty or at least identifying its sources. Both the 

overturning circulation and the distribution of ocean 

biomass give hints of being describable by systems with a 

much smaller number of degrees of freedom and associated 

parameters than the millions of individual boxes 

incorporated in a modern Earth System Model. Deploying 

machine learning/AI methods to both reduce dimensionality 

and identify key relationships and parameters offers us the 

ability to evaluate and improve models of the Earth System. 

However, this will only be the case if such methods are used 

with a focus on mechanistic understanding, rather than as 

black boxes to emulate more complex models.  
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