
Position Estimation of Obstacles Using Maximum Expectation Stochastic

Gradient Variational Inference in Intelligent Control Game Systems

Xiangri Lua,b,*

aBeijing Institute of Technology, Haidian District, Beijing, PRC
bNational Key Lab of Autonomous Intelligent Unmanned Systems, Haidian District,

Beijing, PRC

Abstract

This paper discusses the optimization of the confrontation position of agent in a

two-dimensional game system with incomplete information, based on the random

movements of agent relative to obstacles. Incomplete information games contain

numerous unknown factors, adding complexity to intelligent control game systems.

To address these unknown factors, intelligent control game systems often require

substantial data and significant computational resources. However, real confrontation

systems involve intelligence gathering, and neither side will have a complete

information set about the confrontation situation. To tackle this issue, this paper

proposes a Maximum Expected Stochastic Gradient Variational Inference Algorithm

within the Q-learning framework, which can infer the position coordinates of

obstacles in the confrontation plane. In this paper, the experimental data of Q-learning

model of reinforcement learning，The Maximum Expectation Stochastic Gradient

Variational Inference algorithm is then used to estimate the position coordinates of the

obstacles arranged by player B.

Keywords: Incomplete Information; Intelligent Control Game; Q-learning; Maximum

Expected Random Gradient Variational Inference; Reinforcement Learning

1.Introduction

In 1977, Arthur P. Dempster, Nan Laird, and Donald Rubin introduced the

Expectation-Maximization (EM) algorithm in their seminal paper, establishing it as a

cornerstone in statistical modeling and data analysis[1-3]. This algorithm is

particularly valuable for finding local maximum likelihood parameters of statistical

models in situations where equations cannot be directly solved, enabling the

estimation of unobservable data. The iterative nature of the EM algorithm consists of

two alternating steps: Expectation (E) and Maximization (M). The process of

alternating E and M steps continues until the algorithm converges to a set of

parameters that maximizes the likelihood function.This iterative refinement allows the

EM algorithm to effectively estimate parameters in the presence of incomplete data.

When it comes to optimizing the confrontation position of an agent in a

two-dimensional game system with incomplete information,the

expectation-maximization algorithm also has some drawbacks.First, the convergence

speed of the algorithm can be slow, especially in cases where the data has high

dimensionality or the initial estimates are far from the optimal parameters. Each

iteration includes both the Expectation and Maximization steps, which are

computationally expensive. This makes the EM algorithm less suitable for very

large-scale datasets or applications with strict time constraints.

In 2013, Matthew D. Hoffman and Andrew Gelman introduced the Stochastic

Gradient Variational Inference (SGVI) algorithm, which has since become a vital

method for handling complex probabilistic models through approximating posterior

distributions[4,5]. The SGVI algorithm combines the efficiency of stochastic

optimization with the flexibility of variational inference, making it highly suitable for

large-scale data problems and high-dimensional models. Unlike traditional inference

methods, SGVI iteratively updates model parameters using stochastic gradient descent,

allowing it to effectively scale to scenarios with incomplete information and dynamic

environments.The principles and functionalities of SGVI make it particularly relevant

in fields such as game theory and warfare simulation. In game theory, SGVI can be

used to optimize strategies in competitive scenarios where information is often

incomplete and constantly changing. Similarly, in warfare simulation, SGVI helps

optimize the positioning of agents in dynamic, uncertain environments, improving

decision-making and strategic planning.

Firstly, the SGVI algorithm utilizes mini-batch data for updates, allowing it to

effectively handle large-scale datasets without needing to process the entire dataset in

each iteration. This significantly reduces the consumption of computational resources.

Secondly, since SGVI uses stochastic gradient descent in each iteration, it adapts well

to high-dimensional models. Traditional variational inference methods may struggle

with high-dimensional scenarios, whereas SGVI remains efficient in such

environments. Lastly, SGVI excels in dealing with missing or incomplete data. By

estimating the posterior distribution of hidden variables through variational inference,

it enables effective inference even in the presence of incomplete data.

In the study of incomplete information game systems on a two-dimensional

plane, agents need to optimize their positions based on the random movement of

obstacles. The incomplete information game includes many unknown factors,

increasing the complexity of intelligent control game systems. To effectively address

these unknown factors, this paper combines the Expectation-Maximization (EM)

algorithm and the Stochastic Gradient Variational Inference (SGVI) algorithm. This

combination aims to improve the efficiency and accuracy of the agents'

decision-making processes.

By integrating the EM algorithm with the SGVI algorithm, we can fully exploit

the strengths of both methods in intelligent control game systems. The EM algorithm

provides a robust tool for handling hidden variables and incomplete data, while the

SGVI algorithm enhances the model's scalability and real-time performance through

efficient stochastic gradient updates. Specifically, the EM algorithm can be employed

for initial parameter estimation and handling hidden variables, whereas the SGVI

algorithm optimizes model parameters in each iteration, utilizing small batches of

effective data to support the agents' decision-making process.

This combined approach significantly reduces reliance on large-scale data and

massive computational resources while improving the precision and efficiency of

position optimization. Ultimately, this method allows intelligent control game systems

to achieve optimal decision-making for agents in complex environments with

incomplete information.

2 Reinforcement Learning Framework and Algorithms

Assuming that the two units are playing games on the two-dimensional plane,

let's suppose that there is the player A, and the player B sets up obstacles at two points

(which can be ignored in terms of size) to construct each other. In a

unitunit yx  area(unitx and unity are each a unit length arbitrarily.)Construct a

two-dimensional game environment in the plane. This article sets the starting point of

the player A as the red mark point, and the player A looks for the base camp b of

player B, and the player B that sets up obstacles to prevent Player A from attacking

the base camp b of player B is marked in green, and the base camp b of player B

which is a fixed point),(goalgoal yx in the two-dimensional game plane is marked in

blue. At this point, This article construct a model that a game triangle in the

two-dimensional game plane with the player A and the obstacles arranged by the

player B and the base camp b of player B , as shown in Figure 1.

Figure 1 The Composition of Game Participants in a Two-dimensional Game Plane
Forms a Game Triangle.

2.1 Reinforcement Learning Framework
In this paper, the player A adopts the reinforcement learning model of the value

function Q-learning method[6-8]. The player A interacts with the confrontational

game environment, and The player A learns from the environment how to adapt to the

current environment to complete the task. The simplified diagram of the

reinforcement learning scheme in this article is shown in 3. When the player A

completes a certain task, it first interacts with the dynamic adversarial game

environment through action ta . Under the action ta of the action and the dynamic

environment of the confrontation game, the player A will generate a new state. At the

same time, the player A reward value is given under the action of the dynamic

environment of the confrontation game environment. If this iteration continues, the

continuous interaction between the player A and the confrontational game

environment will generate a large amount of data. The player A uses the data

generated by the reinforcement learning algorithm to modify its own action strategy,

and then interacts with the confrontation game environment to generate new data, and

uses the new data to further improve own behavior of the player A. After several

generations of learning, , the player A finally learns the best position which is the

optimal location weaken the base camp b of player B to weaken the base camp b of

player B , that is, the command system when the player A and the player B are in

confrontation.

Figure 2 A Simplified Diagram of the Confrontation Game Scheme Based on
Reinforcement Learning

2.1.1 Definitions Related to Reinforcement Learning Models

Ⅰ.Definition

According to the above description of player of the confrontation game, the state

of the agent in the two-dimensional plane of the confrontation game can be defined:

(1) If the player A encounters an obstacle set by the player B during

reinforcement training, the reward value obtained is -1.

(2) If the player A encounters the base camp b of player B, then the reward value

obtained is +1.

(3) When the player A is trained in the reinforcement learning process in the

blank area of the two-dimensional plane, if the distance between the player A and the

base camp b of player B on the plane is within the radius range without any obstacles

set by the player B, the confrontation environment will reward the player A with a

value of 10. To simplify the problem, we assume that the number of obstacles set by

the player B is 1.

(4) The action of the player A is defined as: up (U), down (D), left (L), and right

(R).
According to the above definition, the movement rules of the player A in the

confrontation game are: action = 0, 1, 2, and 3 respectively represent the movement of

the player A in the confrontation game in the four directions of upward, downward,

left, and right.

Based on the above the player A experimental environment argument and Figure

2, a simplified diagram based on the reinforcement learning in the confrontation game,

we can now draw a state transition running diagram for the player A, as shown in

Figure 3.

Figure 3 State Transition Diagram of the player A Operation

The two subjects of this reinforcement learning model are the player A, and the

two-dimensional planar environment of the confrontation game (the player A, the

obstacles arranged by the player B and the base camp b of player B). Under the

framework of the Markov Decision Process[9-11] , the player A completed with the

support of five key elements: state set, action set, reward set, policy probability

distribution and state transition probability distribution closed-loop cycle in

reinforcement learning environment. Then let the state set be

 Aggressive Offensive Passive OffensiveS  ， . The set of actions is

 , , ,Up Down Left Righta  . The reward set is  1,0,1,10R   .
Ⅱ.The algorithm of secondary greedy  strategy

1.Action choice

And randomly generated a r that floating point number between 0 and

1;if r  ,then exploratory selection is performed, i.e. one action is randomly selected

from all actions；if 1r   ,Make maxQ to select greedy ta that in the current Q

table， so Select the optimal action argmax (,)
a

a Q s a


 ，Select an action with a

value maxQ in the current state s ,If maxQ is due to the action selected

in { , }action right up ,Then the agent selects argmax (,)
a

a Q s a


 from the action set to

continue to explore,If maxQ is due to the action selected in { , }action left down ,Then

the agent randomly selects one action from all the actions.

2. greedy  process

First initialize the Q table.Second, repeat the following steps until the maximum

cycle number or convergence is reached：In a given state, one action is selected based

on two greedy  strategies[12-14];Perform the action and observe the feedback of

the environment and the next state s .Then update the Q table.Eventually update the

status to s .The Python simulation program of greedy  process for player A is

presented in Figure 4.

Figure 4 The player A Simulation Test Process

2.1.2 Q-learning incorporating the EM-SGVI algorithm

In the context of war game simulations, intelligent control systems often face

challenges due to incomplete information about an opponent's strategy and location.

The EM-SGVI algorithm addresses these challenges by iteratively refining estimates

of hidden variables, such as obstacle locations, enabling the system to make more

informed decisions based on the probability distribution of unknown factors.

When the EM-SGVI algorithm is integrated into the Q-learning framework, it

enhances the agent's ability to optimize its behavior in a 2D game environment.

Q-learning is a reinforcement learning technique that enables the agent to learn the

optimal policy by interacting with the environment and receiving rewards. The

EM-SGVI algorithm's ability to estimate and adjust for the presence of obstacles in

the environment further improves the agent's ability to identify and occupy the

optimal adversarial position.

The EM-SGVI algorithms and Q-learning framework are utilized to train player

A in navigating and weakening the base camp b of player B on a 2D plane map. The

process structure is illustrated in Figure 5.

Figure 5 Process Flowchart of the player A Simulation Results

The distribution of obstacle locations set by player B in the reinforcement

learning model environment will be analyzed using EM-SGVI. Next, we will provide

a convergence proof for the EM-SGVI method.

Proof: Suppose X is the known data of the particle unit of player A, that is, the

observation variable; Z is the hidden variable, that is, player B arranges the

distribution position information of the obstacle unit, then

(|) () (|)
()

p X Z p Z p Z X
p X

 （1）

(|)p X Z indicates the probability that player A gets the best position if he knows

where player B places the obstacle, ()p Z represents the assumption of the distribution

of player B arrangement barriers for the player A construct, ()p X is the integration of

the position probability against player A, (|)p Z X That is, the posterior distribution of

the probability that player B arranges obstacles in some positions when player A

navigates a point in the confrontation game plane. The final expression process of

player A is as follows, so player A is selected as (16).

log () log (,) log (|)p x p x z p z x  （2）

log () log (,) log (|)
(,) (|)log log
() ()

p x p X Z p Z X
p X Z p Z X
q Z q Z

 

  （3）

log () () log () () log ()
Z Z

left p X q Z dZ p X q Z dZ p X    （4）

(,) (|)log () log ()
() ()

(() (|))
Z Z

p X Z p Z Xright q Z dZ q Z dZ
q Z q Z

ELBO KL q Z p Z X

 

 

 
（5）

log () (() (|))p x ELBO KL q Z p Z X  （6）

log () ((() (|)) 0).p x ELBO KL q Z p Z Xiff  （7）

()
()

() ()
(,)Set [log] [log (,) log ()] ()
()

i
i

q Z q Z
p x zELBO E E p x z q Z L
q Z 


 



   

ˆ argmax ()L


  （8）

()
()

()

() ()

() [log (,) log ()]

[()log (,) ()log ()]

()[log (,) log ()] () [log (,) log ()]

i
q z

i

i i

L E p x z q z

q z p x z dz q z q z dz

q z p x z q z dz q z p x z q z dz

   

    

       

 

  

 

     

 
  

（9）

()() [log (,) log ()]

() log ()

1() ()
()

() 0

iq z p x z q z dz

q z q z dz

q z q z dz
q z

q z dz

   

  

  


 

   

  

  

 








（10）

()

()

()
()

()
()

()[log (,) log ()]

() log ()[log (,) log ()]

[log ()[log (,) log ()]]

() [log ()[log (,) log ()]]

i

i

i
q z

i
q z

q z p x z q z dz

q z q z p x z q z dz

E q z p x z q z

L E q z p x z q z




   

    

   

    





  

  

  

   




（11）

If player B arranges the obstacle distribution position information hidden variable Z

can simulate the position information several times, that is () ~ (), 1, 2,...,lZ q z l l  ，so

() () () ()

1

1() log ()[log (,) log ()]
L

l i l l

l
L q z p x z q z

L    


    （12）

Suppose that the location information distribution of player B arrangement of

obstacles is ()(,), ~ ()iz g x p    ，
()~ (|)iz q z x 。

()
()

()

()

()
()

()
()

()
()

() [log (,) log ()]

()[log (,) log ()]

[log (,) log ()] ()

[log (,) log ()]

[[log (,) log ()]]

[[log (,)

i
q z

i

i

i
p

i
p

i
p z

L E p x z q z

q z p x z q z dz

p x z q z p d

E p x z q z

E p x z q z

E p x z

   

   

  


   

   

 



 

   

 

 

 

  

  




()

() () ()
()

log (|)]]

[[log (,) log (|)] (,)]

i

i i i
p z

q z x Z

E p x z q z x g x
 

     



   

（13）

() ~ (), 1, 2,...,l p l l  

()
() () () () () ()

(,)
1

1() [log (, (,)) log ((,) |)] (,)i

L
i l i i i i

z g x
l

L p x g x q g x x g x
L 

      
   




     （14）

(1) () () ()t t t L       （15）

If Q-learning the greedy strategy distribution,Substituting 1 1() argmax (,)t t
a

s Q s a  

into the Equation (15),then(16).
1 ()

1(,)t t t
a ta a Q S a

   （16）

when 1t ta a  ,It means that player A gets the best attack position.

3 Experiment
3.1 Experimental Simulation Platform Environment

The the player planning simulation hardware platform used in this article is

equipped with an Intel(R) Core(TM) i7-10750H CPU @ 2.60GHz processor and an

NVIDIA GeForce GTX 1660 Ti (6.0 GB) graphics card. Based on this hardware

system, we use Python 3 to implement the player and the confrontation game process

with incomplete information, and finally enter the program editing interface by

"Jupyter Notebook" in the terminal.

3.2 Experimental result

This experiment conducted a comparative study between the improved

EM-SGVI algorithm and the Q-learning algorithm. Through 1000 iterations of testing,

the experiment was analyzed from two dimensions: runtime and the spatial

distribution of obstacles by player B.Comparative analysis of the performance of

EM-SGVI and Basic Q-Learning algorithm,as shown in table 1.
Table 1 Comparative analysis of the performance of Table 1 EM-SGVI and Basic Q-Learning

algorithm

Contrast the project Statistical indicators EM-SGVI Basic Q-Learning Difference

runtime

Average (seconds) 0.0448 0.0404 +0.0044

Standard deviation

(seconds)
0.0069 0.0051 +0.0018

coefficient of

variation
15.40% 12.62% +2.78%

Obobstacle and target

distance

Average (seconds) 2.2738 4.4343 -2.1605

Standard deviation

(seconds)
1.0922 1.8946 -0.8024

coefficient of

variation
48.03% 42.73% +5.30%

The results indicated that the EM-SGVI algorithm showed significant

advantages in predicting obstacle positions. The average distance between obstacles

and target points for the EM-SGVI algorithm (2.2738) was reduced by 48.72%

compared to the Q-learning algorithm (4.4343). This result demonstrates the better

adaptability of the EM-SGVI algorithm in adversarial game environment planning, as

shown in Figure 6.

Figure 6 Comparison of Spatial Distance Distribution Between Obstacles and Base
Camp for Basic Q-Learning and EM-SGVI Algorithms

From the perspective of stability, the standard deviation of the distance for the

EM-SGVI (1.0922) was much lower than that of the basic Q-learning (1.8946),

indicating higher predictability and consistency in the spatial layout of obstacles. In

terms of computational efficiency, the average runtime of the EM-SGVI algorithm

(0.0448 seconds) was only 10.89% higher than the basic Q-learning (0.0404 seconds).

This slight increase in time overhead is acceptable, especially considering the

significant spatial optimization effects it brings. The difference in the standard

deviation of time (0.0069 seconds for EM-SGVI and 0.0051 seconds for basic

Q-learning) suggests that both algorithms have good time stability, as shown in Figure

7.

Figure 7 Comparison of Single Cycle Runtime Between Basic Q-Learning and
EM-SGVI Algorithms

Heatmap analysis visually shows that the EM-SGVI algorithm exhibits more

concentrated and strategic distribution characteristics in obstacle position selection,

whereas the basic Q-learning presents a relatively uniform random distribution. These

experimental data strongly prove that the EM-SGVI algorithm can significantly

improve the accuracy of obstacle position prediction while maintaining computational

efficiency, as shown in Figure 8 and Figure 9.

Figure 8 Heatmap of Obstacle Position Estimation by the EM-SGVI Algorithm

Figure 9 Heatmap of Obstacle Position Estimation by the Basic Q-Learning
Algorithm

4.Conclusion

In the study of incomplete information game systems on a two-dimensional

plane, agents need to optimize their positions based on the random movement of

obstacles. The presence of unknown factors increases the complexity of these

intelligent control game systems. To effectively address these challenges, this paper

combines the Expectation-Maximization (EM) algorithm with the Stochastic Gradient

Variational Inference (SGVI) algorithm to enhance the efficiency and accuracy of

agents' decision-making processes.

The integration of the EM algorithm and the SGVI algorithm leverages the

strengths of both methods. The EM algorithm handles hidden variables and

incomplete data, while the SGVI algorithm improves the model's scalability and

real-time performance through efficient stochastic gradient updates.

This combined approach reduces the reliance on large-scale data and massive

computational resources, while enhancing the precision and efficiency of position

optimization. Ultimately, it enables intelligent control game systems to achieve

optimal decision-making for agents in complex environments with incomplete

information.

Reference
[1] Dempster A P, Laird N M, Rubin D B. Maximum likelihood from incomplete data

via the EM algorithm[J]. Journal of the royal statistical society: series B
(methodological), 1977, 39(1): 1-22.

[2] Hogg R V, McKean J W, Craig A T. Introduction to mathematical statistics[M].
Pearson Education India, 2013.

[3] Neal R M, Hinton G E. A view of the EM algorithm that justifies incremental,
sparse, and other variants[M]//Learning in graphical models. Dordrecht: Springer
Netherlands, 1998: 355-368.

[4] Hoffman M D, Blei D M, Wang C, et al. Stochastic variational inference[J].
Journal of Machine Learning Research, 2013.

[5] Chaudhari P, Soatto S. Stochastic gradient descent performs variational inference,
converges to limit cycles for deep networks[C]//2018 Information Theory and
Applications Workshop (ITA). IEEE, 2018: 1-10.

[6] Clifton J, Laber E. Q-learning: Theory and applications[J]. Annual Review of
Statistics and Its Application, 2020, 7(1): 279-301.

[7] Watkins C J C H, Dayan P. Q-learning[J]. Machine learning, 1992, 8: 279-292.
[8] Jang B, Kim M, Harerimana G, et al. Q-learning algorithms: A comprehensive

classification and applications[J]. IEEE access, 2019, 7: 133653-133667.
[9] J. Wal and J. Wessels. “Markov decision processes.” (1985). 219-233.
[10]R. S. Sutton, A. Barto. “Reinforcement Learning: An Introduction.” IEEE Trans.

Neural Networks(1998).
[11]Marjani, Aymen Al et al. “Navigating to the Best Policy in Markov Decision

Processes.” Neural Information Processing Systems (2021).
[12]Bulut V. Optimal path planning method based on epsilon-greedy Q-learning

algorithm[J]. Journal of the Brazilian Society of Mechanical Sciences and
Engineering, 2022, 44(3): 106.

[13]Zhang S, Li H, Wang M, et al. On the convergence and sample complexity
analysis of deep q-networks with $\epsilon $-greedy exploration[J]. Advances in
Neural Information Processing Systems, 2024, 36.

[14]Liu Y, Vogiatzis C, Yoshida R, et al. Solving reward-collecting problems with
UAVs: A comparison of online optimization and Q-learning[J]. Journal of
Intelligent & Robotic Systems, 2022, 104(2): 35.

