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Abstract
Reinforcement learning from human feedback001
(RLHF) has proven effective in aligning large002
language models (LLMs) with human prefer-003
ences, but often at the cost of reduced out-004
put diversity. This trade-off between diver-005
sity and alignment quality remains a signif-006
icant challenge. Drawing inspiration from007
curiosity-driven exploration in reinforcement008
learning (Pathak et al., 2017), we introduce009
curiosity-driven RLHF (CD-RLHF), a frame-010
work that incorporates intrinsic rewards for011
novel states, alongside traditional sparse ex-012
trinsic rewards, to optimize both output diver-013
sity and alignment quality. We demonstrate014
the effectiveness of CD-RLHF through exten-015
sive experiments on a range of tasks, including016
text summarization and instruction following.017
Our approach achieves significant gains in di-018
versity on multiple diversity-oriented metrics019
while maintaining alignment with human pref-020
erences comparable to standard RLHF. We will021
make our code publicly available.022

1 Introduction023

Reinforcement learning from human feedback024

(RLHF) (Ziegler et al., 2019; Christiano et al.,025

2017) is now a critical component in fine-tuning026

large language models (LLMs) to specific tasks027

like code generation (Roziere et al., 2023; Chai028

et al., 2023; Lozhkov et al., 2024), mathematical029

reasoning (Uesato et al., 2022), and dialogue assis-030

tance (Ouyang et al., 2022; Askell et al., 2021).031

Despite the success of RLHF in producing high-032

performing LLMs, it often reduces the output di-033

versity of LLMs (Dong et al., 2023; Kirk et al.,034

2024). Kirk et al. (2024); Wu et al. (2024) find035

out that models trained with RLHF exhibit a trade-036

off between alignment quality and output diversity:037

RLHF models have high alignment quality but with038

low output diversity, and vice versa. LLMs with039

decreased output diversity could potentially hin-040

der the LLMs’ effectiveness on creative and open-041

ended tasks, like story generation (Castricato et al., 042

2022; Yang et al., 2024), data synthesis (Xu et al., 043

2023; Liang et al., 2024; Dubey et al., 2024), and 044

red-teaming (Perez et al., 2022; Hong et al., 2024). 045

Some attempts have been made to improve the di- 046

versity or achieve a balance in this trade-off. Hong 047

et al. (2024) introduce SelfBLEU and Sentence- 048

BERT metrics into the RL training as sparse re- 049

wards, mainly towards a coverage of test cases in 050

red-teaming. Moreover, Wang et al. (2024) gives 051

a solution from the view of Kullback-Leibler (KL) 052

penalty, implementing DPO or PPO with forward 053

KL gains output diversity, but sacrifices the align- 054

ment quality. Therefore, is it possible to balance 055

this trade-off in RLHF stage, thus improving output 056

diversity without sacrificing alignment quality? 057

Curiosity-driven exploration methods have been 058

well-studied in reinforcement learning (RL) lit- 059

eratures (Schmidhuber, 1991b; Bellemare et al., 060

2016; Ostrovski et al., 2017; Pathak et al., 2017; 061

Burda et al., 2019b). In these RL settings, agents 062

(i.e., policy models) are encouraged to explore the 063

“novel” states, which are less visited in the learn- 064

ing progress. The curiosity signal introduced in 065

this framework serves as a metric to estimate the 066

“novelty” of a state and is implemented as an in- 067

trinsic reward. Under this setting, agents explore 068

the “novel” states with curiosity, learning skills that 069

may used to solve the latter problems. 070

Inspired by these studies, we propose curiosity- 071

driven reinforcement learning from human feed- 072

back (CD-RLHF), a novel framework that encour- 073

ages agents to explore more often with curiosity in 074

RLHF stage. As curiosity-driven RL, curiosities 075

are implemented as intrinsic rewards and assigned 076

along the trajectory. Combining intrinsic rewards 077

with the extrinsic rewards generated by the reward 078

model helps guide the agent policy in optimizing 079

both output diversity and alignment quality. In CD- 080

RLHF, we use forward dynamics to compute the 081

prediction errors in the state representations at each 082
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time and use these errors to estimate curiosity, fol-083

lowing Pathak et al. (2017); Burda et al. (2019b).084

This estimation shows a good property: with the085

training progress, a frequently visited “novel” state086

becomes boring and is less valuable for further ex-087

ploration. Using curiosity encourages the agent088

to make various token choices in the same state089

potentially leading to the improvement of output090

diversity. Besides, the guidance of extrinsic reward091

ensures that the agent is still optimized towards092

alignment quality.093

Contribution To conclude, our main contribu-094

tions are summarized as follows:095

• We propose curiosity-driven RLHF, a framework096

that maintains alignment performance compara-097

ble to RLHF while achieving higher output di-098

versity. We demonstrate its effectiveness through099

extensive experiments across various datasets and100

tasks, including text summarization and instruc-101

tion following.102

• We demonstrate that CD-RLHF improves out-103

put diversity evaluated by diversity-oriented met-104

rics in both lexical and semantic dimensions,105

while preserving alignment quality comparable106

to vanilla RLHF.107

• In the out-of-distribution benchmark MT-Bench,108

CD-RLHF demonstrates strong generalization109

capability, achieving higher MT-Bench scores110

compared to RLHF evaluated by GPT-4, and con-111

sistently showing more diversity outputs.112

2 Related Work113

LLM Alignment RLHF significantly enhances114

the alignment of LLMs, improving instruction fol-115

lowing, safety, and reliability in real-world ap-116

plications (Ziegler et al., 2019; Bai et al., 2022;117

Li et al., 2024). Recent efforts in efficient align-118

ment algorithms focus on general performance im-119

provement (Li et al., 2023; Ahmadian et al., 2024;120

Chai et al., 2024), directly aligning with preference121

data (Rafailov et al., 2024; Xu et al., 2024; Ghesh-122

laghi Azar et al., 2023), and tacking credit assign-123

ment with dense rewards (Wu et al., 2023; Chan124

et al., 2024; Yoon et al., 2024). However, alignment125

can degrade output diversity, as pointed out by Kirk126

et al. (2024) who found that RLHF-trained LLMs127

show less diversity than supervised fine-tuned mod-128

els. Nevertheless, Wu et al. (2024) defines this129

as generative monoculture, which means LLMs130

refuse to share diverse options. There are some131

attempts to try to mitigate this situation with differ-132

ent approaches. Wang et al. (2024) proposes using 133

f -divergence with DPO/PPO to improve diversity 134

at the cost of alignment, different divergences show 135

a different level of trade-off between diversity and 136

alignment. Hong et al. (2024) integrate SelfBLEU 137

and Sentence-BERT into RL fine-tuning, boosting 138

output diversity for the improvement of coverage 139

of test cases in red-teaming tasks. Bradley et al. 140

(2023) proposes a method that is applied at the in- 141

ference stage, generating a new solution based a 142

previous solution. These solutions are evaluated 143

with LLMs considering both quality and diversity, 144

and the better one is reserved. 145

Curiosity-Driven RL Curiosity-driven ap- 146

proaches have been widely studied in RL. 147

Count-based approaches are successful in tabular 148

settings but fail at generalising to additional 149

tasks with infinite states (Bellemare et al., 2016; 150

Ostrovski et al., 2017). Using prediction error as 151

curiosity approaches highlight their success in 152

multiple RL scenarios (Schmidhuber, 1991b,a; 153

Stadie et al., 2015). Specifically, methods proposed 154

by (Pathak et al., 2017; Burda et al., 2019a,b) treat 155

curiosities as intrinsic rewards, and use intrinsic 156

rewards to encourage agents to explore at novel 157

states, intending to enhance agent capabilities 158

that could be used in future environments. Pure 159

curiosity-driven learning has also been studied in 160

large-scale settings (Burda et al., 2019a). 161

3 Method 162

In this section, we introduce our CD-RLHF method. 163

The key idea is to encourage the policy to explore 164

states with high curiosity potential, which may 165

yield a broader range of diverse tokens and thus 166

improve output diversity. 167

3.1 Preliminaries: Curiosity-Driven RL 168

Curiosity-driven RL (Pathak et al., 2017; Burda 169

et al., 2019b), also known as exploration bonus, 170

encourages an agent to explore novel states with 171

curiosities that serve as the intrinsic rewards r(i). 172

By doing so, the sparse extrinsic reward r(e) which 173

guides the agent from a holistic perspective is re- 174

placed with a new reward rt = r
(i)
t + r

(e)
t . The r(e)t 175

is mostly near zero along the trajectory, except for 176

the end of the episode. 177

The motivation behind curiosity-driven RL is 178

that intrinsic rewards should be higher in novel 179

states than in normal states to encourage the agent 180

to visit. A common approach in the RL literature is 181
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An apple a day keeps 
the doctor away, right ? Well, a lot

Token | Probs  
  but | 0.31
right | 0.20
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Token | Probs
      a | 0.13
       I | 0.09
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Token | Probs
  cup | 0.30
glass | 0.14
    lot | 0.05

……

Prompts

w/ Curiosity

w/o Curiosity

… <EOS>

Policy
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RM Extrinsic Reward 𝑟(")

Intrinsic Reward 𝑟($)
right | 0.20

a | 0.13

lot | 0.05

……

Extrinsic Reward

Intrinsic Reward

KL Penalty Reward 𝑟

right ? Well, a lot … <EOS>

Explore when probability of token lies out of top-𝑘 (𝑘 = 1 in this case)

Not in top-1 Not in top-1 

Figure 1: Illustration of the CD-RLHF framework. The policy model generates a completion based on the given
instruction, which samples tokens from vocabulary at each time. The introduced intrinsic curiosity module (ICM)
estimates the curiosity as a metric for “novelty” of the context, producing the intrinsic rewards. Another mechanism
is introduced to select which context is worth to explore, based on the probability of the selected token.

to estimate intrinsic rewards (i.e., curiosity) using182

prediction errors. The forward dynamics (Schmid-183

huber, 1991b; Pathak et al., 2017; Burda et al.,184

2019b) or inverse dynamics (Haber et al., 2018)185

are utilized to predict the representation of the next186

state, then compute the prediction error between187

the predicted and ground truth representation of the188

next state. By maximizing the prediction errors in189

RL procedure, agents tend to get attracted to the190

stochastic transitions, which correspond to novel191

states. During the training progress, the predic-192

tion errors tend to decrease as the agent becomes193

familiar with more states. Since the prediction hap-194

pens in the latent space, the choice of features to195

estimate the prediction error is a vital factor. As in-196

dicated by Burda et al. (2019a), the latent variables197

generalise better than the raw observations (i.e.,198

pixel), making them more effective for estimating199

the intrinsic rewards.200

3.2 Curiosity-Driven Alignment201

Our insight is that the curiosity in RLHF reflects the202

agent’s unfamiliarity with the state. By frequently203

exploring such state with high curiosity, the agent is204

encouraged to select diverse actions under the same205

state across trajectories, thereby enhancing output206

diversity. In CD-RLHF, we integrate a intrinsic207

curiosity module (ICM) into RLHF framework to208

estimate this curiosity. The estimation happens209

only at the states with enough “novelty”, which is210

determined by the probability of the selected token,211

as shown in Figure 1.212

3.2.1 Curiosity-Driven Reward213

The extrinsic reward r(e)t at time step t is produced214

by an external reward model, and obtained at the215

end of the episode. In RLHF, the Kullback-Leibler216

(KL) penalty works as a token-level reward, which217

constrains the policy’s divergence from the super-218

vised fine-tuned (reference) model:219

r(e) = R− βDKL(πpolicy(·) ∥ πref(·))220

where R is the reward produced by the reward 221

model, πpolicy is the policy model and πref is the 222

reference model. 223

Combining intrinsic reward and extrinsic reward, 224

we can obtain the reward that is used to optimize 225

the policy in CD-RLHF: 226

rt = r
(e)
t + η · r(i)t 227

where the discounting factor η controls the scale of 228

intrinsic rewards. 229

This reward is designed to steer policy opti- 230

mization toward achieving both alignment quality, 231

driven by extrinsic rewards, and output diversity, 232

driven by intrinsic rewards. 233

3.2.2 Prediction Error as Curiosity Reward 234

In the RLHF framework, the state consists of a 235

sequence of action tokens up to current time step, 236

and the action selected at each step represents the 237

decision made. At time step t, the action is denoted 238

as at, and the state is represented as st = {s0, a<t}, 239

where s0 is the initial prompt and a<t refers to 240

the sequence of actions taken before time t. The 241

transition function can be interpreted as updating 242

the state with the generated token at each time 243

step, where the state at time t+ 1 is represented as 244

st+1 = {st, at}, reflecting the concatenation of the 245

previous state st and the newly generated token at. 246

Intrinsic Curiosity Module (ICM) To estimate 247

intrinsic rewards, we introduce an Intrinsic Cu- 248

riosity Module (ICM), inspired by Pathak et al. 249

(2017); Burda et al. (2019b). The ICM predicts 250

the next state representation based on the current 251

state and action, and the prediction error serves as 252

the curiosity-driven intrinsic reward. This predic- 253

tion error is computed in the latent space of hidden 254

embeddings from large language models (LLMs), 255

enabling a more expressive and informative repre- 256

sentation of states and actions. 257

ICM consists of a feature encoder ϕ and a for- 258

ward model f , both implemented as two-layer 259
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MLPs. The feature encoder ϕ encodes the state260

representation to bridge the scalar gap between261

raw state and action representations. The for-262

ward model f takes as input the concatenation of263

the encoded state ϕ(st) and the action representa-264

tion ψ(at), predicting the next state representation265

ϕ(st+1). This prediction process is formalized as:266

ϕ̂(st+1) = f(ϕ(st), ψ(at)) (1)267

The ICM loss LICM is computed as the squared268

error between the predicted and actual next-state269

representations:270

LICM =
1

2
∥ϕ̂(st+1)− ϕ(st+1)∥22 (2)271

where ϕ̂(st+1) is the predicted state representation,272

ϕ(st+1) is the true latent representation.273

Intrinsic Reward Computation The ICM is274

trained independently of the policy model, optimiz-275

ing LICM as a self-supervised learning task. The276

resulting prediction error is used as the intrinsic277

reward, encouraging the exploration of less pre-278

dictable states. Intuitively, deterministic states with279

limited action choices offer little exploratory value.280

To improve the efficiency, we apply a top-k strat-281

egy to determine whether a state warrants further282

exploration. The intrinsic reward r(i)t at time step283

t+ 1 is defined as:284

r
(i)
t =

{
0 if at ∈ V (k)

1
2∥ϕ̂(st+1)− ϕ(st+1)∥2 otherwise

285

Here, V (k) ⊂ V denotes the top-k vocabulary sub-286

set that maximizes
∑

at∈V (k) P (at | st). When the287

selected action at is within the top-k most proba-288

ble candidates, the intrinsic reward is set to zero to289

discourage redundant exploration.290

The intrinsic reward computation aligns with291

LICM, as the state prediction accuracy improves292

during ICM training, reducing the intrinsic reward293

over time. This follows the principle of curiosity-294

driven RL—novel states become less rewarding295

with frequent visits. Figure 2 illustrates the intrinsic296

reward estimation process.297

Reward Whitening The scalar gap between in-298

trinsic and extrinsic rewards could introduce un-299

stable optimization in RL training, where intrinsic300

rewards may vary across samples. To mitigate this,301
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Figure 2: The computation of ICM loss LICM and intrin-
sic reward r(i)t at time t, the state representation st and
st+1 are derived from the reference model, while the
action representation at is taken from the policy model.

we apply a reward whitening to normalize intrinsic 302

rewards at each time step along the trajectory: 303

r(i) = (r(i) − µ)/σ2 304

where µ and σ represent the mean and standard 305

deviation of the intrinsic rewards, respectively. 306

Feature Space Alignment During the intrinsic 307

reward estimation in RLHF, there is a gap between 308

predictions and the states/actions. Predictions are 309

operated in continuous space, while states and ac- 310

tions reside in discrete space. To tackle this gap, we 311

use the last layers’ hidden states st derived from 312

the reference model, and use the embeddings of 313

the actor model to extract the representation of at. 314

This alignment results in a coherent feature space 315

for computing prediction errors. 316

4 Experiments 317

4.1 Experimental Settings 318

Datasets We evaluate our method on the 319

TL;DR (Stiennon et al., 2020) dataset for text sum- 320

marization, which includes 93k human-annotated 321

preference pairs and 86k pairs for evaluation. Addi- 322

tionally, we evaluate on the UltraFeedback (Cui 323

et al., 2023) dataset for instruction following, 324

which contains 61.1k pairs for training and 2k pairs 325

for evaluation.1 326

Models and training details We use pre-trained 327

Gemma-2B, Gemma-7B (Team et al., 2024), 328

Llama-3.2-1B, and Llama-3.2-3B (Dubey et al., 329

2024) as base models. CD-RLHF is implemented 330

using the DeepSpeed-Chat (Yao et al., 2023) frame- 331

work. The datasets are split into SFT/RM/PPO 332

partitions with a 20%/40%/40% ratio, respectively. 333

Hyperparameters used for SFT, RM, and PPO 334

stages are detailed in Appendix A. In CD-RLHF, 335

we use top-1 to select valid intrinsic rewards. 336

1We use the binarized version from https:
//huggingface.co/datasets/HuggingFaceH4/
UltraFeedback_binarized, following the preference
modeling splits in all experiments.
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Stage Model Diversity ↑ EAD ↑ SelfBLEU ↓ SentBERT ↓ RM Score ↑

TL;DR

SFT 0.4041 0.8444 0.1336 0.5380 -0.52
RLHF 0.2132 0.7347 0.3367 0.7024 0.90
Sent-Rewards (Hong et al., 2024) 0.2355 0.7512 0.3053 0.6961 0.95
CD-RLHF
(∆ over RLHF)

Gemma-2B
0.2839

(+33.16%)
0.7793

(+6.07%)
0.2590

(+23.08%)
0.6720

(+4.33%)
0.95

SFT 0.3575 0.8256 0.1706 0.5442 0.62
RLHF 0.1180 0.6602 0.4352 0.7601 2.02
Sent-Rewards (Hong et al., 2024) 0.1447 0.6735 0.4197 0.7749 1.87
CD-RLHF
(∆ over RLHF)

Gemma-7B
0.1360

(+15.25%)
0.6816

(+3.24%)
0.4144

(+4.78%)
0.7480

(+1.59%)
2.02

SFT 0.3672 0.8296 0.1651 0.5498 -0.31
RLHF 0.1724 0.6869 0.3997 0.6971 1.14
Sent-Rewards (Hong et al., 2024) 0.1869 0.7078 0.3519 0.7338 0.80
CD-RLHF
(∆ over RLHF)

Llama-3.2-1B 0.2418
(+40.26%)

0.7482
(+8.92%)

0.3108
(+22.24%)

0.6847
(+1.78%)

1.17

SFT 0.3539 0.8233 0.1753 0.5649 2.32
RLHF 0.2281 0.7441 0.3163 0.6658 3.33
Sent-Rewards (Hong et al., 2024) 0.2355 0.7530 0.3356 0.7182 3.54
CD-RLHF
(∆ over RLHF)

Llama-3.2-3B
0.2920

(+28.01%)
0.7879

(+5.89%)
0.2463

(+22.13%)
0.6551

(+1.61%)
3.49

UltraFeedback

SFT 0.1855 0.7346 0.2899 0.6766 -1.45
RLHF 0.1686 0.6503 0.3104 0.7672 -1.01
Sent-Rewards (Hong et al., 2024) 0.1603 0.6801 0.3483 0.7463 -0.80
CD-RLHF
(∆ over RLHF)

Gemma-2B
0.1899

(+12.63%)
0.7417

(+14.06%)
0.2858

(+7.93%)
0.7308

(+4.74%)
-0.90

SFT 0.2148 0.7594 0.2292 0.6378 0.29
RLHF 0.2345 0.7360 0.2717 0.7298 0.63
Sent-Rewards (Hong et al., 2024) 0.2557 0.7744 0.2512 0.7231 0.60
CD-RLHF
(∆ over RLHF)

Gemma-7B 0.2654
(+13.18%)

0.7639
(+3.79%)

0.2442
(+10.12%)

0.6858
(+6.03%)

0.62

SFT 0.2060 0.7545 0.2476 0.6517 -0.03
RLHF 0.1683 0.6499 0.3564 0.7813 1.00
Sent-Rewards (Hong et al., 2024) 0.1652 0.6170 0.3345 0.7924 0.97
CD-RLHF
(∆ over RLHF)

Llama-3.2-1B 0.1834
(+8.97%)

0.6891
(+6.03%)

0.3149
(+11.64%)

0.7598
(+2.75%)

0.97

SFT 0.1974 0.7484 0.2669 0.6885 0.59
RLHF 0.1805 0.7031 0.3188 0.7676 1.35
Sent-Rewards (Hong et al., 2024) 0.1765 0.7261 0.2944 0.7471 1.22
CD-RLHF
(∆ over RLHF)

Llama-3.2-3B 0.2223
(+23.16%)

0.7673
(+9.13%)

0.2531
(+20.61%)

0.7349
(+4.26%)

1.43

Table 1: Results on TL;DR and UltraFeedback datasets, comparing CD-RLHF with SFT, RLHF, and Sent-
Rewards (Hong et al., 2024) from both output diversity and alignment quality aspects.

Compared baselines In addition to the vanilla337

RLHF baseline, we evaluate other approaches338

aimed at enhancing output diversity. Hong339

et al. (2024) propose optimizing SelfBLEU and340

Sentence-BERT scores across samples during341

RLHF training as sentence-level additional rewards,342

and optimizing the entropy as token-level addi-343

tional rewards. We denote this method as Sent-344

Rewards and re-implement it within DeepSpeed-345

Chat, using consistent hyperparameters in PPO346

training for fair comparison. Additional details347

of implementing Sent-Rewards can be found in348

Appendix A.349

Evaluation We evaluate performance using both350

quality and diversity metrics.351

• RM scores: RM scores evaluate the alignment352

quality using the trained reward model, which is353

identical to the one used in PPO training.354

• N -gram distinct (Li et al., 2016): It measures355

the number of distinctN -grams in totalN -grams356

(averaging 1- to 5-grams). This metric is referred 357

as Diversity. 358

• EAD (Liu et al., 2022): EAD is a refined version 359

of N -gram Distinct, EAD adjust for length bias 360

by introducing vocabulary size. 361

• SelfBLEU (Zhu et al., 2018): It calculates BLEU 362

scores within outputs, by taking one sentence as 363

hypothesis and the rest as reference to assess 364

lexical diversity (averaging 1- to 4-grams). 365

• Sentence-BERT (Reimers and Gurevych, 2019): 366

It computes semantic diversity by averaging co- 367

sine similarity between output embeddings. We 368

refer to this metric as SentBERT. 369

• GPT-4 win-rate (Tevet and Berant, 2021): We 370

utilize GPT-4 to evaluate the diversity by choos- 371

ing the more diversity set from two sets of com- 372

pletions, which are produced by different models. 373

• Human win-rate: Similar to GPT-4 win-rate, we 374

assess the win-rates between two methods with 375

the assistance of human annotators. 376
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For the automated metrics, we randomly sample377

2k instances from each dataset’s validation/test set,378

generating 10 completions for an instruction with379

a temperature of 1.0. For diversity related metrics,380

we compute the per-input diversity which estimate381

the diversity within the 10 completions for an in-382

struction, and averaged across instances. We sam-383

pled 50 instances from the 2k subset to assess the384

win-rate estimated by GPT-4. To decrease the eval-385

uation difficulty of human evaluation, we sampled386

25 instances from GPT-4 evaluation subset, with387

each instruction has 5 completions.388

4.2 Main Results389

The evaluation results are shown in Table 1. Over-390

all, CD-RLHF consistently outperforms the PPO391

baseline and Sent-Rewards in terms of output diver-392

sity, while achieving a favorable balance between393

output diversity and alignment quality.394

Results on TL;DR For the TL;DR summariza-395

tion task, both CD-RLHF and Sent-Rewards im-396

prove output diversity over the PPO baseline.397

CD-RLHF achieving the highest diversity scores398

among all RLHF models, obtains 16.66% improve-399

ments on Gemma-2B and 6.22% on Gemma-7B400

compared to RLHF baseline. Additionally, CD-401

RLHF maintains comparable alignment quality402

(RM scores) to the PPO baseline. For Llama-3.2-403

1B and Llama-3.2-3B, CD-RLHF achieves remark-404

able performance gain on both output diversity,405

with 18.30% and 14.41% improvements on output406

diversity in average, respectively. Besides, CD-407

RLHF on Llama-3.2-3B brings improvements on408

alignment quality with +0.16 in RM scores.409

Results on UltraFeedback For the UltraFeed-410

back instruction-following task, CD-RLHF demon-411

strates substantial improvements in output diversity412

for all models. While the Sent-Rewards method413

helps mitigate output diversity degradation, it re-414

mains less effective than CD-RLHF in balancing415

this trade-off. In this setting, CD-RLHF effec-416

tively manages the trade-off, showing only a min-417

imal drop in quality on the Gemma-7B (-0.01 in418

RM score) and Llama-3.2-1B (-0.03 in RM score).419

Compared to RLHF baseline, CD-RLHF achieves420

an average of 9.84% on Gemma-2B, 8.28% on421

Gemma-7B, 7.35% on Llama-3.2-1B, and 14.29%422

on Llama-3.2-3B. Additionally, CD-RLHF outper-423

forms the SFT model in lexical diversity, achieving424

higher scores on Diversity, EAD, and SelfBLEU425
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% Win Rate

70%
58%
58%
62%

6%
12%
8%
8%

24%
30%
34%
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(a) GPT-4 Win-Rates
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(b) Human Win-Rates

Figure 3: The win rates of CD-RLHF against vanilla
PPO when evaluating output diversity on TL;DR and
UltraFeedback datasets.
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Figure 4: Output diversity and alignment performance
of RLHF and CD-RLHF under different hyperparameter
settings: KL coefficient β and sampling temperature τ .
For a better illustration, we use 1.0 - SelfBLEU and 1.0
- SentBERT as metric to maintain a similar trend with
other metrics.

metrics for the Gemma-2B and Llama-3.2-3B, and 426

on Diversity and EAD metrics for the Gemma-7B. 427

GPT-4 and human evaluation For further eval- 428

uation using GPT-4, as shown in Figure 3(a), CD- 429

RLHF achieves a win rate of 58%, 46%, 58% and 430

56% over the PPO baseline on the TL;DR dataset 431

for the Gemma-2B, Gemma-7B, Llama-3.2-1B and 432

Llama-3.2-3B, respectively. On the UltraFeedback 433

dataset, CD-RLHF consistently yields an average 434

62% win rates across the evaluated models. In Fig- 435

ure 3(b), we demonstrate the human evaluations 436

on the TL;DR and UltraFeedback datasets, where 437

CD-RLHF consistently outperforms RLHF on all 438

evaluated models. These comparison evaluation 439

results demonstrate the remarkable performance 440

CD-RLHF achieved in improving output diversity. 441

4.3 Ablation Studies 442

In this section, we conduct ablation studies on 443

Gemma-2B for better analysis with various hyper- 444

parameter settings. 445

As previous works (Kirk et al., 2024; Wang et al., 446
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Figure 5: Diversity and alignment quality changes with
increasing the frequency of intrinsic rewards. The y-
axis represents the improvement ratio against RLHF
baseline. The diversity is the average of the related
metrics: Diversity, EAD, SelfBLEU, and SentBERT,
and alignment is the RM score.

2024) have shown, the KL divergence in RLHF447

heavily influences the balance between output di-448

versity and alignment performance. In Figure 4449

(blue and red bars), we investigate CD-RLHF’s450

performance under various KL settings: KL coef-451

ficient β = 0.05 and 0.075. Within each method,452

we observe that as β increases, output diversity im-453

proves, albeit at the cost of alignment performance.454

However, under the same KL setting, CD-RLHF455

consistently outperforms RLHF in output diversity,456

without compromising alignment quality.457

Another factor that could affect the performance458

of CD-RLHF is the choice of the sampling hyper-459

parameters. In this section, we examine the effect460

of sampling with different settings: temperature461

τ = 0.8 and 1.0. Figure 4 (blue and green bars)462

shows the performance of RLHF and CD-RLHF463

under these sampling temperatures during training.464

While increasing the sampling temperature during465

experience generation moderately improves out-466

put diversity, its impact is less pronounced than467

that of increasing the KL. Under both temperature468

settings, CD-RLHF still show improvements on469

output diversity, and also the alignment quality.470

4.4 Analysis471

Frequency of intrinsic rewards In the computa-472

tion described in §3.2.2, the intrinsic rewards are473

valid only when the probability of the selected to-474

ken lies out of top-k candidates. This raises the475

question of whether this subset is adequate for cu-476

riosity exploration. To investigate, we expand the477

frequency of intrinsic rewards from top-1 (≈ 20%)478

to 40%, 60%, 80% and 100% of the length of tra-479

jectory, selected at random.480

Figure 5 shows the impact on output diversity as481

the frequency of intrinsic rewards increases. For482

the TL;DR summarization task, increasing the ratio483

to 60% leads to a modest improvement in output484

diversity, with a 3% average increase. However,485
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Figure 6: N -gram distinct (diversity) and RM score
(alignment quality) curves during training for RLHF,
Sent-Rewards, and CD-RLHF methods.

when expanding to cover 100%, output diversity re- 486

mains similar to the 20% case, but alignment qual- 487

ity declines from 0.95 to 0.88. A similar trend is 488

observed on the UltraFeedback dataset: increasing 489

the frequency of intrinsic rewards provides compa- 490

rable output diversity to the top-1 setting, yet signif- 491

icantly reduces alignment quality. These findings 492

suggest that focusing on tokens beyond the top-1 493

probability is sufficient to identify the contexts in 494

which curiosity-driven exploration is beneficial. 495

Training curves of diversity and alignment qual- 496

ity We compare diversity and alignment quality 497

changes during training for RLHF, CD-RLHF, and 498

Sent-Rewards on the TL;DR task using Gemma-2B 499

model. We use N -gram distinct to measure diver- 500

sity and the RM score to assess alignment quality, 501

with results shown in Figure 6. 502

For diversity, we observe that RLHF maintains 503

a relatively low diversity level throughout training, 504

after an initial decrease from the SFT model. Both 505

CD-RLHF and Sent-Rewards positively impact di- 506

versity, though CD-RLHF consistently improves 507

diversity throughout training, while Sent-Rewards 508

experiences degradation until around 1500 steps. 509

Regarding alignment quality, all methods show 510

positive effects during training. Notably, CD- 511

RLHF converges faster than the other two, reaching 512

comparable performance at step 2500 rather than at 513

step 4640 (the end of training). Additionally, CD- 514

RLHF displays a more stable alignment quality 515

curve than Sent-Rewards. 516

4.5 Out-of-Distribution Analysis 517

In this section, we explore whether the increased 518

output diversity achieved with CD-RLHF impacts 519

generalization capability or potentially enhances it. 520

We use the widely adopted MT-Bench (Zheng et al., 521

2024) as an out-of-distribution (OOD) benchmark 522

to assess general model ability. Since the Ultra- 523

Feedback dataset is not tailored to a specific task, 524

we evaluate models trained with UltraFeedback on 525

this benchmark. Our quality evaluation metrics in- 526
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MT-Bench Scores ↑ Diversity Metrics

Stage Model Turn 1 Turn 2 Overall Diversity ↑ EAD ↑ SelfBLEU ↓ SentBERT ↓

RLHF
Gemma-2B

6.26 4.45 5.35 0.1076 0.6160 0.4383 0.7592
CD-RLHF 6.91 4.45 5.68 0.1123 0.6292 0.3961 0.7315

RLHF
Gemma-7B

6.36 5.15 5.75 0.1173 0.5850 0.4851 0.7854
CD-RLHF 6.46 5.46 5.96 0.1297 0.6051 0.4623 0.7617

RLHF
Llama-3.2-1B

4.33 3.10 3.71 0.0818 0.5356 0.4699 0.7475
CD-RLHF 4.78 3.57 4.18 0.0895 0.5629 0.3919 0.7282

RLHF
Llama-3.2-3B

6.47 5.47 5.98 0.0939 0.5878 0.4489 0.7797
CD-RLHF 6.71 5.45 6.08 0.1133 0.6213 0.3962 0.7529

Table 2: Results on MT-Bench with MT-Bench scores estimate quality of response, and diversity metrics estimate
output diversity. All of the models are trained on the UltraFeedback dataset.

0 20 40 60 80 100
% Win Rate
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Llama-3.2-1B

Gemma-7B
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32%
31%

22%
32%

51%
57%

62%
49%

17%
12%

16%
18%

Win Tie Loss

Figure 7: Win rates of CD-RLHF against vanilla RLHF
on MT-Bench, estimated by GPT-4.

clude: (1) the absolute scores assigned by GPT-4,527

and (2) the win rate between responses generated528

by the RLHF baseline and CD-RLHF.529

In Table 2, we present the absolute scores as-530

signed by GPT-4, showing that CD-RLHF outper-531

forms the RLHF baseline for all three models. No-532

tably, although the RM scores results of RLHF and533

CD-RLHF on Llama-3.2-1B and Gemma-7B mod-534

els are comparable, CD-RLHF demonstrates supe-535

rior alignment quality when evaluated by GPT-4.536

Win rates estimated by GPT-4 are depicted in Fig-537

ure 7, indicate that CD-RLHF achieves win rates of538

32.5%, 21.875%, 31%, and 32.5% over RLHF on539

the Gemma-2B, Gemma-7B, Llama-3.2-1B, and540

Llama-3.2-3B models, respectively.541

Apart from the evaluation of quality, we sam-542

ple 10 answers for each question to estimate the543

diversity on this OOD benchmark. Since some of544

questions belong to the categories which sampling545

temperatures are set to 0.0, we exclude them in this546

evaluation. Only reserving the questions from writ-547

ing, roleplay, stem, and humanities categories, with548

temperature set to 0.7, 0.7, 0.1, and 0.1, respec-549

tively. The results are shown in Table 2, CD-RLHF550

consistently exhibits improvements on output diver-551

sity, both from syntactic and semantic perspectives552

evaluated by related metrics.553

4.6 Extended Experiments: Story Generation554

In this section, we assess the output diversity of555

CD-RLHF in a downstream application: story writ-556

ing task. We use the validation set of ROC story557

dataset (Mostafazadeh et al., 2016), covering 1817558
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Figure 8: Output diversity of RLHF and CD-RLHF on
story writing task. For a better illustration, we use 1.0 -
SelfBLEU and 1.0 - SentBERT as metric to maintain a
similar trend with other metrics.

stories. The models involved in this test are the 559

Llama-3.2-3B and Gemma-7B trained on the Ul- 560

traFeedback dataset, trained with RLHF and CD- 561

RLHF. We prompt the model to generate a story 562

with a start sentence provided by the ROC dataset. 563

The generated story is limited to 200 words. We use 564

the configuration temperature=1.0, top_p=0.9, 565

and top_k=50. For evaluation, we use Diveristy, 566

EAD, SelfBLEU, and SentBERT as metrics to as- 567

sess the output diversity across these stories. The 568

evaluation results are presented in Figure 8. On 569

this creative writing task, CD-RLHF shows more 570

diverse outputs than RLHF evidenced by these met- 571

rics from both syntactic and semantic. 572

5 Conclusion 573

In this paper, we introduce a novel framework, 574

CD-RLHF, which encourages the policy to ex- 575

plore “novel” context with curiosity, combin- 576

ing with extrinsic reward to optimize both out- 577

put diversity and alignment quality. Experi- 578

ments on the TL;DR summarization and Ultrafeed- 579

back instruction-following tasks demonstrate CD- 580

RLHF’s effectiveness in enhancing output diversity 581

while maintaining alignment quality. Additionally, 582

results on an out-of-distribution benchmark high- 583

light the framework’s strong generalization capabil- 584

ities and the benefits of increased output diversity. 585
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Limitations586

While our work demonstrates the benefits of incor-587

porating a curiosity-driven approach into RLHF588

to enhance output diversity, CD-RLHF has certain589

limitations. First, we observed that the intrinsic re-590

ward scale is significantly larger than the extrinsic591

reward. To address this, we set the weight param-592

eter η for intrinsic rewards to a small value. How-593

ever, designing a more suitable ICM that generates594

intrinsic rewards with a distribution closer to extrin-595

sic rewards could yield better performance. Second,596

while CD-RLHF mitigates the trade-off between597

output diversity and alignment quality, this trade-598

off still persists during the RLHF stage. Finally,599

although CD-RLHF enhances output diversity with-600

out compromising alignment quality, it generally601

underperforms SFTed models in terms of diversity.602

In the future, it is promising to further bridge this603

gap to achieve both the output diversity of SFT and604

the alignment quality of RLHF.605
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A Experimental Details906

A.1 Datasets907

TL;DR Summarization In this task, the pol-908

icy is asked to generate summarizations for Red-909

dit posts. This dataset consists of 93k human-910

annotated preference pairs and 86k pairs for val-911

idation. The trainable pairs are derived from the912

Reddit TL;DR (Völske et al., 2017) dataset. Addi-913

tionally, a portion of the validation pairs is sourced914

from the CNN Daily Mails, which serves as the test915

set for out-of-distribution generalization.916

UltraFeedback Instruction Following In this917

task, the policy needs to complete the given task,918

which covers various aspects. This dataset is pro-919

duced with LLMs assist, the completions are gen-920

erated with different LLM, and scored by GPT-4921

on instruction-following, helpfulness, honesty, and922

truthfulness aspects. We used the binarized ver-923

sion of UltraFeedback, which use the completion924

with highest overall score as chosen, and one of the925

remaining 3 at random as the rejected one. This926

dataset contains 61.1k instances for training and 2k927

for evaluation.928

We present the data statistics in Table 3.929

A.2 Training Details930

Following the procedure of previous work (Ouyang931

et al., 2022), the SFT model and reward model are932

fine-tuned on the same dataset with RL fine-tuned933

model to mitigate the distribution gap.934

SFT Training We split 20% of the training935

instances to conduct the supervised fine-tuning.936

Since the fine-tuning conducted on the preference937

dataset, we use the prompt and chosen completion938

as the instruction data. For TL;DR summarization939

task, we wrap the instruction with the same format940

as Stiennon et al. (2020): POST\nSubreddit:941

r/[SUBREDDIT]\n[PROMPT]\nTL;DR:[CHOSEN].942

For UltraFeedback instruction follow-943

ing task, we use the ChatML format:944

<|im_start|>user\n[PROMPT]\n<|im_end|>\n945

<|im_start|>assistant\n[CHOSEN]\n946

<|im_end|>\n.947

Reward Modelling We use 40% of the training948

instances in this stage. The reward model is initial-949

ized using the fine-tuned SFT model.950

PPO Training The remained 40% of the data is951

utilized to train the policy model. We initialize the952

policy and reference model with fine-tuned SFT953

model, the critic model with reward model. When 954

training Llama-3.2-1B, we use the same reward 955

model as Llama-3.2-3B. We enabled LoRA (Hu 956

et al., 2022) when training 7B model with PPO, 957

and the learning rates of LoRA module in actor and 958

critic model are set to 5e-4, LoRA dimensions are 959

16. We only insert LoRA into the linear layer of 960

self-attention mechanism. 961

When implementing the CD-RLHF, the intrinsic 962

reward whitening operation is used to stable the 963

training procedure, which mitigate the scalar gap 964

across samples. 965

Table 4 lists the hyperparameters used in all 966

stages. The hidden size of encode in ICM is 2 967

times of hidden size of actor model, and hidden 968

size of ICM is the same as intermediate size of 969

actor model. The experiments are conducted on 970

machines with 8×V100 GPUs or machines with 971

8×A100 GPUs. 972

For implementing Sent-Rewards, we adjust the 973

weights of SelfBLEU, SentBERT, and entropy re- 974

wards in the reward score. In all experiments, we 975

set the entropy weight to 0.01 and apply the en- 976

tropy penalty as token-level rewards, similar to KL- 977

divergence. The specific weights for SelfBLEU 978

and SentBERT in each experiment are listed in 979

Table 5. 980

A.3 Evaluation Details 981

We evaluate the diversity with the PerInput format. 982

The test set is define as Dtest, and Di is the i-th 983

subset of Dtest, with the completions in Di have 984

the same instruction. The details of each metrics 985

are as follows: 986

rep-n = 100× (1.0− Nn

Cn
)

N−gram DistinctDi =

N∏
n=1

(1.0− rep-n
100

)

987

where Nn is the number of distinct tokens of n- 988

gram, and Cn is the total number of tokens of n- 989

gram. 990

EADDi =
1

N

N∑
n=1

Nn

V [1− (V−1
V )]Cn

991

where V is the vocabulary size. 992

SelfBLEUDi =
1

N

N∑
n=1

SelfBLEUn(Di) 993
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Dataset Num. of
Comparisons

Num. of
Train Samples

Num. of
Test Samples

Avg. Tokens
in Prompt

Avg. Tokens
in Chosen

Avg. Tokens
in Rejected

OpenAI Summarization 179k 92.9k 86.1k 325 35 33
UltraFeedback 63.1k 61.1k 2k 156 282 246

Table 3: Statistics of datasets involved in experiments. The number of tokens are calculated with Gemma-2B
tokenizer.

Hyper-Parameter Gemma-2B Gemma-7B Llama-3.2-1B Llama-3.2-3B

SFT

Batch size 512 for TL;DR
128 for UltraFeedback 128 256 256

Epochs 3 1 3 3
Learning rate 5e-5 2e-5 1e-4 5e-5
LR scheduler cosine cosine cosine cosine
Warmup ratio 0.1 0.1 0.1 0.1

RM

Batch size 64 128 - 64
Epochs 1 1 - 1

Learning rate 1e-5 for TL;DR
2e-5 for UltraFeedback 1e-6 - 1e-5

LR scheduler cosine cosine - cosine
Warmup ratio 0.05 0.05 - 0.05

PPO

Batch size 256 256 256 256

Policy learning rate 8e-6 for TL;DR
1e-5 for UltraFeedback - 5e-6 5e-6 for TL;DR

8e-6 for UltraFeedback
Critic learning rate 1e-5 - 1.5e-5 1e-5

Epochs 1 1 1 1
PPO epochs 1 1 1 1

Rollout 1 1 1 1
Clip ratio 0.2 0.2 0.2 0.2
λ in GAE 0.95 0.95 0.95 0.95
γ in GAE 1 1 1 1

KL coefficient β 0.05 0.05 0.05 0.1
Max prompt length 512 512 512 512

Max response length 512 512 512 512

Warmup ratio 0.1 0.1 0.05 0.05 for TL;DR
0.1 for UltraFeedback

Temperature 0.8 0.8 0.8 0.8
Top-p 1.0 1.0 1.0 1.0
Top-k 50 50 50 50

η 0.04 0.04 0.06 for TL;DR
0.04 for UltraFeedback 0.08

Table 4: Hyper-parameters for training Gemma-2B, Gemma-7B, Llama-3.2-1B, and Llama-3.2-3B models for all
stages.

Model SelfBLEU SentBERT

TL;DR

Gemma-2B 0.5 0.0
Gemma-7B 0.5 0.5
Llama-3.2-1B 0.5 0.5
Llama-3.2-3B 1.0 1.0

UltraFeedback

Gemma-2B 1.0 1.0
Gemma-7B 1.0 1.0
Llama-3.2-1B 0.5 0.5
Llama-3.2-3B 0.5 0.5

Table 5: Hyper-parameters for training Sent-Rewards
method (Hong et al., 2024) on Gemma-2B, Gemma-7B,
Llama-3.2-1B, and Llama-3.2-3B models.

where SelfBLEUn is the SelfBLEU calculated 994

with n-gram. 995

SentBERTDi =
1

|Di|
∑

xk,xj∈Di

g(xk) · g(xj)
∥g(xk)∥2∥g(xj)∥2

996

where g(·) is the embedding model.2 997

The final results are averaged across all samples 998

for Di ∈ Dtest. 999

For GPT-4 evaluation, we utilize the 1000

gpt-4o-05-13 to rank the set based on diversity 1001

given an instance and two sets of completions, 1002

where each set contains 10 completions. We 1003

sampled 50 instances from each dataset for 1004

evaluation. 1005

For human evaluation, the human annotators are 1006

asked to identify which set of completions is more 1007

2https://huggingface.co/sentence-transformers/
all-MiniLM-L6-v2
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diverse than the other. Unlike the GPT-4 evaluation,1008

the annotators are given an instance and two sets of1009

completions, each containing 5 completions. We1010

sampled 25 instances from each dataset for evalua-1011

tion.1012

B Comparison Evaluation Details1013

B.1 GPT-4 Evaluation Prompt1014

For each evaluation, GPT-4 is employed to as-1015

sess the diversity of two sets of 10 comple-1016

tions generated by different models, serving as a1017

proxy for human evaluation. All experiments use1018

gpt-4o-05-13. To ensure fairness, the order of1019

sets is randomized across all experiments.1020

GPT-4 Evaluation Prompt for Ranking
Diversity Score

Given two sets of responses, your task is to iden-
tify which set is more diverse compared to the other.
The diversity evaluation should assess the variation
among the proposed responses. The more similar the
responses within a set, the lower the diversity. And
also, you need to identify which set of responses is
more related to the prompt:
Prompt: <instances>
Set 0: <completion set 1>
Set 1: <completion set 2>
Your identification (starting with reason, and end with
your choice, using “MY CHOICE: 0/1/2” to mark the
choice, where 0 for Set 0, 1 for Set 1, and 2 for equally
diverse):

1021

GPT-4 Evaluation Prompt for Evaluating
Alignemnt Quality on TL;DR

You will be given two summaries written for an article.
Your task is to pick the better one between them, based
on the four criteria. Please make sure you read and
understand these instructions carefully.
Relevance - selection of important content from the
source. The summary should include only important
information from the source document. Annotators
were instructed to penalize summaries which con-
tained redundancies and excess information.
Coherence - the collective quality of all sentences. We
align this dimension with the DUC quality question
of structure and coherence whereby “the summary
should be well-structured and well-organized. The
summary should not just be a heap of related infor-
mation, but should build from sentence to a coherent
body of information about a topic.”
Consistency - the factual alignment between the sum-
mary and the summarized source. A factually con-
sistent summary contains only statements that are
entailed by the source document. Annotators were
also asked to penalize summaries that contained hal-
lucinated facts.
Fluency - the quality of the summary in terms of
grammar, spelling, punctuation, word choice, and
sentence structure.
You should output single character to indicate which
summary you think is better. ‘A’ stands for Summary
A and ‘B’ stands for Summary B. If you think both
summaries are equally good, output ‘E’.
Article / Post: <article / post>
Summary A: <summary a>
Summary B: <summary b>
Your Choice (only a single character):

1022

GPT-4 Evaluation Prompt for Evaluating
Alignemnt Quality on UltraFeedback

You will be given two responses for an instruction
written by different assistants. Your task is to pick the
better one between them, based on the three aspects:
instruction following, helpfulness, and harmlessness.
You should output single character to indicate which
response you think is better. ‘A’ stands for Response
A and ‘B’ stands for Response B. If you think both
responses are equally good, output ‘E’.
Instruction: <instruction>
Response A: <response a>
Response B: <response b>
Your Choice (only a single character):

1023

B.2 Human Evaluation Protocol 1024

Similar to the GPT-4 evaluation, the annotators are 1025

given two set of completions generated by two dif- 1026

ferent models, each set contains 5 completions. The 1027

human annotators are asked to select the preferred 1028

response based on the diversity related criteria: 1029

1. Structure Variety: this considers whether these 1030

completions have flexible and diverse structures, 1031

adapted to the content. 1032
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TL;DR Win Tie Loss

CD-RLHF v.s. SFT 39 0 11
CD-RLHF v.s. RLHF 27 0 23

UltraFeedback Win Tie Loss

CD-RLHF v.s. SFT 31 4 15
CD-RLHF v.s. RLHF 21 7 22

Table 6: GPT-4 pairwise comparisons of alignment qual-
ity demonstrate CD-RLHF’s superior win rates over
both vanilla RLHF and SFT when evaluating the Llama-
3.2-3B model on TL;DR and UltraFeedback bench-
marks.

2. Paraphrasing Variety: this assesses whether1033

these completions rephrase most of the content1034

in unique and varied ways.1035

The annotators need to choose the more diverse set1036

based on these criteria.1037

C Additional Experiments Results1038

C.1 Alignment Quality Evaluated by GPT-41039

To thoroughly assess the alignment quality of mod-1040

els trained with SFT, CD-RLHF, and RLHF, we use1041

GPT-4 to perform pairwise comparisons. Specifi-1042

cally, we employ best-of-N sampling to select the1043

response with the highest reward score, where N1044

is set to 10. This experiment is conducted on the1045

Llama-3.2-3B model using both the TL;DR and1046

UltraFeedback datasets. The results, presented in1047

Table 6, reveal that CD-RLHF maintains alignment1048

quality comparable to RLHF, while significantly1049

outperforming models trained with SFT.1050

C.2 Experimental Results on Top-k1051

In Section 3.2.2, the intrinsic reward is valid only1052

when the probability of the selected token lies out1053

of top-k. The k is set to 1 in our experiments. In1054

this section, we set k to 3 and 10 for further analysis.1055

Under these setting, the number of intrinsic rewards1056

decreases with the k increases. These experiments1057

are conducted on TL;DR dataset with Gemma-2B1058

model, and the results are shown in Table 7. We1059

observe that with less intrinsic rewards (higher k),1060

the output diversity deceases while maintaining the1061

alignment quality.1062

D Algorithm of CD-RLHF1063

In Algorithm 1, we present the procedure of CD-1064

RLHF using PPO.1065

E Case Study 1066

To better understand the effectiveness of CD- 1067

RLHF and its impact on generated completions, 1068

we present examples from the TL;DR summariza- 1069

tion task and UltraFeedback instruction-following 1070

task, using 2B models. For each case, we display 1071

the first 5 completions out of 10. 1072

In Table 8, we show a case involving a student 1073

considering pursuing a Master’s degree but con- 1074

cerned about financial constraints. In the RLHF 1075

completions, keywords like “financially indepen- 1076

dent”, “no debt”, “living stipends”, and “tuition 1077

waivers” appear frequently across responses. CD- 1078

RLHF completions, while including these same 1079

keywords, also introduce additional details about 1080

the author’s identity. For instance, response 3 spec- 1081

ifies a tuition fee of $40K, and response 4 mentions 1082

the author’s salary as $23,000 per year and interest 1083

about degree. These CD-RLHF responses main- 1084

tain core information but show greater diversity 1085

compared to RLHF. 1086

Table 9 demonstrates a case resembling an in- 1087

struction generation task, where the model gener- 1088

ates questions based on a provided “Background” 1089

and “Story”. The RLHF completions repeatedly 1090

focus on “demand for steel products”, “greenhouse 1091

gases”, and “carbon dioxide”, with the term “in- 1092

crease” used consistently. In contrast, CD-RLHF 1093

completions exhibit more diversity, with keywords 1094

like “global warming”, “air quality”, “greenhouse 1095

gas”, and “carbon dioxide”. Notably, response 4 1096

uses “decrease” instead of “increase”, as allowed 1097

by the prompt. Additionally, CD-RLHF comple- 1098

tions include an "Explanation" to further elaborate 1099

on the solution. 1100
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Diversity↑ EAD↑ SelfBLEU↓ SentBERT↓ RM Score↑

RLHF 0.2132 0.7347 0.3367 0.7024 0.90

CD-RLHF top-1 0.2839 0.7793 0.2590 0.6720 0.95
CD-RLHF top-3 0.2690 0.7747 0.2669 0.6771 0.94
CD-RLHF top-10 0.2613 0.7670 0.2834 0.6833 0.95

Table 7: Results on TL;DR dataset with different top-k settings for CD-RLHF.

Algorithm 1 Framework of Curiosity-Driven RLHF.

Require: the train dataset D = {x0, x1, . . . , xn}
Require: Policy model: πpolicy;Reference model: πref ; Critic model: πcritic; Reward model: πrm; ICM

model: πICM

1: for x in D do
2: Make experience using policy model y := πpolicy(x);
3: Get value V (st) := πcritic(x, st) at every time step t ∈ [0, |y|);
4: Get reward score at current experience R := πrm(x, y);
5: Compute KL as token-level reward −βDKL(πpolicy(at)∥πref(at))
6: Obtain extrinsic rewards r(e) = R− βDKL(πpolicy(·)∥πref(·))
7: Compute intrinsic rewards r(i) following demonstration in Section 3.2.2
8: Combine intrinsic and extrinsic rewards: r = r(e) + η · r(i)
9: Obtain advantage function At and Q-value function Qt with GAE(V (st), r)

10: Optimize policy with Lppo = Ê
[
min

(
πpolicy(at|st)
πref(at|st) At, clip(

πpolicy(at|st)
πref(at|st) , 1− ϵ, 1 + ϵ)At

)]
11: Optimize critic with Lcritic = Ê

[
∥V (st)−Qt∥2

]
12: Optimize ICM with LICM = 1

2∥ϕ̂(st+1)− ϕ(st+1)∥22
13: end for
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Prompt POST Subreddit: r/personalfinance **(Let me know if there’s a better subreddit for this or if it has been
profusely addressed before. I have been browsing this subreddit for a while and have not come across it.)**
I am 23, recently financially independent, with a degree in Linguistics that by itself doesn’t do much, but
coupled with a Master’s could be quite useful. However, getting my masters would put me about $40,000 in
the hole. I just started off, am NOT currently in debt, and don’t really want to start my financially independent
life by going in debt. When I went to undergrad, my dad paid for everything and I didn’t have to worry about
financial aid, so I have no idea how it works and have never dealt with the system. My question(s) is/are:
1. I know some people get living stipends and tuition wavers for graduate school. How common is this? Have
you done so before? 2. Would you recommend going to graduate school? Right now I am making $23,000 a
year and with a degree in speech language pathology could be making significantly more (and it’s a field I’m
interested in.)
Basically ( TL;DR:

RLHF

Resp. 1. 23 year old recently financially independent, wondering how to pay for graduate school, if living stipends and
tuition wavers are common and if it would be worth putting myself in debt.

Resp. 2. 23 year old recently financially independent with no debt looking for 1) help with financial aid/scholarships
for graduate school as tuition/housing are prohibitively high and 2) advice on if it would be beneficial to go
back to school.

Resp. 3. 23 year old recently financially independent, looking at the possibility of going to graduate school to build
skills and career development. Know some people get living stipends and tuition wavers for graduate school,
how common is that and would you recommend going?

Resp. 4. 23, recently financially independent with no debt, wanting to know more about living stipends and tuition
wavers for graduate school. Would it be worthwhile to attend?

Resp. 5. 23 year old recently financially independent with a degree but no clue how to proceed with grad school. Know
some people get living stipends and tuition wavers; would you recommend going to graduate school?

CD-RLHF

Resp. 1. 23, recently financially independent, wanting to apply for graduate school next fall (masters), seeking advice
on getting living stipends and tuition wavers. Would it be worth pursuing?

Resp. 2. 23/f recently financially independent, recently thinking about pursuing grad school to further my career. Do
you get living stipends and tuition wavers for grearndschools and would you recommend going?

Resp. 3. 23, recently financially independent, looking at grad school for 40K tuition in field that could earn much more
monetarily. Want to know if it is possible/worth it for grad school as well as advice on grad school process.

Resp. 4. 23 year old recently financially independent - recently learned about graduate school. Wondering whether
anyone has been granted living stipends or tuition waivers - would you recommend going to grad school?
Right now making $23,000 a year and interested in SPEECH/PHARM/PEDIATRIC psychology.

Resp. 5. 23 yr old college alumni with degree in linguistics needing financial assistance for graduate school-has anyone
gotten living stipends and/or tuition wavers for graduate school? Would it be a wise move financially and is
there any info on the process/realities?

Table 8: Example responses from TL;DR dataset. We mark the keywords that showed the first time with green, and
red for repeated keywords for better illustration.
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Prompt You are given a background paragraph that describes one or more causal or qualitative relationships such as a
relationship in economics or a scientific law and a story that makes use of the concepts or the relationship
described in the provided paragraph. You need to come up with a question about the story that requires an
understanding of the relationship described in the background paragraph. The generated question should not be
answerable without both the background and story. Write a question about the story that requires a relationship
in the background paragraph to answer. Check whether your question requires both the background paragraph
and the story to answer. If your question can be answered by only one of these, try to rewrite your question so
that it requires both. Note that "flipping" a word in the question can give rise to a new question where the
answer will be different from the original question. Often, "flipping" a word gives rise to flipping the direction
of the relationship, for example, from "increase" to "decrease." One example: Story: The AAA auto club
does a weekly report on the prices of gas and diesel in various cities. Historically, the prices have be fairly
stagnant, but this week their report garnered widespread attention as the prices of gas and diesel plunged from
last week in Seattle by $0.40 each. However, just across the border in Vancouver, the cost of gas went up
dramatically by $0.50. Solution is here: Which city will have an increase in demand for gas? Explanation:
This is a good question as it requires understanding of the relationship described in both the background and
story (the background mentions "a fall in price will increase the quantity demanded" and the story cites the
decreasing price of gas in Seattle).
Now, solve this: Background Paragraph: Pollutants also affect the atmosphere through their contribution to
global warming. Global warming is an increase in the Earth’s temperature. It is thought to be caused mostly
by the increase of greenhouse gases like carbon dioxide. Greenhouse gases can be released by factories
that burn fossil fuels. Over the past 20 years, burning fossil fuels has produced about three-quarters of the
carbon dioxide from human activity. The rest of the carbon dioxide in the atmosphere is there because of
deforestation, or cutting down trees ( Figure below ). Trees absorb carbon dioxide during cellular respiration,
so when trees are cut down, they cannot remove carbon dioxide from the air. Story: Tokyo recently had
a large explosion in one of their largest steel manufacturing plants. The combination of heat, steel, and
manufacturing materials released an extraordinary amount of carbon dioxide into the atmosphere. Meanwhile,
Osaka has dramatically decreased the amount of carbon dioxide it releases through the installation of many
public transportation projects and tree planting initiatives. Solution:

RLHF

Resp. 1. Which city will have an increase in demand for steel products?

Resp. 2. Which city will experience an increase in demand for steel products due to the Tokyo explosion?

Resp. 3. Which city will experience an increase in the release of greenhouse gases following the Tokyo explosion?

Resp. 4. Which city will have an increase in the amount of carbon dioxide released into the atmosphere?

Resp. 5. Which city experienced an increase in the release of carbon dioxide following the Tokyo explosion?

CD-RLHF

Resp. 1. Which city experienced an increase in global warming as a result of the Tokyo steel plant explosion?
Explanation: ...

Resp. 2. Which city experienced an increase in air quality due to the decrease in carbon dioxide emissions?
Explanation: This question requires understanding of the relationship described in the background paragraph
(global warming caused by greenhouse gases) and the story (the accidental explosion in Tokyo released
carbon dioxide into the atmosphere, while Osaka decreased their carbon dioxide emissions through public
transportation and tree planting initiatives).

Resp. 3. Which city’s greenhouse gas emission will increase as a consequence of the Tokyo explosion?
Explanation: ...

Resp. 4. Which city will have a decrease in demand for steel products?
Explanation: In the given background, it is stated that the excessive release of carbon dioxide from a large-scale
manufacturing plant in Tokyo can lead to a decrease in demand for steel products. On the other hand, Osaka
has taken initiatives to decrease carbon dioxide emissions through public transportation and tree planting
projects, which can potentially increase the demand for steel products. Therefore, this question requires an
understanding of the relationship between carbon dioxide emissions and demand for steel products, as well as
the context of the given stories.

Resp. 5. Which city will have an increase in carbon dioxide emissions?
Explanation: ...

Table 9: Example responses from Ultrafeedback dataset. We omit some explanations in responses. We mark the
keywords that showed the first time with green, and red for repeated keywords for better illustration.
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