
Symmetry-Aware GFlowNets

Hohyun Kim 1 Seunggeun Lee 1 Min-hwan Oh 1

Abstract
Generative Flow Networks (GFlowNets) offer a
powerful framework for sampling graphs in pro-
portion to their rewards. However, existing ap-
proaches suffer from systematic biases due to
inaccuracies in state transition probability com-
putations. These biases, rooted in the inherent
symmetries of graphs, impact both atom-based
and fragment-based generation schemes. To ad-
dress this challenge, we introduce Symmetry-
Aware GFlowNets (SA-GFN), a method that in-
corporates symmetry corrections into the learning
process through reward scaling. By integrating
bias correction directly into the reward structure,
SA-GFN eliminates the need for explicit state
transition computations. Empirical results show
that SA-GFN enables unbiased sampling while
enhancing diversity and consistently generating
high-reward graphs that closely match the target
distribution.

1. Introduction
GFlowNets have emerged as a powerful framework for learn-
ing generative models capable of sampling complex, compo-
sitional objects with probabilities proportional to a given re-
ward. Inspired by reinforcement learning (RL), GFlowNets
generate these objects through a sequence of actions that it-
eratively modify the structure of the object being built. This
approach is particularly well-suited for generating compo-
sitional objects, such as graphs, where there are multiple
paths for constructing an object. A prominent application
of GFlowNets is molecule generation, where molecules are
sequentially constructed as graphs (Bengio et al., 2021; Jain
et al., 2023a).

However, GFlowNet training objectives rely on the accurate
computation of the transition probability of a policy, which

1Graduate School of Data Science, Seoul National University,
Seoul, Republic of Korea. Correspondence to: Seunggeun Lee
<lee7801@snu.ac.kr>, Min-hwan Oh <minoh@snu.ac.kr>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1

2

3 G1

1

2

3

4

G4

1

2

3

4

G31

2

34 G2

Figure 1: Illustration of graph transitions from G1 to various
successor graphs. The blue oval highlights graphs G2 and
G3 are isomorphic.

becomes particularly challenging in graph-building envi-
ronments due to the presence of equivalent actions. These
are actions that, although different, lead to the same graph
structure. For instance, consider Figure 1, where connecting
a new node (node 4) to either of two existing nodes (nodes
2 or 3) results in isomorphic graphs. Although these actions
are distinct, they lead to structurally identical graphs, mean-
ing their transition probabilities must be summed. More
generally, when multiple actions lead to the same state,
the transition probability must account for all equivalent
actions. This issue, referred to as the equivalent action prob-
lem, arises because determining whether two actions result
in the same state requires computationally expensive graph
isomorphism tests (Ma et al., 2024).

While GFlowNets were initially popularized for their
reward-matching capabilities, experiments conducted by
Ma et al. (2024) demonstrate that neglecting to account
for equivalent actions can introduce bias into GFlowNets.
Our analysis further shows that the bias is systematic: it
skews the model toward sampling graphs with fewer symme-
tries in node-by-node generation while favoring symmetric
components in fragment-based generation. This bias is par-
ticularly problematic for tasks such as molecular generation,
as molecules inherently possess natural symmetries. For
instance, in the ZINC250k dataset, over 50% of molecules
exhibit more than one symmetry, with 18% containing four
or more symmetries. Ignoring symmetries results in incor-
rect modeling and inaccurate molecular structure generation,
ultimately reducing the accuracy of the sampled molecules.

1

Symmetry-Aware GFlowNets

In this paper, we propose a simple yet effective modification
to the GFlowNet training objectives to resolve the equivalent
action problem. Our method adjusts the reward based on the
number of symmetries in a graph, requiring only minimal
changes to the existing training algorithms. Additionally, we
introduce a new unbiased estimator for the model likelihood.
Our key contributions are as follows:

• We present a rigorous formulation of autoregressive
graph generation within the GFlowNet framework, ex-
plicitly addressing the equivalent action problem.

• We propose a simple yet effective method to address
the equivalent action problem. Our approach scales
the reward based on the automorphism group of the
generated graph, enabling GFlowNets to accurately
model and sample from the target distribution. Using a
similar technique, we also derive an unbiased estimator
for the model likelihood.

• Through experiments, we validate our theoretical re-
sults, and demonstrate the effectiveness of our method
in generating diverse and high-reward samples.

2. Related Work
Autoregressive graph generation. There are two primary
formulations of autoregressive models: one based on ad-
jacency matrices and the other based on graph sequences
(Chen et al., 2021). Methods based on adjacency matrices
(You et al., 2018b; Popova et al., 2019; Liao et al., 2019)
are unlikely to suffer from the equivalent action problem
because they preserve the node order information generated
so far, making each pair of (graph, node order) a unique
state. In contrast, equivalent actions arise in methods based
on graph sequences (You et al., 2018a; Li et al., 2018; Shi
et al., 2020). This becomes problematic if a method requires
state transition probabilities, as in GFlowNets. Chen et al.
(2021) suggest that, for graph sequence-based methods, the
size of a node’s orbit is related to the number of equivalent
transitions, which inspired our work.

GFlowNets. Several learning objectives have been pro-
posed for GFlowNets, including flow matching (Bengio
et al., 2021), detailed balance (Bengio et al., 2023), trajec-
tory balance (Malkin et al., 2022), sub-trajectory balance
(Madan et al., 2023), as well as their variants to improve
training efficiency (Pan et al., 2023; Shen et al., 2023). Re-
cently, GFlowNets have been found to be equivalent to
maximum entropy reinforcement learning (Tiapkin et al.,
2024; Mohammadpour et al., 2024), which was previously
known to be inadequate for directed acyclic graph (DAG)
environments (Bengio et al., 2021). However, none of these
objectives can avoid the equivalent action problem, as they

are formalized based on state transitions, where multiple
isomorphic graphs can represent the next state.

The work most closely related to ours is Ma et al. (2024),
which highlighted the importance of accounting for equiva-
lent actions to compute exact transition probabilities. Their
approach involved an approximate test using positional en-
coding (PE) to detect equivalent actions at each transition.
However, the bias in GFlowNets was validated only through
experiments on synthetic datasets, without any theoretical
analysis. Furthermore, their method relies on approximate
tests that must be applied at every transition, making it com-
putationally expensive. In contrast, our work provides an
exact and efficient solution, requiring corrections only once
at the end of trajectories rather than at each transition. This
simplification not only reduces computational overhead but
also makes our method straightforward to implement. Ad-
ditionally, we present a comprehensive analysis showing
that this bias arises in general settings, affecting both atom-
and fragment-based generation schemes, and significantly
impacts learning, particularly for highly symmetric graphs.
Additional comparisons can be found in Appendix B.

3. Preliminaries
3.1. Graph Theory

Let G = (V,E) denote a graph, where V = {v1, . . . , vn}
is the set of n vertices, and E ⊆ V × V is the set of
edges. For heterogeneous graphs, we also define labeling
functions ln, le, and lg , which map nodes, edges, and graphs
to their respective attributes. We denote G as the set of
all such graphs under consideration. A permutation π is a
bijective mapping defined on the vertex set. We extend the
permutation to sets as π(V) = {π(v) : v ∈ V } and π(E) =
{(π(vi), π(vj)) : (vi, vj) ∈ E}, as well as to the graph
as π(G) = (π(V), π(E)). Since any permutation simply
relabels node indices, it maps to a structurally identical
graph. This notion is formalized as graph isomorphism.

Definition 3.1 (Isomorphism). Two graphs G = (V,E)
and G′ = (V ′, E′) are isomorphic, denoted G ∼= G′, if
there exists a permutation π : V → V ′ such that π(E) =
E′. For heterogeneous graphs, the permutation must also
preserve labels: for every v ∈ V , ln(v) = l′n(π(v)), for
every (u, v) ∈ E, le(u, v) = l′e(π(u), π(v)), and lg(G) =
l′g(G

′).

An automorphism is a special case of an isomorphism where
the graph is mapped to itself.

Definition 3.2 (Automorphism). An automorphism of a
graph G = (V,E) is a permutation π on the vertex set V
that preserves the edge set, meaning π(E) = E. If labels are
present, they must also be preserved under the permutation.
The set of all automorphisms of a graph G is called the
automorphism group of G, denoted by Aut(G).

2

Symmetry-Aware GFlowNets

In Figure 1, graph G1 has two automorphisms: the identity
mapping and one that permutes nodes 2 and 3. We denote
the order (or size) of the automorphism group as |Aut(G)|,
which represents the number of symmetries in the graph.
Definition 3.3 (Orbit). The orbit of a node u ∈ V in
graph G is defined as Orb(G, u) = {v ∈ V : ∃π ∈
Aut(G), π(u) = v}. Similarly, the orbit of an edge (u, v) ∈
E in graph G is defined as Orb(G, u, v) = {(h, k) ∈ E :
∃π ∈ Aut(G), (π(u), π(v)) = (h, k)}. More generally,
the orbit of a node set U ⊆ V in graph G is defined as
Orb(G,U) = {U ′ : ∃π ∈ Aut(G), π(U) = U ′}.

An orbit is a set of nodes or edges that are structurally
identical. In Figure 1, the orbit of node 2 in graph G1 is
{2, 3}. Equivalent actions occur because they act on nodes
in the same orbit; since nodes 2 and 3 are in the same orbit,
adding a new node to either one is equivalent. This point
will be further discussed in Section 4.

3.2. Generative Flow Networks

The generation process of GFlowNets is defined by a finite
directed acyclic graph (DAG) (S,A), where S = {si}
is the set of states, and A ⊆ S × S is the set of state
transitions. Let s0 ∈ S denote the special starting point
of the process, called the initial state, with no incoming
edges in the transition graph. Let X ⊆ S be the set of
terminal states, for which rewards are given. From the initial
state s0, objects are constructed sequentially by the forward
transition policy pA(·|s) until reaching terminal states. A set
of complete trajectories, denoted as T , consists of sequences
of transitions τ = (s0, . . . , sn) starting from the initial state
s0 and terminating at sn ∈ X , such that (st, st+1) ∈ A.
Let p̄A(s) be the probability of reaching s by following the
policy pA. The goal of GFlowNets is to train a policy pA
that generates objects with a probability proportional to their
reward. Specifically, the policy satisfies p̄A(x) = R(x)/Z
for all x ∈ X , where Z is a normalizing constant. This is
achieved by training pA using the following objectives.

Trajectory Balance (Malkin et al., 2022). The Trajectory
Balance (TB) objective is based on the flow consistency
constraint at the trajectory level. Given a complete trajectory
τ , the TB objective is defined as follows:

LTB(τ) =

(
log

Z
∏n−1

t=0 pA(st+1|st)
R(sn)

∏n−1
t=0 qA(st|st+1)

)2

.

It introduces a backward policy qA that reverses the process.
Given qA, the forward policy pA and the normalizing con-
stant Z are trained to match the backward flow induced by
the reward function and the backward policy.

Detailed Balance (Bengio et al., 2023). The Detailed
Balance (DB) objective is based on the flow consistency

constraint at the state transition level. The objective is de-
fined for each transition (s, s′) as:

LDB(s, s
′) =

(
log

F (s)pA(s
′|s)

F (s′)qA(s|s′)

)2

.

The DB objective requires learning the state flow function
F : S → R+, which represents the unnormalized probabil-
ity that the policy visits state s.

4. The Equivalent Action Problem
In this section, we formalize the graph generation process
in the context of GFlowNets and investigates its properties.

4.1. Problem Definition

Consider a sequential graph generation process (G, E) that
constructs graphs by modifying the nodes and edges of
existing partial graphs, where E ⊆ G × G represents the set
of transitions between graphs. In this section, we clarify the
relationship between the two processes, (S,A) and (G, E).

Since isomorphism is an equivalence relation, it partitions
the space G into classes, where each graph in a class is
structurally identical to the others. Let [G] = {G′ ∈ G :
G′ ∼= G} denote the equivalence class of G induced by
graph isomorphism. The state space S is defined as the
set of equivalence classes of graphs, S = {[G] : G ∈ G},
rather than the graph space G itself. This is because our
goal in using GFlowNets is to sample any graph within
the equivalence class s = [G] in proportion to R(s). State
transitions A can also be defined by partitioning the graph
transitions E by the following equivalence relation:

Definition 4.1 (Transition equivalence). Graph transitions
(G1, G

′
1) and (G2, G

′
2) are transition-equivalent if G1

∼= G2

and G′
1
∼= G′

2.

In practice, a graph generation process (G, E) is constructed
by first designing a set of allowable actions in a given graph.
For example, AddEdge(G, u, v) adds an edge (u, v) to the
existing graph G, and AddNode(G, u) adds a new node to
an existing node u. The Stop(G) terminates the process, in
which case the graph-level attribute is flagged as terminated.
Through this construction, graph transitions E are ensured
to be structured so that any pair of isomorphic graphs have
isomorphic successors.

In this setup, the state transition probability can be expressed
in terms of graph transitions as follows: Let pE denote
a forward policy over the graph space, and let E(G) =
{G′ : (G,G′) ∈ E} denote the set of next graphs reachable
from G. If pE is parameterized by permutation-equivariant
network, then

pA(s
′|s) =

∑
G′∈E(G)∩s′

pE(G
′|G), (1)

3

Symmetry-Aware GFlowNets

for any G ∈ s, where E(G) ∩ s′ is the set of next graphs
that are in the same equivalence class s′ (see Appendix F.1
for the derivation). This is an exact formula for computing
state transition probabilities, which we use as a reference for
comparison. However, it requires looking one step ahead
and comparing the resulting graphs to identify E(G) ∩ s′.
This process involves multiple computationally expensive
graph isomorphism tests for each transition.

As an alternative, Ma et al. (2024) suggested using orbits to
identify transition-equivalent actions, which we formalize
next. Define graph actions as triples, Ē = {(G, t, u)},
where t denotes the action type and u specifies the nodes
or edges affected by the action. Since graph transitions E
are constructed by predefined set of graph actions, there is
a one-to-one correspondence between E and Ē . However,
we explicitly distinguish between them to introduce another
equivalence relation.
Definition 4.2 (Orbit equivalence). Graph actions
(G1, t1, u1) and (G2, t2, u2) are orbit-equivalent if t1 = t2
and there exists a permutation π such that π(G1) = G2 and
π(u1) = u2. When G1 = G2, orbit equivalence indicates
that u1 and u2 belong to the same orbit.

In Figure 1, the transitions (G1, G2) and (G1, G3) are
transition-equivalent because the resulting graphs are iso-
morphic, G2

∼= G3. These transitions are induced by the
actions AddNode(G1, 2) and AddNode(G1, 3), which are
orbit-equivalent since nodes 2 and 3 belong to the same orbit
in graph G1. Similarly to A, which is induced by transition
equivalence relation, we define Ā as the set of equivalence
classes induced by the orbit equivalence relation on Ē . The
notion of orbit equivalence is particularly useful because
it serves as a replacement for transition equivalence. The
next theorem establishes that orbit-equivalent actions induce
equivalent transitions.
Theorem 4.3. Let (G1, t1, u1, G

′
1) and (G2, t2, u2, G

′
2) be

two graph transitions induced by actions e1 = (G1, t1, u1)
and e2 = (G2, t2, u2). If e1 and e2 are orbit-equivalent,
then (G1, G

′
1) and (G2, G

′
2) are transition-equivalent.

In other words, graph actions operating on the same orbit
lead to isomorphic graphs. This is because orbits, rather
than individual nodes or edges, are structurally important in
determining actions. The theorem implies that, in a given
graph G, transition-equivalent actions—actions that lead
to isomorphic graphs—can be identified by computing or-
bits. However, transition-equivalent actions are not always
orbit-equivalent (see Appendix D), meaning that the orbit
equivalence relation provides a finer partition of E than the
transition equivalence.

Given the distinction between transition-equivalent actions
A and orbit-equivalent actions Ā, we define the state-
action probability pĀ(a|s) differently from the state tran-

sition probability pA(s
′|s): while pA(s

′|s) accounts for
all transition-equivalent actions, pĀ(a|s) aggregates only
over orbit-equivalent actions. Formally, for a given graph
G, let Ē(G) denote the set of graph actions available from
G. Then, for a state-action pair s ∈ S and a ∈ Ā, the
state-action probability is defined as:

pĀ(a|s) =
∑

e∈Ē(G)∩a

pĒ(e|G) (2)

where pĒ(e|G) denotes pE(G
′|G) for G′ being the next

graph. Here, Ē(G) ∩ a represents the set of orbit-equivalent
actions from G. By Theorem 4.3, it follows that pĀ(a|s) ≤
pA(s

′|s) in general.

Computing exact state transition probabilities includes ex-
pensive graph isomorphism tests as stated. Instead, Ma
et al. (2024) proposed using Equation (2), observing that
pĀ(a|s) = pA(s

′|s) in most cases. However, computing or-
bits for every transition remains computationally intensive,
which led them to develop approximate solutions. In the
next section, we present an exact and efficient solution to
address this challenge.

4.2. Properties of Equivalent Actions

In fact, accounting for orbit equivalence is sufficient for
GFlowNets, as demonstrated by the following theorem.

Theorem 4.4 (Sufficiency of orbit equivalence). Let qĀ
denote the backward state-action policy. State-action flow
constraints are defined as F (s)pĀ(a|s) = F (s′)qĀ(a|s′).
If state-action flow constraints are satisfied for all possible
state-action pairs, then the state transition flow constraints,
F (s)pA(s

′|s) = F (s′)qA(s|s′), are also satisfied.

GFlowNets are typically formulated such that each pair of
states are connected at most once in a DAG (S,A), ensuring
that every action leads to a unique next state. In contrast,
in (S, Ā), distinct actions can lead to the same next state.
This can be interpreted as multiple pathways connecting the
same pair of states, enabling parallel flows. Theorem 4.4
essentially states that edge flows can be subdivided into
multiple flows within a transition.

Our next goal is to simplify the computation of state-action
probabilities. First note that pĀ(a|s) can simply be ex-
pressed as:

pĀ(a|s) = |Ē(G) ∩ a| · pE(G′|G)

where |Ē(G) ∩ a| represents the number of orbit-equivalent
actions. This is because when actions are parameterized us-
ing graph neural networks (GNNs), orbit-equivalent actions
are assigned equal probabilities. In general, permutation-
equivariant functions produce identical representations for
nodes within the same orbit (as detailed in Appendix E.1).

4

Symmetry-Aware GFlowNets

G1

|Aut(G1)| = 2

G2

|Aut(G2)| = 6

G3

|Aut(G3)| = 2

Figure 2: Graphs representing transitions (G1, G2, G3), where the first transition is performed by AddNode and the second
by AddEdge. The number of foward/backward actions are represented as the number of arrows. Symmetries in each graph
is related to orbit-equivalent actions, as seen in the ratio |Aut(G1)|/|Aut(G2)| = |Orb(G1,)|/|Orb(G2,)|. Nodes in the
same orbit are given the same color.

When node representations are aggregated to compute edge
representations using invariant aggregators such as SUM
or MEAN, edges within the same orbit also receive identi-
cal representations. Alternative parameterizations, such as
the relative edge parameterization proposed by Shen et al.
(2023), also assign equal probabilities to orbit-equivalent
actions, while enhancing representational power.

Note that the number of orbit-equivalent actions, |Ē(G)∩a|,
corresponds to the size of the orbit of the associated nodes
or edges. The following lemma shows that, when consid-
ering ratios, counting orbit-equivalent actions simplifies to
counting automorphisms.

Lemma 4.5. Let G′ = G[E ∪ (u, v)] be a graph induced
by adding an edge (u, v) to graph G. Then, the following
relationship holds:

|Orb(G, u, v)|
|Orb(G′, u, v)|

=
|Aut(G)|
|Aut(G′)|

We presented Lemma 4.5 in the context of AddEdge
for simplicity, but similar lemma holds for other action
types such as AddNode, AddNodeAttributes, and
others used in node-by-node generation (See Appendix C
for the full list of considered actions). We also consider
AddFragment in our experiments, but discuss its proper-
ties separately in Appendix H.

In Figure 2, we observe that the number of equivalent ac-
tions changes as the graph evolves. For instance, from G1,
there is only one forward equivalent action, while from G2,
there are three. The number of backward actions also varies
with each transition, making it seem daunting to account for
all equivalent actions step-by-step. However, the ratio of
forward and backward orbit-equivalent actions can be sim-
ply expressed as the ratio of the sizes of their automorphism
groups. This is the basis for the next theorem.

Theorem 4.6 (Automorphism correction). Let qE denote
a graph-level policy defined for the backward process. Let
(G,G′) be the graph transition, and (s, a, s′) denote a cor-
responding state transition. If permutation-equivariant func-
tions are used for pE and qE , then the following holds:

pĀ(a|s)
qĀ(a|s′)

=
|Aut(G)|
|Aut(G′)|

· pE(G
′|G)

qE(G|G′)
.

The theorem suggests a simple adjustment method when
considering the ratio. This simplification leads to the
straightforward reward-scaling method presented in the next
section.

5. Symmetry-Aware GFlowNets
In this section, we analyze GFlowNet objectives using our
previous results. The following theorem shows that a naive
implementation of the TB objective, which does not account
for equivalent actions, will train a model biased toward
graphs with fewer symmetries.

Corollary 5.1 (TB correction). Assume that G0 is the empty
graph or a single node, so that |Aut(G0)| = 1. Given
the complete graph trajectory τ = (G0, G1, . . . , Gn), the
trajectory balance loss can be written as follows:

LTB(τ) =

(
log

Z
∏n−1

t=0 pE(Gt+1|Gt)

|Aut(Gn)|R(Gn)
∏n−1

t=0 qE(Gt|Gt+1)

)2

.

The equation follows from Theorem 4.6 and the application
of a telescoping sum.

Implication. Corollary 5.1 shows that we need to multiply
the reward by the order of the automorphism group of the
terminal state to properly account for equivalent actions.
If we do not scale the reward, we are effectively reducing
the rewards for highly symmetric graphs by a factor of
1/|Aut(Gn)|. As a result, even if a model is fully trained,
the likelihood of reaching the terminal state will not align
with the desired distribution; instead, the model is penalized
for generating symmetric graphs, following p̄A([Gn]) ∝
R(Gn)/|Aut(Gn)|. This bias can be easily corrected by
evaluating |Aut(Gn)| and scaling the reward accordingly.

We can also adjust the DB objective by multiplying the sym-
metry ratio |Aut(G′)/|Aut(G)| to the backward probability
for each transition, though this requires multiple evaluations
of automorphisms per trajectory. The next theorem states
that, as in the TB correction, we can simply scale the rewards
by |Aut(G)| without needing to count automorphisms at
each transition.

Theorem 5.2 (DB correction). We define the graph-level

5

Symmetry-Aware GFlowNets

detailed balance condition, as opposed to the usual state-
level condition, as follows:

F̃ (G)pE(G
′|G) = F̃ (G′)qE(G|G′),

where F̃ denotes the graph-level flow function. If rewards
are given by R̃(G) = |Aut(G)|R(G) and the graph-level
detailed balance condition is satisfied for all transitions,
then the forward policy samples terminal states proportion-
ally to the given reward R.

Implication. Together with Corollary 5.1, we see that
scaling the reward alone is sufficient for both TB and DB
objectives. This suggests that other GFlowNet objectives,
such as subtrajectory balance (Madan et al., 2023) and flow-
matching (Bengio et al., 2021), can also be used with re-
ward scaling (see Appendix G). This provides a straight-
forward approach to implementing GFlowNet objectives
while reducing the computational burden of counting auto-
morphisms at each transition.

Finally, we provide the adjustment formula for fragment-
based generation and defer the detailed discussion to Ap-
pendix H.

Theorem 5.3 (Fragment correction). Let G represents a ter-
minal state ([G] ∈ X) generated by connecting k fragments
{C1, . . . , Ck}. Then, the scaled rewards to offset the effects
of equivalent actions are given by:

R̃(G) =
|Aut(G)|R(G)∏k

i=1 |Aut(Ci)|
(3)

Intuitively, highly symmetric fragments contain many sym-
metric nodes available for connection, resulting in multiple
forward equivalent actions, even though these actions do
not lead to distinct outcomes. As a result, without correc-
tion, symmetric fragments are more likely to be sampled
by the model. Equation (3) corrects this bias by penalizing
symmetric fragments.

Estimating model likelihood. To address the intractabil-
ity of marginalizing over all trajectories terminating at
x ∈ X , Zhang et al. (2022) proposed approximating the
model likelihood using importance sampling with qE as
a variational distribution: p̄A(x) = Eτ∼qE(τ |Gn)

pE(τ)
qE(τ |Gn)

,
where τ = (G0, . . . , Gn). However, Zhang et al. (2022)
worked with a restricted class of decision process where
the equivalent action problem is not present. Instead, we
estimate the probability of the terminal state as follows:

p̄A(x) = Eτ∼qE(τ |Gn)

[
pE(τ)

|Aut(Gn)|qE(τ |Gn)

]
≈ 1

M |Aut(Gn)|

M∑
i=1

pE(τi)

qE(τi|Gn)
.

(4)

If we do not account for equivalent actions during both train-
ing and model likelihood estimation, the estimated model
likelihood may still correlate with the rewards, but the actual
sampling distribution will be biased. This happens because
the policy is already biased towards generating samples with
low |Aut(Gn)|, leading to a spurious correlation.

Impact of GNN expressive power. Another source of
inexact learning comes from the limited expressive power
of GNNs used to parameterize the policy (Silva et al., 2025).
The correction formula relies on the parameter-sharing prop-
erty of GNNs for nodes within the same orbit. While this
property is desirable, actions from different orbits may also
collapse into identical representations, thereby reducing the
network’s representational power. As a result, the policy
might assign equal probabilities to actions that lead to dif-
ferent rewards. Although this issue is not the primary focus
of this paper, we provide additional analysis of its impact in
Appendix E.2.

Computation. The main additional computation for re-
ward scaling comes from evaluating |Aut(G)|, which is nec-
essary for each trajectory in both the TB and DB objectives.
For fragment correction, we can pre-compute |Aut(C)| in
our vocabulary set. While the fastest proven time complexity
for computing |Aut(G)| has remained exp(O(

√
n log n))

for decades (Babai et al., 1983), graphs with bounded de-
grees can be handled in polynomial time (Luks, 1982). In
our experiments, we used the bliss algorithm (Junttila &
Kaski, 2007), included in the igraph package (Csardi &
Nepusz, 2006), and did not observe any significant delays
in computation. In contrast, computing transition equiva-
lent actions and summing their probabilities at each step
involves several graph isomorphism tests. This process re-
quires K ×H more computations compared to the reward
scaling, where K is the average number of actions per state,
and H is the average trajectory length. We provide further
analysis and comparisons on the computation time for each
method in Appendix J.

6. Experiments
In this section, we conduct experiments to validate our the-
oretical results and demonstrate the effectiveness of our
method. We use a uniform backward policy across all ex-
periments. Details on hyperparameters and model config-
urations can be found in Appendix K. The experiments
compare the following methods: 1) Vanilla GFlowNets,
which do not incorporate graph symmetries. 2) Transi-
tion Correction, which identifies transition-equivalent ac-
tions by performing multiple isomorphism tests and sums
their probabilities accordingly. 3) PE, the method proposed
by Ma et al. (2024), which approximately identifies orbit-

6

Symmetry-Aware GFlowNets

0 20 40 60 80 100
State Index

0.000

0.005

0.010

0.015

0.020

0.025

Te
rm

in
at

in
g

Pr
ob

ab
ilit

y

Vanilla
Transition Correction
PE (Ma et al., 2024)
Reward Scaling (Ours)

(a) Illustrative

0 10 20 30 40 50
Number of Model Updates

0.4

0.6

0.8

1.0

1.2

L 1
 E

rro
r

x103

Vanilla
Transition Correction
PE (Ma et al., 2024)
Reward Scaling (Ours)

(b) Synthetic (TB)

0 10 20 30 40 50
Number of Model Updates

0.2

0.4

0.6

0.8

1.0

1.2

L 1
 E

rro
r

x103

Vanilla
Transition Correction
PE (Ma et al., 2024)
Reward Scaling (Ours)
Flow Scaling (Ours)

(c) Synthetic (DB)

20 40 60 80 100
Number of Sample Trajectories (M)

0.6

0.4

0.2

0.0

0.2

0.4

Er
ro

r i
n

M
od

el
 L

og
 L

ike
lih

oo
d

Random (5)
Trained (12)
Trained (9)
Trained (5)

(d) Likelihood estimation

Figure 3: (a) Terminating probabilities of trained models in the uniform-reward environment. States are sorted according
to the number of graphs in the state, |x|. (b), (c) L1 errors between the target probabilities and the model’s terminating
probabilities during training in the synthetic environment. (d) Errors in the estimated model log-likelihood, defined as the
difference between estimated and exact log-likelihood. “Random” denotes the errors of an initial random model, while
“Trained” refers that of a trained model. Numbers in brackets indicate the number of edges in the terminal states used for
estimation.

equivalent actions using positional encoding. 4) Reward
Scaling, which achieves correction by modifying only the
reward signals. 5) Flow Scaling, which multiplies sym-
metry ratio |Aut(G′)|/|Aut(G)| to backward probability at
each transition. Note that methods 3-5 are orbit correction
methods. Since Reward Scaling and Flow Scaling have the
same effect under the TB objective, we only consider Flow
Scaling when using the DB objective.1

6.1. Illustrative Example

We first conducted an illustrative experiment where the
initial state consisted of six disconnected nodes, and only
AddEdge and Stop actions were allowed. Terminal states
correspond to connected graphs, with a uniform reward of 1
assigned to each. Theorem 4.6 predicts that the terminating
probability of the vanilla GFlowNet will exhibit a bias pro-
portional to |Aut(G0)|/|Aut(Gn)|, where |Aut(G0)| = 6!.
This corresponds to the number of graphs isomorphic to
the terminal state x, meaning p̄A(x) ∝ |x|. Our method
corrects this bias by multiplying the rewards by 1/|x|.

We trained three policies using the TB objective and com-
puted the exact terminating probabilities for all states (|X | =
112). As shown in Figure 3 (a), the terminating probabili-
ties of the vanilla model are clustered according to |x|. In
contrast, when state transition probabilities pA(s

′|s) are
computed exactly by summing over transition-equivalent
actions, the terminating probabilities are uniform as desired.
Notably, Reward Scaling achieves the same effect, validat-
ing Theorem 4.4. The PE method exhibits approximate bias
correction, as indicated by the scatter in its results.

Upon inspecting the trained normalizing constant, we ob-
served that with Reward Scaling, the estimated Z is 112,
matching the true value. Without correction, however, Z

1Source code available at: https://github.com/
hohyun312/sagfn

is trained to be significantly larger, reaching 26706. This
discrepancy arises because, in this example, the correction
works by scaling down the rewards by 1/|x|. Alternatively,
since the 6! term in |x| is constant, it can be absorbed into
the normalizing constant Z. Therefore, the rewards could
instead be scaled up by |Aut(x)| to achieve the same effect.

6.2. Synthetic Graphs

Following Ma et al. (2024), we set up a graph-building
environment where nodes can be one of two types, and
graphs can contain up to 7 nodes (|X | = 72296). Rewards
are assigned based on the number of 4-cliques that contain at
least three nodes of the same type. For this relatively small
environment, we compute exact terminating probabilities
for all states without approximations for evaluation.

The results for the TB objective are presented in Figure 3
(b). The vanilla GFlowNet exhibits limited performance,
as measured by L1 errors between the target probabilities
and the model’s terminating probabilities. In contrast, our
method (Reward Scaling) has substantially lower errors,
producing results similar to those obtained by explicitly
computing state transition probabilities at each step (Transi-
tion Correction). Although the PE method is an approximate
solution and underperforms compared to ours, it still signif-
icantly outperforms the vanilla baseline, underscoring the
importance of applying a correction.

For the DB objective shown in Figure 3 (c), we observe that
Reward Scaling requires more training steps to converge
than other correction methods. This is because the Reward
Scaling corrects only at the end of trajectories, leaving inter-
mediate probabilities remain inaccurate. This hinders train-
ing under the DB objective, which relies on intermediate
probabilities. On the other hand, the per-transition correc-
tion can be interpreted as providing intermediate signals for
the adjustment, similar to the idea of providing intermediate

7

https://github.com/hohyun312/sagfn
https://github.com/hohyun312/sagfn

Symmetry-Aware GFlowNets

reward signals, as suggested by Pan et al. (2023). Reward
Scaling achieves the same goal, but defers the adjustment
signal to the end of the trajectory.

To evaluate the effectiveness of the proposed model likeli-
hood estimator, we sampled 100 terminal states for each cat-
egory (5, 9, and 12 edges), resulting in a total of 300 states,
and estimated their model likelihood using Equation (4).
The Figure 3 (d) displays the estimation errors (computed
as estimates minus exact values) for each category, with
shaded bands representing one standard deviation. The esti-
mates converge to the exact likelihood as M increases, with
notably rapid convergence for small values of M .

However, the estimation error varies significantly depending
on the task. For instance, terminal states with 5 edges can
be estimated more accurately than those with 12 edges, as
12-edge states have substantially more trajectories leading
to them in this environment, making the estimation problem
more challenging. Additionally, a trained model’s likelihood
can be estimated more accurately than that of a random
policy; in fact, for a fully trained model, a single sampled
trajectory would be sufficient for an accurate estimation.

6.3. Molecule Generation

Task description. We investigate whether accurately mod-
eling a given target distribution helps generate diverse and
high-reward samples in practice. We examine the atom-
based generation task from Jain et al. (2023b) and the
fragment-based generation task from Bengio et al. (2021).
In the atom-based task, the goal is to generate molecules
by sequentially adding new atoms, edges, or setting their
attributes. Rewards are provided by a proxy model, which
predicts the HOMO-LUMO gap. In the fragment-based task,
we use a predefined set of fragments, each with a predefined
set of attachment points—nodes on the fragment where
edges can connect. The task involves building a tree graph,
where each node represents a fragment, and edges specify
the attachment points on the two connected fragments. Re-
wards are determined by a proxy model that predicts the
binding energy of a molecule to the sEH target.

For the atom-based task, we simply scale the final rewards
by the order of the automorphism group. For the fragment-
based task, we additionally correct for fragment automor-
phisms as described in Equation (3). We also explore an
approximate correction scheme that offers computational
benefits, as detailed in Appendix K.4. We sampled 5,000
molecules from each method and evaluated them using com-
mon metrics. The definitions of these metrics are provided
in Appendix K.2.

Results. The results summarized in Table 1 show that ac-
curately modeling the target distribution yields generally
the better results in terms of generating diverse and high-

2 6 10 14 18 22 26 30
Number of Model Updates

0.60

0.65

0.70

0.75

0.80

0.85

Pe
ar

so
n

Co
rre

la
tio

n

x103

Vanilla
Reward Scaling (Approx.)
Reward Scaling (Exact)

Figure 4: Correlations between log rewards and model log-
likelihoods during training in fragment experiment.

reward samples for both molecule tasks. This result is note-
worthy, as the vanilla model effectively optimizes for two
objectives—the proxy and non-symmetries—which could
enhance diversity. However, atom-based task exhibited lim-
ited improvement, possibly due to the reward structure of
the task, where rewards are negatively correlated with the
number of symmetries when measured in the QM9 test set.

For the fragment-based task, the sampled molecules show
higher rewards with our method. We also observe that
the approximate correction already enables the generation
of high-reward samples, underscoring the effectiveness
and importance of the correction. Without correction, the
trained model tends to excessively favor components that
incur multiple forward equivalent actions during genera-
tion. For example, among 5000 sampled molecules, the
vanilla GFlowNet produced 5220 instances of cyclohex-
ane (C1CCCCC1) as its fragments, whereas the corrected
method produced only 1042.

In addition, we measured the Pearson correlation between
the estimated model log-likelihood, log p̄A(x), and the log
rewards, logR(x), on the test set to validate the proposed
fragment correction method. Figure 4 shows an overall
high correlation for both exact and approximate corrections,
emphasizing the impact of our methods.

7. Discussion and Conclusion
GFlowNets were first proposed as an alternative to previous
methods, such as MaxEnt RL (Haarnoja et al., 2017), which
are biased toward states with multiple action sequences lead-
ing to them. However, incorrect modeling of state transition
probabilities introduces another type of bias in graph gener-
ation. Although we believe that the previous experimental
results remain valid if interpreted carefully with the problem
in mind, we recommend being explicit about the correction
method used in all future work.

8

Symmetry-Aware GFlowNets

Table 1: Results for molecule generation task. Highest scores are highlighted.

Task Method Diversity Top K div. Top K reward Div. Top K Uniq. Frac.

Atom Vanilla 0.929±0.024 0.077±0.022 1.09±0.02 1.09±0.02 0.93±0.077

Reward Scaling (Exact) 0.959±0.01 0.046±0.006 1.091±0.013 1.091±0.013 1.0±0.0

Fragment
Vanilla 0.877±0.001 0.153±0.003 0.941±0.002 0.941±0.002 1.0±0.0

Reward Scaling (Approx.) 0.88±0.001 0.164±0.008 0.949±0.006 0.949±0.006 1.0±0.0

Reward Scaling (Exact) 0.879±0.0 0.151±0.002 0.952±0.003 0.952±0.003 1.0±0.0

In this paper, we analyzed the properties of equivalent ac-
tions and proposed a simple correction method that allows
for unbiased sampling from the target distribution. Our anal-
ysis shows that, without correction, highly symmetric graphs
are less likely to be sampled, while symmetric fragments
are more likely to be sampled, which is crucial for molecule
discovery. We demonstrated that the reward-scaling tech-
nique works for both TB and DB objectives. Experimental
results suggest that reward scaling effectively removes bias,
allowing for accurate modeling of the target distribution,
which is essential for sampling high-reward molecules.

While our method is general and applicable to both node-
by-node and fragment-based generation schemes, our theo-
retical guarantees rely on a specific set of predefined graph
actions. Therefore, when designing a new set of graph ac-
tions, it is important to ensure that they share a similar struc-
ture, so that the theorems remain applicable. In most cases,
however, the graph actions we introduced can be readily
extended to incorporate additional actions. See Appendix C
for further discussion.

A potential limitation of this paper is that the proposed
correction method is demonstrated primarily on specific
objectives (TB and DB) and datasets relevant to molecule
discovery. Future work could explore applying the method
to tasks with different symmetry patterns and reward struc-
tures.

Acknowledgements
This work was supported by the National Research Foun-
dation of Korea (NRF) grant funded by the Korea gov-
ernment (MSIT) (No. RS-2022-NR071853 and RS-2023-
00222663), the Global-LAMP Program of the NRF grant
funded by the Ministry of Education (No. RS-2023-
00301976), Brain Pool Plus (BP+, Brain Pool+) Pro-
gram through the National Research Foundation of Ko-
rea (NRF) funded by the Ministry of Science and ICT
(2020H1D3A2A03100666), Korea Government Grant Pro-
gram for Education and Research in Medical AI through
the Korea Health Industry Development Institude (KHIDI)
funded by the Korea government (MOE, MOHW), and AI-
Bio Research Grant through Seoul National University.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Babai, L., Kantor, W. M., and Luks, E. M. Computational

complexity and the classification of finite simple groups.
In 24th Annual Symposium on Foundations of Computer
Science (Sfcs 1983), pp. 162–171. IEEE, 1983.

Bengio, E., Jain, M., Korablyov, M., Precup, D., and Ben-
gio, Y. Flow network based generative models for non-
iterative diverse candidate generation. Advances in Neu-
ral Information Processing Systems, 34:27381–27394,
2021.

Bengio, Y., Lahlou, S., Deleu, T., Hu, E. J., Tiwari, M., and
Bengio, E. Gflownet foundations. Journal of Machine
Learning Research, 24(210):1–55, 2023.

Chen, X., Han, X., Hu, J., Ruiz, F. J., and Liu, L. Order mat-
ters: Probabilistic modeling of node sequence for graph
generation. arXiv preprint arXiv:2106.06189, 2021.

Csardi, G. and Nepusz, T. The igraph software package
for complex network research. InterJournal, Complex
Systems:1695, 2006. URL https://igraph.org.

Dwivedi, V. P., Luu, A. T., Laurent, T., Bengio, Y., and
Bresson, X. Graph neural networks with learnable
structural and positional representations. arXiv preprint
arXiv:2110.07875, 2021.

Flam-Shepherd, D., Zhu, K., and Aspuru-Guzik, A. Lan-
guage models can learn complex molecular distributions.
Nature Communications, 13(1):3293, 2022.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S. Rein-
forcement learning with deep energy-based policies. In
International conference on machine learning, pp. 1352–
1361. PMLR, 2017.

9

https://igraph.org

Symmetry-Aware GFlowNets

Jain, M., Deleu, T., Hartford, J., Liu, C.-H., Hernandez-
Garcia, A., and Bengio, Y. Gflownets for ai-driven scien-
tific discovery. Digital Discovery, 2(3):557–577, 2023a.

Jain, M., Raparthy, S. C., Hernández-Garcıa, A., Rector-
Brooks, J., Bengio, Y., Miret, S., and Bengio, E. Multi-
objective gflownets. In International conference on ma-
chine learning, pp. 14631–14653. PMLR, 2023b.

Junttila, T. and Kaski, P. Engineering an efficient canonical
labeling tool for large and sparse graphs. In 2007 Proceed-
ings of the Ninth Workshop on Algorithm Engineering
and Experiments (ALENEX), pp. 135–149. SIAM, 2007.

Kingma, D. P. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia,
P. Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324, 2018.

Liao, R., Li, Y., Song, Y., Wang, S., Hamilton, W., Du-
venaud, D. K., Urtasun, R., and Zemel, R. Efficient
graph generation with graph recurrent attention networks.
Advances in neural information processing systems, 32,
2019.

Luks, E. M. Isomorphism of graphs of bounded valence can
be tested in polynomial time. Journal of computer and
system sciences, 25(1):42–65, 1982.

Ma, G., Bengio, E., Bengio, Y., and Zhang, D. Baking sym-
metry into gflownets. arXiv preprint arXiv:2406.05426,
2024.

Madan, K., Rector-Brooks, J., Korablyov, M., Bengio, E.,
Jain, M., Nica, A. C., Bosc, T., Bengio, Y., and Malkin, N.
Learning gflownets from partial episodes for improved
convergence and stability. In International Conference
on Machine Learning, pp. 23467–23483. PMLR, 2023.

Malkin, N., Jain, M., Bengio, E., Sun, C., and Bengio,
Y. Trajectory balance: Improved credit assignment in
gflownets. Advances in Neural Information Processing
Systems, 35:5955–5967, 2022.

McKay, B. D. and Piperno, A. Nauty and traces user’s guide
(version 2.5). Computer Science Department, Australian
National University, Canberra, Australia, 2013.

Mohammadpour, S., Bengio, E., Frejinger, E., and Bacon,
P.-L. Maximum entropy gflownets with soft q-learning.
In International Conference on Artificial Intelligence and
Statistics, pp. 2593–2601. PMLR, 2024.

Pan, L., Malkin, N., Zhang, D., and Bengio, Y. Better
training of gflownets with local credit and incomplete
trajectories. In International Conference on Machine
Learning, pp. 26878–26890. PMLR, 2023.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Rai-
son, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang,
L., Bai, J., and Chintala, S. Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32, pp. 8024–
8035. Curran Associates, Inc., 2019. URL http://
papers.neurips.cc/paper/9015-pytorch-
an-imperative-style-high-performance-
deep-learning-library.pdf.

Popova, M., Shvets, M., Oliva, J., and Isayev, O. Molecular-
rnn: Generating realistic molecular graphs with optimized
properties. arXiv preprint arXiv:1905.13372, 2019.

Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Shen, M. W., Bengio, E., Hajiramezanali, E., Loukas, A.,
Cho, K., and Biancalani, T. Towards understanding and
improving gflownet training. In International Conference
on Machine Learning, pp. 30956–30975. PMLR, 2023.

Shi, C., Xu, M., Zhu, Z., Zhang, W., Zhang, M., and Tang,
J. Graphaf: a flow-based autoregressive model for molec-
ular graph generation. arXiv preprint arXiv:2001.09382,
2020.

Silva, T., Alves, R. B., da Silva, E. d. S., Souza, A. H., Garg,
V., Kaski, S., and Mesquita, D. When do gflownets learn
the right distribution? In The Thirteenth International
Conference on Learning Representations, 2025.

Tiapkin, D., Morozov, N., Naumov, A., and Vetrov, D. P.
Generative flow networks as entropy-regularized rl. In
International Conference on Artificial Intelligence and
Statistics, pp. 4213–4221. PMLR, 2024.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How
powerful are graph neural networks? arXiv preprint
arXiv:1810.00826, 2018.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J. Graph
convolutional policy network for goal-directed molecu-
lar graph generation. Advances in neural information
processing systems, 31, 2018a.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. Graphrnn: Generating realistic graphs with deep auto-
regressive models. In International conference on ma-
chine learning, pp. 5708–5717. PMLR, 2018b.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks. Advances in neural information
processing systems, 32, 2019.

10

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

Symmetry-Aware GFlowNets

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville,
A., and Bengio, Y. Generative flow networks for discrete
probabilistic modeling. In International Conference on
Machine Learning, pp. 26412–26428. PMLR, 2022.

Zhang, M., Li, P., Xia, Y., Wang, K., and Jin, L. Label-
ing trick: A theory of using graph neural networks for
multi-node representation learning. Advances in Neural
Information Processing Systems, 34:9061–9073, 2021.

11

Symmetry-Aware GFlowNets

A. Notations

Table 2: Notation

Graph

Set of graphs G
Set of graph transitions E
Set of graph actions Ē
Set of vertices V
Set of edges E
Node labeling function ln
Edge labeling function le
Graph labeling function lg
Permutation π
Set of automorphisms of graph G Aut(G)
Set of graphs isomorphic to graph G [G]
Orbit of a node u Orb(G, u)
Stabilizer of a node u Stab(G, u)
Forward policy over graphs pE
Backward policy over graphs qE
Set of next graphs from graph G E(G)
Set of actions from graph G Ē(G)
Graph-action probability pĒ
Graph-level flow function F̃

State

Set of states S
Set of state transitions A
Set of actions Ā
Set of terminal states X
Set of complete trajectories T
Reward function R
Forward policy over states pA
Backward policy over states qA
Terminating probability induced by following pA p̄A
State-action probability pĀ
State-level flow function F

B. Additional Comparison to Prior Work
To the best of our knowledge, Ma et al. (2024) is the only prior work addressing the equivalent action problem in GFlowNets.
Their approach relies on approximate tests using positional encoding (PE) of nodes to identify nodes or edges within the
same orbit. Once an orbit is identified, the probabilities of orbit-equivalent actions are summed. While they identified and
partially addressed this issue, their discussion was limited to experimental validation. The primary motivation of Ma et al.
(2024) was to highlight the existence of the problem and propose a partial solution. To this end, they conducted experiments
in an offline, atom-based environment.

In contrast, our work provides the first rigorous theoretical foundation for the correction, demonstrating that this issue is
not merely an experimental artifact but a fundamental and systematic challenge arising from graph symmetries in both
atom-based and fragment-based generation. This insight is particularly significant given that GFlowNets were initially
popularized for their reward-matching capabilities.

Our approach, based on reward/flow scaling, offers an exact and efficient solution. Unlike PE-based methods, which
require adaptation for different action types (e.g., incorporating edge types and fragments), our method is straightforward
to implement and easily generalizable across various action types. Our motivation is to thoroughly analyze the problem
and present an efficient, scalable solution applicable to real-world setups. To validate this, we conducted experiments with
online training for both atom- and fragment-based generation.

12

Symmetry-Aware GFlowNets

C. Definitions of Graph Actions
Here we provide a list of action types considered in the paper.

• AddNode(G, u) adds a new node to the existing node u.

• AddEdge(G, u, v) adds a new edge (u, v).

• AddFragment(G,C) adds a fragment C.

• RemoveNode(G, v) removes node v and its connecting edges.

• RemoveEdge(G, u, v) removes the edge (u, v).

• RemoveFragment(G,C) removes the subgraph C.

• SetNodeAttribute(G, u, t) sets the node-level attribute t for node u.

• SetEdgeAttribute(G, u, v, t) sets the edge-level attribute t for the edge (u, v).

• SetGraphAttribute(G, t) sets a graph-level attribute t.

The Stop action can be interpreted as setting a terminal flag, making SetGraphAttribute a viable replacement. Some
actions may overlap in functionality. For instance, AddNode is equivalent to a sequence of two actions: adding a new node
and connecting it to an existing node u. This can be achieved using a combination of AddFragment and AddEdge.

Likewise, the above graph actions can be easily extended to incorporate additional actions. For example, we can define
AddColoredNode(G, u, t) as an action that adds a new node with node type t to the existing node u. In fact, we used
AddColoredNode, instead of using AddNode and SetNodeAttribute for the Synthetic Graphs experiment.

From a practical perspective, defining AddColoredNode as a separate action type reduces the number of transitions
per trajectory and improves convenience. For theorems, however, proving AddColoredNode as a distinct case may be
redundant.

D. Example of Equivalent Actions

12

3

4 5

6

12

3

4 5

6

12

3

4 5

6

AddEdge(2, 3)

AddEdge(4, 6)

Figure 5: Two actions induce isomorphic graphs, making them
transition-equivalent. However, they are not orbit-equivalent.
This example was originally presented by (Ma et al., 2024).

In Theorem 4.3, we established that orbit equivalence im-
plies transition equivalence. However, the converse is not
generally true, though such cases are rare. A counterex-
ample is illustrated in Figure 5. While the two resulting
graphs are isomorphic (by the permutation 1→4, 2→5,
3→1, 4→3, 5→6, 6→2), they are induced by actions
that modify nodes belonging to different orbits. In other
words, two actions AddEdge(2, 3) and AddEdge(4, 6)
are transition-equivalent, but not orbit-equivalent. How-
ever, accounting for orbit-equivalent actions is sufficient,
as the corresponding backward actions belong to two dis-
tinct orbits as well.

E. Properties of Graph Neural Networks
E.1. Permutation Equivariance

The key design principle of GNNs is permutation equivariance, which ensures that the output remains consistent regardless
of how the nodes in the input graph are ordered.

Definition E.1 (Permutation Equivariance). A function f is permutation-equivariant if it satisfies f(π(x)) = π(f(x)) for
any permutation π.

13

Symmetry-Aware GFlowNets

Specifically, let A ∈ Rn×n×d be the adjacency tensor of a graph G with n nodes. The d dimensional node and edge features
of G are represented in A, where diagonal elements encode the node features. Let A[i, j] represent the (i, j)-th element of
the tensor. We define the permutation of the tensor as π(A)[i, j] = A[π−1(i), π−1(j)]. Automorphisms are permutations
that preserve adjacency tensor. That is, for π ∈ Aut(G), we have π(A) = A. Since GNNs are permutation-equivariant, we
can show that they produce identical node representations for nodes in the same orbit.
Theorem E.2. Let f : Rn×n×d × Rn×n×d be a permutation-equivariant function. Then, for any u, v, h, k ∈ V , if there
exists a permutation π ∈ Aut(G) such that π(u) = h and π(v) = k, it follows that f(A)[u, v] = f(A)[h, k].

Proof.

f(A)[u, v] = π−1(f(π(A)))[u, v]

= f(π(A))[π(u), π(v)]

= f(A)[h, k].

The theorem implies that nodes and edges within the same orbit are represented identically by GNNs.

E.2. Expressive Power

12

3

4 5

6

Figure 6: Two edges (2, 4) and (2, 5)
belong to different orbits and will
result in non-isomorphic graphs if
added to the graph. However, their
edge representations will be identical
if aggregated from node representa-
tions.

Another source of bias comes from the expressiveness of GNNs used to parameter-
ize the policy. If actions from different orbits collapse into identical representations,
reducing the network’s representational power, the policy may be forced to as-
sign equal probabilities to actions that produce different rewards. In Figure 6,
the two actions AddEdge(G, 2, 4) and AddEdge(G, 2, 5) will have identical
representations if they are aggregated from node representations. This occurs
because nodes 2, 4 and 5 all belong to the same orbit and, therefore, share identical
representations.

Significant research has been conducted on techniques to enhance the expressive
power of GNNs (Xu et al., 2018; Dwivedi et al., 2021). While much of this
work has focused on improving graph-level representations, some methods have
been proposed to enhance multi-node representations, such as edges (Zhang et al.,
2021). In graph generation tasks, actions are often parameterized using all levels of
representations—node-level, edge-level, and graph-level. This complexity makes
designing expressive GNNs more challenging, emphasizing the need for architectures with enhanced expressive power when
the task requires it.

Figure 7: Terminating probabilities. States are sorted ac-
cording to the number of graphs in the state, |x|. States
with large errors are marked with red circles.

In our synthetic experiments in the main text, we augmented
edge-level representations from the GNN with shortest path
lengths to distinguish edges in different orbits. For example, in
Figure 6, shortest path length of the edge (2, 4) is 2, while the
length of (2, 5) is 3. We conducted experiments without this
feature augmentation, resulting in an inexact policy, as shown
in Figure 11. Compare this to Figure 3 (a), where the terminat-
ing probabilities are more accurate. In Figure 11, terminating
probabilities for certain states exhibit significantly larger errors,
with those states marked by red circles. These states correspond
to successor states derived from the state shown in Figure 6.

F. Proofs
F.1. Proof of Equation 5

While we did not present Equation (5) as a theorem, a formal
derivation offers insights into the relationship between (S,A)

14

Symmetry-Aware GFlowNets

and (G, E). Specifically, Equation (5) states that

pA(s
′|s) =

∑
G′∈E(G)∩s′

pE(G
′|G). (5)

for any G ∈ s.

Proof. We expand state transition probability pA(s
′|s) in terms of graph transitions as follows:

pA(s
′|s) = pA(s

′|s)p̄A(s)
p̄A(s)

=

∑
G∈s

∑
G′∈E(G)∩s′ pE(G

′|G)p̄E(G)∑
G∈s p̄E(G)

=

∑
G∈s p̄E(G)

∑
G′∈E(G)∩s′ pE(G

′|G)∑
G∈s p̄E(G)

If
∑

G′∈E(G)∩s′ pE(G
′|G) is constant for all G ∈ s, we can factor it out, obtaining:

pA(s
′|s) =

∑
G′∈E(G0)∩s′

pE(G
′|G0), for any G0 ∈ s.

This constantness follows from two assumptions: 1) pE is permutation equivalent, and 2) E is structured, meaning for any
isomorphic graphs G,G′ ∈ s, the set of next graphs are matched by some permutation such that E(G) = π(E(G′)). In other
words, ∑

G′∈E(G)∩s′

pE(G
′|G) =

∑
G′∈E(π(G))∩s′

pE(G
′|π(G))

holds for all π ∈ Aut(G).

F.2. Proof of Theorem 4.3

The theorem simplifies to the assertion that, for a given graph G, graph actions of the same type applied within the same
orbit are transition-equivalent. To establish this, we prove the theorem for each action type. The results are straightforward
for attribute-level actions, and we provide a proof for the SetNodeAttribute action.
Lemma F.1 (SetNodeAttribute). Let G[ln(u) = t] denote the graph where the attribute of node u in graph G is changed to
t. If Orb(G, u) = Orb(G, v), then G[ln(u) = t] ∼= G[ln(v) = t].

Proof. Let us denote the node labeling function of G, G[ln(u) = t] and G[ln(v) = t] as ln, ln[u=t] and ln[v=t] respectively.
Since u and v are in the same orbit, there exists π ∈ Aut(G) such that π(u) = v. Showing ln[u=t](w) = ln[v=t](π(w))
for all w ∈ V is sufficient to establish the isomorphism. We prove for two cases. First, let w = u. Then, π satisfies
ln[u=t](w) = ln[u=t](u) = ln[v=t](v) = ln[v=t](π(u)) = ln[v=t](π(w)). Secondly, let w ̸= u. Then, ln[u=t](w) =
ln(w) = ln(π(w)) = ln[v=t](π(w)).

The proof for the SetEdgeAttribute action is nearly identical to that for SetNodeAttribute, with nodes replaced
by edges. We now proceed to prove the cases for the AddEdge, AddNode, and their corresponding backward actions. We
use the following two properties in our proofs.

π(E ∪ E′) = {(π(u), π(v)) : (u, v) ∈ E ∪ E′}
= {(π(u), π(v)) : (u, v) ∈ E or (u, v) ∈ E′}
= {(π(u), π(v)) : (u, v) ∈ E} ∪ {(π(u), π(v)) : (u, v) ∈ E′}
= π(E) ∪ π(E′),

15

Symmetry-Aware GFlowNets

and similarly,

π(E \ E′) = {(π(u), π(v)) : (u, v) ∈ E \ E′}
= {(π(u), π(v)) : (u, v) ∈ E and (u, v) /∈ E′}
= {(π(u), π(v)) : (u, v) ∈ E} \ {(π(u), π(v)) : (u, v) ∈ E′}
= π(E) \ π(E′),

where E and E′ are edge sets. We assume homogeneous graphs for simplicity.

Lemma F.2 (AddEdge). Let G[E ∪ (u, v)] and G[E ∪ (h, k)] denote the graphs induced by E ∪ {(u, v)} and E ∪ {(h, k)},
respectively. If (u, v) and (h, k) are in the same orbit in G, then G[E ∪ (u, v)] and G[E ∪ (h, k)] are isomorphic. In other
words, Orb(G, u, v) = Orb(G, h, k) implies G[E ∪ (u, v)] ∼= G[E ∪ (h, k)].

Proof. If (u, v) and (h, k) are in the same orbit, then there exists π ∈ Aut(G) such that (π(u), π(v)) = (h, k). Since π is
an automorphism, it also satisfies π(E) = E. Thus, π(E ∪ {(u, v)}) = π(E) ∪ {(π(u), π(v))} = E ∪ {(h, k)}, indicating
that π is an isomorphism between G[E ∪ (u, v)] and G[E ∪ (h, k)].

Lemma F.3 (RemoveEdge). Let G[E \ (u, v)] and G[E \ (h, k)] denote graphs induced by E \ {(u, v)} and E \ {(h, k)}
respectively. Then, G[E \ (u, v)] and G[E \ (h, k)] are isomorphic if (u, v) and (h, k) are in the same orbit in graph G.

Proof. Let π ∈ Orb(G, u, v) such that (π(u), π(v)) = (h, k). Then, π(E \ {(u, v)}) = π(E) \ {(π(u), π(v))}) =
E \ {(h, k)}, completing the proof.

Lemma F.4 (AddNode). Let G[E ∪ (u,w)] and G[E ∪ (v, w)] denote the graphs induced by attaching a new node w to the
existing nodes u and v, respectively. Then, Orb(G, u) = Orb(G, v) implies G[E ∪ (u,w)] ∼= G[E ∪ (v, w)].

Proof. Let π ∈ Orb(G, u) such that π(u) = v, and let π̃ : V ∪ {w} → V ∪ {w} be the extension of π such that π̃(w) = w
and π̃(i) = π(i) for i ̸= w. Then, π̃(E ∪ (u,w)) = π̃(E) ∪ (π̃(u), π̃(w)) = π(E) ∪ (π(u), π̃(w)) = E ∪ (v, w).

Corollary F.5 (RemoveNode). Let G[V \u] and G[V \v] denote the graphs induced by removing nodes u and v, respectively,
where edges connected to u or v are also removed. Then, Orb(G, u) = Orb(G, v) implies G[V \ u] ∼= G[V \ v].

Proof. Let π ∈ Aut(G) be an automorphism of G = (V,E) such that π(u) = v. Then:

π
(
E \ ({(u, k) : k ∈ V } ∪ {(k, u) : k ∈ V })

)
= π(E) \ ({(π(u), π(k)) : k ∈ V } ∪ {(π(k), π(u)) : k ∈ V })
= E \ ({(v, k′) : k′ ∈ V } ∪ {(k′, v) : k′ ∈ V })

where E \ ({(u, k) : k ∈ V } ∪ {(k, u) : k ∈ V }) and E \ ({(v, k′) : k′ ∈ V } ∪ {(k′, v) : k′ ∈ V }) are edge sets of the
induced subgraphs G[V \ u] and G[V \ v], respectively. Therefore, π, restricted to V \ {u}, is an isomorphism between
G[V \ u] and G[V \ v].

F.3. Proof of Theorem 4.4

Proof. Note that orbit equivalence implies transition equivalence by Theorem 4.3, meaning that each set of transition
equivalent actions can be partitioned into subsets of orbit-equivalent actions. State transition probabilities can thus be
computed by summing over state-action probabillities pĀ(a|s), where each pĀ is in turn defined by summing over orbit-
equivalent graph actions in a.

Formally, let Ā(s) be the set of actions available from state s, and let a(s) represent the next state obtained by applying
action a to s. Define Ā(s, s′) = {a ∈ Ā(s) : a(s) = s′} as the set of forward actions from state s that lead to state s′. Then,
state transition probability can be expressed as:

16

Symmetry-Aware GFlowNets

pA(s
′|s) =

∑
a∈Ā(s,s′)

pĀ(a|s)

qA(s|s′) =
∑

a∈Ā(s,s′)

qĀ(a|s′).

From the assumption, state-action flow constraints are satisfied, i.e.,

F (s)pĀ(a|s) = F (s′)qĀ(a|s′).

The assumption can be satisfied if the equivariant neural networks parameterizing pĀ and qĀ can distinguish between orbits
differently, and the number of orbits (and hence the number of actions) is the same for both the forward and backward
transitions.

Summing both side of the equations over Ā(s, s′), we have state transition flow constraints, F (s)pA(s
′|s) = F (s′)qA(s|s′).

F.4. Proof of Lemma 4.5 and Its Generalization

Lemma 4.5 relates the order of orbits to the order of automorphism group. The proof relies on orbit-stabilizer theorem,
hence we introduce the following definition.

Definition F.6 (Stabilizer). The stabilizer of a node u ∈ V in graph G is the set of automorphisms that fix node u:
Stab(G, u) = {π ∈ Aut(G) : π(u) = u}. The stabilizer of an edge (u, v) is defined as Stab(G, u, v) = {π ∈ Aut(G) :
π(u) = u, π(v) = v}. Similarly, the stabilizer of a node set S is defined as Stab(G,S) = {π ∈ Aut(G) : π(S) = S}.

We restate Lemma 4.5 and provide its proof.

Lemma F.7 (AddEdge). Let G = G′[E′ \ (u, v)] and G′ = G[E ∪ (u, v)] be two successive graphs induced be E′ \ (u, v)
and E ∪ (u, v). Then the following equation holds:

|Orb(G, u, v)|
|Orb(G′, u, v)|

=
|Aut(G)|
|Aut(G′)|

.

Proof. Using the orbit-stabilizer theorem, we have

|Orb(G, u, v)|
|Orb(G′, u, v)|

=
|Aut(G)|
|Aut(G′)|

⇐⇒ |Aut(G)|
|Orb(G, u, v)|

=
|Aut(G′)|

|Orb(G′, u, v)|
⇐⇒ |Stab(G, u, v)| = |Stab(G′, u, v)|.

Hence, we prove the lemma by showing |Stab(G, u, v)| = |Stab(G′, u, v)|. It suffices to prove that Stab(G, u, v) =
Stab(G′, u, v).

First, we show that Stab(G, u, v) ⊆ Stab(G′, u, v). Let π ∈ Stab(G, u, v). Then π(u) = u, π(v) = v, and π(E ∪
{(u, v)}) = π(E) ∪ {(π(u), π(v))} = E ∪ {(u, v)}, which implies that π ∈ Stab(G′, u, v).

Conversely, let π′ ∈ Stab(G′, u, v), so π′(u) = u, π′(v) = v, and π′(E ∪ {(u, v)}) = π′(E) ∪ {(u, v)} = E ∪ (u, v).
Suppose for contradiction that π′(E) ̸= E. Then some edge in E must be mapped to a different edge not in E, and
to satisfy the equality π′(E) ∪ {(u, v)} = E ∪ (u, v), the only possibility is that π′(E) \ E = {(u, v)}. But since
π′({(u, v)}) = {(u, v)}, this implies a duplication, contradicting the assumption that π′ is a permutation. Therefore,
π′(E) = E, and hence π′ ∈ Stab(G, u, v).

Thus, Stab(G, u, v) = Stab(G′, u, v), completing the proof.

17

Symmetry-Aware GFlowNets

For general statement of Lemma 4.5, we define the orbit of a graph action as the orbit of set of nodes or edges affected
by the action. For example, the orbit of e = AddEdge(G, u, v), denoted as Orb(G, e), corresponds to Orb(G, u, v). The
backward action associated with e is RemoveEdge(G′, u, v), and the orbit of this action when applied to the next graph
G′ is denoted as Orb(G′, e), which corresponds to Orb(G′, u, v). Definition of orbits for each action type is provided in
Table 3.

Table 3: Orbit of graph actions

AddNode(G, u) Orb(G, u)
RemoveNode(G, v) Orb(G, v)
AddEdge(G, u, v) Orb(G, u, v)
RemoveEdge(G, u, v) Orb(G, u, v)
SetNodeAttribute(G, u, t) Orb(G, u)
SetEdgeAttribute(G, u, v, t) Orb(G, u, v)
SetGraphAttribute(G, t) Orb(G,V)

Using these definitions, we generalize Lemma 4.5 as follows.

Lemma F.8. Let (G,G′) ∈ E be a graph transition induced by an action e ∈ Ē that either adds a node, an edge, or modifies
an attribute in the graph G. Then, the following relationship holds:

Number of forward orbit-equivalent actions
Number of backward orbit-equivalent actions

=
|Orb(G, e)|
|Orb(G′, e)|

=
|Aut(G)|
|Aut(G′)|

.

We already proved Lemma F.8 for AddEdge.

For AddNodeAttribute(G, u, t), the proof is straightforward: the only difference between G and G′ is the attribute
assigned to node u, so it is immediate that Stab(G, u) = Stab(G′, u). The argument for AddEdgeAttribute is nearly
identical. Next, we prove the corresponding result for the AddNode.

Lemma F.9 (AddNode). Let G′ = (V ′, E′) be the graph resulted by adding node v to node u in graph G = (V,E). Then,

|Orb(G, u)|
|Orb(G′, v)|

=
|Aut(G)|
|Aut(G′)|

.

Proof. Using the orbit-stabilizer theorem, it suffices to show |Stab(G, u)| = |Stab(G′, v)|. We do this by constructing a
bijective map f : Stab(G, u) → Stab(G′, v). Define f(π) = π̃ for π ∈ Stab(G, u), where π̃ is the extension of π defined
on V ∪ {v} given by

π̃(w) =

{
π(w) if w ∈ V

v if w = v.

We claim that π̃ ∈ Stab(G′, v). Since π ∈ Aut(G) and π(u) = u, it follows that π̃ ∈ Aut(G′) and π̃(v) = v. Thus, f
maps into Stab(G′, v) and is injective by construction.

To show that f is surjective, let π′ ∈ Stab(G′, v). Then π′ ∈ Aut(G′) and π′(v) = v, and we have

π′(E ∪ {(u, v)}) = π′(E) ∪ {(π′(u), v)} = E ∪ {(u, v)}.

This implies that π′(E) = E and (π′(u), v) = (u, v), so π′(u) = u, since π′(E) cannot contain (u, v). Therefore, the
restriction of π′ on V , denoted π, belongs to Stab(G, u), and satisfies f(π) = π′.

Hence, f is bijective, and |Stab(G, u)| = |Stab(G′, v)|, as claimed.

18

Symmetry-Aware GFlowNets

F.5. Proof of Theorem 4.6

Proof. We first note that state-action probability can be computed by multiplying the number of orbit-equivalent actions
when pE is permutation-equivariant:

pĀ(a|s) =
∑

e∈Ē(G)∩a

pĒ(e|G)

= |Ē(G) ∩ a| · pĒ(e|G)

for any G ∈ s. Since |Ē(G) ∩ a| represents the number of orbit-equivalent actions from graph G, it is equal to |Orb(G, e)|
for any e ∈ Ē(G) ∩ a, where we defined the orbit of graph actions in Appendix F.4. Thus,

pĀ(a|s) = |Orb(G, e)| · pĒ(e|G).

Similarly, for the backward policy, we have

qĀ(a|s′) = |Orb(G′, e)| · qĒ(e|G′).

We prove Theorem 4.6 using the following sequence of equations.

pĀ(a|s)
qĀ(a|s′)

=
|Orb(G, e)| · pĒ(e|G)

|Orb(G′, e)| · qĒ(e|G′)

=
|Aut(G)|
|Aut(G′)|

· pE(e|G)

qE(e|G′)
,

where we used Lemma F.8 for the last equation.

F.6. Proof of Theorem 5.2

Before proving Theorem 5.2, we first prove the existence of a policy that satisfies graph-level DB constraints.

Lemma F.10. For any given reward function R, there exist pE , qE , and F̃ that satisfy the graph-level detailed balance
constraints for all transitions (G,G′) ∈ E , defined as follows:

F̃ (G)pE(G
′|G) = F̃ (G′)qE(G|G′) (6)

Note that this differs from the usual state-level detailed balance condition:

F (s)pĀ(a|s) = F (s′)qĀ(a|s′). (7)

Proof. By Theorem 4.6, state-level detailed balance constraints can be rewritten as graph transition probabilities as follows:

|Aut(G)|F (G)pE(G
′|G) = |Aut(G′)|F (G′)qE(G|G′). (8)

Defining F̃ (G) = |Aut(G)|F (G), the functions F̃ , pE , and qE satisfy the graph-level detailed balance constraints for a
given R.

Theorem F.11 (Restatement of Theorem 5.2). If the rewards are scaled by |Aut(G)| and the graph-level detailed balance
constraints are satisfied for pE , qE , and F̃ , then the corresponding forward policy will sample proportionally to the reward.

19

Symmetry-Aware GFlowNets

Figure 8: Illustration of the effect of reward adjustment. Above: State transitions from and to s2. Below: Graph
transitions from and to G2. Due to the effect of the scaled reward R̃, state flows are also scaled by |Aut(G)|, leading
to F̃ (G) = F (s)|Aut(G)|. The edge flows remain unchanged in this figure. Note that the graph-level detailed balance
condition holds, while the termination probability is proportional to R(s).

Proof. For a given complete trajectory G0, . . . , Gn, we have:

F̃ (G0)pE(G1|G0) = F̃ (G1)qE(G0|G1),

· · ·
F̃ (Gn−1)pE(Gn|Gn−1) = |Aut(Gn)|R(Gn)qE(Gn−1|Gn).

Multiplying the left- and right-hand sides of all the equations, we get:

F̃ (G0)

n−1∏
t=0

pE(Gt+1|Gt) = |Aut(Gn)|R(Gn)

n−1∏
t=0

qE(Gt|Gt+1).

Defining F̃ (G0) = Z, this reduces to the state-level trajectory balance condition with corrections as in Corollary 5.1, which
ensures p̄A(x) ∝ R(x), as shown by Proposition 1 of Malkin et al. (2022).

G. Discussion on the Flow-Matching Objective
The first GFlowNet training objective proposed by Bengio et al. (2021) is the Flow-Matching (FM) objective, which requires
the flow-matching condition to hold at every state s′:

∑
s:(s,s′)∈A

F (s → s′) =
∑

s′′:(s′,s′′)∈A

F (s′ → s′′) (9)

where F (s → s′) denotes the edge flow. As with the DB and TB objectives, it suffices to scale the final rewards to remove
the bias introduced by action equivalence.

Corollary G.1 (FM correction). Consider the node-by-node generation. Specifically, we restrict the set of graph actions to

20

Symmetry-Aware GFlowNets

those defined in Appendix C, except for fragment-based actions. Define the graph-level flow-matching condition as:∑
G:(G,G′)∈E

F̃ (G → G′) =
∑

G′′:(G′,G′′)∈E(G)

F̃ (G′ → G′′),

where F̃ (· → ·) denotes a permutation equivalent graph-level edge-flow function. If the rewards are given by R̃(G) =
|Aut(G)|R(G) and the graph-level flow-matching condition holds for all states, then the forward policy induced by F̃
samples terminal states proportionally to the original reward R.

Proof. The detailed balance condition is satisfied whenever the flow-matching condition holds, via the relations:

F̃ (G) =
∑

G′∈E(G)

F̃ (G → G′),

pE(G
′|G) =

F̃ (G → G′)

F̃ (G)
,

qE(G|G′) =
F̃ (G → G′)

F̃ (G′)
.

Applying Theorem 5.2, the result follows.

As with the DB objective, flow-matching can be corrected at each state without scaling the reward. Outflows,∑
G′′:(G′,G′′)∈E(G) F̃ (G′ → G′′), are computed by summing the outputs of the neural network, which already accounts for

all equivalent actions. In contrast, computing the inflows for a given graph G′ involves two considerations: 1) enumerating
parents of G′, which may include isomorphic duplicates; 2) computing edge flows F̃ (G → G′) for each G such that
(G,G′) ∈ E , which do not reflect equivalence classes.

These considerations lead to the following result.

Theorem G.2. Let G′ be the given graph representing the current state. Assuming node-by-node generation, the state-level
flow-matching condition can be expressed in terms of the graph-level flow-matching condition as follows:∑

G:(G,G′)∈E

|Aut(G)|F̃ (G → G′) = |Aut(G′)|
∑

G′′:(G′,G′′)∈E(G)

F̃ (G′ → G′′),

where F̃ (· → ·) denotes a permutation-equivalent edge-flow function.

Proof. The inflows are computed as follows:

∑
s:(s,s′)∈A

F (s → s′) =
∑

G:(G,G′)∈E

Number of forward orbit-equivalent actions from G to G′

Number of backward orbit-equivalent actions from G′ to G
F̃ (G → G′)

=
∑

G:(G,G′)∈E

|Aut(G)|
|Aut(G′)|

F̃ (G → G′),

where the last equality holds in virtue of Lemma F.8. The first equality follows from the two considerations mentioned: 1)
dividing by the number of backward orbit-equivalent actions to account for duplicates; 2) scaling inflows by the number of
forward orbit-equivalent actions to account for duplicates. The outflows are directly computed as:∑

s′′:(s′,s′′)∈A

F (s′ → s′′) =
∑

G′′:(G′,G′′)∈E

F̃ (G′ → G′′).

Rearranging terms, we have the result.

21

Symmetry-Aware GFlowNets

|Aut(G)| = 1

G

|Aut(G′)| = 6

G′
|Orb(G,C)| = 1

|Orb(G′, V)| = 1

Figure 9: Transition representing the AddFragment action.

H. Discussion on the Fragment-based Generation
In the case the action AddFragment(G, C), which adds a fragment C to the existing graph G resulting in G′ = G ∪ C,
we must account for the additional symmetries introduced by the fragment. In Figure 9, there is only one way of adding and
deleting the fragment from G to G′, while the fragment induces 6 symmetries in G′.

We begin by defining the notion of orbits for actions AddFragment(G, C) and RemoveFragment(G’, C). The
orbit of AddFragment(G, C) is defined as Orb(G,V), whose cardinality is 1. This is because each fragment C in
the vocabulary leads to a unique next graph when added to G, so the number of forward transition-equivalent actions is
1. For the corresponding backward action RemoveFragment(G’, C), however, there may be multiple subgraphs of
G′ that are isomorphic to C. Hence, we define the orbit as RemoveFragment(G’, C) is Orb(G′, C) = {C ′ : ∃π ∈
Aut(G′), π(C) = C ′}. This set captures all subgraphs of G′ that are automorphic images of C, i.e., all valid candidates for
removal that are equivalent under the symmetry of G′.

Next, we extend Lemma 4.5 to accommodate the fragment-level actions, which account for the symmetries of both the
existing graph and the fragment.

Lemma H.1. Let G = (VG, EG) be a graph representing the current state. We consider augmenting the graph G by adding
a fragment C = (VC , EC). Let G ∪ C = (VG ∪ VC , EG ∪ EC) denote the union of the two graphs (without any edges
connecting G and C). Then, we have:

Number of forward orbit-equivalent actions
Number of backward orbit-equivalent actions

=
|Orb(G,V)|

|Orb(G ∪ C,C)|
=

|Aut(G)| · |Aut(C)|
|Aut(G ∪ C)|

.

Proof. Since |Orb(G,V)| = 1, we only need to consider |Orb(G ∪ C,C)|. The stabilizer Stab(G ∪ C,C) is the set of
automorphisms in Aut(G ∪ C) that does not mix the labels of G and C; it acts independently on G and C. Therefore, the
order of Stab(G ∪ C,C) is |Aut(G)| · |Aut(C)|. Using the orbit-stabilizer theorem, we obtain:

|Orb(G ∪ C,C)| = |Aut(G ∪ C)|
|Stab(G ∪ C,C)|

=
|Aut(G ∪ C)|

|Aut(G)| · |Aut(C)|
.

Using Lemma H.1, we obtain fragment correction formula in Theorem 5.3.

Theorem H.2 (Fragment correction). Let G represents a terminal state ([G] ∈ X) generated by connecting k fragments
{C1, . . . , Ck}. Then, the scaled rewards to offset the effects of equivalent actions are given by:

R̃(G) =
|Aut(G)|R(G)∏k

i=1 |Aut(Ci)|
.

Proof. Using Lemma H.1, we first derive similar results for Theorem 4.6. If pE and qE are permutation-equivariant functions,
we have

pĀ(a|s)
qĀ(a|s′)

=
|Aut(G)| · |Aut(C)|

|Aut(G′)|
· pE(G

′|G)

qE(G|G′)
.

22

Symmetry-Aware GFlowNets

Figure 10: A fragment with attachment points highlighted. Attachment points are designed such that they break symmetries
of the fragment. Rightmost graph represent the terminal state where attachment points are removed.

We defined AddFragment(G,C) as adding a fragment C, resulting in disconnected graph G ∪ C. To connect between
fragments, we use AddEdge and Lemma F.7. Then, the results follows from the TB objective written in terms of graph
transitions pE and qE , and the telescoping sum, as in Corollary 5.1.

Unlike atom-based generation, the fragment terms |Aut(C)| do not cancel out through a telescoping sum. Therefore, these
terms must be explicitly accounted for in the correction, both for reward scaling and estimating the model likelihood.

We need to exercise caution when applying Lemma H.2, as the validity of the result depends on the specifics of the action
design. A common practice in the GFlowNet literature is to predefine a set of attachment points for each fragment, where
attachment points refer to nodes where new edges can connect to other fragments. These attachment points should be treated
as node attributes, even if they are artifacts of the generation process rather than intrinsic properties of the graph. The reason
for this treatment is that attachment points constrain the set of allowable actions, including the set of equivalent actions.
For example, even if two nodes u and v belong to the same orbit, they should be considered distinct if only one of them is
marked as an attachment point.

The complication arises when terminal states are considered. Since attachment points are not intrinsic properties of the
graph, conceptually, a graph receives its reward after the attachment points are removed as shown in Figure 10. However, this
removal introduces three distinct backward actions from the terminal state in the figure, which complicates the calculation
of the backward probabilities.

This issue does not arise, however, if we arrange attachment points in a fragment such that nodes in different orbits (i.e.,
orbits that consider attachment points as node attributes) remain different even after the attachment points not present. We
observe that this holds for the fragments used in Bengio et al. (2021).

I. Relation to Node Orderings
Some previous work on graph generation uses a distribution over permutations (or node orderings) π, treating it as a random
variable (Li et al., 2018; Chen et al., 2021). Since the node ordering determines the generation order of a graph, the joint
probability over the node ordering and state is given by the following:

P (sn, π) = P (s0:n, π) = q(π|s0:n)pA(s0:n). (10)

Chen et al. (2021) derived the exact formula for q(π|s0:n) and trained a model for pA(s0:n). However, the joint probability
P (s0:n, π) can be easily obtained by multiplying graph-level transition probabilities, without needing to model pA(s0:n) or
adjusting for equivalent actions:

P (s0:n, π) = pE(G0:n). (11)

23

Symmetry-Aware GFlowNets

This result follows because, given a state sequence s0:n, the number of different node orderings is equal to the number
of possible paths generated by following equivalent actions. In other words, we can interpret different actions that are
equivalent as different node orderings that induce the same state sequence. However, previous work on graph generation is
not clear about how corrections for equivalent actions were made. This provides a simple formula for computing P (s0:n, π)
and highlights the importance of distinguishing between graphs and states. See Chen et al. (2021) for more details on using
node orderings as a random variable.

J. Computational Cost
J.1. Computation Time for Counting Automorphisms

While computing the exact |Aut(G)| has inherent complexity, this complexity is unavoidable for exact GFlowNets. In
practice, fast heuristic algorithms computing |Aut(G)| often perform well, particularly for relatively small graphs. We
provide computation time of |Aut(G)| for several molecular dataset.

Table 4: Computational cost. “Large” dataset refers to the largest molecules in PubChem, which is used in the paper
Flam-Shepherd et al. (2022). Experiments were conducted on an Apple M1 processor.

Dataset Sample Size Num Atoms Compute time (bliss) Compute time (nauty)
QM9 133,885 8.8 ± 0.5 0.010 ms ± 0.008 0.019 ms ± 0.079
ZINC250k 249,455 23.2 ± 4.5 0.022 ms ± 0.010 0.042 ms ± 0.032
CEP 29,978 27.7 ± 3.4 0.025 ms ± 0.014 0.050 ms ± 0.076
Large 304,414 140.1 ± 49.4 - 0.483 ms ± 12.600

Compared to sampling trajectories, which involves multiple forward passes through a neural network, the compute time for
|Aut(G)| is negligible. For comparison, we report the speed of molecular parsing algorithms measured using ZINC250k
dataset: 0.06 ms ± 0.70 (SMILES → molecule) and 0.04 ms ± 0.05 (molecule → SMILES). The combination of two parsing
steps is often used to check the validity of a given molecule in various prior works. In words, computing |Aut(G)| is in an
order of magnitude faster than validity checking algorithm.

We used the bliss algorithm for our experiment. It is easy to use as it is included in the igraph package and is fast enough
for our purposes. For large molecules, we can still count automorphisms in few milliseconds using the nauty package
(McKay & Piperno, 2013) as can be seen in the table. We observed that the pynauty package does not natively support
distinguishing between different edge types, requiring us to transform the input graphs by attaching virtual nodes to handle
this. The reported time in the table reflects these preprocessing steps.

While we believe the computation time is already negligible for current applications, we outline two additional strategies to
further reduce runtime:

1. Parallelization. Data processing tasks can be parallelized across multiple CPUs. Since GFlowNet is an off-policy
algorithm, |Aut(G)| can be computed concurrently with the policy learning.

2. Approximate correction for large graphs. For large graphs, fragment-based generation is highly likely to be employed.
In such cases, we can apply an approximate correction scheme, as outlined in Appendix H.

J.2. Training Time Comparison

To evaluate the training time, we ran three separate training sessions for each method. Table 5 reports the total training time
for each method in the synthetic environment.

While PE is faster than Transition Correction—which performs multiple isomorphism tests per transition—our proposed
methods, Reward Scaling and Flow Scaling, are even more efficient. All timing experiments were conducted using a single
processor with a TITAN RTX GPU (24GB) and an Intel Xeon Silver 4216 CPU. These results demonstrate that our methods
incur significantly less computational overhead while preserving correctness.

J.3. Scalability Comparison

24

Symmetry-Aware GFlowNets

Method 1000 Steps (s) 3000 Steps (s) 5000 Steps (s)

Transition Correction 1338 ± 79 4122 ± 168 6859 ± 80
PE (Ma et al., 2024) 1322 ± 44 4001 ± 131 6604 ± 152
Reward Scaling (Ours) 1178 ± 31 3584 ± 97 5999 ± 146
Flow Scaling (Ours) 1176 ± 32 3577 ± 100 5987 ± 168

Table 5: Wall-clock runtime (in seconds) for different methods over increasing training steps. Mean and standard deviation
are computed over 3 runs.

20 40 60 80 100
Number of Transitions

0.0

0.1

0.2

0.3

0.4

0.5

Co
m

pu
te

 T
im

e
(s

ec
on

ds
)

Transition Correction
PE (Ma et al., 2024)
Reward Scaling (ours)
Flow Scaling (ours)

Figure 11

We evaluated the computation time for each method, varying
the number of transitions per trajectory. We sampled 100 ran-
dom graphs for each horizon length category. We measured
the time spent on only the major components of each method.
This includes: 1) multiple isomorphism tests for Transition
Correction; 2) computing positional encodings and matching
encodings to identify isomorphic graphs for PE; 3) comput-
ing automorphisms of the final graph for Reward Scaling; 4)
computing automorphisms of all intermediate graphs for Flow
Scaling.

When computing PEs, we used k = 8. Note that methods 1) and
2) must be applied for both forward and backward actions. The
table below reports the additional computational cost incurred
by each method per trajectory, where Vanilla GFlowNets is considered to incur zero additional cost.

Method 10 Transitions (ms) 50 Transitions (ms) 100 Transitions (ms)

Transition Correction 24.32 ± 6.28 1148 ± 240.3 7354 ± 1288
PE (Ma et al., 2024) 5.49 ± 0.58 186.7 ± 29.87 997.5 ± 133.9
Reward Scaling (Ours) 0.024 ± 0.002 0.063 ± 0.004 0.111 ± 0.008
Flow Scaling (Ours) 0.215 ± 0.025 2.106 ± 0.116 6.975 ± 0.421

Table 6: Runtime comparison for computing correction terms under different methods.

While the cost increases for all methods as the number of transitions grows, our method clearly scales better. It is important
to note that the time differences accumulate over the entire training duration. Experiments were performed using Intel Xeon
Silver 4216 CPU.

K. Experimental Details
K.1. Graphs-building Environments

For graph-building environments, both for illustrative example and synthetic graphs, we stacked 5 GPS layers with 256
embedding dimensions (Rampášek et al., 2022). To increase representation power, we augmented node features to increase
representation power. We augmented node features with one-hot node degree, clustering coefficient, and 8 dimensions of
random-walk positional encoding (Dwivedi et al., 2021). Importantly, edge features were computed by summing node
features outputted from GNN layers, which, in turn, concatenated with shortest path length between two nodes connected by
the edge. This is to prevent representation collapse between different orbits (see Appendix E.2).

Illustrative Example. For the illustrative experiment, homogeneous graphs were constructed edge by edge, allowing only
AddEdge and Stop actions. The initial state consisted of six disconnected nodes, and terminal states corresponded to
connected graphs without isolated nodes. The number of terminal states, |X |, is 112.

We trained the models for 30,000 updates using the TB objective. During the first 16,000 steps, each update used a batch of

25

Symmetry-Aware GFlowNets

128 trajectories, comprising 32 samples from the current policy and 96 samples drawn from the replay buffer. We used the
Adam optimizer (Kingma, 2014) with the default parameters from PyTorch (Paszke et al., 2019) settings, except for the
learning rates: 0.0001 for GNN layers and 0.01 for the normalizing constant Z. For the remaining steps, we increased batch
size to 256 and annealed the learning rate to 0.00001. To encourage exploration, the policy selected actions uniformly with a
probability of 0.1.

Synthetic Graphs. For the Synthetic Graphs experiment, we followed the environment setup described in (Ma et al.,
2024). Each node can be one of two types, and graphs can contain up to 7 nodes, resulting in a total of 72,296 terminal
states. The generation process starts from the empty graph, from which the policy incrementally adds nodes and edges. The
reward function was also adopted from (Ma et al., 2024).

Models were updated 50,000 times using both the TB and DB objectives. For the TB objective, 64 trajectories were used
for updates, with 16 sampled from the behavior policy. For the DB objective, 16 trajectories were sampled per step and
converted into transitions, with each update utilizing 512 transitions. We used the Adam optimizer with a learning rate
0.0001 for GNN layers and 0.01 for the normalizing constant Z.

PE Implementation Details. Following Ma et al. (2024), we implemented the positional embedding (PE) method as
follows: First, the random walk matrix is computed as (AD−1)k, where A is the adjacency matrix, and D is the degree
matrix with node degrees on the diagonal. Next, we multiply the matrix by a vector c representing node types. We
constructed the vector c by setting each element to log(t+ 2), where t ∈ {0, 1, . . . } denotes the node type ID. By varying k
from 0 to 7, we obtained 8-dimensional PEs for each node. Edge-level PEs were then computed by summing the embeddings
of the corresponding node pairs. Finally, actions sampled from the policy were compared with other candidate actions based
on their PEs to identify equivalence.

K.2. Molecule Generation

We conducted experiments on small molecule generation tasks following (Bengio et al., 2021; Jain et al., 2023b). More
detailed task descriptions can be found in these previous works. We used a open-source code for tasks.2 We used a graph
transformer architecture (Yun et al., 2019) with the hyperparameters summarized in Table 7 and Table 8. In GFlowNets,
the reward exponent β is used to focus sampling on high-reward regions in the state space. The correction is applied after
rewards are exponentiated: C(x)R(x)β , where C(x) is the correction term.

Table 7: Hyperparameters for atom-based experiments

Hyperparameters Values

Training

Learning Rate (pE , Z) 0.0005
Batch Size (Online) 32
Batch Size (Buffer) 32
Uniform Exploration ϵ 0.1
Gradient Clipping (Layer-wise Norm) 10.0
Reward Exponent β 1
Number of Updates 30,000

Model

Architecture Graph Transformer
Number of Layers 4
Number of Heads 4
Number of Embeddings 128
Number of Final MLP Layers 1

Evaluation Metrics. Evaluation metrics we presented in Table 1 are defined as follows:

• Diversity. The average pairwise Tanimoto distance between molecules sampled from the trained policy.

2https://github.com/recursionpharma/gflownet

26

https://github.com/recursionpharma/gflownet

Symmetry-Aware GFlowNets

Table 8: Hyperparameters for fragment-based experiments

Hyperparameters Values

Training

Learning Rate (pE) 0.0001
Learning Rate (Z) 0.001
Batch Size (Online) 32
Batch Size (Buffer) 32
Exploration ϵ 0.1
Gradient Clipping (Layer-wise Norm) 10.0
Reward Exponent β 16
Number of Updates 30,000

Model

Architecture Graph Transformer
Number of Layers 5
Number of Heads 4
Number of Embeddings 256
Number of Final MLP Layers 2

• Top K diverse. Diversity among the top K reward molecules.

• Top K reward. The average reward of the top K molecules.

• Diverse top K. The average reward of the top K molecules, ensuring that each pair has a Tanimoto distance greater
than 0.7.

• Unique fraction. The fraction of unique molecules in the generated samples.

We selected K = 50, which corresponds to the top 10% of molecules for our evaluation. When reporting rewards, we adjust
them to remove the effects of reward scaling and reward exponents.

For the Pearson correlation evaluation presented in Figure 4, terminal states were sampled by uniformly selecting random
actions. The model likelihood was computed using Equation (4), with a modified correction term in Theorem 5.3. We set
M = 5 and used 2,048 samples for the test set.

K.3. Fragment Correction Method

For fragment-based molecule generation, we used a predefined set of fragments and attachment points provided by Bengio
et al. (2021). There are a total of 72 fragments, each with a varying number of attachment points. Our method requires
pre-computing the number of automorphisms for each fragment. In Figure 12, we present the number of automorphisms for
each fragment used in our experiment. As discussed in Appendix H, attachment points were treated as distinct attributes
when counting automorphisms.

K.4. Approximate Correction Method

Additionally, we experimented with a simplified version where the correction is applied approximately for the fragment-
based task. While we can compute exact correction term as in Equation (3), this approximation provides computational
benefits, as it avoids counting automorphisms. Moreover, similar approximations can be easily implemented even for more
complex generation schemes that do not fit into Equation (3). The approximation works as follows: we assign a number to
each fragment based on how many equivalent actions it is likely to incur during generation. We adjust the final rewards by
dividing them by the product of the assigned numbers N for the constituent fragments: R(G)/

∏k
i=1 N(Ci).

We assigned the number N to each fragment based on how likely it is to incur forward equivalent actions. This is because
fragments that incur multiple forward equivalent actions are more likely to be selected if no adjustment is applied. For
example, cyclohexane (C1CCCCC1) has six attachment points, all in the same orbit, so it will always incur at least six
forward equivalent actions in subsequent steps. In contrast, even if a fragment is highly symmetric, if it has only one
attachment point, it will incur no equivalent actions. We assigned N = 1 to such fragments.

27

Symmetry-Aware GFlowNets

Figure 12: Predefined fragment set used for the fragment-based task. Attachment points, where a single bond can connect
to another fragment, are highlighted in red. The numbers indicate the order of the automorphism group of each fragment,
|Aut(C)|.

Assuming backward equivalent actions are relatively rare in fragment-based generation, this approximation should closely
match the unbiased correction. These numbers were assigned through visual inspection of the fragments. The full set of
fragments and their assigned numbers for the approximate correction is provided in Figure 13.

L. Additional Experimental Results
L.1. Synthetic Graphs

In addition to the clique environment presented in the main text, we conducted similar experiments under a different reward
structure. We restricted the maximum number of nodes and edges to 10, and limited the maximum node degree to 4, thereby
constraining the state space to |X | = 2, 999. Rewards were defined as 1 + (number of cycles). The hyperparameters are not
tuned and remain the same as those explained in Appendix K.

For the TB objective shown in Figure 14 (a), the PE method slightly underperforms compared to Reward Scaling, which
is consistent with the results in the clique environment. In contrast, for the DB objective shown in Figure 14 (b), where
intermediate probabilities play a crucial role, the PE method performs comparably to Reward Scaling. In all cases, Transition
Correction and Flow Scaling perform the best.

L.2. Molecule Generation

We investigated which fragments were sampled by each method. We sampled 5,000 terminal states from trained models,
resulting in 44,974 and 44,978 fragments sampled from vanilla and corrected model, respectively. Symmetric fragments
were found to be sampled more frequently in vanilla model, which aligns with our projection, as the fragment correction in
Equation (3) penalizes symmetric components. However, the proportions of fragments between the two methods are not
exactly proportional to the magnitude of the corrections, as some fragments are more likely to occur together (they are not
independent).

28

Symmetry-Aware GFlowNets

Figure 13: Predefined fragment set used for the fragment-based task. Attachment points are highlighted in red. The numbers
below each molecule are used for approximate correction.

0 10 20 30
Number of Model Updates

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L 1
 E

rro
r

x103

Vanilla
Transition Correction
PE (Ma et al., 2024)
Reward Scaling (Ours)

(a) Synthetic (TB)

0 10 20 30
Number of Model Updates

0.25

0.50

0.75

1.00

1.25

1.50

1.75

L 1
 E

rro
r

x103

Vanilla
Transition Correction
PE (Ma et al., 2024)
Reward Scaling (Ours)
Flow Scaling (Ours)

(b) Synthetic (DB)

Figure 14: Results on synthetic experiments, where rewards are given based on the number of cycles in the graph.

Figure 15: The number of sampled fragments from 5,000 terminal states for vanilla model and corrected model. We display
the 5 fragments that were sampled most disproportionately. Attachment points are highlighted in red.

29

	Introduction
	Related Work
	Preliminaries
	Graph Theory
	Generative Flow Networks

	The Equivalent Action Problem
	Problem Definition
	Properties of Equivalent Actions

	Symmetry-Aware GFlowNets
	Experiments
	Illustrative Example
	Synthetic Graphs
	Molecule Generation

	Discussion and Conclusion
	Notations
	Additional Comparison to Prior Work
	Definitions of Graph Actions
	Example of Equivalent Actions
	Properties of Graph Neural Networks
	Permutation Equivariance
	Expressive Power

	Proofs
	Proof of Equation 5
	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Proof of Lemma 4.5 and Its Generalization
	Proof of Theorem 4.6
	Proof of Theorem 5.2

	Discussion on the Flow-Matching Objective
	Discussion on the Fragment-based Generation
	Relation to Node Orderings
	Computational Cost
	Computation Time for Counting Automorphisms
	Training Time Comparison
	Scalability Comparison

	Experimental Details
	Graphs-building Environments
	Molecule Generation
	Fragment Correction Method
	Approximate Correction Method

	Additional Experimental Results
	Synthetic Graphs
	Molecule Generation

