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Abstract

Recent work has identified simple empirical scaling laws for language models,
linking compute budget, dataset size, model size, and autoregressive modeling loss.
The validity of these simple power laws across orders of magnitude in model scale
provides compelling evidence that larger models are also more capable models.
However, scaling up models under the constraints of hardware and infrastructure
is no easy feat, and rapidly becomes a hard and expensive engineering problem.
We investigate ways to tentatively cheat scaling laws, and train larger models for
cheaper. We emulate an increase in effective parameters, using efficient approxi-
mations: either by doping the models with frozen random parameters, or by using
fast structured transforms in place of dense linear layers. We find that the scaling
relationship between test loss and compute depends only on the actual number of
trainable parameters; scaling laws cannot be deceived by spurious parameters.

1 Introduction

Predictably linking model and dataset size with generalization error is a long-standing open question.
Discrepancies between classical bias-variance trade-off models and modern practices have been
identified [1], with phenomena such as deep double descent [2] providing glimpses into a deeper
understanding. However, actionable insights for machine learning practitioners have remained elusive.

Recently, simple and general empirical scaling laws for deep learning models have been uncovered.
Starting with first relationships for modern convolutional networks [3], guidelines informing optimal
architectures–such as EfficientNet [4]–have been derived. Importantly, these laws can extrapolate
model performance across scale, motivating the training of increasingly large and capable models [5].

We focus on seminal work on large generative language models [6], establishing and using scaling
laws to predict the computational requirements for a specific performance level–as pioneered by [7].
This work showed that the performance of an auto-regressive language model follows a remarkably
simple relationship, linking model and dataset size, compute budget, and modeling loss across many
orders of magnitude in scale. This make it possible to answer questions central to the efficient training
of extreme-scale models, such as: (1) which model size achieves the best loss given a fixed compute
budget; or (2) how many samples are necessary to train a model of a given size optimally.

Unfortunately, these empirical laws also show that training models much larger than current ones
comes at a prohibitive cost. State-of-the-art language models such as GPT-3 have required several
thousand PF-days to train [8], and model size has plateaued since then [9, 10]. Proposed distributed
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sharding methods for the training of such extreme-scale models only bridge the memory gap [11], and
do not fundamentally change the required compute budget. Pending drastic hardware improvements,
it is unlikely we will see a 100-1,000x increase in model size as quickly as we have seen in the past.

Accordingly, to enable sustained growth in model size and capabilities, we attempt to cheat scaling
laws. To do so, we propose to fudge the effective number of parameters in the model. Instead of using
only expensive fully trainable parameters, we explore two classes of efficient parameters motivated by
potential efficient hardware implementations: either by doping the models with cheaper and simpler
frozen parameters, or by implementing structured transforms in place of dense linear layers. We
study these additions under the guise of scaling laws.

Frozen parameters Transformer models with fixed random parameters have previously been
studied in Reservoir Transformers [12], where some layers of a RoBERTa model [13] are initialized
randomly and then never updated. Using an area under convergence curve metric, they find this
approach to lead to more efficient training. This is motivated by a broader line of work around random
projections in machine learning, with applications in random kernel methods [14], unsupervised
feature learning [15], and reservoir computing [16]. In a language model, frozen parameters are one
third cheaper than fully trainable ones: assuming the backward pass is normally twice the cost in
FLOP of the forward (backpropagation + update) [6], the update step is skipped for frozen parameters.
Furthermore, multiplication with random matrices can be offloaded to specialized co-processors [17].

Structured parameters Structured efficient linear layer parametrizations have been proposed to
accelerate fully-connected layers [18, 19, 20]. They leverage transforms with an efficient O(n log n)
implementation, such as the Hadamard Transform, Discrete Fourier Transform or the Discrete Cosine
Transform. These structured layers have far fewer trainable parameters (on the order of n) but still
emulate an operation equivalent to n2 parameters. We initially hypothesize that the scaling laws will
depend on the the emulated number of parameters n2 rather than n, reducing the memory needs and
compute budget for training the model, while maintaining identical modelling loss.

Contributions We study random and structured parameters in large auto-regressive language
models, and show that scaling laws cannot be cheated using spurious parameters. More specifically,
we find that in both cases, the empirical scaling laws obtained depend only on the real number of
trainable parameters. Neither the frozen or structured parameters make pre-training more efficient.

2 Methods

All experiments are based on the training on a language modeling task of a decoder-only auto-
regressive Transformer based on the GPT architecture [21]. Our only significant deviation from the
architecture is the use of rotary embeddings [22], which enable increased performance. We performed
initial pathfinding experiments without rotary embeddings and obtained similar results. Architecture
details for the four model sizes considered are available in the supplementary.

The model is trained on French data obtained using a Common Crawl dump filtered by CCNet [23].
We use byte-level byte-pair encoding, with a vocabulary of 50,262 tokens. Our dataset contains 32
billion tokens, and is similar to the setup of FlauBERT [24]. All validation and test losses are obtained
on the fr-wiki dataset, made of 0.5 billion tokens obtained from a dump of French Wikipedia.

All experiments were run in a distributed setup with four NVIDIA V100-16GB GPUs per node, on
the Jean Zay supercomputer. We use a sharded data parallel strategy for training the larger models,
similar to ZeRO-3 [25], and implemented with FairScale [26]. Structured transforms are implemented
as optimized CUDA kernels and compiled in PyTorch extensions for best performance.

We estimate the compute budget in PF-day using the formula C = 6NBS [6], where N is the number
of trainable non-embedding parameters, B is the number of tokens per batch, S is the number of
parameter updates, and 6 is the factor to account for the forward and backward passes. We verified
our experimental setup, and in particular the choice of a French dataset in place of an English one, by
reproducing the scaling law fit of [6] and obtaining a similar exponent – as shown in Figure 1.
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Figure 1: Loss against compute for different model sizes, with the empirical scaling law fit. We
highlight that we find an exponent of −0.041, which is remarkably close to the −0.048 of [27],
considering that it is obtained on a different dataset in a different language, with a different codebase.

Figure 2: Loss against compute for random
parameters costing two thirds as much as
trainable ones, as in our implementation.

Figure 3: Loss against compute for an ideal
random parameter cost of zero, achievable
with offloading to dedicated hardware.

3 Doping with Frozen Random Parameters

3.1 Methods

Similar to [12] we replace the decoder layers–consisting of self-attention followed by a multilayer
perceptron (MLP)–with a single frozen MLP. Indeed, we observed that keeping the entire frozen
decoder layer lead to similar performances as keeping only the frozen MLP. The latter, which involves
random matrix multiplications, could more easily be done on a specialized co-processor. In order to
approximately preserve the same total number of parameters, we increase the hidden dimension of the
feedforward network from 4× dmodel to 6× dmodel. By training models with fixed parameters over
multiple orders of magnitude, we establish the scaling laws both for the models with fixed random
parameters and the baseline models.

3.2 Results

The cost of the random parameters depends on the choice of hardware, as well as any potential
algorithm used to approximate them. To be able to compare the models with frozen random parameter
with the baseline models, we plot the scaling laws for different costs of the random parameters.

Figure 2 shows scaling laws for random parameters costing two thirds as much as trainable parameters,
which corresponds to skipping the parameter update step, and which is effectively achieved by our
implementation. The baseline models (dotted lines) significantly outperform the models with random
parameters (solid lines). Figure 3 shows the scaling behaviour assuming the best-case scenario of free
random parameters: doped models reproduce the training curves of a model with the same amount of
trainable parameters and no frozen parameters. We observe the same behavior on different scales
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Figure 4: Adaptive FastFood replaces a
linear layer by three learnable diagonal ma-
trices and two Hadamard transforms.
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Figure 5: The MLP is replaced by two
block diagonal matrices and one block
Hadamard transform.

of models. In other words, the frozen parameters have no effect at all on the loss-compute curve of
these models, and are effectively useless for pre-training.

4 Structured Efficient Linear Layers

Since frozen layers do not contribute to the loss-compute curve, we turn our attention to structured
layers. Structured layers are a natural midpoint between fully frozen and fully trainable layers,
implementing a smaller number of structured parameters, typically only linearly increasing with
layer width, whereas fully-connected layers will increase quadratically. Importantly, and in contrast
with sparse layers, structured layers can be efficiently implemented in modern hardware.

4.1 Methods

Random projections can be efficiently approximated by alternating diagonal matrices and Fast
Hadamard transformations using FastFood [28], as shown in Figure 4. A vector can then be projected
with time complexity O(n log n), significantly speeding up the original O(n2) operation. Using
the approach of [19], we allow for some adaptability of the frozen layers by training the diagonal
matrices. This operation dramatically reduces the number of parameters from O(n2) down to O(n).
Since in a language model, n ∼ 1000, we approximate the cost of the structured operation to zero.

We also investigate using a combination of block diagonal matrices and block Hadamard matrices, as
in Figure 5. The block diagonal matrices can transform nearby features, while the block Hadamard
matrix introduce long-range correlations. The parameter reduction of such a structured MLP is given
by the number of blocks, and is tunable. We set the number of blocks to 4, maintaining a relatively
large number of trainable parameters in the MLP, with a cost per parameter identical to dense layers.

4.2 Results

In Figure 6, the FastFood structured model is supposed to emulate a Small model, but actually
performs like an XSmall with a similar number of trainable parameters. Furthermore, in Figure 7,
the behavior of the block structured model closely resembles that of a model with as many trainable
parameters. Accordingly, structured models behave almost identically to fully-trainable models with
similar number of trainable parameters, even though both the number of layers and the width of the
model is different. The number of spurious parameters does not matter, and only the real one does.

5 Conclusion and outlooks

We showed that random parameters and structured transforms do not provide an advantage over
dense fully trainable layers in the loss-compute landscape of autoregressive models. Remarkably, it
appears that the scaling law for these models reliably depends only on the actual number of trainable
parameters. Unfortunately, scaling laws are not easily cheated by using spurious parameters. Our
investigation points to interesting questions: is the number of trainable parameters all that actually
matters? And is this true for any model architecture or specific to autoregressive language models?
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Figure 6: Loss against compute for a
model where the linear layers are re-
placed with adaptive FastFood.

Figure 7: Loss against compute with the
MLP replaced by block diagonal matri-
ces and block Hadamard transform.
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Table 1: Baselines
Hyperparameter XXSmall XSmall Small Medium

Number of layers 3 6 12 24
dmodel 768 768 768 1024
Attention heads 12 12 12 16
Context size 1024 1024 1024 1024
Dropout 0.1 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1 0.1

Total batch size 80 80 80 80
Optimizer Adam Adam Adam Adam
Peak learning rate 5e− 4 5e− 4 5e− 4 3e− 4
Learning rate decay cosine cosine cosine cosine
Warmup tokens 409.6M 409.6M 409.6M 409.6M
Decay tokens 32.8G 32.8G 32.8G 40.9G
Max training tokens 32G 32G 32G 32G
Weight decay 0.0 0.0 0.0 0.0
Gradient clipping 1.0 1.0 1.0 1.0

Table 2: Doped models
Hyperparameter Doped XSmall Doped Small Doped Medium

Total number of layers 5 11 23
Number of trainable layers 3 6 12
Number of frozen layers 2 5 11
dmodel 768 768 1024
Attention heads 12 12 16
Context size 1024 1024 1024
Dropout 0.1 0.1 0.1
Attention dropout 0.1 0.1 0.1

Total batch size 80 80 80
Optimizer Adam Adam Adam
Peak learning rate 5e− 4 5e− 4 3e− 4
Learning rate decay cosine cosine cosine
Warmup tokens 409.6M 409.6M 409.6M
Decay tokens 32.8G 32.8G 40.9G
Max training tokens 32G 32G 32G
Weight decay 0.0 0.0 0.0
Gradient clipping 1.0 1.0 1.0

A Appendix

We include all the hyperparameter and architectural details for the baselines (Table 1), the doped models (Table
2, and the structured models (Table 3). The doped models are built by alternating trainable transformer and
frozen MLP layers, so that the first and last layers of the models are always trainable.
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Table 3: Structured Models
Hyperparameter Structued Adaptive FastFood Structued Block Diagonal

Number of layers 12 12
dmodel 1024 1024
Attention heads 16 16
Context size 1024 1024
Dropout 0.1 0.1
Attention dropout 0.1 0.1

Total batch size 80 80
Optimizer Adam Adam
Peak learning rate 5e− 4 5e− 4
Learning rate decay cosine cosine
Warmup tokens 409.6M 409.6M
Decay tokens 32.8G 40.9G
Max training tokens 32G 32G
Weight decay 0.0 0.0
Gradient clipping 1.0 1.0
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