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Abstract
Learning discriminative micro-expression (ME) features from low-
intensity facial movements is a key challenge for micro-expression
recognition (MER). Although existing research has demonstrated
that the appearance, motion and geometric information are distin-
guishing for MEs, the effectiveness of merging these information is
still unclear. Thus, this paper proposes a Multi-information Hierar-
chical Fusion Transformer (MiHF-Tr) model to fully and effectively
aggregate the facial appearance, motion, and geometric informa-
tion of MEs, exploring a more reasonable way of multi-information
fusion. As different information is homology, MiHF-Tr introduces a
local and global hierarchy fusion framework to fuse them by model-
ing their local and global semantic consistency. Considering the bias
of different information in feature representation ability, a single-
core self-attention is proposed to achieve local multi-information
fusion, which focuses on strong information and supplements it
with weak information. The experimental results demonstrate that
the fusion of appearance, motion, and geometric features is dis-
criminative, and the proposed method can effectively aggregate
multiple information, achieving competitive performance.
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1 Introduction
Micro-Expression Recognition (MER), as an important topic at the
intersection of psychology and computer vision, has received wide-
spread attention lately [41], given its value in clinical diagnosis,
national security, emotional computing [7, 19, 20], and interre-
lated research [4, 5, 23]. Micro-Expressions (ME) are short-duration
(usually 1/25 to 1/5 second) with weak intensity facial muscle move-
ments. ME typically reflects the true emotions an individual is
trying to hide. However, its instantaneous and low intensity traits
pose a serious challenge to accurate recognition [18].

The instantaneous problem can be overcome by utilizing high-
speed cameras to capture fragments of MEs. However, low-intensity
problems are more challenging for using machine learning tech-
niques to recognize MEs. Although action amplification technology
alleviates this problem, the image distortion caused by amplifica-
tion restricts the intensity of amplification. As shown in Figure 1,
ME video contains appearance, motion, and geometric informa-
tion, which have been proven effective in distinguishing micro-
expressions [10, 17, 39, 40], especially motion information [1, 36].
Fully mining and fusing the information contributes to learn more
discriminative ME features, thereby improving recognition accu-
racy. However, existing works [2, 11, 14, 46] simply joint the partial
information, and do not explore effective ways to fuse them. To
solve this problem, this work focuses on the full mining and fusion
of facial multi-information from ME videos.

Different types of information data are heterogeneous, namely,
their data structure differ. As shown in Figure 1, the facial landmarks-
based geometric information data is non-Euclidean, while the opti-
cal flow-based motion information data is Euclidean. To overcome
the differences in data structures for different information, this work
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Figure 1: The homogeneity and heterogeneity of multi-
information data. ApI, MoI and GeI express appearance, mo-
tion, and geometric information, respectively.

utilizes different models to extract different information features,
respectively, and align them in local regions.

Different information is also homologous. Micro-actions be-
tween different information in local regions are the same, so multi-
information has local semantic consistency; As different informa-
tion is mined from the same facial ME (with consistent categories),
multi-information has global semantic consistency. Most existing
methods use multi-stream models [14, 16, 18, 35] to aggregate dif-
ferent information. However, these works focus on global semantic
consistency of multi-information, while neglecting local seman-
tic consistency. Therefore, this work adopts a hierarchical fusion
framework that combines local and global semantic consistency.
This framework aligns and aggregates multi-information features
at the local region and establishes the global correlation of multi-
information features between different local regions.

Due to homogeneity, the correlation between different informa-
tion is strong. So far, a limited number of works [2, 35, 38] have
explored the interaction between different information and im-
proved the fusion effect. However, it is worth noting that these
works ignore the differences and complementarity between strong
and weak information. Here, strong information and weak informa-
tion are distinguished by their contributions to classification tasks.
Thus, this work focuses on strong information and supplements it
with weak information to enhance fusion performance.

Overall, the main contributions of this paper are as follows:
1) This work studies and explores a reasonable way to fuse mul-

tiple information from facial ME video, making the first step to
aggregate the three types of information: appearance, motion and
geometry. Experimental results demonstrate that the proposed fu-
sionmethod is effective, and the fusion of three types of information
is superior to that of any two types of information.

2) To comprehensively aggregate multi-information, a novel
Multi-informationHierarchical Fusion Transformer (MiHF-Tr)model
is proposed, including Local Alignment Multi-Information Fusion
(LAMiF) and Global Correlation Multi-Information Fusion (GCMiF)

module. This model introduces a local and global hierarchy frame-
work that joints local and global semantic consistency by local
alignment fusion and global correlation fusion, corresponding to
LAMiF and GCMiF. The experimental results show that the pro-
posed model can fully aggregate multi-information features.

3) To effectively aggregate multiple information with strong
correlation, in the LAMiF module, a Single-Core Self-Attention (SC-
SA) is designed to establish a mechanism that combines dominant
patterns of strong informationwith supplementary patterns of weak
information. Experimental results demonstrate that SC-SA is an
effective and reasonable method to aggregate different information.

2 Related Work
Based on research issues, related works are introduced from two
aspects: information fusion and Transformer-based models.

2.1 Information Fusion
ME video clips contain rich appearance, motion, and geometric
information that can represent facial micro-action features. So far,
many research works [3, 10, 21, 25, 43] have calculated optical flow
from video frames and designed feature extraction algorithms to
extract motion features from the optical flow. These works have
demonstrated that optical flow-based motion information is effec-
tive for MER tasks. Li et al. [17] explored the advantages of the
apex frame. The experimental conclusion indicates that apex frame-
based appearance information contains discriminative information
for MER. Recently, to explore more compact micro-action represen-
tation methods, Wei et al. [40] designed a new graph convolutional
network to model facial landmarks and achieved competitive re-
sults. They explored the effectiveness of geometric information
based on facial landmarks, and the conclusion was positive [37].
Thus, so far, a large number of works have attempted to extract ME
features from three types of information to represent facial micro-
actions. However, a single type of information makes it difficult for
the model to fully learn discriminative ME features.

Some researchers aggregated different information to enhance
the representational ability of features. As a typical case, the dual-
stream model [11, 35] is constructed to extract motion features and
appearance features from optical flow and RGB frames, respectively.
Kumar et al. [14] constructed a dual-stream graph network model
to extract motion and geometric features from optical flow and
facial landmarks, respectively. The above works demonstrated the
advantages of information fusion. However, only two types of infor-
mation were considered to represent ME. Most notably, these works
did not explore the fusion mechanism, only using a simple fusion
way, such as concatenation and addition, based on a dual-branch
structure. Different from these methods, the proposed method ag-
gregates three types of information to more comprehensively rep-
resent facial micro-actions, and presents a multi-information local
and global hierarchy fusion framework.

2.2 Transformer-based Model
Recently, Transformer has achieved good performance in correla-
tion modeling. Zhu et al. [48] designed a sparse-based Transformer
to extract sparse features from optical flow. Zhang et al. [47] pro-
posed a novel spatio-temporal transformer to enhance long-range
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Figure 2: Flowchart of the proposed method. (a) Backbone: extracting the multi-information feature; (b) LAMiF module:
alignment fusion of localmulti-information; (c) GCMiFmodule: correlation fusion of globalmulti-information; (d) classification:
CW Focal loss and softmax classifier.

spatial features. Zhai et al. [46] divided facial images into multiple
sub-blocks and introduced a multi-head self-attention mechanism
to fuse these sub-blocks locally and globally. By integrating overall
and detailed information, Ma et al. [27] designed a dual-branch
classification network. The two branches are responsible for cap-
turing overall motion and detailed motion, respectively, and Swin
Transformer [26] is adapted to focus on the region of interest. Dif-
ferent from these methods, on one hand, in terms of the architecture
and purpose, this paper focuses on multi-information fusion and
designs a novel MiHF-Tr model that achieves alignment fusion
of local multi-information and correlation fusion of global multi-
information; On the other hand, in terms of self-attention, a new
SC-SA is proposed for multi-information feature fusion, which
enhances strong information with weak information.

3 Method
Figure 2 presents the framework of the proposed MiHF-Tr. First,
the multi-information backbone extracts multi-information feature
using ResNet50 [12] and Graph Convolutional Network (GCN)
[30, 42]; second, LAMiF module aligns local multi-information and
fuses them using SC-SA; next, GCMiF module achieves the global
correlation fusion of multi-information; finally, the classification
part adopts Class Weighted Focal Loss (CW-FLoss) to constrain
the model for solving sample imbalance, and employs softmax as a
classifier.

3.1 Multi-Information Backbone
In this paper, the apex frame, optical flow and facial landmarks are
extracted as the appearance, motion and geometric information.
The apex and onset frames are used to calculate optical flow, and
the facial landmarks are detected in the apex and onset frames.

As we know, the apex frame and optical flow belong to Euclidean
data, while facial landmarks belong to non-Euclidean data [40].
ResNet50 and GCN can process Euclidean and non-Euclidean data,
respectively. Thus, ResNet50 is employed to extract the appearance
and motion feature maps, while GCN is employed to extract the
geometric features. To facilitate local alignment of the three features,
the feature map preserves the spatial information. Specifically, the
apex frame (ApF) and optical flow (OF) are processed by the first 𝑙
layers of ResNet50 to obtain the appearance feature map (AF) and
motion feature map (MF):

AF = ResNet50𝑙 (ApF)

MF = ResNet50𝑙 (OF)
(1)

where ResNet50𝑙 (·) expresses the output feature map of the 𝑙-th
layer of ResNet50, 𝑖 ranges from 1 to 50; The sizes of ApF and OF
are 224 × 224, that compatible with ResNet50; The sizes of AF and
MF are ℎ0 × ℎ0, and ℎ0 can be divided by 224.

For geometric information, 51 facial landmarks are selected from
68 facial landmarks, and the landmarks of facial contours unrelated
to ME are discarded. Then, facial landmarks (FL) are processed to
get geometric features (GF):

GF = GCN(FL) (2)

where GF ∈ R51×𝑑 , 𝑑 is the feature dimension of output node; FL ∈
R51×4, where 4 is the input node feature dimension, representing
the coordinate values of apex and onset frames.

3.2 Local Alignment Multi-Information Fusion
Module

This module includes two parts: local multi-information alignment
and SC-SA. The details are as follows:
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Figure 3: Illustration of SC-SA.

3.2.1 Local Multi-Information Alignment. Since all information is
mined from facial videos, they have homology. Themulti-information
features within the same local area represent the same micro-
actions, that is, different information has local semantic consistency.
Therefore, the proposed method utilizes the facial spatial position
information provided by facial landmarks to align local features
of different information, facilitating subsequent learning of fusion
features with consistent semantics.

Assuming the 𝑛-th facial landmark of apex frame is P𝑛 (𝑥𝑛, 𝑦𝑛),
where 𝑛 is from 1 to 51. Then, the corresponding point in the AF
and MF is:

PF𝑛 = (𝑥𝑛 × ℎ0
224

, 𝑦𝑛 × ℎ0
224

) (3)

In AF, we clip an image block of 𝐵×𝐵 centered on point 𝑃𝐹𝑛 and
flatten it to obtain the 𝑛-th local appearance feature 𝐹𝐴𝑛 ∈ R1×𝑑 ,
where 𝑑 is feature dimension; The same method can be used to
obtain the 𝑛-th local motion feature 𝐹𝑀𝑛 ∈ R1×𝑑 . The 𝑛-th node
feature of geometric feature GF is the local geometric feature 𝐹𝐺𝑛 ∈
R1×𝑑 . As a result, for the 𝑛-th facial landmark, we can obtain a
multi-information local feature set: 𝐹

′
𝑛 = (𝐹𝐴𝑛 ; 𝐹𝑀𝑛 ; 𝐹𝐺𝑛 ) ∈ R3×𝑑 .

3.2.2 Single-Core Self-Attention (SC-SA). Based on previous works
[1, 14] and the pre-experiments, it turns out that compared to the
other two information, optical flow-based motion information has
strong discriminability. This is mainly because MEs are a dynamic
process, while motion information can more directly represent fa-
cial micro-actions, which is consistent with the dynamic nature
of ME. However, the apex frame lacks time-domain information,
and geometric information only represents the geometric changes
around facial landmarks. Therefore, we define optical flow as domi-
nant information and the other two as weak information.

If strong and weak information are handled fairly, the latter
may interfere with strong information. Thus, the proposed method
focuses on motion information as the single core, with other infor-
mation as auxiliary, that is, using motion features as the dominant
pattern and the other two features as supplementary patterns.

Self-Attention (SA) [26] has powerful capabilities in various
tasks [6, 45]. It effectively aggregates different features by estab-
lishing dependency relationships between them. Therefore, this
paper introduces the above ideas into SA and proposes a SC-SA that
effectively fuses appearance, motion, and geometric local features.
Specifically, for the 𝑛-th local region, multi-information local fea-
tures 𝐹𝐴𝑛 , 𝐹𝑀𝑛 and 𝐹𝐺𝑛 in 𝐹

′
𝑛 are fused to obtain a multi-information

local fusion feature 𝐹𝑛 . First, Query 𝑄𝑛 , keys 𝐾𝑛 , and values 𝑉𝑛 are

calculated by 𝑄𝑛 =𝑊𝑄𝐹
′𝑇
𝑛 , 𝐾𝑛 =𝑊𝐾𝐹

′𝑇
𝑛 and 𝑉𝑛 =𝑊𝑉 𝐹

′𝑇
𝑛 , respec-

tively, and both ∈ R𝑑×3.𝑊𝑄 ,𝑊𝐾 and𝑊𝑉 are the learable weights
and both ∈ R𝑑×𝑑 ; the superscript T represents transposition.

Then, a multi-information fusion feature 𝐹𝑛 is calculated by:

𝐹𝑛 = 𝛼𝐹𝑀𝑛 + (1 − 𝛼) (𝑤𝑎𝐹𝐴𝑛 +𝑤𝑔𝐹𝐺𝑛 ) ∈ R1×𝑑 (4)

where𝑤𝑎 and𝑤𝑔 are learnable values to weight 𝐹𝐴𝑛 and 𝐹𝐺𝑛 , respec-
tively; and 𝐹𝐴𝑛 , 𝐹𝑀𝑛 and 𝐹𝐺𝑛 are obtained by:

𝐹𝐴𝑛 = Softmax(𝑄
𝑇
𝑛 (1, :)𝐾𝑛√

𝑑
)𝑉𝑇𝑛 ∈ R1×𝑑

𝐹𝑀𝑛 = Softmax(𝑄
𝑇
𝑛 (2, :)𝐾𝑛√

𝑑
)𝑉𝑇𝑛 ∈ R1×𝑑

𝐹𝐺𝑛 = Softmax(𝑄
𝑇
𝑛 (3, :)𝐾𝑛√

𝑑
)𝑉𝑇𝑛 ∈ R1×𝑑

(5)

Furthermore, in formula 4,𝑤𝑎 and𝑤𝑔 have no constraints, and
negative and zero values may occur. Thus, we take probability form
as the weights as follows:

𝐹𝑛 = 𝛼𝐹𝑀𝑛 + (1 − 𝛼) ( 𝑒𝑤𝑎

𝑒𝑤𝑎 + 𝑒𝑤𝑔
𝐹𝐴𝑛 + 𝑐𝐹𝐺𝑛 ) (6)

So, the coefficients of 𝐹𝐴𝑛 and 𝐹𝐺𝑛 are limited between 0 and 1 − 𝛼 .
Also, to ensure that 𝐹𝑀𝑛 is the dominant pattern, 𝛼 ≥ 0.5. For every
local region, themulti-information local features are fused, resulting
in 51 multi-information local fusion features 𝐹𝑛, 𝑛 = 1, 2, ..., 51.

3.3 Global Correlation Multi-Information
Fusion Module

Although different information has different data distributions,
they all point to the same ME category and have global semantic
consistency. In fact, ME categories are closely related to different
local micro actions. Based on the local semantic consistency features
learned by LAMiF, the proposed method achieves the mapping of
local semantic consistency features to global semantic consistency
features through correlation modeling.

So far, Transformer is a mainstream model that establishes cor-
relations between different token features. Therefore, this paper
designs a GCMiF module, which employs Transformer layers to
establish the correlation between local features, learning discrimi-
native ME features, that is:

𝐹𝑀𝐸 = 𝑀𝑃 (𝑇𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝑒𝑟 (𝐹1, 𝐹2, ..., 𝐹51)) (7)

where MP expresses the mean pooling.

3.4 Loss and Classifier
Inspired by Focal Loss [2], in this paper, a class-weighted focal
loss (CW-FLoss) is designed to mitigate the adverse effects of sam-
ple imbalance on multi-information fusion. CW-FLoss uses prior
knowledge of the sample number to guide the optimization process
of the MiHF-Tr model.

𝐶𝑊 𝐹𝐿𝑜𝑠𝑠 =

𝐶∑︁
𝑐=0

𝑁𝑐 (1 − 𝑝𝑐 )𝛾 log(𝑝𝑐 ) (8)
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Table 1: Label details of CASME II and SAMM datasets. Po:
positive; Ne: negative; Su: surprise; Ha: happiness; Di: disgust;
Re: repression; An: anger; Co: contempt.

Dataset Label Distribution

CASME II
Label Po Ne Su

Original Label Ha Di&Re Su
Number 32 90 28

SAMM
Label Po Ne Su

Original Label Ha An&Di&Co Su
Number 26 78 15

where 𝐶 is the total number of ME classes; 𝑁𝑐 is the normalization
sample number of 𝑐-th class ; 𝑝𝑐 is the probability of predicting as
𝑐-th class; 𝛾 is the focus factor. In addition, the classifier employs a
softmax function following the mainstream.

4 Experiment
The experimental results are reported in this section. The experi-
ments evaluate the performance of the proposed components and
method, and verify the rationality of the proposedmulti-information
fusion way. First, the effectiveness of jointing appearance, motion,
and geometric information is evaluated; Second, we carry out the
ablation analysis to evaluate the proposed components, including
SC-SA, LAMiF, GCMiF and CW-FLoss; Finally, we compare the
proposed MiHF-Tr with state-of-the-art (SOTA) methods.

4.1 Dataset and Evaluation Metric
4.1.1 Datasets. Following the existing works [2, 40], CASME II
and SAMM are adopted to evaluate the performance of the pro-
posed method. CASME II contains 255 samples with 26 subjects. All
participants are of the same ethnicity. MEs are annotated into seven
categories. ME videos were collected by high-speed cameras with
200 fps, and the resolution is 640*480; SAMM contains 159 samples
with 32 subjects. All participants are from 13 ethnicities. MEs are
annotated into eight categories, and the high-speed camera with
200 fps and 2040*1088 resolution.

Consistent with previous works [2, 9, 28], MEs are classified into
three categories, which requires adjusting the original samples and
labels. The corresponding relationship before and after adjustment
is shown in Table 1.

4.1.2 Evaluation Metrics. All experiments were conducted under
Leave-One-Subject-Out (LOSO) cross-validation. Namely, each sub-
ject’s sample takes turns serving as the test set one time, while the
rest samples serve as the training set. Following the recent main-
stream works[2, 9, 44], the results of all subjects are accumulated
to calculate unweighted F1-Score (UF1) and unweighted average
recall (UAR) as the evaluation metrics.

UF1 and UAR are commonly used to evaluate the model perfor-
mance of multi-classification problems, especially when dealing

with imbalanced samples. The calculation formula is:

UAR =
1
C

C∑︁
𝑐=1

TP𝑐
𝑛𝑐

UF1 =
1
C

C∑︁
𝑖=0

2 × TP𝑐
2 × TP𝑐 + FP𝑐 + FN𝑐

,

(9)

where C is the total number of ME classes; TP𝑐 , FP𝑐 and FN𝑐 are the
true positive, the false positive and the false negative, respectively.

4.2 Implementation Setting
As in existing works, e.g. [15, 24], the onset and apex frames were
obtained using database labels, and their detection belongs to an-
other task in ME analysis [33]. Facial micro-actions are magnified
using learning-based amplification techniques [29], with a mag-
nification factor of 3, following the works [15, 24]. The Dlib [13]
package is employed to detect facial landmarks. Furthermore, the
block size 𝐵 × 𝐵 is set to 4×4; 𝛼 is set to 0.7; 𝑙 is set to 11, and the
corresponding ℎ0 is 56; 𝑑 is 256; GCN model extracting geometric
features includes two layers.

For the training stage, the model is optimized by an Adam opti-
mizer with an initial learning rate of 0.001, and the learning rate is
divided by 10 every 20 epochs. The epoch number and batch size
are set to 100 and 64, respectively. All models are trained on a single
GTX 1080 GPU (8G) with Pytorch 1.8.1 version.

4.3 The Study on the Effectiveness of
Multi-Information Fusion

This paper explores the effectiveness of appearance (Ap), motion
(Mo), and geometry (Ge) information fusion. To assess the contribu-
tion of each information to the overall performance, we conducted
ablation experiments where only two of the three types of informa-
tion were utilized, as shown in Table 2. According to this table, the
proposed method achieves 0.9350 UF1 and 0.9354 UAR on CASME
II, and 0.8199 UF1 and 0.7916 UAR on SAMM. It turns out that the
fusion of the three information is superior to the fusion of any two
information, which demonstrates that aggregating Ap, Mo and Ge
information can improve recognition performance. Interestingly,
we find that the performance of Ap + Ge information obviously
lower than that of other combinations. The main reason is the lack
of motion information. It demonstrates that compared with the
other two information, Mo information is more discriminative.

By visualizing features using t-SNE [32], we further analyze the
effectiveness of Ap, Mo and Ge information fusion. Figure 4 (a),
(b) (c) illustrate the visualization of the features aggregating two
information. Figure 4(d) illustrates the visualization of the features
aggregating three information. It is evident that jointing three infor-
mation leads to the most distinct and compact clustering of different
classes, especially category 1 (green). Specifically, the intra-class
compactness and inter-class separability are significantly enhanced
compared to the combinations of any two information. The above
phenomenon demonstrates that the complementary information
provided by Mo, Ap, and Ge features together enables the model to
learn more discriminative representations. Furthermore, compared
to Ge + Mo and Mo + Ap, the clustering effect of Ge + Ap is the
worst, which is consistent with the previous quantitative analysis
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Figure 4: Visualization of the features in the layers using t-SNE[32], with different information combination.

Table 2: The comparison of fusing different information.

Information Type CASME II SAMM
Ap Mo Ge UF1 UAR UF1 UAR

× ✓ ✓ 0.8915 0.8848 0.7816 0.7471
✓ × ✓ 0.7074 0.6861 0.5326 0.5269
✓ ✓ × 0.8986 0.8899 0.7489 0.7249
✓ ✓ ✓ 0.9350 0.9354 0.8199 0.7916

about Mo discriminability. Also, it can be seen that combinations
containing motion information have better clustering effects on
class 0 (blue) and class 2 (red).

The average intra-class and inter-class distances (ARa and AEr)
are calculated. For the features in Figure 4 (a), (b), (c) and (d), ARas
are 0.12, 0.3, 0.32 and 0.1, respectively; AErs are 2.34, 2.62, 2.26 and
2.76, respectively. It demonstrates that the fusion features of Mo,
Ap and Ge have the minimum ARa and maximum AEr, which is
consistent with the results in Figure 4.

Overall, through quantitative and visual analysis, the following
conclusions can be drawn: (1) the fusion of appearance, motion,
and geometric information is effective and superior to the fusion of
any two types of information; (1) Compared to the other two types
of information, motion information is more discriminative.

4.4 The Ablation Analysis
Ablation experiments were conducted on LAMiF, GCMiF, SC-SA
and CW-FLoss, and the results and analysis are presented as follows:

4.4.1 The Evaluation on LAMiF and GCMiF. Table 3 shows the
ablation result on LAMiF and GCMiF. It can be found that removing
either module has a negative impact on performance.

The proposed method (LAMiF + GCMiF) improves UF1 by 0.0205
and 0.0100, compared with LAMiF, on CASME II and SAMM, respec-
tively. Namely, GCMiF can improve performance. It demonstrates
that, based on local multi-information fusion, global correlation
fusion of multi-information features can effectively learn ME fea-
tures with global semantic consistency. Also, the removal of LAMiF
causes a negative impact that decreases UF1 by 0.0634 and 0.0732,
on CASME II and SAMM, respectively. It turns out that directly per-
forming global fusion of multi-information cannot fully aggregate

Table 3: The ablation study on LAMiF and GCMiF.

Module CASME II SAMM
LAMiF GCMiF UF1 UAR UF1 UAR

✓ × 0.9145 0.9026 0.8099 0.7781
× ✓ 0.8716 0.8968 0.7467 0.7371
✓ ✓ 0.9350 0.9354 0.8199 0.7916

Table 4: The ablation study on LAMiF and GCMiF, under 4
ME categories.

Module CASME II SAMM
LAMiF GCMiF UF1 UAR UF1 UAR

✓ × 0.8677 0.8517 0.7656 0.7409
× ✓ 0.8503 0.8720 0.7587 0.7433
✓ ✓ 0.8923 0.9092 0.7866 0.7650

multi-information, while aligning and fusing multi-information
features from a local perspective can uncover local micro-motion
consistency. Furthermore, compared with GCMiF, LAMiF achieves
a more competitive UF1 and UAR on both datasets, which shows
that local fusion is more crucial than global fusion. The reasons
may be that only global fusion easily ignores the consistency of
some local micro-actions.

We further divided the negative category into two categories:
disgust and repression on CASME II; disgust and anger on SAMM.
As a result, MEs are divided into fine-grained 4 categories. As shown
in Table 4, the conclusion of the ablation study is also consistent
for LAMiF and GCMiF.

Furthermore, we employ the wilcoxon signed-rank test to vali-
date statistical significance. The results on CASME II demonstrate
that the p-values for MiHF-Tr over LAMIF (p = 0.048) and MiHF-Tr
over GCMIF (p = 0.0146) are both below the significance threshold of
0.05, confirming that the improvements are statistically significant.

Overall, the proposed hierarchical fusion framework from local
alignment to global correlation can fully aggregate appearance,
motion and geometric information, and the designed LAMiF and
GCMiF play a positive role.
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Figure 5: Confusion matrix on CASME II and SAMM, with UCW-FLoss or CW-FLoss.

Table 5: The ablation study on local fusion (SC-SA) and global
fusion (SA). Pl means pooling; SA means self-attention.

Type Method CASME II SAMM
UF1 UAR UF1 UAR

Local

SA+MeanPl 0.8531 0.8760 0.7362 0.7351
SA+MaxPl 0.8961 0.8764 0.7282 0.7363
Concat+FC 0.8473 0.8512 0.7156 0.7183
SC-SA 0.9350 0.9354 0.8199 0.7916

Global

MeanPl 0.9145 0.9026 0.8099 0.7781
MaxPl 0.9037 0.9254 0.7922 0.7678
LSTM 0.8911 0.8913 0.7769 0.774
SA 0.9350 0.9354 0.8199 0.7916

4.4.2 The Evaluation on Local Fusion (SC-SA). To verify the effec-
tiveness of SC-SA in fusing local multi-information, it was com-
pared with other fusion methods. As shown in Table 5, SC-SA
achieves the best performance. In fact, SC-SA set a single strong
information as the dominant pattern and other weak information
as the auxiliary pattern, which can achieve effective information
complementarity. It demonstrates that SC-SA avoids the negative
interference of weak information on dominant information, im-
proving the local fusion performance of multi-information.

Combining Table 3 and Table 5, an interesting conclusion can
be drawn that using SA + mean pooling for local fusion performs
worse than not performing local fusion. This may be because mean-
pooling places different information at the same level, which ignores
their differences in feature discriminability, restricting the feature
representation of dominant information.

4.4.3 The Evaluation on Global Fusion (SA). Table 5 shows the
results of different global fusion methods. On the one hand, pooling
is difficult to learn the global correlation between different local
fusion features; On the other hand, LSTM is not as good as SA in
terms of related modeling. Compared to meanpooling, maxpooling
and LSTM, self-attention can more effectively fuse 51 local fusion
features, achieving high-performance global fusion.

4.4.4 The Evaluation on CW-FLoss. Table 6 shows the performance
comparison of Focal Loss before and after class weighting. CW-
FLoss improves UF1 by 0.0420 and 0.0602, on CASME II and SAMM,
respectively. It turns out that class weights can improve the opti-
mization process to enhance feature discriminability.

Table 6: The ablation study on CW-FLoss.

Loss CASME II SAMM
UF1 UAR UF1 UAR

UCW-FLoss 0.8930 0.8795 0.7597 0.7515
CW-FLoss 0.9350 0.9354 0.8199 0.7916

Table 7: The parameter evaluation on 𝛼 .

𝛼
CASME II SAMM

UF1 UAR UF1 UAR

0.1 0.9012 0.8869 0.7764 0.7650
0.3 0.9031 0.8975 0.7820 0.7334
0.5 0.9115 0.8892 0.7705 0.7677
0.7 0.935 0.9354 0.8199 0.7916
0.9 0.9197 0.9197 0.8160 0.7804

To further illustrate the advantages of CW-FLoss in dealing with
sample bias, we provide the corresponding confusion matrix in
Figure 5. According to Table 1, the sample sizes of positive and sur-
prise ME are relatively small. UCW-FLoss (Focal Loss without Class
Weighted) performs poorly in recognizing the positive category,
and there is a significant difference in performance for recognizing
positive and surprise categories. After using CW-FLoss, the per-
formance of recognizing the positive category was significantly
improved (0.19 and 0.20 on CASME II and SAMM, respectively).
Although the recognition of the surprise category has slightly dete-
riorated (0.07 and 0.06 on CASME II and SAMM, respectively), the
whole performance has improved, and the performance of recog-
nizing positive and surprise categories is more balanced. Overall,
CW-FLoss can drive the model to focus on ME classes with fewer
samples, improving recognition performance.

4.4.5 The Evaluation on 𝛼 . From Table 7, which evaluates 𝛼 from
0.1 to 0.9 with a 0.2 interval, 0.7 is optimal, namely, 0.7 strong
features with 0.3 weak features achieve optimal performance gains.
As 𝛼 goes down, the performance goes down obviously; As it goes
up, the decrease is slight, which indicates the advantage of motion
features. Also, the too-small ratio for the other two causes excessive
information loss.
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Figure 6: Feature visualizations of different layers in the proposed MiHF-Tr model.

Table 8: Comparing with the existing methods.

Method Year CASME II SAMM
UF1 UAR UF1 UAR

LBP-TOP [34] 2015 0.7026 0.7429 0.3954 0.4102
Bi-WOOF [22] 2018 0.7805 0.8026 0.5211 0.5139
MAP-RME [31] 2022 0.8270 - 0.7580 -

SLSTT-LSTM [47] 2022 0.9010 0.8850 0.7150 0.6430
SelfME [8] 2023 0.9078 0.9290 - -

Micron-Bert [28] 2023 0.9034 0.8914 - -
3CCWGANAM [9] 2024 0.7230 0.7550 0.7010 0.7480

TFT [35] 2024 0.9070 0.9090 0.7090 0.6560
MFDAN [2] 2024 0.9134 0.9326 0.7871 0.8196
CoTDPN [44] 2025 0.7931 0.8015 0.7539 0.7367

MiHF-Tr(Ours) 2025 0.9350 0.9354 0.8199 0.7916

4.5 Visualization
As shown in Figure 6, the feature visualizations of different layers
in MiHF-Tr are displayed. Figure 6 (a), (b) and (c) show the feature
visualizations of the Mo, Ap and Ge features, respectively. Mo
features extracted from optical flow exhibit clearer class separability
compared to Ap and Ge features. It can be concluded that motion
features show better class separability than Ap and Ge features,
validating the analysis in Section 4.4.

Figure 6 (d) shows the results of LAMiF output, and it turns out
that the inter-class distance begins to increase, while the intra-class
distance also begins to decrease. Figure 6 (e) shows the results of
the proposed MiHF-Tr that jointing LAMiF and GCMiF. We can find
that the features become more discriminative, and the ME features
of different categories have clearer boundaries and lower intra-class
distance. It demonstrates that the proposed MiHF-Tr can effectively
fuse multi-information to learn discriminative ME features.

4.6 Comparing with Existing Methods
As shown in Table 8, compared to traditional artificial feature meth-
ods and traditional deep learning methods, our method has signifi-
cant advantages; SelfME,Micron-Bert and CoTDPN are transformer-
based methods, and compared to these methods, we still maintain
a slight performance advantage; MFDAN uses optical flow to guide
RGB image coding, and also introduces self-attention and Focal
Loss. Although MiHF-Tr is slightly inferior in terms of UAR on

Table 9: The results of interfering landmarks on CAMSE II.

𝑒 UF1 UAR

1 0.9176 0.9160
3 0.9259 0.9204
10 0.9134 0.9100

SAMM compared to MFDAN, in terms of UAR and UF1 on CASME
II and UF1 on SAMM,MiHF-Tr achieves better results. Especially on
CASME II, MiHF-Tr’s UF1 is 0.0216 higher than MFDAN’s. Overall,
our method achieves a competitive performance

5 Discussion
The proposed method effectively integrates three types of informa-
tion, inevitably introducing more computational costs. However,
compared with some current methods, such as Micron-bert (pa-
rameter size: 13.760512M), MiHFTr has a smaller computational
cost (parameter size: 3.419074M). In addition, facial landmarks are
crucial for the proposed method as they affect the feature discrimi-
nation of multi-information. As shown in Table 9, we conducted
random interference on the facial landmarks of all samples (ran-
domly deviating from the coordinate by 𝑒 pixels). It turns out that
the interference of facial landmarks leads to a decrease in recog-
nition performance, but the magnitude of the decrease is limited.
The reason may be that the proposed model utilizes ResNet50 to ex-
tract initial feature maps. Due to the receptive fields of convolution,
even if there are errors for landmarks, the feature maps cropped by
landmarks still contain effective information.

6 Conclusion
This paper explored the effectiveness of appearance, motion and
geometric information, and proposes a novel MiHF-Tr model with
a local and global hierarchy fusion framework. Several components
were designed to improve performance. Extensive experiments
were conducted, including quantitative analysis and visualization
analysis. The experimental results demonstrate that aggregating
appearance, motion and geometric information is effective, and
MiHF-Tr can fully fuse multi-information by learning local and
global semantic consistency. Also, the ablation analysis demon-
strates that LAMiF, GCMiF, SC-SA and CW-FLoss are effective for
MER task. Finally, compared with SOTA methods, the proposed
method achieves competitive performance.
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