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Abstract
Recent developments in prompt learning of large
Vision-Language Models (VLMs) have signifi-
cantly improved performance in target-specific
tasks. However, these prompting methods often
struggle to tackle the target-unspecific or general-
izable tasks effectively. It may be attributed to the
fact that overfitting training causes the model to
forget its general knowledge. The general knowl-
edge has a strong promotion on target-unspecific
tasks. To alleviate this issue, we propose a novel
Features Matrix (FM) approach designed to en-
hance these models on target-unspecific tasks.
Our method extracts and leverages general knowl-
edge, shaping a Features Matrix (FM). Specifi-
cally, the FM captures the semantics of diverse
inputs from a deep and fine perspective, preserv-
ing essential general knowledge, which mitigates
the risk of overfitting. Representative evaluations
demonstrate that: 1) the FM is compatible with
existing frameworks as a generic and flexible mod-
ule, and 2) the FM significantly showcases its ef-
fectiveness in enhancing target-unspecific tasks
(base-to-novel generalization, domain generaliza-
tion, and cross-dataset generalization), achieving
state-of-the-art performance.

1. Introduction
Large vision-language models such as CLIP (Radford et al.,
2021) have attracted increasing attention for remarkable gen-
eralization performance. Vision-Language Models (VLMs)
are trained to align textual and visual modalities by leverag-
ing extensive datasets. For instance, a prominent example
of such models is CLIP, which has achieved remarkable
success across a wide range of downstream tasks (Greer
et al., 2024; Sanghi et al., 2022; Etchegaray et al., 2024).
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CLIP utilizes a large collection of 400 million text-image
pairs. One of CLIP’s most appealing features is its ability
to perform zero-shot inference. During inference, CLIP
utilizes hand-crafted text inputs, known as prompts, to gen-
erate classification weights to predict image features, all
without requiring any target-specific parameters training.

In contrast to hand-crafted prompts, a model-parameter tun-
ing method has been proposed as prompt learning to au-
tomatically learn prompt embeddings (Zhou et al., 2022a).
For instance, CoOp (Zhou et al., 2022b) represents the first
method that specifically focuses on learning the text embed-
dings of prompts with few-shot samples training while keep-
ing the CLIP model frozen. Although CoOp (Zhou et al.,
2022b) has shown significant performance improvements
over hand-crafted prompts in target-specific base classes,
it may yield inferior performance compared to the hand-
crafted prompt CLIP in generalization tasks, e.g., the novel
class of generalization from base-to-novel (see Table 1). To
overcome this challenge, some effective methods (Lu et al.,
2022; Zhu et al., 2023; Zhou et al., 2022a;b; Yao et al.,
2023a; Chen et al.; Li et al., 2024a) with tuning textual
embeddings have been proposed. These methods aim to en-
hance the performance of novel classes, surpassing the novel
performance of the previous CoOp. Although the novel abil-
ity of these methods surpasses that of CoOp (67.96%), it
is unfortunate that the novel ability of these methods still
falls short compared to the hand-crafted prompt method
(CLIP: 74.22%), as shown in Table 1 (Novel). A possible
reason (Zhou et al., 2022a) may be that these methods with
tuning text embeddings tend to overfit the downstream data
distributions. This overfitting can result in the model losing
its inherent generalization capabilities (Yao et al., 2023a)
obtained from hand-crafted prompts (Radford et al., 2021).

To alleviate this problem, we propose a novel Features Ma-
trix (FM) with CLIP for target-unspecific tasks. Our method
incorporates multiple hand-crafted prompts to extract gen-
eral information as a pre-trained matrix from frozen CLIP
to enhance generalization. The matrix of pre-trained fea-
tures can delve into the semantics of different hand-crafted
prompts finely and deeply, which reduces the risk of forget-
ting the essential general knowledge of pre-trained CLIP.
Importantly, our method is compatible with current prompt
learning frameworks for textual or multi-modal prompt
learning and serves as a flexible and generic module. As
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Figure 1. Our method is orthogonal to representative architectures,
such as MaPLe (M) and PromptSRC (S), surpassing the existing
easy-to-use DePT (Zhang et al., 2024a) by a significant margin.

demonstrated in Figure 1, our method, integrated with the
representative MaPLe (Khattak et al., 2023a) and Prompt-
SRC (Khattak et al., 2023b), exhibits competitive results
in base-to-novel generalization, domain generalization, and
cross-dataset generalization across 11 datasets. Meanwhile,
our method surpasses the existing easy-to-use DePT (Zhang
et al., 2024a) by a significant margin. This underscores the
robustness of our method across various tasks.

Our contributions can be summarized as follows:

• The proposed method incorporates multiple hand-
crafted prompts with classes to extract general knowl-
edge as a pre-trained Features Matrix (FM).

• We propose an easy-to-use design, which is compati-
ble with representative textual or multi-modal prompt
learning frameworks for adapting CLIP.

• Various target-unspecific tasks (base-to-novel general-
ization, cross-dataset generalization, and domain gen-
eralization) across 11 datasets demonstrate that our
method demonstrates its effectiveness.

2. Preliminaries
Notations. Considering a pre-trained VLM, let Ev(·) be
its image encoder and Et(·) be its text encoder. The image
encoder transforms input images into feature embeddings,
capturing the visual information within the images. The
text encoder generates representations for word embedding
sequences, capturing the semantic information conveyed by
the text prompts p. Generally, a hand-crafted prompt p may
have the form of “a photo of a [Class]”. In this paper, x
represents an arbitrary image, and l denotes the label.

Hand-Crafted CLIP. During the pre-training phase of
CLIP (Radford et al., 2021), the image and text encoders
are jointly trained on large-scale text-image pairs using a
contrastive loss. This loss maximizes the cosine similar-
ity between matching pairs and minimizes it between non-
matching pairs, enabling the encoders to learn aligned visual
and textual representations effectively. The final prediction
score between the image x and text prompt p is computed
using contrastive learning. The final prediction probability
of alignment is computed by the matching score as follows:

p(l = k | x) = exp {cos (Et (pk) , Ev(x)) /τ}∑K
k′=1 exp {cos (Et (pk′) , Ev(x)) /τ}

,

(1)

where l is the label of x, cos (·, ·) stands for cosine similarity
between two vectors, and τ > 0 represents a temperature
parameter. Here, the classifier consists of K textual features
derived from prompts {pk′}Ck′=1, where the prompt pk′ for
the k′-th class may have the form of “a photo of a”.

Textual Prompting. In textual prompting, the class name
is retained as prior knowledge, while the word embeddings
(referred to as context) of prompts are treated as learnable
parameters, as shown in CoOp (Zhou et al., 2022b) and Co-
CoOp (Zhou et al., 2022a) of Figure 2. By modeling these
context embeddings as trainable parameters, the model can
optimize the prompts based on the specific requirements,
enhancing the alignment between images and prompts. For
class k, the tuning feature of the text encoder is denoted as
ttunk in a dataset with a total of K classes. The final pre-
diction probability of cross-entropy loss for two-modalities
alignment is computed as:

p(l = k | x) = exp {cos (ttunk , Ev(x)) /τ}∑K
k′=1 exp {cos (ttunk′ , Ev(x)) /τ}

, (2)

where cos (·, ·) stands for cosine similarity, and τ denotes
a temperature parameter. In some learned text embedding
methods, the method aligns with the CoOp methodology
by setting the embeddings to be shared across different
classes. During the inference phase, the prompts, along
with the learned embeddings, can generate textual features
that are used for classification purposes. By leveraging
these learned embeddings, the model can produce more
effective representations, leading to improved target-specific
classification performance (Zhou et al., 2022b).

Multi-Modal Prompting. Based on textual deep prompting,
this design uses only a limited number of trainable parame-
ters based on the image encoder, as shown in MaPLe (Khat-
tak et al., 2023a) and PromptSRC (Khattak et al., 2023b) of
Figure 2. The visual prompts are introduced at every trans-
former layer’s input space. In the visual branch, the input
image x ∈ RC×H×W is divided into M patches. And, a
tuning embedding of class iclass is appended with the input
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Figure 2. Illustration of representative textual prompting frameworks (CoOp and CoCoOp) and multi-modal prompting frameworks
(MaPLe and PromptSRC). We propose a flexible and generic design, which is compatible with these representative architectures. In
the figure, “snowflake pattern” represents parameter freezing, “flame pattern” represents learnable pattern, “Deep” represents learnable
tokens embedded in several layers of the encoder, where “T” represents learnable text embedding, “V” represents learnable visual
embedding, “Class priors” represents which category it belongs to, “Tuning Similarity” represents the calculation of cosine similarity
for fine-tuning architecture, and the light gray “Similarity” represents the calculation of cosine similarity for frozen architecture. In the
MaPLe architecture diagram, the “e” represents the matrix function that connects the encoders of two modalities in several layers.

patches. The foundation of vision prompting is ViT (Vision
Transformer) (Dosovitskiy et al., 2020) backbone, which
shares the same image encoder as CLIP. Let Pv denote the
visual embeddings of prompts, and the image encoder pro-
cesses the input tokens to generate tuning visual features, as
follows (Jia et al., 2022):

x̃p = {Pv, iclass, i1, i2, · · · , iM} . (3)

The tuning of visual embeddings are introduced in the image
encoder for deep prompt tuning.

3. Methodology
3.1. Current Challenge

As shown in Table 1, such as textual prompting (Zhou et al.,
2022a;b; Yao et al., 2023a; Lu et al., 2022) and multi-modal
prompting (Chen et al.), have shown significant improve-
ments in target-specific base classes. However, these meth-
ods often suffer from overfitting, leading to poor general-
ization in novel classes. To improve the novel performance
of models, prompting regularization involves constraining
the pre-trained and fine-tuning features in the text branch
through computed loss. This constraint helps prevent forget-
ting general knowledge and ensures that the model retains
essential information for downstream tasks. The objective
of this design is to activate and maintain the pre-trained gen-
eral knowledge, leveraging its remarkable generalization

abilities to mitigate performance degradation when dealing
with target-unspecific classes.

Table 1. Our method is an easy-to-use design, integrated into
CoOp, obtaining a higher average performance (11 datasets) on
novel (target-unspecific) classes.

Method Hand Features Base Novel

CLIP (ICML2021) Single 69.34 74.22

CoCoOp (CVPR2022) No 80.47 71.69
ProDA (CVPR2022) No 81.56 72.30
PLOT (ICLR2023) No 81.24 72.98
ProGrad (ICCV2023) No 82.48 70.75

CoOp (IJCV2022) No 82.38 67.96
+ DePT (CVPR2024) No 83.66 71.82
+ Kg (CVPR2023) Single 80.73 72.70
+ Ours Matrix 81.15 74.66

It is important to recognize that the fixed CLIP’s fundamen-
tal pre-trained characteristics demonstrate robust generaliza-
tion capabilities. Recently, KgCoOp (Yao et al., 2023a) in-
corporates the constraint with L1 loss on fine-tuning feature
with the pre-trained feature for the textual branch, avoiding
the loss of CLIP’s original generalization capability.

Motivation. However, the novel class performance of hand-
crafted-based KgCoOp (72.70%) is still lower than pre-
trained CLIP (74.22%) (Radford et al., 2021) of Table 1. It
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Figure 3. Illustration of our easy-to-use method. We propose a novel Features Matrix (FM) for enhancing target-unspecific tasks. Our
method incorporates multiple hand-crafted prompts with classes to extract general knowledge as a pre-trained features matrix. Various
generalization tasks across 11 datasets demonstrate that our method outperforms existing prompt learning methods.

may be attributed to the fact that this single hand-crafted
prompting regularization with CLIP cannot fully release and
excavate the diverse semantics for utilizing essential general
knowledge (Khattak et al., 2023b).

3.2. Proposed Features Matrix (FM)

To tackle this challenge and problem, we propose a novel
design called Features Matrix (FM) for enhancing target-
unspecific tasks. Our method incorporates multiple hand-
crafted prompts with classes of the same datasets to extract
general information as a pre-trained features matrix from
CLIP to enhance generalization. In this way, we can explore
and excavate the semantic information brought by each
hand-crafted prompt more finely and deeply. By specifically
aligning these multiple pre-trained hand-crafted unexpected
features and tuning image features, our method aims to
enhance the model’s generalization and robustness. This
involves focusing on indistinguishable features that pose
a challenge to the model during training. As shown in
Figure 3, we employ a set of hand-crafted prompt templates
(P1, P2, P3, P4, etc) as inputs in the text encoder of pre-
trained frozen CLIP. These prompt templates, such as “a
photo of one”, “a photo of a ”, “a picture of a”, “a drawing
of a”, etc. The number of prompt templates (Radford et al.,
2021) is set to 60. In a dataset containing K classes, the
input to the text encoder is the frozen embeddings of hand-
crafted prompts, consisting of different classes. The output
of the frozen text encoder can be viewed as a features matrix,
as depicted in Figure 3. Specifically, we let t denote the sets
of pre-trained text features extracted by a frozen text encoder

through a set of hand-crafted prompt templates (P1, P2, P3,
P4, etc) with classes. In a dataset with a total of K classes,
features belonging to the current label k of image samples
are referred to as designated features tk, while features from
other classes are considered non-designated features tk̂.

Our method computes the matching scores with the co-
sine distance for each visual output feature vtun and des-
ignated pre-trained text features of the features matrix as
cos (tk, v

tun). Similarly, we compute the matching scores
between each visual output feature and the non-designated
pre-trained text features, denoted as cos (tk̂, v

tun). In corre-
spondence with the features matrix, these matching scores
can be viewed as a scores matrix, as depicted in Figure 3.
Subsequently, we identify the textual feature with lower
scores (low-β) among the designated features, which is re-
ferred to as the unexpected designated features set F k

un. The
low-β is that there is a list of scores sorted from low to
high, with β values assigned from the front of the list. Simi-
larly, we identify textual features with higher scores (top-β)
among the non-designated features, which are referred to as
unexpected non-designated feature sets F k̂

un. Accordingly,
the contrastive loss LCL of unexpected features similarity is
denoted as follows,

− log
exp {cos (tk, vtun)}

exp {cos (tk, vtun)}+ exp
{
cos

(
tk̂, v

tun
)} , (4)

where the tk ∈ F k
un and tk̂ ∈ F k̂

un denote the selected un-
expected features for designated unexpected features and
non-designated unexpected features. The objective is to
explore and excavate the unexpected features of general
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information. We train the objective for aligning the un-
expected text features and tuning visual features, and the
contrastive loss LCL optimizes visual embeddings. For two-
modal alignment, let LCE(·, ·) denote the cross-entropy loss
with prompts p for samples S, as follows,

LCE = argmin
p

E(x,y)∼SL
{

cos
(
ttun, vtun

)
, l
}
. (5)

Accordingly, the objective Ltotal with a hyper-parameter γ
of our method can be formulated as follows,

Ltotal = LCE + γLCL. (6)

Consequently, optimizing models with LCL between the
pre-trained textual unexpected features and image tuning
features. The LCE represents two modalities of alignment of
deep vision-language prompting. Importantly, our method is
compatible with representative prompt learning frameworks
as a generic and flexible module for textual prompt learning,
such as CoOp and CoCoOp, or multi-modal prompt learning,
such as MaPLe and PromptSRC.

4. Main Generalization Tasks
We evaluate our method on generalization tasks. As evi-
denced by systematic benchmarking in Figure 1, our frame-
work, when synergistically integrated with MaPLe (Khat-
tak et al., 2023a) and PromptSRC (Khattak et al., 2023b),
achieves state-of-the-art performance across three critical
generalization dimensions (base-to-novel generalization,
domain generalization, and cross-dataset generalization)
spanning 11 heterogeneous benchmarks. Notably, our
method surpasses the existing easy-to-use DePT (Zhang
et al., 2024a) by a significant margin in generalization sce-
narios through low-resource training.

4.1. Benchmark Setting

Compared Methods. In three generalization experiments,
we compare our method with CoOp (IJCV2022) (Zhou
et al., 2022b), CoCoOp (CVPR2022) (Zhou et al., 2022a),
MaPLe (CVPR2023) (Khattak et al., 2023a), Prompt-
SRC (ICCV2023) (Khattak et al., 2023b), and DePT
(CVPR2024) (Zhang et al., 2024a). The DePT is an easy-to-
use method. We process frozen CLIP using a linear probe
method. Comparison methods are based on the ViT-B/16
architecture for fair comparison.

Implementation Details. We employ CLIP (Radford et al.,
2021) model based on the ViT-B/16 architecture. For the
PromptSRC-based and MaPLe-based frameworks, we set
the visual and textual embedding length to 4. We set the
easy-to-use module γ to 0.1 and matching scores (top and
low) β to 5. Training for 30 epochs for a base-to-novel
setting in the first 9 transformer layers. Training for 20

epochs for the domain generalization setting and the cross-
dataset evaluation setting in the first 3 transformer layers.
We use a SGD optimizer with a learning rate of 0.0025 on a
single GPU. Following the hand-crafted CLIP, we use the
hand-crafted template sets from (Radford et al., 2021).

Datasets. In Table 10, the datasets cover multiple recogni-
tion tasks including ImageNet (Deng et al., 2009) and Cal-
tech101 (Fei-Fei et al., 2004) which consists of generic ob-
jects, OxfordPets (Parkhi et al., 2012), StanfordCars (Krause
et al., 2013), Flowers102 (Nilsback & Zisserman, 2008),
Food101 (Bossard et al., 2014), and FGVCAircraft (Maji
et al., 2013) for fine-grained classification, SUN397 (Xiao
et al., 2010) for scene recognition, UCF101 (Soomro et al.,
2012) for action recognition, DTD (Cimpoi et al., 2014) for
texture classification, and EuroSAT (Helber et al., 2019)
which consists of satellite images. We leverage datasets
such as ImageNetA (Hendrycks et al., 2021b), ImageNet-
R (Hendrycks et al., 2021a), ImageNet-Sketch (Wang et al.,
2019), and ImageNetV2 (Recht et al., 2019) to assess the
model’s performance across different domain distributions.

4.2. Base-to-Novel Generalization Task

In the base-to-novel generalization task, the datasets are
divided into base and novel classes. The model is trained
on the base classes in a 16-shot setting, and tested on both
the base and novel classes across 11 different datasets. The
number of classes for base and novel is the same, which
means that all classes in a dataset are evenly divided into two
groups of classes. The process of dividing all classes in the
dataset is randomly selected. HM refers to harmonic mean.
The HM evaluates the generalizable and non-generalizable
ability of our methods.

Discussion. In Table 2, our method demonstrates signif-
icant improvements on all 11 datasets on HM. We found
that our performance is higher than DePT (Zhang et al.,
2024a) (CVPR2024) when integrated with different meth-
ods. Compared to DePT, our method significantly enhances
the performance of base classes while also improving the
accuracy on novel classes. In terms of average performance,
our method based on PromptSRC (S) attains 85.70% accu-
racy on the base classes, and 77.35% accuracy on the novel
classes. Our method, as an easy-to-use module, achieves
performance improvements for various baseline frameworks,
such as CoOp, CoCoOp, MaPLe (M), and PromptSRC (S).

4.3. Domain Generalization Task

We train our model using the ImageNet in 16 shots and
we leverage ImageNetA, ImageNet-R, ImageNet-Sketch,
and ImageNetV2 to assess the model’s performance. The
training ImageNet is a non-generalizable setting in Table 3
(column-1). This experiment aims to validate the potential
of our method in domain shifts (Fang et al., 2023).
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Table 2. Base-to-novel generalization. In the base-to-novel generalization task, the datasets are divided into base and novel classes. The
model is trained on the base classes in a 16-shot setting, and tested on both the base and novel classes across 11 different datasets.
Compared with easy-to-use DePT (CVPR2024) in detail, our method achieves consistent average performance improvement over different
representative baselines (CoOp, CoCoOp, MaPLe, PromptSRC).

(a) Average over 11 datasets

Base Novel HM

CoOp 82.69 63.22 71.66
+DePT 83.66 71.82 77.29
+ Ours 81.15 74.66 77.79

Co 80.47 71.69 75.83
+DePT 83.80 72.89 77.97
+ Ours 81.68 75.55 78.52

M 82.28 75.14 78.55
+DePT 84.85 74.82 79.52
+ Ours 84.45 76.53 80.32

S 84.26 76.10 79.97
+ DePT 85.19 76.17 80.43
+ Ours 85.70 77.35 81.32

(b) ImageNet

Base Novel HM

CoOp 76.47 67.88 71.92
+DePT 77.13 70.10 73.45
+ Ours 75.85 71.33 73.53

Co 75.98 70.43 73.10
+DePT 76.87 70.47 73.53
+ Ours 77.35 72.36 74.79

M 76.66 70.54 73.47
+DePT 77.87 70.23 73.85
+ Ours 78.18 71.38 74.62

S 77.60 70.73 74.01
+ DePT 78.20 70.27 74.02
+ Ours 78.90 71.58 75.07

(c) Caltech101

Base Novel HM

CoOp 98.00 89.81 93.73
+DePT 98.33 94.33 96.29
+ Ours 97.58 96.60 97.13

Co 97.96 93.81 95.84
+DePT 98.37 93.87 96.06
+ Ours 98.61 96.75 97.70

M 97.74 94.36 96.02
+DePT 98.53 95.03 96.75
+ Ours 98.35 96.11 97.22

S 98.10 94.03 96.02
+ DePT 98.57 94.10 96.28
+ Ours 98.62 95.88 97.27

(d) OxfordPets

Base Novel HM

CoOp 93.67 95.29 94.47
+DePT 94.70 97.63 96.14
+ Ours 93.78 97.80 95.78

Co 95.20 97.69 96.43
+DePT 94.03 97.20 95.59
+ Ours 95.33 98.15 96.76

M 95.43 97.76 96.58
+DePT 95.03 97.83 96.41
+ Ours 95.85 98.22 97.04

S 95.33 97.30 96.30
+ DePT 95.43 97.33 96.37
+ Ours 95.95 97.92 96.95

(e) EuroSAT

Base Novel HM

CoOp 92.19 54.74 68.69
+DePT 88.27 66.27 75.70
+ Ours 88.35 65.33 75.13

Co 87.49 60.04 71.21
+DePT 90.27 66.87 76.82
+ Ours 88.15 70.11 78.12

M 94.07 73.23 82.35
+DePT 94.43 76.23 84.36
+ Ours 94.22 75.65 83.93

S 92.90 73.90 82.32
+ DePT 92.23 77.90 84.88
+ Ours 95.50 76.85 85.17

(f) UCF101

Base Novel HM

CoOp 84.69 56.05 67.46
+ DePT 85.43 72.17 78.24
+ Ours 83.10 78.85 80.94

Co 82.33 73.45 77.64
+ DePT 85.70 72.80 78.73
+ Ours 82.95 77.21 80.00

M 83.00 78.66 80.77
+ DePT 86.87 78.10 82.25
+ Ours 87.33 79.10 83.02

S 87.10 78.80 82.74
+ DePT 87.73 77.70 82.46
+ Ours 88.80 79.50 83.93

(g) StanfordCars

Base Novel HM

CoOp 78.12 60.40 68.13
+ DePT 79.67 72.40 75.86
+ Ours 74.32 76.87 75.58

Co 70.49 73.59 72.01
+ DePT 79.87 73.33 76.46
+ Ours 72.88 76.10 74.46

M 72.94 74.00 73.47
+ DePT 80.93 71.73 76.06
+ Ours 78.66 75.13 76.86

S 78.27 74.97 76.58
+ DePT 80.80 75.00 77.79
+ Ours 80.91 76.51 78.68

(h) Flowers102

Base Novel HM

CoOp 97.60 59.67 74.06
+ DePT 98.20 72.00 83.08
+ Ours 96.22 72.32 82.57

Co 94.87 71.75 81.71
+ DePT 98.33 72.57 83.51
+ Ours 95.61 74.93 84.03

M 95.92 72.46 82.56
+ DePT 98.03 73.17 83.79
+ Ours 98.21 75.00 85.07

S 98.07 76.50 85.95
+ DePT 98.40 77.10 86.46
+ Ours 98.81 78.10 87.26

(i) Food101

Base Novel HM

CoOp 88.33 82.26 85.19
+ DePT 90.43 91.33 90.88
+ Ours 89.98 92.85 91.41

Co 90.70 91.29 90.99
+ DePT 90.30 91.30 90.80
+ Ours 90.61 91.93 91.28

M 90.71 92.05 91.38
+ DePT 90.33 91.53 90.93
+ Ours 90.31 92.81 91.57

S 90.67 91.53 91.10
+ DePT 90.87 91.57 91.22
+ Ours 90.61 92.30 91.45

(j) FGVCAircraft

Base Novel HM

CoOp 40.44 22.30 28.75
+ DePT 42.53 22.53 29.46
+ Ours 37.32 34.61 35.92

Co 33.41 23.71 27.74
+ DePT 43.07 31.30 36.25
+ Ours 37.87 34.91 36.33

M 37.44 35.61 36.50
+ DePT 44.53 32.80 37.78
+ Ours 42.46 37.62 39.89

S 42.73 37.87 40.15
+ DePT 45.70 36.73 40.73
+ Ours 45.81 39.11 42.20

(k) SUN397

Base Novel HM

CoOp 80.60 65.89 72.51
+ DePT 82.37 75.07 78.55
+ Ours 79.12 78.38 78.77

Co 79.74 76.86 78.27
+ DePT 82.20 76.73 79.37
+ Ours 80.32 79.00 79.68

M 80.82 78.70 79.75
+ DePT 82.90 76.40 79.52
+ Ours 82.35 79.81 81.07

S 82.67 78.47 80.52
+ DePT 83.27 78.97 81.06
+ Ours 83.90 80.51 82.20

(l) DTD

Base Novel HM

CoOp 79.44 41.18 54.24
+ DePT 83.20 56.13 67.04
+ Ours 77.10 56.38 65.15

Co 77.01 56.00 64.85
+ DePT 82.77 55.40 66.37
+ Ours 78.90 59.61 67.93

M 80.36 59.18 68.16
+ DePT 83.87 59.93 69.91
+ Ours 83.01 60.98 70.32

S 83.37 62.97 71.75
+ DePT 84.80 61.20 71.09
+ Ours 84.90 62.58 72.07
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Table 3. Domain generalization. We train our model using the Ima-
geNet in 16 shots and test its performance on 4 different variants of
the ImageNet. When compared to DePT, our method consistently
outperforms it across all ImageNet variant datasets.

Source Target

ImageNet -V2 -S -A -R Average

CoOp 71.51 64.2 47.99 49.71 75.21 59.28
+ DePT 72.63 64.80 48.05 50.00 75.50 59.58
+ Ours 71.82 65.13 48.10 50.15 76.13 59.87

CoCoOp 71.02 64.07 48.75 50.63 76.18 59.91
+ DePT 72.77 65.10 49.10 51.00 76.85 60.51
+ Ours 72.10 65.25 50.13 52.11 77.18 61.16

MaPLe 70.72 64.07 49.15 50.9 76.98 60.27
+ DePT 73.27 65.33 49.05 51.25 77.50 60.78
+ Ours 71.56 65.45 50.33 52.32 78.10 61.55

PromptSRC 71.27 64.35 49.55 50.90 77.80 60.65
+ DePT 71.60 64.51 50.15 51.88 77.18 60.93
+ Ours 71.41 65.50 51.33 52.00 78.85 61.92

Discussion. In Table 3, our method based on PromptSRC
demonstrates the highest average improvement of 1.27%
over the PromptSRC method. Additionally, when compared
to DePT, our method consistently outperforms it across all
ImageNet variant datasets.

4.4. Cross-Dataset Generalization Task

We train our model with 16 shots on the ImageNet dataset
and test the model on 10 other unseen datasets. The training
ImageNet is a non-generalizable setting in Table 4 (column-
1). This experiment aims to validate the potential of our
method in a wide range of cross-dataset transfers.

Discussion. As shown in Table 4, our method based on
PromptSRC shows competitive performance in 10/10 over
the generic and flexible method DePT. These findings sug-
gest that our method excels in achieving better generaliza-
tion across a diverse range of unseen datasets. However, our
method for training ImageNet is lower than that of DePT.

5. Further Studies
In this section, we discuss further studies, focusing on the
impact of embedding length and depth, computational cost,
applying to other ViT instances, analysis of γ for LCL, and
analysis of Top-β and Low-β for pre-trained features matrix.

5.1. Learning Depth

In Table 5, we note that increasing the learning depth gener-
ally increases the performance based on PromptSRC. As the
number of layers increases to 11, the HM value decreases.

5.2. Embeddings Length

In Table 7, our findings indicate that the performance based
on PromptSRC reaches its peak when the length of embed-
dings is set to 4 on HM for an average of 11 datasets. Our
ablation studies are based on keeping all other settings un-
changed. It indicates excessive fine-tuning of the model,
causing it to lose CLIP generalization.

5.3. Analysis of γ for LCL

In Table 9, it is observed that as the number of γ increases
to 0.1, there is a peak in HM for an average of 11 datasets.
We conduct analysis based on the PromptSRC model.

5.4. Analysis of Top-β and Low-β

In Table 8, it is observed that as the number of Top-β and
Low-β increases to 5, there is a peak in HM. We conduct
analysis based on the PromptSRC model for an average of
11 datasets. We keep other hyper-parameters unchanged.

5.5. Applying to Other ViT Instances

In Table 6, we apply our method in various types of ViT
instances. Our experimental performance is based on the
average performance of 11 datasets. Our generic and flexible
module based on PromptSRC has the lowest performance of
ViT-B/32, with a value of 79.70%. And, our method, which
leverages PromptSRC, achieves the best performance with
ViT-L/14, with a value of 84.20%.

5.6. Inference Stage Computational Cost

In Table 11, the compute cost analysis is performed using
the SUN397 dataset over 10 epochs on a single GPU. Our
method (row 3) may have a slower inference speed as a
result of multiple cosine similarity calculations. The num-
ber of parameters we introduced has remained relatively
consistent and stable in training. This implies that usually,
our parameter quantity is lower than that of DePT.

6. Related Work
Vision-Language Models (VLMs). Recently, researchers
have demonstrated strong generalization capability of
Vision-Language Models (VLMs) (Alayrac et al., 2022;
Shao et al., 2025), which involve training on large-scale
datasets of image-text pairs. Using a large number of
samples for training is indeed one of the most effective
methods (Yang et al., 2021; Wang et al., 2023). Such as
CLIP (Radford et al., 2021), which is a prominent and
straightforward framework among existing VLMs. The
strong generalization capability of CLIP has made it a foun-
dation for many methods in adapting pre-trained VLMs for
downstream tasks (Sanghi et al., 2022; Maaz et al., 2022;

7



Enhancing Target-unspecific Tasks through a Features Matrix

Table 4. Cross-dataset generalization. Our method achieves overall favorable performance.

Source Target
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CoOp (Zhou et al., 2022b) 71.51 93.70 89.14 64.51 68.71 85.30 18.47 64.15 41.92 46.39 66.55 63.88
+ DePT 72.63 93.30 90.00 65.53 70.50 85.97 21.90 66.07 43.17 44.97 68.80 65.02
+ Ours 71.82 94.10 90.33 65.82 70.01 86.10 20.71 65.11 43.98 46.55 68.00 65.07

CoCoOp (Zhou et al., 2022a) 71.02 94.43 90.14 65.32 71.88 86.06 22.94 67.36 45.73 45.37 68.21 65.74
+ DePT 72.77 94.10 90.63 66.23 72.17 86.27 22.90 67.30 45.50 44.17 69.53 65.88
+ Ours 72.10 94.88 90.57 65.80 72.15 87.00 22.78 68.12 45.98 46.15 69.10 66.25

MaPLe (Khattak et al., 2023a) 70.72 93.53 90.49 65.57 72.23 86.20 24.74 67.01 46.49 48.06 68.69 66.30
+ DePT 73.27 92.53 90.10 64.60 70.10 85.57 23.63 66.40 45.03 40.13 67.53 64.56
+ Ours 71.56 94.00 90.91 65.92 73.10 86.78 24.33 68.35 46.13 49.01 68.81 66.73

PromptSRC (Khattak et al., 2023b) 71.27 93.60 90.25 65.70 70.25 86.15 23.90 67.10 46.87 45.50 68.75 65.81
+ DePT 71.60 93.80 90.13 66.00 70.93 86.27 24.30 67.23 46.60 45.83 69.10 66.02
+ Ours 71.41 94.95 92.14 66.50 73.25 87.53 25.81 68.10 49.01 49.20 69.74 67.62

Table 5. Analysis of learning depth based on PromptSRC for an
average of 11 datasets. HM refers to harmonic mean.

Learning Depth 1 3 5 7 9 11

HM 77.11 78.03 79.12 80.01 81.32 80.21

Table 6. Applying to other ViT instances.

Avg. (11 datasets)

B/32 B/16 L/14

HM (ViT) 79.70 81.32 84.20

Bangalath et al., 2022; Zhang et al., 2021; Wang et al., 2022;
Xu et al., 2025). To enhance the generalization ability of
VLMs, researchers have explored various approaches (Zhou
et al., 2025b;a). Some approaches involve enhancing the
text encoder or the visual encoder (Vaswani et al., 2017). By
improving the capabilities of the text encoder, the model can
better capture the semantics and contextual information in
the textual input (Zhang et al., 2024b). Similarly, enhancing
the visual encoder allows the model to extract discriminative
features from the visual input.

Prompt Tuning in VLMs. Prompt tuning (Zhang & Tian,
2025; Pan et al., 2024; Cao et al., 2025; Zhou et al., 2024; Li
et al., 2024a) is a commonly employed technique in the field
of Natural Language Processing (NLP) for training on down-
stream tasks (Yu et al., 2025; 2024b;a). Leveraging text
prompts, which are instructions given to the language model
component of VLMs, is a prevalent practice to improve

Table 7. Analysis of embeddings length based on PromptSRC for
an average of 11 datasets. HM refers to harmonic mean.

Prompt Length 1 2 4 6 8 10

HM 77.01 80.05 81.32 80.30 79.11 78.54

Table 8. Identifying scores of Top-β and Low-β for an average of
11 datasets. We conduct analysis based on the PromptSRC (Khat-
tak et al., 2023b) model. HM refers to harmonic mean.

Avg. (11 datasets)

3 4 5 6

HM (β) 78.21 79.81 81.32 80.51

Table 9. Analysis of γ for LCL in pre-trained features matrix. We
conduct analysis based on the PromptSRC (Khattak et al., 2023b)
model for an average of 11 datasets. HM refers to harmonic mean.

Avg. (11 datasets)

0.05 0.1 0.5 0.9

HM (γ) 80.13 81.32 81.00 79.88

task comprehension (Cui et al., 2025b). Full fine-tuning
and linear probes are two commonly employed approaches
for adapting VLMs to downstream tasks (Fang et al., 2025;
Liu et al., 2025). The constraints of both methods have
prompted research into innovative techniques influenced by
prompt tuning within the realm of VLMs (Yin et al., 2025).
CoOp (Zhou et al., 2022b), ProDA (Lu et al., 2022), and
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Table 10. Training and testing datasets. The dataset consists of 11 image classification datasets and four variant datasets of ImageNet.

Dataset Classes Train Val Test

ImageNet (Deng et al., 2009) 1,000 1.28 M N/A 50,000
Caltech101 (Fei-Fei et al., 2004) 100 4,128 1,649 2,465
OxfordPets (Parkhi et al., 2012) 37 2,944 736 3,669
StanfordCars (Krause et al., 2013) 196 6,509 1,635 8,041
Flowers102 (Nilsback & Zisserman, 2008) 102 4,093 1,633 2,463
Food101 (Bossard et al., 2014) 101 50,500 20,200 30,300
FGVCAircraft (Maji et al., 2013) 100 3,334 3,333 3,333
SUN397 (Xiao et al., 2010) 397 15,880 3,970 19,850
DTD (Cimpoi et al., 2014) 47 2,820 1,128 1,692
EuroSAT (Helber et al., 2019) 10 13,500 5,400 8,100
UCF101 (Soomro et al., 2012) 101 7,639 1,898 3,783

-V2 (Recht et al., 2019) 1,000 N/A N/A 10,000
-Sketch (Wang et al., 2019) 1,000 N/A N/A 50,889
-A (Hendrycks et al., 2021b) 200 N/A N/A 7,500
-R (Hendrycks et al., 2021a) 200 N/A N/A 30,000

Table 11. The compute cost analysis is performed using the
SUN397 (Xiao et al., 2010) dataset over 10 epochs on a single
GPU. ‘N’: the num of classes in the base task (Zhang et al., 2024a).

Method Train time Learnable para. HM

CoOp 10.88min 8K 71.65
+ DePT 10.91min + (2+N/2)K 77.30
+ Ours 13.56min + 0K 78.66

CoCoOp (Zhou et al., 2022a) fine-tune the CLIP model
for few-shot image recognition by optimizing a continuous
set of embeddings within the textual branch. The image-
conditional prompt utilized in CoCoOp significantly con-
tributes to improving generalization to unseen classes (Peng
et al., 2025; 2023). By conditioning prompts on visual
features, CoCoOp (Zhou et al., 2022a) ensures that the lan-
guage model focuses on pertinent visual information when
making predictions. Moreover, some approaches (Yao et al.,
2023b;a; Cui et al., 2024; 2025a) constrain the learnable
prompts to contain the essential general knowledge. In addi-
tion, the approach (Zhang et al., 2024a) introduces a flexible
approach to align its vision and language representations.

7. Future Works and Limitations
In the future, we plan to investigate the potential of our
method in other tasks (Tian et al., 2024; Yang et al., 2023;
Li et al., 2019; Yu et al., 2023; Li et al., 2024c; Zhang
et al., 2022; Wang et al., 2021; Li et al., 2025a;c; Jia et al.,
2025; Liu et al., 2023b;a; Li et al., 2024b) and downstream
scenarios (Pan et al., 2025; Jin et al., 2025; Li et al., 2025b;
Liu et al., 2024; Wu et al., 2024; Liu et al., 2023c;d). Due
to multiple processes of our method, the training speed is
slower. And, the ImageNet training in Table 4 is lower.

8. Conclusion
Prompt learning is a promising method for adapting pre-
trained Visual-Language Models (VLMs) for target-specific
classification tasks. However, these optimization frame-
works exhibit limited efficacy when applied to target-
unspecific or generalizable scenarios. This performance
degradation may stem from overfitting-induced catastrophic
forgetting, where the model loses generalizable knowledge
critical for adapting to unseen tasks during the fine-tuning
process. In this paper, we propose a Features Matrix (FM)
for vision-language models. Our method incorporates mul-
tiple hand-crafted prompts to extract general information as
a pre-trained features matrix from CLIP to enhance gener-
alization. The matrix of pre-trained features can delve into
the semantics of different hand-crafted prompts at a more
profound level, which reduces the risk of forgetting the es-
sential general knowledge of pre-trained CLIP. Our method
focuses on the challenge of various target-unspecific tasks
and scenarios across a wide range of real datasets. Impor-
tantly, our method is compatible with representative prompt
learning frameworks for textual or multi-modal prompts as
a generic and flexible module.
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