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ABSTRACT

Latent diffusion models have enabled continuous-state diffusion models to handle
a variety of datasets, including categorical data. However, most methods rely
on fixed pretrained embeddings, limiting the benefits of joint training with the
diffusion model. While jointly learning the embedding (via reconstruction loss) and
the latent diffusion model (via score matching loss) could enhance performance,
our analysis shows that end-to-end training risks embedding collapse, degrading
generation quality. To address this issue, we introduce CATDM, a continuous
diffusion framework within the embedding space that stabilizes training. We
propose a novel objective combining the joint embedding-diffusion variational
lower bound with a Consistency-Matching (CM) regularizer, alongside a shifted
cosine noise schedule and random dropping strategy. The CM regularizer ensures
the recovery of the true data distribution. Experiments on benchmarks show that
CATDM mitigates embedding collapse, yielding superior results on FFHQ, LSUN
Churches, and LSUN Bedrooms. In particular, CATDM achieves an FID of 6.81
on ImageNet 256× 256 with 50 steps. It outperforms non-autoregressive models
in machine translation and is on a par with previous methods in text generation.

1 INTRODUCTION

Continuous-state diffusion models (CSDMs) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song
et al., 2020b) have recently achieved notable success in various application domains, including
computer vision (He et al., 2024; Dhariwal & Nichol, 2021; Chen et al., 2022), natural language
processing (Li et al., 2022), and audio (Chen et al., 2021; Kong et al., 2021; Hernandez-Olivan et al.,
2023). These probabilistic models learn the inverse of a Markov chain that gradually converts data
into pure Gaussian noise, using noise-conditioned score functions (i.e., gradients of log density),
which are defined only for continuous data. The core concept is to progressively recover the original
data distribution using a learned transition kernel. Diffusion models are notable for their high-
fidelity generation (Dhariwal & Nichol, 2021; Lai et al., 2023a;b). They offer stable and relatively
efficient training procedures that contribute to their success. Recent advances, such as consistency
models (Song et al., 2023; Kim et al., 2023; Luo et al., 2023), have further enhanced diffusion models
by reducing the number of sampling steps, making them more practical for real-world applications.

Despite the widespread popularity of CSDMs, their extension to categorical data remains limited.
Previous attempts to address this limitation (Austin et al., 2021; Hoogeboom et al., 2021b; Campbell
et al., 2022; Sun et al., 2023; Lou et al., 2023) have focused on discrete-state diffusion models
(DSDMs), which define discrete corruption processes for categorical data and mimic Gaussian
kernels used in continuous space. For instance, D3PMs (Austin et al., 2021) implemented the
corruption process as random masking or token swapping and learned to reverse this process from
the noisy data. However, unlike continuous diffusion processes, these corruption techniques do not
gradually erase the semantic meaning of the data, which ideally would place similar tokens close
together and dissimilar ones further apart. This discrepancy leads to an unsmooth reverse procedure
and limits their ability to fully exploit the advancements made in CSDMs.

Alternatively, categorical data can be mapped into a continuous embedding space (Vahdat et al., 2021;
Rombach et al., 2022; Sinha et al., 2021), followed by the application of CSDMs with Gaussian
kernels, which enables progressive learning signals (Ho et al., 2020) and fine-grained sampling. This
approach has been successful in various domains. However, it may not inherently yield comparable
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results (Li et al., 2022; Strudel et al., 2022; Dieleman et al., 2022). First, it requires a well-trained
embedding for each new dataset (Li et al., 2022) before training CSDMs. Since the embedding
space and the denoising model are not trained end-to-end, this can result in suboptimal performance.
Second, jointly training both components is challenging and prone to the embedding collapse
problem (Dieleman et al., 2022; Gao et al., 2024), where all embeddings converge to a single vector.
While this convergence helps the diffusion model predict clean embeddings, it does not result in a
meaningful model and instead leads to poor generation. To alleviate embedding collapse, previous
work have explored normalizing embedding vectors to a fixed bounded norm (Dieleman et al., 2022)
or mapping the predicted embedding to its nearest neighbor within the finite set of vectors (Li et al.,
2022). However, our experiments have shown that these manipulations do not yield satisfactory
results in practice.

In response, this paper presents a simple but effective method called Enhanced Embedding for
CATegorical Data in Diffusion Models (CATDM), specifically designed to address the embedding
collapse problem. Our key contributions are summarized as follows:

(1) We suggest that embedding collapse is driven by two factors: (1) the reconstruction loss does not
provide enough learning feedback to maintain diverse embeddings, leading to collapse, and (2)
the denoising score matching disproportionately influences the variational lower-bound objective,
overshadowing the contributions of the embeddings in the reconstruction loss.

(2) We introduce several techniques to prevent trivial or collapsed embeddings. A new loss function
is proposed to stabilize training. In particular, we enforce a Consistency Matching (CM) regular-
ization that requires the model predictions to remain consistent over time. This ensures that the
model produces stable outputs throughout the generation process. To enhance generation quality,
we implement (i) shifted cosine noise schedule and (ii) random dropping of embeddings.

(3) We theoretically show that our newly proposed CM regularization helps learn the true data
density (Theorem 1) at its optimal. Furthermore, we connect this CM regularizer to heuristic
regularizations found in the literature (Dieleman et al., 2022; Gao et al., 2024) (Proposition 2).

Comprehensive experiments across a range of benchmark datasets are conducted to evaluate CATDM.
This comprehensive evaluation provides an in-depth analysis of the adaptability and performance of
our proposed approach in image generation, text generation, and machine translation tasks. The results
show that CATDM effectively mitigates the embedding collapse issue and consistently outperforms
several baseline methods. Although our main focus is vision and text generation, CATDM can
be applied to any task involving categorical variables. CATDM performs on a par with baselines
in text generation and machine translation, and achieves FID scores of 7.25 on FFHQ, 4.99 on
LSUN Churches, 4.16 on LSUN Bedrooms, and 6.81 on ImageNet 256× 256 in image generation,
outperforming discrete-based models.

2 DIFFUSION MODEL IN EMBEDDING SPACE

Consider a sequence of tokens x = [x1, . . . , xM ], where each element belongs to one of the K
categories, i.e., xi ∈ {1, . . . ,K}. Given a dataset of observations, the goal of generative models is to
estimate the probability mass function Pdata(x). To handle discontinuity, we propose using continuous
embeddings, where different categories are represented by real-valued vectors in a continuous latent
space. Specifically, let ϕ = {e1, . . . , eK}, where ek ∈ RD, be a learnable codebook, the embeddings
of x are then defined as EMBϕ(x) = [ex1

, . . . , exM
]. We define a sequence of increasingly noisy

versions of EMBϕ(x) as zt, where t ranges from t = 0 (least noisy) to t = 1 (most noisy). In the
following, we review the variational diffusion formulation (Kingma et al., 2021) in latent space.

Forward process. For any t ∈ [0, 1], the conditional distribution of zt given x is modeled as

qϕ(zt|x) = N (zt|αtEMBϕ(x), σ
2
t I) ,

where αt and σt are non-negative scalar-value functions of t, which determine how much noise is
added to the embeddings. We consider a variance-preserving process, i.e., α2

t + σ2
t = 1. Under this

parameterization, the marginal distribution qϕ(zt) is a mixture of Gaussian distributions. Due to the
Markovian property by construction, the transition probability distributions are given by

q(zt|zs) = N (zt|αt|szs, σ
2
t|sI) ,
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where αt|s = αt/αs and σ2
t|s = σ2

t − α2
t|sσ

2
s . Conditioned on the clean data x, the forward process

posterior distribution is derived as

qϕ(zs|zt,x) = N (zs|µϕ(zt,x; s, t), σ
2(s, t)I) ,

where µϕ(zt,x; s, t) = (αt|sσ
2
s/σ

2
t )zt + (αsσ

2
t|s/σ

2
t )EMBϕ(x) and σ2(s, t) = σ2

t|sσ
2
s/σ

2
t .

Reverse process. We gradually denoise the latent variables toward the data distribution by a Markov
process where the timesteps run backward from t = 1 to t = 0. Let θ denote the parameters of the
denoising model, the conditional probability distribution pϕ,θ(zs|zt; s, t) for any 0 ≤ s ≤ t ≤ 1 in
the reverse diffusion process is parameterized by a Gaussian. More specifically, it is given by

pϕ,θ(zs|zt; s, t) = N (zs|µ̂ϕ,θ(zt; s, t), σ
2(s, t)I) , (1)

where µ̂ϕ,θ(zt; s, t) = (αt|sσ
2
s/σ

2
t )zt+(αsσ

2
t|s/σ

2
t )ÊMBϕ,θ(zt; t) and ÊMBϕ,θ(zt; t) denotes the

predicted embeddings of EMBϕ(x) based on its noisy version zt.

Following previous work (Dieleman et al., 2022; Gulrajani & Hashimoto, 2024), we parameterize
ÊMBϕ,θ(zt; t) as an average over embeddings. The i-element of ÊMBϕ,θ(zt; t) is given by

[
ÊMBϕ,θ(zt; t)

]
i,:

=

K∑
k=1

Pθ(x̃i = k|zt; t)ek , where we write x̃ = (x̃i)i . (2)

To estimate the posterior probability Pθ(x̃|zt; t), we use a neural network fθ(zt; t) to predict K logits
for each token, followed by a softmax nonlinearity, i.e., Pθ(x̃|zt; t) =

∏M
i=1 softmax([fθ(zt; t)]i,:).

Variational lower bound. Following Kingma et al. (2021), the negative variational lower bound
(VLB) for our diffusion model can be derived as

− logPϕ,θ(x) ≤ DKL(qϕ(z1|x)||p(z1)) + Eϵ∼N (0,I) [− logPθ(x|z0; 0)] + L∞(x;ϕ,θ) , (3)

where zt = αtEMBϕ(x) + σtϵ and the diffusion loss is simplified to

L∞(x;ϕ,θ) = −1

2
Eϵ∼N (0,I),t∼U(0,1)

[
SNR(t)′∥EMBϕ(x)− ÊMBϕ,θ(zt; t)∥2

]
with SNR(t) = α2

t /σ
2
t the signal-to-noise ratio. Under certain conditions1, the prior loss is close to

zero as qϕ(z1|x) ≈ N (0, I). Unlike CSDMs, the reconstruction loss in our case is important since
it involves both denoising and embedding parameters. A remarkable result given by Kingma et al.
(2021) is that the diffusion loss is invariant to the noise schedule except at t = 0 and t = 1.

3 ANALYSIS OF EMBEDDING COLLAPSE
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(a) CSDM
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(b) CATDM

Figure 1: An illustration of embedding collapse. The variances of the embedding space and cross-
entropy loss of (a) CSDM and (b) CATDM.

This section empirically investigates the challenge of jointly learning the embedding and the denoising
model. Consider the FFHQ dataset for image generation, where the discrete image tokens are derived
from a pretrained VQGAN (Esser et al., 2021). A more detailed description of the experimental
setup is described in Section 6.1. Both ϕ and θ are jointly trained by directly minimizing Eq. (3).

1In theory, we require that α1EMBϕ(x) = 0 to ensure that the prior loss is equal zero.
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ODE trajectory

softmax

Continuous variable

Discrete variable

Forward process
Reverse process
Prediction

softmax softmax

Categorical data space

Continuous latent space

Figure 2: Training procedure of CATDM. Categorical data x is mapped into continuous embeddings
EMBϕ(x). We add the consistency-matching loss LCM to mitigate emebdding collapse.

This simple model is referred to as CSDM. After training, we then evaluate the dimensionality of
the latent space by analyzing the embeddings from 10,000 data examples. Each embedding vector
EMBϕ(x) has a size of 65,536 in the latent space. We compute the variance of the embeddings along
each dimension in sorted order. Figure 1 illustrates the comparison between CSDM and our method
CATDM (see Sections 4 and 5). For CSDM, most singular values are zero and the variances are
nearly zero. This indicates that the embeddings have collapsed into constant vectors with no variance.
In contrast, CATDM produces more diverse embeddings. Note that we use the FFHQ dataset for
illustration, but similar results are consistently observed on other datasets such as LSUN Churches,
LSUN Bedrooms, and ImageNet. Based on these observations, we suggest the following primary
reasons for the embedding collapse.

(i) The reconstruction loss does not provide enough learning feedback. Although it penalizes
embeddings that are overly similar, this penalization is constrained by the small Gaussian
perturbation σ0 during the transition from EMBϕ(x) to z0. This is evidenced by the cross-
entropy loss being nearly zero only around t = 0.

(ii) The coeficient terms in the diffusion loss encourages constant embeddings. As t approaches
zero, −0.5SNR′(t) exerts a strong penalization, leading the predictive network to generate
constant embeddings as a means to rapidly minimize the diffusion loss. In our ablation studies,
we show that a right balance in the objective can help to avoid embedding collapse.

Why is embedding collapse undesirable? One of the key strengths of diffusion models is their
ability to enable progressive generation (Ho et al., 2020). However, when embeddings become too
similar or collapse, this progressive generation is no longer guaranteed. To illustrate this, we use the
cross-entropy loss Ex∼Pdata(x)[− logPθ(x|zt; t)] to measure the uncertainty in distinguishing the true
embedding from others. As depicted in Figure 1, the cross-entropy loss for CSDM is low around
t = 0 but increases rapidly as t arises. The model has a limited time window to generate the global
structure of a meaningful embedding, which is required in progressive generation. This indicates
that CSDM suffers from an uneven distribution of model capacity. In contrast, for CATDM, the
loss gradually increases over time, ensuring that each sampling step equally contributes to resolving
uncertainty and facilitating progressive generation. Although the negative VLB values for both
models are close (4.83 for CSDM and 4.30 for CATDM), CATDM is preferable due to its ability to
support progressive generation.

4 CONSISTENCY MATCHING FOR MITIGATING EMBEDDING COLLAPSE

Considering EMBϕ(x) as clean data in the continuous space, the evolution of EMBϕ(x) over
time can be described by the probability flow ordinary differential equation (PF ODE) (Song et al.,
2020b). This PF ODE allows a deterministic bijection between the embedings EMBϕ(x) and latent
representations zt. Intuitively, a random noise perturbation zt of EMBϕ(x) and its relatively nearby
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point zs along the same trajectory should yield nearly the same prediction. To ensure these consistent
outputs for arbitrary zt, we propose the Consistency-Matching (CM) loss

LCM(x;ϕ,θ) = Eϵ∼N (0,I),t∼U(0,1),s∼U(0,t)

[
DKL

(
Pθ(x̃|zs; s)∥Pθ(x̃|zt; t)

)]
, (4)

where θ denotes the exponential moving average (EMA) θ ← stopgrad(ηθ+(1− η)θ) with stop
gradient and a rate of η ≥ 0. Here, zt is obtained by perturbing EMBϕ(x) to the noise level t, which
corresponds to the kernel qϕ(zt|x). In our experiment, we simply use the DDIM sampler (Song et al.,
2020a) to sample from zt to zs. Under variance preserving settings, it is computed as

zs = αsEMBϕ(x) + (σs/σt)(zt − αtEMBϕ(x)) .

In the following sections, we establish connections between the proposed CM regularizer and existing
literature, and demonstrate the theoretical implications of perfectly minimizing the CM objective.

4.1 CONNECTION OF CM REGULARIZER TO EXISTING WORKS

When the data distribution Pdata(x) is continuous, Eq. (4) recovers the consistency training objective
in CSDMs (Song et al., 2023; Kim et al., 2023; Lai et al., 2023b), which matches clean predictions
from models along the same sampling PF ODE trajectory. Specifically, for any noisy sample zt
at time t, Pθ(x̃|zt; t) serves as a deterministic consistency function (Song et al., 2023) hθ(zt; t)
predicting the clean sample at time 0 from zt, regarded as a normal distribution centered around
hθ(zt; t) with small variance. Thus, using the closed-form KL divergence of two normal distributions,
Eq. (4) becomes:

LCM(x;ϕ,θ) ∝ Eϵ∼N (0,I),t∼U(0,1),s∼U(0,t)

[∥∥hθ(zs; s)− hθ(zt; t)
∥∥2
2

]
,

which coincides with objective proposed in (Song et al., 2023; Kim et al., 2023). Here, ∝ denotes the
omission of multiplicative or additive constants that are independent of the training parameters.

4.2 CM REGULARIZER HELPS LEARN TRUE DATA DISTRIBUTION

When the timesteps t are small, the model learns the true categorical distribution through the
reconstruction loss. As training progresses, this consistency is propagated to later timesteps, eventually
reaching t = 1. In other words, the consistency-matching loss encourages the probability distributions
of x in neighboring latent variables to converge. Once the model is fully trained, it consistently
produces the same probability distribution for the clean data across the entire trajectory. Since the
reconstruction loss enforces the mapping from the embedding space back to categorical data, the
learning signal is propagated through the entire ODE trajectory.

Below, we reinforce this intuition by theoretically demonstrating that with the CM regularizer, the
true data distribution can be learned, provided that the model prediction Pθ(x|zt; t) can perfectly
reconstruct categorical data at t = 0 using the following reconstruction loss function:

L0(x;ϕ,θ) = Eϵ∼N (0,I) [− logPθ(x|z0; 0)] .

It is important to note that this condition prevents the trivial solution, where Pθ(x|zt; t) remains
constant, from occurring during training.

Theorem 1 (The CM regularizer facilitates learning of the true data density). Let (ϕ∗,θ∗) be the
optimal parameters such that

Ex∼Pdata
[LCM(x;ϕ∗,θ∗)] = 0 and Ex∼Pdata

[L0(x;ϕ
∗,θ∗)] = 0.

Suppose that Ex∼Pdata

[
∥EMBϕ∗(x)∥2

]
<∞. Then, it follows that Pϕ∗,θ∗ = Pdata.

Theorem 1 has an important implication. It indicates that we can accurately learn the true distribution
of the data. Although it is less likely to reach the global optimum in practice, we empirically show that
consistency-matching loss tends to achieve a solution with fewer sampling steps (see Appendix F).
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4.3 CM REGULARIZER REDUCES CROSS-ENTROPY OF PREDICTIONS ACROSS ANY TIME

In (Gao et al., 2024; Dieleman et al., 2022), it is suggested that employing the cross-entropy loss:
LCE(x;ϕ,θ) = Ezt,t∼U(0,1) [− logPθ(x|zt; t)] ,

as a regularizer during the joint training of the embedding and diffusion model can help mitigate
embedding collapse, although without a rigorous guarantee. The intuition behind this approach is
that there is a discrepancy between the predicted embeddings, which arises from the prediction error
of the denoising model. The cross-entropy loss aims to compensate for this discrepancy.

Below, we establish a theoretical connection at the optimal point between our CM regularizer and the
cross-entropy regularizer used during training:
Proposition 2. Let (ϕ∗,θ∗) be optimal parameters such that:

Ex∼Pdata
[LCM(x;ϕ∗,θ∗)] = 0 and Ex∼Pdata

[L0(x;ϕ
∗,θ∗)] = 0.

Then, Ex∼Pdata
[LCE(x;ϕ

∗,θ∗)] = 0.

Proposition 2 and Theorem 1 suggest that minimizing the proposed CM regularizer offers a more
direct way to learning the true data distribution, avoiding embedding collapse. In practice, training
with LCM consistently outperforms LCE even with few sampling steps (see Table 10 in Appendix).

5 ADDITIONAL TECHNIQUES FOR MITIGATING EMBEDDING COLLAPSE

This section introduces several techniques to further mitigate the embedding collapse issue in training
the embedding and the denoising model. Comprehensive ablation studies are provided in Tables 1
and 7. An overview of CATDM is given in Figure 2.

5.1 WEIGHTING FUNCTION

Although −SNR(t)′ in Eq. (3) provides the correct scaling to treat the VLB as an Evidence Lower
Bound, we suspect this weighting function may disrupt the balance between training the reconstruction
loss and diffusion loss in practice. Instead of minimizing the diffusion loss, we simplify it as

LDM(x;ϕ,θ) = Eϵ∼N (0,I),t∼U(0,1)

[
∥EMBϕ(x)− ÊMBϕ,θ(zt; t)∥22

]
.

Essentially, we ensure that the loss is evenly distributed over different timesteps. The rationale is that
alleviating the error in a large noise level can help the model avoid constant embeddings.

Puting it all together, the overall objective function of CATDM is given by
min
ϕ,θ

Ex∼Pdata [L(x;ϕ,θ)] = Ex∼Pdata [L0(x;ϕ,θ) + βDMLDM(x;ϕ,θ) + βCMLCM(x;ϕ,θ)] ,

where βDM ≥ 0 and βCM ≥ 0 are hyperparameters. By tuning βDM, we can find the right balance
between L0(x;ϕ,θ) and LDM(x;ϕ,θ).

5.2 NOISE SCHEDULE

Determining the right amount of noise added to the embeddings in each timestep can play an
important role in both the forward and reverse processes of CATDM. If the embedding norms are
large, denoising would be a trivial task for low noise levels. This is not desired because the denoising
model has only a small time window to generate the global structure of the meaningful embedding.
Instead, we note that adjusting the noise schedule (NS) by shifting its log SNR curve (Hoogeboom
et al., 2023) is crucial. In particular, we use the shifted cosine noise schedule, defined as

log SNR(t) = −2 log tan(πt/2) + s ,

where s ∈ R is the shifting hyperparameter. When s = 0, it corresponds to the cosine noise
schedule (Nichol & Dhariwal, 2021). Essentially, NS implies different weights in the diffusion loss
per noise level (Kingma & Gao, 2023). As illustrated in Figure 3, by moving the curve to the left, it
gives more importance for higher degrees of noise. Adjusting NS also increases the speed of noise
injection in the forward process when t ≈ 0, making the generation task more challenging for the
model to prevent trivial generation and avoid embedding collapse.

5.3 RANDOM DROPPING

6
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Table 1: Results of ablation stud-
ies on the FFHQ dataset.

Method FID↓ Prec.↑ Rec.↑
CSDM 77.09 0.41 0.07
CSDM w ℓ2-norm 52.35 0.55 0.12

CATDM w/o LCM 186.95 0.02 0.00
CATDM w/o NS 11.19 0.71 0.42
CATDM w/o RD 8.20 0.73 0.42

CATDM 7.25 0.72 0.46

Figure 4: CATDM samples on unconditional image generation.
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Figure 3: Shifted cosine noise schedule
with different shifting factors s, λ(t) =
log SNR(t).

Given the noised embeddings, LCM used in our train-
ing objective ensures the same prediction for the poste-
rior probability Pθ(x̃|zt; t) at any timestep. During joint
training, it encourages the model to distinguish the em-
beddings by increasing their parameter magnitudes. To
alleviate this problem, we propose to randomly drop the
embeddings. Let mRD ∈ {0, 1}M denote a binary mask
that indicates which tokens are replaced with a special
[mask] token. During training, embeddings of x be-
come EMBϕ(x ⊙mRD). Random dropping forces the
representations to be more semantic, i.e., similar embed-
dings should be close to each other (He et al., 2022). This
is because only a portion of the embeddings is used to pre-
dict the other tokens. It requires the model to understand
the relationship between seen and unseen tokens. When
similar tokens frequently appear in similar contexts, the model learns to associate these tokens closely
in the embedding space, as their contextual meanings are similar.

6 EXPERIMENTS

In this section, we assess the performance of CATDM across several benchmark datasets, covering
tasks such as image generation, text generation, and machine translation. We also present compre-
hensive ablation studies to analyze CATDM’s performance. Details of the experimental setup are
provided in Appendix B.

6.1 IMAGE GENERATION

We present experiments covering both conditional and unconditional image generation tasks.

Datasets. For unconditional generation tasks, our benchmark consists of three datasets: FFHQ (Karras
et al., 2019), LSUN Bedrooms, and LSUN Churches (Yu et al., 2015). The FFHQ dataset contains
70K examples of human faces, while the LSUN Bedrooms dataset contains 3M images of bedrooms,
and the LSUN Church dataset contains 126K images of churches. For conditional generation tasks,
we use ImageNet (Deng et al., 2009). These datasets are widely used in the literature. All images
have a resolution of 256× 256 and VQGAN (Esser et al., 2021) is used to further downsample the
images into discrete representations of 16× 16 with a codebook of size 1024.

Baselines. We evaluate CATDM against several baselines, including D3PM with uniform transition
probabilities (Austin et al., 2021), VQ-Diffusion (Gu et al., 2022), and MaskGIT Chang et al. (2022).
Additionally, we include results for CSDM using fixed embeddings (CSDM†), where embeddings
are initialized from the pretrained VQGAN codebook and remain fixed throughout training. For
evaluation, we report the Fréchet Inception Distance (FID) between 50,000 generated images and real
images. We also provide performance metrics in terms of Precision and Recall. For conditional image
generation, we use the Inception Score (IS) as an additional metric to measure the image quality.
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Table 2: Results for unconditional generation on FFHQ, LSUN Churches, and LSUN Bedrooms. The
scores of FID, Precision, and Recall are shown. The best and second best results are marked.

Method FFHQ LSUN Churches LSUN Bedrooms

FID↓ Prec.↑ Rec.↑ FID↓ Prec.↑ Rec.↑ FID↓ Prec.↑ Rec.↑
Discrete-Space Diffusion Models
D3PM Uniform 9.49 0.71 0.41 6.02 0.68 0.39 6.60 0.60 0.35
VQ-Diffusion 8.79 0.70 0.43 6.88 0.72 0.37 7.19 0.54 0.37
MaskGIT 11.45 0.75 0.42 5.59 0.65 0.44 8.39 0.66 0.33

Continuous-Space Diffusion Models
CSDM† 12.66 0.73 0.38 7.88 0.76 0.36 4.93 0.71 0.38
CATDM (ours) 7.25 0.72 0.46 4.99 0.75 0.42 4.16 0.72 0.40

Results. Table 2 presents the results on unconditional image generation. CATDM consistently
achieves the lowest FID scores. Furthermore, we investigate the impact of using pretrained em-
beddings in CSDM† and demonstrate that while it yields satisfactory results, employing trainable
embeddings significantly enhances performance. On LSUN Bedrooms, CATDM outperforms the
baseline methods by a substantial margin, achieving the highest Precision and Recall scores. These
findings underline the superiority of CATDM in generating high-quality samples. The observed im-
provements in our method compared to discrete diffusion baselines confirm that continuous diffusion
models can provide an effective solution for categorical data. Figure 4 illustrates samples generated
by CATDM. For additional reference samples generated by CATDM, please refer to Appendix G.
Table 3 presents the results for class-conditional image generation tasks. Our method achieves a FID
of 6.81 and an IS of 225.31 with 50 sampling steps. CATDM notably outperforms both VQGAN
and VQVAE-2 by a substantial margin. Compared to MaskGIT, CATDM provides competitive FID
results and exceeds in IS. However, it is important to note, as highlighted by Besnier & Chen (2023),
that MaskGIT requires specific sampling adjustments, such as adding Gumbel noise with a linear
decay, to improve its FID. In contrast, CATDM operates without such sampling heuristics. In addtiion,
CATDM performs better than VQ-Diffusion in both FID and IS metrics. For reference samples
generated by CATDM, please refer to Appendix G.

Table 3: Comparison with generative models on ImageNet 256 × 256. The results of the existing
methods are obtained from their respective published works.

Model # params # steps FID↓ IS↑ Prec.↑ Rec.↑
VQGAN (Esser et al., 2021) 1.4B 256 15.78 74.3 n/a n/a
MaskGIT (Chang et al., 2022) 227M 8 6.18 182.1 0.80 0.51
VQVAE-2(Razavi et al., 2019) 13.5B 5120 31.11 45.00 0.36 0.57
BigGAN-deep (Brock et al., 2019) 160M 1 6.95 198.2 0.87 0.28
Improved DDPM (Nichol & Dhariwal, 2021) 280M 250 12.26 n/a 0.70 0.62
VQ-Diffusion (Gu et al., 2022) 518M 100 11.89 n/a n/a n/a

CATDM (ours) 246M 50 6.81 225.31 0.84 0.38

6.2 TEXT GENERATION

We evaluate CATDM on unconditional text generation, where the objective is to generate text without
any predefined themes or prompts, using a training corpus as the basis for learning.

Datasets. We train CATDM on text8 (Mikolov et al., 2014), a character-level language modeling
benchmark. The text8 dataset consists of Wikipedia articles with a small vocabulary of 26 letters and
a whitespace token. Following (Lou et al., 2023; Austin et al., 2021), we use the same data split and
parameterize CATDM on a neural network of similar size.

Baselines. CATDM is compared against autoregressive, random-order autoregressive, and other
diffusion-based models. Unless otherwise specified, all models are implemented as standard 12-layer
transformers. Following (Austin et al., 2021), we report performance using bits per character (BPC).

Results. Table 4 shows the results. Autoregressive models, including Discrete Flow (Tran et al., 2019)
and Transformer AR (Austin et al., 2021), achieve the best BPC. CATDM outperforms Multinomial
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Table 4: Bits per character (BPC) on Text8.
(*) Results reported by Shi et al. (2024).

Method BPC ↓
Random-order Autoregressive Models
ARDM (Hoogeboom et al., 2021a) ≤ 1.43
MAC (Shih et al., 2022) ≤ 1.40

Autoregressive Models
IAF/SCF (Ziegler & Rush, 2019) 1.88
Discrete Flow (Tran et al., 2019) (8× 3 layers) 1.23
AR Argmax Flow (Hoogeboom et al., 2021b) 1.39
Transformer AR (Austin et al., 2021) 1.23

Discrete-State Diffusion Models
Mult. Diffusion (Hoogeboom et al., 2021b) ≤ 1.72
D3PM Uniform (Austin et al., 2021) ≤ 1.61
D3PM Absorb (Austin et al., 2021) ≤ 1.45
SEDD Uniform (Lou et al., 2023) ≤ 1.47
SEDD Absorb (Lou et al., 2023) ≤ 1.39
MD4 (Shi et al., 2024) ≤ 1.37

Continuous-Space Diffusion Models
BFN (Graves et al., 2023) ≤ 1.41
Plaid (Gulrajani & Hashimoto, 2024) (*) ≤ 1.48
CATDM (ours) ≤ 1.54

Table 5: Machine translation results. We do not use
knowledge distillation. (*) Results obtained by re-
running the code.
Model # steps En-De↑ De-En↑
Autoregressive Models
Transformer (Vaswani et al., 2017) n/a 26.37 32.62

Discrete-State Diffusion Models
Mult. Diffusion (Hoogeboom et al., 2021b) 25 3.69 20.06
DiffuSeq (Gong et al., 2022) 1000 13.73 27.03
SeqDiffuSeq Yuan et al. (2022) 2000 14.37 28.65

Continuous-Space Diffusion Models
Diffusion-LM (Li et al., 2022) 200 15.33 26.61
CDCD (Dieleman et al., 2022) 200 20.0 n/a
Difformer (Gao et al., 2024) (*) 20 20.89 28.30
CATDM (ours) 20 21.67 29.61

Table 6: FID results for different numbers of sam-
pling steps.

Steps 5 10 15 20 50 100 200

Churches 19.38 10.24 7.81 6.80 5.43 5.20 4.99
Bedrooms 14.55 6.05 4.42 4.00 3.86 4.01 4.16
FFHQ 28.80 15.55 11.44 9.57 7.56 7.34 7.25
ImageNet 12.70 7.86 7.02 6.88 6.81 6.84 6.99

Diffusion (Hoogeboom et al., 2021b) and D3PM Uniform (Austin et al., 2021). However, its
performance is inferior to that of Plaid (Gulrajani & Hashimoto, 2024) and SEDD (Lou et al., 2023).
his discrepancy may be attributed to the fact that CATDM is not specifically designed to maximize the
log-likelihood objective. Please refer to Appendix G for reference sentences generated by CATDM.

6.3 MACHINE TRANSLATION

Significant efforts have been made to apply non-autoregressive iterative refinement models to the task
of machine translation. This section explores the application of CATDM for machine translation.

Datasets. We consider two standard datasets, including IWSLT14 German-English (IWSLT14
De-En) (Cettolo et al., 2014) and WMT14 English-German (WMT14 En-De) (Bojar et al., 2014).
These datasets are the most popular and widely used benchmarks for evaluating a machine translation
system. IWSLT14 De-En consists of transcripts from the TED talks, which are relatively informal,
spoken language. WMT14 En-De consists of sentences collected from a variety of sources, including
formal as well as less structured text.

Baselines. We compare CATDM with the autoregressive Transformer (Vaswani et al., 2017) and
other recent diffusion models, including Difformer (Gao et al., 2024), Multinomial (Hoogeboom et al.,
2021b), Diffusion-LM (Li et al., 2022), CDCD (Dieleman et al., 2022), DiffuSeq (Gong et al., 2022),
and SeqDiffuSeq Yuan et al. (2022). For a fair comparison, we do not adopt any sequence-level
knowledge distillation to distill the original training set. For Difformer, we rerun the code provided by
the corresponding author. For CATDM, we use the same architecture and setup as that of Difformer,
which consists of an encoder-decoder architecture with two distinct Transformer stacks. Unlike
autoregresive models where the sequence length is modeled by the EOS token, we explicitly predict
the target length using the encoder output. The BLEU score is reported to evaluate our machine
translation models.

Results. All results, except Difformer and CATDM, were taken from previous studies. As shown
in Table 5, CATDM achieves the best results among non-autogressive models, with a BLEU score
of 29.61 on on IWSLT14 De-En and 21.67 on WMT14 En-De. Overall, CATDM underperforms
compared to the autoregressive model of the same size. This outcome aligns with previous find-
ings (Dieleman et al., 2022), which can be attributed to the fact that non-autoregressive models are
not trained to handle repeated or missing tokens.
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6.4 ABLATION STUDIES

In this section, we conduct various ablation studies. For additional analysis, please see Appendix F.

Table 7: Results on different dropping
strategies: “linear” means increasing the
dropping ratio linearly, “rand drop” uses
a random dropping ratio; and “rand(γ)”
uses a fixed dropping ratio of γ, where
0 ≤ γ ≤ 1.

FID↓ Prec.↑ Rec.↑
linear 9.12 0.72 0.41
rand drop 8.44 0.71 0.42

rand (0.1) 7.81 0.71 0.43
rand (0.2) 7.25 0.72 0.46
rand (0.3) 8.45 0.70 0.43
rand (0.4) 9.89 0.70 0.41
rand (0.5) 9.11 0.72 0.41

Effects of different components. We investigate the im-
pact of individual components introduced in CATDM on
overall performance. The results are presented in Table 1.
The baseline method, CSDM, is unable to generate mean-
ingful images. While incorporating an ℓ2-norm regular-
ization on the embeddings provides some improvement, it
does not completely resolve the collapse issue. CATDM
(incorporating our novel components LCM + NS + RD)
achieves the best performance. Without RD, the model
produces inferior results. Removing NS leads to notable
performance degradation. On the other hand, omitting
LCM results in embedding collapse. These findings high-
light the essential role of each component in mitigating the
embedding collapse and improving overall performance.

Number of sampling steps. We analyze the number of
steps necessary to obtain high-fidelity samples. Table 6
presents the FID scores corresponding to different num-
bers of sampling steps. As expected, we observe a decrease in FID as the number of sampling
steps increases. However, the improvement becomes marginal after reaching 50 steps. CATDM
can accelerate the conventional diffusion models by a large margin, which is a notable advantage
compared to ARs.

Dropping strategies. We explore various approaches to drop tokens during training. Three distinct
strategies are considered. One strategy involves linearly increasing the dropping ratio concerning the
time step (linear). In this scheme, early steps involve a small portion of tokens being dropped, while
in later steps, a higher proportion of tokens are dropped. Another strategy is to randomly select a ratio
and drop the tokens according to this ratio (rand drop). Alternatively, a fixed dropping ratio can be
employed (rand(.)). Table 7 summarizes the results. CATDM performs the best with an appropriately
chosen fixed dropping ratio.

7 CONCLUSION

This paper introduces CATDM, a continuous diffusion model tailored for modeling categorical distri-
butions, which jointly learns the embeddings and the denoising model. CATDM effectively addresses
the issue of embedding collapse. We provide an empirical analysis of this phenomenon, identifying
two key mechanisms responsible for collapse: insufficient feedback from the reconstruction loss and
the diffusion loss that promotes constant embeddings. Experimental results show that CATDM not
only alleviates the embedding collapse problem, but also exceeds the baseline diffusion models.

Limitations and future work. In this work, CATDM is implemented using the Transformer
architecture, but we emphasize that the architecture choice is orthogonal to the proposed framework
and can be extended to other architectures. While we have thoroughly evaluated CATDM on image
and text generation tasks, future work will focus on applying it to additional data types, such as
graphs and audio. Furthermore, we plan to explore more advanced sampling techniques to improve
the overall generation quality of CATDM.

ETHICS STATEMENT

In conducting AI research focused on developing a diffusion model that addresses the problem of
embedding collapse, we are committed to the ethical standards. Our work aims to advance the field
of machine learning by improving model robustness. However, we recognize the potential ethical
concerns related to the broader societal implications of this work. We acknowledge that AI models
can have significant impacts when applied in real-world scenarios. Therefore, we ensure that our
research contributes positively to society and does not cause harm.
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A RELATED WORK

While autoregressive models (ARs) (Bengio et al., 2000; Brown et al., 2020) appear to dominate
categorical data modeling, generating samples from these models incurs significant computational
costs. Moreover, controlling these models is challenging because the generation order has to be
predetermined (Lou et al., 2023), making them unsuitable for control tasks such as infilling tasks. In
contrast, diffusion models predict all tokens simultaneously, allowing efficient and rapid sampling
without the sequential attention mechanism of ARs. Below, we present an overview of diffusion
models specifically tailored for handling categorical data.

DSDMs. The idea is to establish a similar iterative refinement process for categorical data. The
corruption process involves transitioning discrete values from one to another. This concept was
initially introduced by Sohl-Dickstein et al. (2015) for binary sequence problems. Later, it was
extended in multinomial diffusion (Hoogeboom et al., 2021b). Austin et al. (2021) improved
discrete diffusion by introducing diverse corruption processes, going beyond uniform transition.
Based on the former framework, several extensions have been introduced for image modeling, e.g.,
MaskGIT (Chang et al., 2022), VQ-Diffusion (Gu et al., 2022), Token-Critic (Lezama et al., 2022),
Muse (Chang et al., 2023), and Paella (Rampas et al., 2022). Additionally, Campbell et al. (2022)
utilized Continuous Time Markov Chains for discrete diffusion. Despite their initial success, the
corruptions introduced by these methods are characterized by their coarse-grained nature, making
them inadequate for effectively modeling the semantic correlations between tokens.

CSDMs. Li et al. (2022) addressed the challenge of controlling language models (LMs) with
Diffusion-LM, a non-autoregressive language model based on continuous diffusion. A similar idea
has been introduced in SED (Strudel et al., 2022), DiNoiSer (Ye et al., 2023), CDCD (Dieleman et al.,
2022), Bit Diffusion (Chen et al., 2022), Plaid (Gulrajani & Hashimoto, 2024), and Difformer (Gao
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et al., 2024). Recently, Meng et al. (2022); Lou et al. (2023) proposed an alternative concrete score
function for discrete settings, which captures the surrogate “gradient” information within discrete
spaces. However, the challenge of end-to-end training for both embeddings and CSDMs has not been
fully addressed in these methods. To avoid embedding collapse, existing techniques either normalize
the embeddings (Dieleman et al., 2022) or use heuristic methods (Li et al., 2022), which are not
generally effective and may lead to training instability (Dieleman et al., 2022; Strudel et al., 2022).

B EXPERIMENTAL SETUP

This section provides architecture details for the denoising model and datasets used in our experiments.
Unless specified otherwise, we set the hyperparameters to βCM = 1 and βDM = 0.005. For
embeddings, we use Gaussian initialization N (0, D−1/2). The EMA rate is set to η = 0.99 and the
embedding dimensionality is set to D = 256.

B.1 IMAGE GENERATION

Our prediction network is a bidirectional Transformer (Vaswani et al., 2017). For unconditional
generation tasks, the network consists of 15 layers, 8 attention heads, and 512 embedding dimensions
(a total of 56M parameters). We apply a dropout rate of 0.1 to the self-attention layers. All models
are trained on 4 NVIDIA DGX H100 GPUs with a batch size of 128. The LSUN Bedrooms dataset
and FFHQ dataset are trained for 500 epochs, while the LSUN Churches dataset is trained for 100
epochs. For Transformer, we use sinusoidal positional embeddings. To make a fair comparison, all
models in Section 6.1 for unconditional image generation are configured with 200 steps for inference.

For conditional image generation on ImageNet, we scale up the model to 24 layers, 16 attention heads,
and 768 embedding dimensions (a total of 246M parameters). We train the model for 500 epochs.
Following Gu et al. (2022), the conditional class label is injected into the model using Adaptive Layer
Normalization (Ba et al., 2016) (AdaLN), i.e., AdaLN(h, t) = (1 + at)LayerNorm(h) + bt, where
h denotes the activation, at and bt are obtained from a linear projection of the class embedding.

B.2 TEXT GENERATION

We follow the methodologies outlined by Austin et al. (2021) and Lou et al. (2023) for our network
architectures and hyperparameters. More spefically, our transformer network consists of 12 layers
with 12 heads and a hidden dimension of 768. The model was trained for 500 epochs of batch size
512 and a learning rate of 3× 10−4. For evaluation, the text8 dataset is divided into chunks of length
256 without any preprocessing. Consistent with standard practice, the train/validation/test splits are
90M/5M/5M. The embedding dimensionality is set to 256.

B.3 MACHINE TRANSLATION

Our model is based on the encoder-decoder Transformer archirtecture (Vaswani et al.,
2017). We adopt fairseq to implement CATDM. Following (Gao et al., 2024), we use
the transformer-iwslt-de-en configuration for the IWSLT14 De-En dataset and the
transformer-base configuration for the WMT14 En-De dataset. The embedding dimension is
set to 128. Optimization and learning rate scheduler are the default settings as in (Gao et al., 2024).
We explicitly model the target length using maximum log-likelihood.

C ALGORITHM PSEUDOCODE

Algorithms 1 and 2 outline the training and sampling procedures of CATDM. For sampling, we
discretize time t ∈ [0, 1] into N + 1 points {tn}Nn=0 such that they satisfy tn < tn+1, t0 = 0,
and tN = 1. Starting with Gaussian noise sampled from ztN ∼ N (0, I), we sample z0 through
the ancestral sampling given by pϕ,θ(ztn−1

|ztn ; tn−1, tn), which is defined in Eq. (1). Finally, the
categorical output x is obtained from the model Pθ(x|z0; 0). Note that, unlike CSDMs, our model
directly outputs the token probabilities for continuous input ztn at time step tn.
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Algorithm 1 Training
1: repeat
2: Sample batch of x ∼ Pdata(x)
3: t ∼ U(0, 1); s ∼ U(0, t); ϵ ∼ N (0, I);

mRD ∼ {0, 1}M
4: zt := αt(EMBϕ(x)⊙mRD) + σtϵ
5: Take gradient descent step on
6: ∇ϕ,θL(x;ϕ,θ)
7: until converged

Algorithm 2 Sampling

1: Prepare
t0 := 0 < t1 < · · · < tN := 1 and
ztN ∼ N (0, I)

2: for n = N,N − 1, · · · , 1 do
3: ztn−1 ∼ pϕ,θ(ztn−1 |ztn ; tn−1, tn)
4: end for
5: x ∼ Pθ(x|z0; 0)
6: return x

(a) ω = 0 (b) ω = 1 (c) ω = 2 (d) ω = 4

Figure 5: Generated samples of CATDM with ω ranging from 0 to 4 on ImageNet.

D LATENT VARIABLE CLASSIFIER-FREE GUIDANCE

It is important to generate images corresponding to a given condition. In CATDM, the condition is
incorporated directly into the prediction network through Adaptive Layer Normalization (Ba et al.,
2016). The assumption here is that the network uses both the corrupted input and the condition
to reconstruct the input. However, we often observe that CATDM generates outputs that are not
correlated well with the condition. The reason is that the corrupted input contains rich information;
therefore, the network can ignore the condition during training.

To improve the sample quality of conditional diffusion models, we employ the classifier-free guid-
ance (Ho & Salimans, 2021). Essentially, it guides the sampling trajectories toward higher-density
data regions. During training, we randomly drop 10% of the conditions and set the dropped conditions
to the null token. During sampling, CATDM predicts the categorical variable x as follows

logPθ(x|zt,y; t) = (1 + ω) logPθ(x|zt,y; t)− ω logPθ(x|zt; t) , (5)

where ω ≥ 0 denotes the guidance scale and y denotes the condition. Note that both terms on
the right-hand side of Eq. (5) are parameterized by the same model. Figure 5 shows the effects of
increasing the classifier-free guidance scale ω.

E THEORETICAL ANALYSIS

E.1 PROOF TO PROPOSITION 2

Proof. Since θ∗ is a running average of the history of θ∗, it follows that θ∗ = θ∗ when
LCM(x;ϕ∗,θ∗) = 0. Replacing the exponential moving average stop-gradient θ∗ in LCM(x;ϕ∗,θ∗)
with θ∗, we have

LCM(x;θ∗,ϕ∗) = 0⇔ Pθ∗(x̃|zt; t) = Pθ∗(x̃|zs; s), for all zt and t > s .

On the other hand, L0(x;ϕ
∗,θ∗) = 0 implies

one hot(x) = Pθ∗(x̃|z0; 0) , (6)

where one hot(x) contains one-hot encoded representations for each element of x. With s = 0, we
obtain

Pθ∗(x̃|zt; t) = Pθ∗(x̃|z0; 0). (7)
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With Eqs. (6) and (7), for any x we have

Pθ∗(x̃|zt; t) = one hot(x) for all t.

This exactly implies Ex∼Pdata
[LCE(x;ϕ

∗,θ∗)] = 0.

E.2 PROOF TO THEOREM 1

Proof. Using the result from Proposition 2, Ex∼Pdata
LCE(x;ϕ

∗,θ∗) = 0, it directly implies that the
denoising loss

Ex∼Pdata

[
∥EMBϕ∗(x)− ÊMBϕ∗,θ∗(zt; t)∥22

]
= 0,

as the prediction ÊMBϕ∗,θ∗(zt; t) is an average over emebddings, defined in Eq. (2).

Therefore, the following VLB

−Ex∼Pdata

[
logPϕ∗,θ∗(x)

]
≤Ex∼Pdata

[DKL(qϕ∗(z1|x)∥p(z1))]
+ Ex∼Pdata

[L0(x;ϕ
∗,θ∗)] + Ex∼Pdata

[L∞(x;ϕ∗,θ∗)]

implies

DKL

(
Pdata∥Pϕ∗,θ∗

)
≤ Ex∼Pdata

[DKL(qϕ∗(z1|x)∥p(z1))] .

This holds since cross-entropy, entropy, and KL-divergence are non-negative for discrete distributions.
We recall that

qϕ(zt|x) = N (zt|αtEMBϕ(x), σ
2
t I) and p(z1) = N (z1|0, I).

Using the formula for the KL-divergence of two normal distributions, we have

Ex∼Pdata
[DKL(qϕ∗(z1|x)∥p(z1))] =

1

2
Ex∼Pdata

[
D(σ2

1 − 1− log σ2
1) +

∥α1EMBϕ∗(x)∥2

σ2
1

]
= 0,

as σ1 = 1, α1 = 0, and Ex∼Pdata

[
∥EMBϕ∗(x)∥2

]
<∞. Therefore, Pdata = Pϕ∗,θ∗ .

E.3 CONNECTION OF LCE TO DIFFUSION MODEL OBJECTIVE

We show that minimizing LCE implicitly regularizes KL divergence of transition density in the
embedding space.

Proposition 3. Let x ∈ X and z0 = EMBϕ(x). For any t ∈ [0, 1] and zt ∼ qϕ(zt|x), we assume
that log pθ(z|zt; t), as a function of z, is smooth and decays rapidly enough as ∥z∥ → ∞. For the
discretization of timesteps 1 = tN > · · · > tn · · · > t0 = 0, we have

DKL
(
qϕ(ztn−1 |ztn , z0)∥pθ(ztn−1 |ztn ; tn−1, tn)

)
≤ − log pθ(x|ztn ; tn).

Proof. We first prove the “data-processing-type inequality”

DKL
(
Ey∼Q(y)[Q(z|y)]∥Ey∼P (y)[Q(z|y)]

)
≤ DKL

(
Q(z)∥P (z)

)
. (8)
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Assume that P (y) ̸= 0 and Q(z|y) ̸= 0 almost everywhere for y and z.

DKL
(
Ey∼Q(y)[Q(z|y)]∥Ey∼P (y)[Q(z|y)]

)
=

∫ (∫
Q(z|y)Q(y) dy

)
· log

∫
Q(z|y)Q(y) dy∫
Q(z|y)P (y) dy

dz

=

∫ (∫
Q(z|y)P (y) dy

)
·
∫
Q(z|y)Q(y) dy∫
Q(z|y)P (y) dy

· log
∫
Q(z|y)Q(y) dy∫
Q(z|y)P (y) dy

dz

=

∫ (∫
Q(z|y)P (y) dy

)
·Ψ

(∫ Q(z|y)Q(y) dy∫
Q(z|y)P (y) dy

)
dz

≤
∫ ∫

Q(z|y)P (y) · Q(z|y)Q(y)

Q(z|y)P (y)
·Ψ

(Q(z|y)Q(y)

Q(z|y)P (y)

)
dzdy

=

∫ ∫
Q(z|y)Q(y) log

Q(z|y)Q(y)

Q(z|y)P (y)
dy dz

=

∫ (∫
Q(z|y) dz

)
Q(y) log

Q(y)

P (y)
dy

= DKL
(
Q(y)∥P (y)

)
,

where the inequality follows from applying Jensen’s inequality to the function Ψ(x) := x log x. Now,
we let pσ(ẑ0|z0) := N

(
ẑ0|z0, σ2I

)
and qϕ,σ(ztn−1 |ztn , z0) :=

∫
q(ztn−1 |ztn , ẑ0)pσ(ẑ0|z0) dẑ0.

Recall in (continuous state) diffusion model that

q(ztn−1 |ztn) ≈ Eẑ0∼pθ(ẑ0|ztn )

[
q(ztn−1 |ztn , ẑ0)

]
=: pθ(ztn−1 |ztn ; tn−1, tn).

By applying (8), we have

DKL
(
qϕ,σ(ztn−1

|ztn , z0)∥pθ(ztn−1
|ztn ; tn−1, tn)

)
= DKL

( ∫
q(ztn−1

|ztn , ẑ0)pσ(ẑ0|z0) dẑ0∥
∫

q(ztn−1
|ztn , ẑ0)pθ(ẑ0|ztn) dẑ0

)
≤ DKL

(
pσ(ẑ0|z0)∥pθ(ẑ0|ztn ; tn, 0)

)
.

Therefore, leveraging the lower semi-continuity property of the KL divergence, we obtain

DKL
(
qϕ(ztn−1

|ztn , z0)∥pθ(ztn−1
|ztn ; tn−1, tn)

)
≤ lim inf

σ→0
DKL

(
qϕ,σ(ztn−1

|ztn , z0)∥pθ(ztn−1
|ztn ; tn, tn−1)

)
≤ lim inf

σ→0
DKL

(
pσ(ẑ0|z0)∥pθ(ẑ0|ztn ; tn, 0)

)
= −

∫
log pθ(ẑ0|ztn)δz0(dẑ0)

= − log pθ(z0|ztn ; tn, 0)
= − log pθ(x|ztn).

F ADDITIONAL ABLATION STUDIES

In this section, we provide additional ablation studies to futher validate our motivations of CATDM.

F.1 PRETRAINED VS. LEARNABLE EMBEDDINGS

We evaluate the embedding vectors obtained by CATDM against those provided by the pretrained
VQGAN on the LSUN Churches dataset. Figure 6 presents the magnitudes of these vectors and
the distance matrices between embeddings. Interestingly, our method learns a structure that is quite
similar to the pretrained embeddings. Learnable embeddings tend to have larger magnitudes.
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Figure 6: Visual representation of pretrained and learnable embedding vectors for the LSUN Churches
dataset: (a) vector magnitudes for pretrained embeddings, (b) vector magnitudes for learnable
embeddings, (c) distance matrix for pretrained embeddings and (d) distance matrix for learnable
embeddings. For distance matrices, we compute the Euclidean distances between different embedding
vectors.

F.2 WEIGHTING TERMS

We hypothesize that balancing the reconstruction loss and the diffusion loss is crucial to preventing
embedding collapse. In CATDM, this is achieved by tuning the hyperparameter βDM. Table 8
presents the FID results on FFHQ for various combinations of βCM and βDM. Adjusting these
parameters alters the contributions of the diffusion loss and the consistency-matching loss in the
objective function. As indicated in the table, when βDM is relatively large, the model still suffers
from embedding collapse.

βCM βDM FID ↓
0.01 0.01 175.46
0.01 1 173.28
1 1 54.10
1 0.01 8.26
1 0.005 7.25

Table 8: Results on FFHQ with different dif-
ferent hyperparameters βCM and βDM.

D FID ↓
64 7.90
128 7.20
256 7.25
768 7.42
1024 7.38

Table 9: Results on FFHQ when varying the
embedding dimensionality.

F.3 EMBEDDING DIMENSIONALITY

Table 9 shows the influence of embedding dimensionality. We report the FID results on FFHQ when
varying the embedding dimensionality. CATDM demonstrates consistent performance across various
dimensionalities. As the dimensionality increases, the performance slightly decreases. CATDM
achieves the best result when D = 128.

F.4 COMPARISON BETWEEN CROSS-ENTROPY LOSS AND CONSISTENCY-MATCHING LOSS

To demonstrate the effectiveness of our proposal, we conduct experiments by replacing the
consistency-matching loss LCM(x;ϕ,θ) in CATDM with the cross-entropy loss (CATDM-CE),
defined as LCE(x;ϕ,θ) = Eϵ∼N (0,I),t∼U(0,1)[− logPθ(x|zt; t)]. This cross-entropy loss has been
used in several works, including Difformer (Gao et al., 2024) and CDCD (Dieleman et al., 2022), as
an additional form of regularization. Table 10 presents the FID results for uncontional image gener-
ation when varying the number of sampling steps. Notably, CATDM consistently outperforms the
cross-entropy loss regularization, showing significant improvements, particularly when the number
of sampling steps is small.

F.5 ABLATION STUDIES ON IMAGENET

We conduct ablation studies on ImageNet to examine the effects of classifier-free guidance weights
and the number of sampling steps. Figure 7(a) shows the FID and IS metrics across various classifier-
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Table 10: FID results with different numbers of sampling steps.

Dataset Method Step

5 10 15 20 50 100 200

Churches CATDM 19.38 10.24 7.81 6.80 5.43 5.20 4.99
CATDM-CE 21.96 11.93 8.90 7.69 5.71 5.22 5.45

Bedrooms CATDM 14.55 6.05 4.42 4.00 3.86 4.01 4.16
CATDM-CE 16.69 7.89 6.60 4.81 4.10 4.13 4.50

FFHQ CATDM 28.80 15.55 11.44 9.57 7.56 7.34 7.25
CATDM-CE 36.57 20.45 14.68 12.14 8.60 7.79 7.60

free guidance weight values. Additionally, Figure 7(b) presents the FID and IS results as we vary the
number of sampling steps. There is a clear trade-off between fidelity represented by FID and quality
represented by IS. CATDM achieves the best FID results when ω = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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10

15

20

25

30

35

FI
D FID

IS

50

100

150

200

250

300

350
IS
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(b) Varying number of sampling steps

Figure 7: Ablation studies for FID vs IS on ImageNet when (a) varying classifier-free guidance
weights and (b) varying number of sampling steps.

G ADDITIONAL SAMPLES

In this section, we present additional samples generated by CATDM. For unconditional image
generation, Figures 8, 9, and 10 show the generated samples from CATDM trained on FFHQ, LSUN
Churches, and LSUN Bedrooms, respectively. Figure 11 visualizes the conditional samples from
ImageNet. All images are at a resolution of 256× 256. Table 11 provides examples of translation,
while Table 12 shows samples generated by CATDM trained on the text8 dataset.
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Table 11: Translation results of CATDM.

German to English

Source wir befinden uns also in einer wunderbaren situation mit
strom in der reichen welt .

Target and so , we’re in a wonderful situation with electricity
in the rich world .

Generation so we’re ourselves in a wonderful situation with
electricity in the rich world .

Source die vereinigten staaten haben heute die höchste
inhaftierungsrate der welt .

Target the united states now has the highest rate of
incarceration in the world .

Generation the united states today have the highest incerdient in
the world today .

Source und problem , das ist nicht nur ein technisches problem
, es kann auch ein gesellschaftliches problem sein , es
kann auch einfach ein zugangsproblem sein , was wie dinge
vereinfachen , also eine beliebige problemstellung , eine
frage aufzuwerfen , und wie kann man das anders oder wie
kann man das besser machen .

Target and a problem , so not only a technical problem , it can
also be a social problem , it can also just be an access
problem that simplifying things , so any way of looking
at a problem , of posing a question , asking how you
could do something differently or better .

Generation and problem , it ’s just a technical problem , it
can also be a social problem , but it may also be a
intellectual problem , which simplibles things like , so ,
any kind of solving solving to throw a question , and how
can you do it differently or how can you do it better ?

English to German

Source The stakes are high for the fast @-@ growing economy as
the discovery of huge offshore gas reserves and coal
deposits in the northwest could bring in more than $ 50bn
of investment over the next few next years from companies
including Rio Tinto , Vale of Brazil , Eni of Italy and
Anadarko of the US .

Target Für die schnell wachsende Wirtschaft steht viel auf dem
Spiel , denn die Entdeckung riesiger Gasvorkommen vor der
Küste und Kohlelager im Nordwesten könnte in den nächsten
Jahren Investitionen von über 50 Milliarden US @-@ Dollar
von Firmen wie Rio Tinto , Vale aus Brasilien , Eni aus
Italien und Anadarko aus den USA ins Land bringen .

Generation Für die schnell wachsende Wirtschaft steht es hoch
auf dem Spiel , da die Entdeckung großer Offshore @-@
Gasreserven und Kohlevorlagen im Nordwesten in den
nächsten nächsten Jahren mehr als 50 Milliarden Dollar
von Unternehmen wie Rio Tinto , Vale of Brazil , Eni von
Italien und Anadarko von den USA in die Investitionen
bringen könnte .

Source Chips are available everywhere !
Target Pommes gibt es überall !
Generation Chips sind überall verfügbar !

Source He is always either at the hospital or trying to
make money for the organization so he can go on these
campaigns .

Target Er ist immer entweder im Krankenhaus oder versucht , Geld
für die Organisation aufzubringen , damit er auf diese
Kampagnen gehen kann .

Generation Er ist immer im Krankenhaus oder versucht , Geld für die
Organisation zu verdienen , damit er auf diese Kampagnen
gehen kann .
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Table 12: CATDM samples for unconditional text generation on Text8.

Sample # 1

who had it arrived in at least two zero in the effort the
main ridical and heterapeutic defeating agreements in was
forced by at a trikonous in two zero zero three a chain
of academic remedies epidemics have angered to sudan led
al iuan t j judah surah tro

Sample # 2

policy in australia which had also now been japan one
nine three two olean gortowstein usa for leda inoch one
nine three six giving anguquin sault blair kogartian
linkowaki holidiy first balancer of american supporting
to kirgham d one nine six zero one ni

Sample # 3

star it was assigned to one of these economists believed
that there is no girl glenner indicates that incarnation
cannot tell with evacuation to the partement of the
object are european new and famous spring scroogs hearts
and impunity the fertile board mi

Sample # 4

distinction between hydrogen antr and rans errates of
the disease spinally induced aglicozedon distribution of
hydrogen and inductors with request signals and tropical
mice of the first image anti organic diseases in the
second case could more in te also i

Sample # 5

seven eight their decoration was nine zero one eight in
the total of one seven eight zero four zero zero the
phantom sajyats civilized man who organized the name
shipple a hellu mine and the general fire of their fire
all the mongols believe the name remai

Sample # 6

call for the colmington differences to london national
people were able to meet the singular team lorestaray and
on february one two zero zero six the fater london kokho
london team s arms run by the chief london person who
created the average incoded cons

Sample # 7

pecies by early kinds of biots and some of the human
evolution of anti capitalism is constructing invasion
and is useful to no anti generated any intelligible free
all over the world in which a morphised freedom there is
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Figure 8: CATDM samples of unconditional image generation on FFHQ.

Figure 9: CATDM samples of unconditional image generation on LSUN Churches.
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Figure 10: CATDM samples of unconditional image generation on LSUN Bedrooms.

Figure 11: CATDM samples of conditional image generation on ImageNet 256× 256 for selected
classes, including “snail”, “volcano”, “goldfish”, “jellyfish”, “cheeseburger”, “goldfinch”.
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