
Merging Two Grammar Worlds: Exploring the Relationship between
Universal Dependencies and Signal Temporal Logic

Anonymous EMNLP submission

Abstract
Translating natural language requirements into001
Signal Temporal Logic (STL) is essential for002
safety-critical systems but requires mathemati-003
cal expertise. We propose a translational gram-004
mar mapping Universal Dependencies (UD)005
structures to STL operators through twelve006
theoretically-motivated patterns, evaluated on007
7,003 expert-annotated sentence-STL pairs.008
Our patterns achieve 97.8% coverage in detect-009
ing temporal expressions, revealing systematic010
correspondences between syntactic structures011
and logical operators. Analysis uncovers rich012
syntactic variation (e.g., 70+ variants for con-013
ditionals) and probabilistic pattern-operator re-014
lationships, demonstrating that while our pat-015
terns reliably identify temporal expressions,016
their mapping to STL operators exhibits statis-017
tical tendencies rather than deterministic rules.018
These findings provide foundational insights019
for developing hybrid approaches that model020
uncertainty explicitly, combining syntactic pat-021
terns with semantic understanding to advance022
interpretable natural language interfaces for023
temporal logic specification.024

1 Introduction025

Formal specifications in temporal logic are essen-026

tial for verifying safety-critical systems, synthesiz-027

ing correct-by-construction controllers, and defin-028

ing precise requirements for autonomous agents.029

However, translating natural language require-030

ments into Signal Temporal Logic (STL) remains031

challenging due to expertise required in mathe-032

matical logic. Consider a seemingly simple re-033

quirement: "For each moment within the first 2034

to 46 time units, the signal must consistently stay035

above 8.9." Translating this requires understanding036

that "for each moment" maps to a global opera-037

tor (G), "within the first 2 to 46 time units" de-038

fines temporal interval [2, 46], and "consistently039

stay" reinforces universal quantification, yielding040

G[2,46](signal ≥ 8.9). This challenge has moti-041

vated emerging research heavily relying on deep042

learning and generative AI. Researchers train neu- 043

ral networks or fine-tune models like DeepSTL (He 044

et al., 2022) and NL2TL (Chen et al., 2023), using 045

human feedback and part-of-speech tagging to pro- 046

duce labeled NL-STL datasets for training (Fang 047

et al., 2025; Chen and Manning, 2014). However, 048

these approaches lack generalizability and provide 049

insufficient interpretability in how linguistic struc- 050

tures map to STL syntax. 051

In this proposed paper, we argue that Univer- 052

sal Dependencies (UD) (De Marneffe et al., 2021; 053

Nivre, 2020) provides cross-linguistically consis- 054

tent syntactic annotation enabling systematic map- 055

ping between natural language and temporal logic 056

operators. Grounded in universal grammar princi- 057

ples (Chomsky, 1965), UD’s success across 100+ 058

languages suggests temporal reasoning follows uni- 059

versal syntactic patterns. Specifically, one may ask: 060

Is there a fundamental logical relationship between 061

UDR components and STL operator composition 062

that transcends individual languages? This moti- 063

vates our research objective: to propose a trans- 064

lational grammar that maps syntactic depen- 065

dency relationships in Universal Dependencies 066

to Signal Temporal Logic operator composition, 067

leveraging universal grammatical principles to 068

ensure broad applicability across natural lan- 069

guage variations. 070

Our investigation focuses on identifying and an- 071

alyzing these patterns, not to propose yet another 072

translation framework, but to enhance our under- 073

standing of how natural language grammar relates 074

to STL grammar. Our paper makes two unique 075

contributions: 076

First, we propose a formal logic for mapping 077

UDR in combination with a dictionary for temporal 078

words into UDR patterns. We then, establish a 079

new grammar that defines a formal (probabilistic) 080

relationship between UDRs and STL, also referred 081

to as UDR patterns in this paper. 082

And second, we empirically examine this trans- 083

1

lational grammar based on a dataset of 7,003 pairs084

of natural language and STLs used in prior re-085

search. Specifically, we examine twelve core086

patterns that emerge from analyzing the rela-087

tionship between UD syntactic structures and088

STL operators. For instance, we find that089

advmod(stay, consistently) systematically090

signals universal quantification, nmod(within,091

units) + nummod(units, 46) specifies tem-092

poral bounds, and mark(if, _) + advmod(then,093

_) indicates logical implication. These patterns094

are not learned from data but derived from linguis-095

tic principles, providing an interpretable bridge096

between natural language and formal logic. The097

identification of such patterns follows the tradition098

of linguistic analysis in temporal expression recog-099

nition (Verhagen et al., 2010) while extending it to100

formal logic operators.101

This understanding has important implications102

for future research and the design of learning-based103

architectures, including in-context learning as well104

as LLM-finetuning (Chen and Manning, 2014). By105

understanding these fundamental correspondences,106

we increase the generalizability of future learning-107

based approaches (e.g., if trained based on datasets108

enriched by our logic, and also increase the in-109

terpret ability of LLM). Beyond that, it will also110

allow the successful creation of STL that ensure the111

safety of AI systems used in robotics and other ap-112

plications while simultaneously offering important113

means to verify the safety of a system.114

2 Theoretical Foundations115

2.1 Signal Temporal Logic116

Signal Temporal Logic extends propositional logic117

with temporal operators over dense-time signals.118

STL formulas follow the grammar:119

ϕ ::= π
µ | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | F[a,b]ϕ | G[a,b]ϕ | ϕ1U[a,b]ϕ2 (1)120

where πµ represents atomic predicates (x ∼ µ),121

ϕ denotes STL formulas, and [a, b] specifies time122

intervals. The temporal operators F[a,b] (Eventu-123

ally), G[a,b] (Always), and U[a,b] (Until) quantify124

over time intervals, with Boolean connectives pre-125

serving their classical semantics (Maler and Nick-126

ovic, 2004). Complete formal definitions are pro-127

vided in Appendix A.1.128

2.2 Universal Dependencies129

Universal Dependencies (Nivre et al., 2016) repre-130

sents syntax as directed graphs G = (V,E, ℓ) with131

word nodes V , dependency edges E, and labels 132

ℓ : E → R from 37 universal relations. Depen- 133

dency patterns P = (r, h, d, C) consist of relation 134

r, head/dependent constraints h/d, and contextual 135

constraints C, matching edges when all constraints 136

are satisfied. Complete formal definitions are pro- 137

vided in Appendix A.1. 138

2.3 Translational Grammar: UDR-STL 139

Patterns 140

We propose twelve core patterns (Table 1) pro- 141

viding comprehensive STL coverage for cyber- 142

physical system specifications. These patterns, se- 143

lected through theoretical analysis of STL oper- 144

ators (Maler and Nickovic, 2004) and empirical 145

validation showing over 90% coverage (Chen et al., 146

2023), systematically map Universal Dependencies 147

to STL: advmod relations encode temporal quantifi- 148

cation (patterns 4, 5, 8, 9), mark+nummod capture 149

bounded constraints (patterns 3, 6, 7), and lexical 150

patterns identify state transitions (patterns 2, 10, 151

12) and logical relationships (patterns 1, 8). 152

Pattern Pattern Pattern Logic Op.
No. Name
1 Any Time Global det("any")+nmod("time") G
2 Become/Change Rise compound("become"/

"change")
↑ ϕ

3 Bounded After mark("after")+nummod F[k,∞]
4 Always advmod("always") G
5 Eventually advmod("eventually") F
6 Bounded For mark("for")+nummod G[0,k]
7 Bounded Within mark("within")+nummod F[0,k]
8 If-Then Implication advmod("then")+mark("if") →
9 Negated Always advmod("never") ¬G

10 No Longer Fail advmod("no longer") ↓ ϕ
11 Until mark("until")+advcl U
12 When First Rise mark("when")+advmod("first") ↑ ϕ

Table 1: Pattern definitions and their corresponding
logic operators

The patterns exploit systematic correspondences 153

between linguistic quantification and temporal 154

logic. Determiners (any, every) parallel univer- 155

sal quantification (G), while indefinites map to 156

existential quantification (F) (Barwise and Cooper, 157

1981). Temporal adverbs directly lexicalize quanti- 158

fiers, prepositional phrases with numerals encode 159

metric constraints, and subordinating conjunctions 160

establish temporal ordering (Partee, 1984). The 161

Until operator’s dual requirements – eventual satis- 162

faction and continuous maintenance – mirror adver- 163

bial clause structures, demonstrating how syntactic 164

subordination encodes semantic scope (Emerson 165

and Halpern, 1986). 166

Pattern design leverages formal semantic princi- 167

ples: negation duality (¬G[a,b]ϕ ≡ F[a,b]¬ϕ) mo- 168

tivates Pattern 9’s never encoding (Horn, 2001); 169

2

material conditional correspondence justifies Pat-170

tern 8’s if-then mapping (Kratzer, 1991); and edge171

operators (↑ ϕ ≡ ¬ϕUϕ, ↓ ϕ ≡ ϕU¬ϕ) capture172

state transitions through inchoative/cessative predi-173

cates (Dowty, 1979). This compositional approach174

aligns with natural language semantics (Montague,175

1973), where patterns serve as atomic operations176

combining per STL formation rules, preserving177

interpretability essential for verification tasks (Kon-178

rad and Cheng, 2005).179

3 Methodology180

We evaluate the proposed Universal Dependencies181

to Signal Temporal Logic mapping framework us-182

ing the circuit_total_refined dataset (Chen183

et al., 2023), containing 7,003 natural language184

sentences paired with expert-annotated STL for-185

mulas. The dataset provides comprehensive cover-186

age of temporal operators (G, F, U and bounded187

variants) with varying proposition complexity (0-4188

per sentence). Implementation details including189

computational infrastructure, parsing pipeline con-190

figuration, and complete algorithmic descriptions191

are provided in Appendix A.2.192

Our approach employs SpaCy 3.8.0 (Honnibal193

and Montani, 2017) to generate Universal Depen-194

dencies parses, from which we extract temporal195

and logical components using twelve theoretically-196

motivated patterns (Table 1). The pattern-based ex-197

traction framework maps UD structures to STL op-198

erators through four components: pattern detection,199

temporal component extraction, logical operator200

identification, and atomic proposition extraction201

(where atomic predicates are assumed to be pre-202

identified in the dataset). Extracted components203

are compositionally combined following STL for-204

mation rules, with operator precedence and scope205

determined by syntactic hierarchy.206

Evaluation employs multiple metrics including207

exact match accuracy, similarity scores (0-1), and208

component-wise assessment of temporal operators,209

logical connectives, and proposition boundaries.210

We conduct three primary analyses: (i) Pattern-to-211

STL mapping analysis examining relationships be-212

tween UD patterns and STL operators, (ii) Pattern213

variation analysis quantifying syntactic diversity214

beyond canonical forms, and (iii) Co-occurrence215

analysis identifying systematic associations be-216

tween syntactic structures and logical operators.217

Figure 1: Heatmap of UDR and STL Co-occurences

4 Results 218

We analyzed 7,003 natural language sentences 219

paired with STL formulas to evaluate our pattern- 220

based extraction approach using multiple statistical 221

techniques. 222

4.1 Pattern Descriptives 223

Pattern detection analysis achieved 97.8% cover- 224

age (6,850 out of 7,003 sentences), with an average 225

of 4.76 patterns detected per sentence. However, 226

only 9 of the 12 proposed patterns showed actual 227

occurrences in the dataset, with Pattern 8 (If-Then 228

Implication) dominating at 16,098 instances, fol- 229

lowed by Pattern 4 (Always) with 6,251 instances 230

and Pattern 5 (Eventually) with 5,353 instances. 231

The complete absence of edge detection patterns 232

(Patterns 2, 10, 12) suggests a fundamental mis- 233

alignment between the theoretical pattern design 234

and actual linguistic usage in the dataset. 235

Pattern variation analysis, detailed in Table 3 236

in the Appendix, revealed extensive syntactic di- 237

versity beyond canonical forms. Pattern 8 (If- 238

Then Implication) exhibited the highest variation 239

with 63,078 total occurrences across multiple real- 240

izations including "then" (16,098), "it is always" 241

(5,543), "when" (5,229), and numerous other vari- 242

ants. Pattern 5 (Eventually) showed 10,181 oc- 243

currences with variants like "at most" (1,840) and 244

adverbial modifications, while Pattern 7 (Bounded 245

Within) had 6,240 instances dominated by "within" 246

(3,000), and Pattern 1 (Any Time Global) showed 247

modest usage (1,783 total). 248

Co-occurrence analysis in Figure 1 in the Ap- 249

pendix showed the If-Then Implication pattern with 250

particularly high co-occurrence with logical impli- 251

cation operators (30,219 instances), while temporal 252

operators demonstrated broad distribution across 253

3

patterns. The extensive variation and unexpected254

mappings indicate that single syntactic patterns cor-255

respond to multiple logical interpretations, requir-256

ing context-dependent analysis beyond canonical257

pattern matching.258

4.2 UDR-STL Pattern259

Pattern Expected Inst. Total Actual Key Finding
STL Var. Map

1. Any Time Global G 1,079 1,783 ∧ Unexpected logic
2. Become/Change ↑

ϕ
0 0 – Absent

3. Bounded After F[k,∞] 32 32 F[k,∞]Aligned
4. Always G 6,251 10,893 G 1,139 unique STLs
5. Eventually F 5,353 10,181 F 927 mappings
6. Bounded For G[0,k] 10 10 G[0,k] Minimal
7. Bounded Within F[0,k] 3,568 6,240 F Lost bounds
8. If-Then Impl. → 16,098 63,078 → 70+ variants
9. Negated Always ¬G 206 206 ¬G Limited
10. No Longer Fall ↓

ϕ
0 0 – Absent

11. Until U 712 782 U Moderate
12. When First Rise ↑

ϕ
0 0 – Absent

Table 2: UDR-STL Pattern Analysis Summary

The empirical analysis (Table 2) reveals 97.8%260

pattern detection yet fundamental mapping chal-261

lenges. Pattern 8 (If-Then Implication) dominates262

with 16,098 instances across 63,078 occurrences in263

70+ variants, while edge detection patterns (2, 10,264

12) are completely absent. Co-occurrence analysis265

shows strong If-Then/logical operator alignment266

(30,219 instances) but broad distribution of G and267

F across patterns. Critically, unexpected mappings268

(Pattern 1→∧ instead of G, Pattern 7→F instead269

of F[0,k]) demonstrate that syntactic patterns alone270

cannot determine semantic interpretation, necessi-271

tating probabilistic frameworks that integrate syn-272

tax with semantic and contextual analysis.273

5 Discussion274

Our empirical investigation reveals both the275

promise and fundamental challenges of syntax-276

based approaches to temporal logic translation. The277

striking contrast between high pattern detection278

(97.8%) and low exact match accuracy illuminates279

a critical insight: while syntactic patterns success-280

fully identify temporal expressions, the mapping281

to STL operators is inherently probabilistic rather282

than deterministic, with significant variability yet283

to be explored.284

5.1 The Syntax-Semantics Gap285

Pattern 8 (If-Then Implication) exemplifies the fun-286

damental mismatch between linguistic expression287

and logical formalization – despite 16,098 correct288

mappings to implication operators, it manifests289

through 70+ syntactic variants. This many-to-many 290

relationship reveals natural language’s richer rep- 291

resentational system compared to temporal logic’s 292

rigid operators. Unexpected mappings (Pattern 1 293

producing ∧ instead of G, Pattern 7 losing bounds) 294

confirm that syntax alone cannot disambiguate log- 295

ical intent. 296

5.2 Probabilistic Nature of Patterns 297

Our patterns demonstrate statistical tendencies 298

rather than deterministic rules. While reliably iden- 299

tifying temporal expressions, their STL operator 300

mappings exhibit probabilistic behavior influenced 301

by context and linguistic variation. This suggests 302

successful NL-to-STL systems must model uncer- 303

tainty explicitly, treating pattern-operator mappings 304

as distributions. The extensive within-pattern vari- 305

ability indicates rich linguistic phenomena requir- 306

ing empirical characterization of these probability 307

distributions. 308

5.3 Theoretical and Practical Implications 309

The absence of edge detection patterns (2, 10, 12) 310

suggests STL’s mathematically rise (↑ ϕ) and fall 311

(↓ ϕ) operators lack direct linguistic correlates, 312

with natural language expressing state transitions 313

through alternative mechanisms our patterns miss. 314

This indicates bottom-up approaches from linguis- 315

tic phenomena may prove more effective than top- 316

down logical operator mapping. Practically, Pattern 317

8’s dominance shows conditional structures form 318

temporal specification backbones, while high pat- 319

tern co-occurrence (30,219 instances) demonstrates 320

compositionality requiring multi-pattern analysis. 321

The probabilistic relationships argue for machine 322

learning approaches over deterministic rules. 323

5.4 Future Work 324

Future work can leverage these findings through: 325

(1) In-context learning using our patterns with 326

labeled NL-UDR-STL triplets for enhanced zero- 327

shot translation; and (2) Fine-tuning approaches 328

producing novel datasets to train specialized archi- 329

tectures. Research could integrate UD representa- 330

tions into transformer embeddings, using syntactic 331

patterns as inductive biases for improved temporal 332

logic translation. 333

6 Limitations 334

Our approach makes several assumptions that merit 335

explicit discussion. First, we assume compositional 336

4

semantics – that complex temporal expressions can337

be systematically decomposed into our twelve pat-338

terns – which may not hold for idiomatic or context-339

dependent expressions in natural language. Second,340

our evaluation relies on SpaCy’s UD parsing accu-341

racy; errors in syntactic analysis propagate through342

our pipeline, and parser performance on techni-343

cal specifications may differ from its training on344

general web text. The patterns themselves were345

derived theoretically rather than empirically, poten-346

tially missing naturalistic expression patterns that347

emerge from actual usage.348

Our empirical validation is limited to a single349

English dataset (circuit_total_refined) with350

7,003 sentences from the circuit/hardware domain,351

which may not generalize to other temporal speci-352

fication domains such as medical protocols, legal353

contracts, or aerospace requirements. The dataset’s354

focus on STL may not extend to other temporal355

logics (LTL, CTL, MTL), and our binary pattern356

matching approach cannot capture gradient mem-357

bership or probabilistic relationships between syn-358

tax and semantics. Furthermore, we conducted a359

single evaluation run without cross-validation, lim-360

iting our understanding of result variance.361

These limitations suggest important directions362

for future work: expanding to multilingual datasets,363

incorporating probabilistic pattern matching, val-364

idating across diverse domains, and developing365

methods robust to parser errors. We emphasize366

that our findings establish a baseline understand-367

ing of syntax-semantics relationships rather than a368

complete solution, providing a foundation for hy-369

brid approaches that can address these limitations370

through integration with semantic understanding371

and contextual reasoning.372

References373

Jon Barwise and Robin Cooper. 1981. Generalized374
quantifiers and natural language.375

Patrick Charollais. 2017. ECMA-404, 2nd edition, De-376
cember 2017.377

Danqi Chen and Christopher Manning. 2014. A Fast378
and Accurate Dependency Parser using Neural Net-379
works. In Proceedings of the 2014 Conference on380
Empirical Methods in Natural Language Processing381
(EMNLP), pages 740–750, Doha, Qatar. Association382
for Computational Linguistics.383

Yongchao Chen, Rujul Gandhi, Yang Zhang, and384
Chuchu Fan. 2023. NL2TL: Transforming Natural385
Languages to Temporal Logics using Large Language386

Models. In Proceedings of the 2023 Conference on 387
Empirical Methods in Natural Language Process- 388
ing, pages 15880–15903, Singapore. Association for 389
Computational Linguistics. 390

Noam Chomsky. 1965. Aspects of the theory of syntax, 391
20. print edition. Number 11 in Special technical 392
report / Massachusetts Institute of Technology, Re- 393
search Laboratory of Electronics. MIT Press, Cam- 394
bridge, Mass. 395

Marie-Catherine De Marneffe, Christopher D. Manning, 396
Joakim Nivre, and Daniel Zeman. 2021. Universal 397
Dependencies. Computational Linguistics, pages 1– 398
54. 399

Alexandre Donzé, Thomas Ferrere, and Oded Maler. 400
2013. Efficient robust monitoring for STL. In Inter- 401
national conference on computer aided verification, 402
pages 264–279. Springer. 403

David R. Dowty. 1979. Word meaning and Montague 404
grammar: the semantics of verbs and times in gen- 405
erative semantics and in Montague’s PTQ. Number 406
v. 7 in Synthese language library. D. Reidel Pub. Co, 407
Dordrecht ; Boston. 408

E. Allen Emerson and Joseph Y. Halpern. 1986. “Some- 409
times” and “not never” revisited: on branching ver- 410
sus linear time temporal logic. Journal of the ACM, 411
33(1):151–178. 412

Yue Fang, Zhi Jin, Jie An, Hongshen Chen, Xiaohong 413
Chen, and Naijun Zhan. 2025. Enhancing Transfor- 414
mation from Natural Language to Signal Temporal 415
Logic Using LLMs with Diverse External Knowl- 416
edge. ArXiv:2505.20658 [cs]. 417

Jie He, Ezio Bartocci, Dejan Ničković, Haris Isakovic, 418
and Radu Grosu. 2022. DeepSTL: from english re- 419
quirements to signal temporal logic. In Proceedings 420
of the 44th International Conference on Software En- 421
gineering, pages 610–622, Pittsburgh Pennsylvania. 422
ACM. 423

Matthew Honnibal and Ines Montani. 2017. spaCy 2: 424
Natural language understanding with Bloom embed- 425
dings, convolutional neural networks and incremental 426
parsing. 427

Laurence R. Horn. 2001. A natural history of negation. 428
The David Hume series. CSLI, Stanford, Calif. 429

Sascha Konrad and Betty H. C. Cheng. 2005. Real-time 430
specification patterns. In Proceedings of the 27th 431
international conference on Software engineering - 432
ICSE ’05, page 372, St. Louis, MO, USA. ACM 433
Press. 434

Angelika Kratzer. 1991. Modality. In Arnim von Ste- 435
chow and Dieter Wunderlich, editors, Handbuch Se- 436
mantik, pages 639–50. 437

Oded Maler and Dejan Nickovic. 2004. Monitoring 438
Temporal Properties of Continuous Signals. In David 439
Hutchison, Takeo Kanade, Josef Kittler, Jon M. 440

5

https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.3115/v1/D14-1082
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.18653/v1/2023.emnlp-main.985
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1162/coli_a_00402
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.1145/4904.4999
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.48550/arXiv.2505.20658
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/3510003.3510171
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1145/1062455.1062526
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12
https://doi.org/10.1007/978-3-540-30206-3_12

Kleinberg, Friedemann Mattern, John C. Mitchell,441
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bern-442
hard Steffen, Madhu Sudan, Demetri Terzopoulos,443
Dough Tygar, Moshe Y. Vardi, Gerhard Weikum,444
Yassine Lakhnech, and Sergio Yovine, editors, For-445
mal Techniques, Modelling and Analysis of Timed446
and Fault-Tolerant Systems, volume 3253, pages 152–447
166. Springer Berlin Heidelberg, Berlin, Heidelberg.448
Series Title: Lecture Notes in Computer Science.449

Yuchen Mao, Tianci Zhang, Xu Cao, Zhongyao Chen,450
Xinkai Liang, Bochen Xu, and Hao Fang. 2024.451
NL2STL: Transformation from Logic Natural Lan-452
guage to Signal Temporal Logics using Llama2. In453
2024 IEEE International Conference on Cybernetics454
and Intelligent Systems (CIS) and IEEE International455
Conference on Robotics, Automation and Mechatron-456
ics (RAM), pages 469–474, Hangzhou, China. IEEE.457

Mitchell Marcus, Grace Kim, Mary Ann Marcinkiewicz,458
Robert MacIntyre, Ann Bies, Mark Ferguson, Karen459
Katz, and Britta Schasberger. 1994. The Penn Tree-460
bank: annotating predicate argument structure. In461
Proceedings of the workshop on Human Language462
Technology - HLT ’94, page 114, Plainsboro, NJ. As-463
sociation for Computational Linguistics.464

Richard Montague. 1973. The proper treatment of quan-465
tification in ordinary English. In Approaches to nat-466
ural language: Proceedings of the 1970 Stanford467
workshop on grammar and semantics, pages 221–468
242. Springer.469

Joakim Nivre. 2020. Universal Dependencies v2: An470
Evergrowing Multilingual Treebank Collection. Pro-471
ceedings of the Twelfth Language Resources and472
Evaluation Conference.473

Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-474
ter, Yoav Goldberg, Jan Hajicˇ, Christopher D Man-475
ning, Ryan McDonald, Slav Petrov, Sampo Pyysalo,476
Natalia Silveira, Reut Tsarfaty, and Daniel Zeman.477
2016. Universal Dependencies v1: A Multilingual478
Treebank Collection.479

Barbara H. Partee. 1984. Nominal and temporal480
anaphora. Linguistics and Philosophy, 7(3):243–286.481

Amir Pnueli. 1977. The temporal logic of programs. In482
18th Annual Symposium on Foundations of Computer483
Science (sfcs 1977), pages 46–57, Providence, RI,484
USA. IEEE.485

Guido Van Rossum and Fred L Drake Jr. 2009. The486
Python Language Reference Manual. Network The-487
ory Ltd.488

Marc Verhagen, Roser Sauri, Tommaso Caselli, and489
James Pustejovsky. 2010. SemEval-2010 Task 13:490
TempEval-2. Proceedings of the 5th International491
Workshop on Semantic Evaluation.492

A Appendix 493

A.1 Formal Preliminaries 494

A.1.1 Signal Temporal Logic 495

STL formulas are defined recursively using the 496

following grammar (He et al., 2022; Mao et al., 497

2024; Chen et al., 2023): 498

ϕ ::= πµ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2

| F[a,b]ϕ | G[a,b]ϕ | ϕ1U[a,b]ϕ2
(2) 499

Where: (i) πµ represents atomic predicates (e.g., 500

x ∼ µ where x is a variable, ∼ is a comparison 501

operator, and µ is a value); (ii) ϕ, ϕ1, ϕ2, ... ϕn 502

are STL formulas, and (iii) [a, b] represents time 503

intervals where a, b ∈ R and a ≤ b. 504

A.1.2 Atomic Predicates 505

An atomic predicate πµ in STL is a basic compari- 506

son of the form x ∼ µ, where x is a real-valued sig- 507

nal variable, ∼∈ {<,≤,=,≥, >, ̸=} is a compari- 508

son operator, and µ ∈ R is a constant, representing 509

the simplest testable condition that can be evaluated 510

as true or false at any given time instant (Maler and 511

Nickovic, 2004). In the context of cyber-physical 512

systems, atomic predicates typically express con- 513

straints on sensor readings (e.g., temperature > 514

25), actuator states (e.g., valve_position = 1), or 515

derived signals (e.g., velocity ≤ 50). 516

A.1.3 Logical Operators 517

The logical operators within STL operate on STL 518

formulas ϕ, ϕ1, and ϕ2 as follows: (i) ¬ϕ, meaning 519

the negation of formula ϕ, (ii) ϕ1 ∧ ϕ2, meaning 520

the conjunction (and) of formulas ϕ1 and ϕ2, (iii) 521

ϕ1 ∨ ϕ2, meaning the disjunction (or) of formulas 522

ϕ1 and ϕ2, (iv) ϕ1 ⇒ ϕ2, meaning the implica- 523

tion from ϕ1 to ϕ2, and (v) ϕ1 ⇔ ϕ2, meaning the 524

equivalence between ϕ1 and ϕ2 (Maler and Nick- 525

ovic, 2004). These operators preserve their classi- 526

cal Boolean semantics at each time point, enabling 527

compositional specification of complex logical re- 528

lationships between temporal properties. 529

A.1.4 Temporal Operators 530

The temporal operators within STL are: (i) F[a,b]ϕ 531

(Eventually/Finally), meaning the formula ϕ must 532

be true at least once within the time interval [a, b], 533

formally ∃t ∈ [a, b] : ϕ(t); (ii) G[a,b]ϕ (Al- 534

ways/Globally), meaning the formula ϕ must be 535

true throughout the entire time interval [a, b], for- 536

mally ∀t ∈ [a, b] : ϕ(t); and (iii) ϕ1U[a,b]ϕ2 (Un- 537

til), meaning ϕ1 must hold until ϕ2 becomes true 538

6

https://doi.org/10.1109/cis-ram61939.2024.10672997
https://doi.org/10.1109/cis-ram61939.2024.10672997
https://doi.org/10.1109/cis-ram61939.2024.10672997
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.3115/1075812.1075835
https://doi.org/10.1007/BF00627707
https://doi.org/10.1007/BF00627707
https://doi.org/10.1007/BF00627707
https://doi.org/10.1109/SFCS.1977.32

within the time interval [a, b], formally ∃t ∈ [a, b] :539

ϕ2(t) ∧ ∀t′ ∈ [a, t) : ϕ1(t
′) (Maler and Nickovic,540

2004; Donzé et al., 2013). The bounded time inter-541

vals enable precise specification of real-time con-542

straints essential for cyber-physical systems.543

A.1.5 Extended Operators544

For practical applications, STL often includes de-545

rived operators that can be expressed using the core546

grammar: (i) Rise operator ↑ ϕ ≡ ¬ϕUϕ, detecting547

positive edges; (ii) Fall operator ↓ ϕ ≡ ϕU¬ϕ, de-548

tecting negative edges; (iii) Weak Until ϕ1Wϕ2 ≡549

Gϕ1 ∨ (ϕ1Uϕ2), where ϕ1 holds indefinitely or un-550

til ϕ2; and (iv) Release ϕ1Rϕ2 ≡ ¬(¬ϕ1U¬ϕ2),551

the dual of Until (Pnueli, 1977).552

A.1.6 Universal Dependencies553

Universal Dependencies (Nivre et al., 2016) repre-554

sents syntax as directed graphs G = (V,E, ℓ) with555

word nodes V , dependency edges E, and labels556

ℓ : E → R from 37 universal relations including557

core arguments (nsubj, obj), modifiers (advmod,558

nmod), and function words (mark, det).559

A.1.7 Dependency Relations560

The 37 universal relations are organized into sev-561

eral categories: (i) Core arguments: nsubj (nom-562

inal subject), obj (object), iobj (indirect ob-563

ject); (ii) Non-core dependents: obl (oblique),564

vocative, expl (expletive), dislocated; (iii)565

Nominal dependents: nmod (nominal modifier),566

appos (apposition), nummod (numeric modifier);567

(iv) Clausal dependents: advcl (adverbial clause),568

acl (clausal modifier), ccomp (clausal comple-569

ment); (v) Modifier words: advmod (adverbial570

modifier), amod (adjectival modifier); (vi) Func-571

tion words: aux (auxiliary), cop (copula), mark572

(marker), det (determiner), case (case marking)573

(De Marneffe et al., 2021).574

A.1.8 Dependency Patterns575

A dependency pattern P = (r, h, d, C) consists576

of relation r, head/dependent constraints h/d, and577

contextual constraints C. Pattern P matches edge578

(u, v) when all constraints are satisfied. For tem-579

poral expressions, key patterns include: (i) advmod580

patterns for temporal adverbs (e.g., always, even-581

tually); (ii) mark + nummod patterns for bounded582

expressions (e.g., within 5 seconds); (iii) advcl pat-583

terns for subordinate temporal clauses (e.g., until X584

happens); and (iv) compound patterns combining585

multiple relations for complex expressions.586

A.2 Detailed Methodology 587

A.2.1 Dataset 588

We utilize the circuit_total_refined lifted NL- 589

STL pairs dataset constructed by Chen et al. (2023) 590

evaluation1, containing 7,003 natural language sen- 591

tences paired with their corresponding Signal Tem- 592

poral Logic (STL) formulas. Each entry consists 593

of six fields: (i) ID: unique sentence identifier; (ii) 594

Sentence: natural language expressing temporal 595

properties; (iii) LTL: temporal logic formula with 596

English operators (e.g., "always", "eventually"); 597

(iv) Logic Sentence: sentence with marked atomic 598

propositions; (v) Logic LTL: formula with propo- 599

sitions as word spans (Span i, j); and (vi) Propo- 600

sitions: list of atomic propositions. The dataset 601

provides comprehensive coverage of temporal oper- 602

ators (G, F, U and bounded variants), diverse syn- 603

tactic structures, varying proposition complexity (0- 604

4 propositions per sentence), and expert-annotated 605

ground truth formulas for evaluation. 606

A.2.2 Computational Infrastructure 607

All evaluations and analyses were conducted on 608

NVIDIA Saturn Cloud utilizing 2×NVIDIA A100 609

GPUs, 32 CPU cores, 512GB RAM, and 5TB disk 610

storage over approximately 514 hours of compute 611

time. The implementation employed SpaCy 3.8.0 612

with the en_core_web_lg model (Honnibal and 613

Montani, 2017) for dependency parsing follow- 614

ing Universal Dependencies v2 guidelines (Nivre, 615

2020), selected for its state-of-the-art accuracy 616

and comprehensive syntactic coverage. The soft- 617

ware stack comprised Python 3.x (Van Rossum 618

and Drake Jr, 2009) with core libraries includ- 619

ing JSON for data serialization (Charollais, 2017), 620

regular expressions for pattern matching, difflib 621

for similarity computation, and explicit memory 622

management through garbage collection. The 623

SpaCy pipeline was configured with tokenization 624

preserving exact positions for ground truth align- 625

ment, part-of-speech tagging using Penn Treebank 626

tagset (Marcus et al., 1994), dependency pars- 627

ing, named entity recognition, and lemmatization. 628

This infrastructure supported a multi-stage pro- 629

cessing pipeline encompassing data loading from 630

the circuit_total_refined dataset (Chen et al., 631

2023), preprocessing for token alignment, linguis- 632

tic analysis via dependency parsing, UD pattern 633

extraction, STL formula construction, and com- 634

1This dataset originally came from He et al. (2022), which
was then transformed by Chen et al. (2023) in their evaluation.

7

prehensive evaluation through similarity metrics.635

The substantial computational resources enabled636

efficient batch processing and in-memory caching637

strategies, ensuring both reproducibility and com-638

putational efficiency across the 7,003 sentence639

dataset.640

A.2.3 Universal Dependencies Parsing641

Each sentence undergoes preprocessing to maintain642

word span alignment with ground truth annotations.643

SpaCy’s pipeline transforms text into annotated lin-644

guistic structures through tokenization (preserving645

position information), part-of-speech tagging (pro-646

viding grammatical categories), and dependency647

parsing (constructing directed graphs with 37 UD648

relation types). The parser produces dependency649

trees capturing both local and long-distance rela-650

tionships crucial for temporal expressions. This651

structured representation enables identification of652

systematic correspondences between syntactic pat-653

terns and temporal logic operators.654

A.2.4 Pattern-Based Extraction Framework655

The pattern extraction framework implements656

twelve core patterns designed to map Universal657

Dependencies structures to Signal Temporal Logic658

operators. These patterns, defined in a structured659

dictionary, capture temporal relationships through660

specific dependency configurations as featured in661

Table 1. The extraction pipeline processes sen-662

tences through four integrated components: pat-663

tern detection traverses dependency trees match-664

ing against canonical patterns and lexical variants;665

temporal component extraction maps keywords666

like "always," "eventually," "within," and "for" to667

STL operators (G, F, F[0,k], G[0,k]) with associ-668

ated bounds; logical operator extraction identifies669

connectives (∧, ∨, ¬, →, ↔) through compound670

phrase detection and token analysis; and atomic671

proposition extraction analyzes dependency sub-672

trees to identify signal references and comparison673

operators. Throughout this process, the system674

maintains precise word span alignment, with each675

extracted component storing its token span, opera-676

tor type, textual representation, and Universal De-677

pendencies evidence, enabling compositional STL678

formula construction while preserving linguistic679

provenance for error analysis and interpretability.680

A.2.5 STL Formula Construction681

The STL formula construction employs682

a compositional approach through the683

construct_stl_formula_independent func- 684

tion, which processes extracted components 685

in three stages. First, semantic role extraction 686

analyzes the Universal Dependencies parse to 687

identify whether propositions serve as conditions, 688

assertions, or temporal bounds based on depen- 689

dency markers (mark, aux, advcl) and modal 690

expressions. Second, logical structure building 691

determines operator precedence and scope by 692

analyzing the syntactic hierarchy, with temporal 693

operators applied according to their position in 694

the dependency tree and logical connectives main- 695

taining their syntactic scope. Third, the system 696

constructs the final STL formula by recursively 697

combining atomic propositions with temporal 698

operators (G, F, U) and logical connectives (∧, ∨, 699

¬, →), applying bounded intervals where numeric 700

modifiers are present. The construction process 701

handles nested temporal expressions through depth- 702

first traversal of the logical structure, ensuring 703

correct operator precedence (negation > temporal 704

> conjunction > disjunction > implication) while 705

preserving the semantic relationships encoded in 706

the dependency parse. Formula normalization 707

standardizes spacing, operator symbols, and 708

parenthesization to enable consistent comparison 709

with ground truth annotations. 710

A.2.6 Evaluation of UDR and STL 711

Relationships 712

This study evaluates the proposed formal rela- 713

tionship between Universal Dependencies Rela- 714

tions and Signal Temporal Logic through com- 715

prehensive empirical analysis of 7,003 sentence- 716

STL pairs. The evaluation framework employs 717

multiple metrics: exact match accuracy using ad- 718

vanced formula normalization handling operator 719

equivalences and structural variations; similarity 720

scores via SequenceMatcher providing gradient 721

correctness measures (0-1); component-wise accu- 722

racy separately assessing temporal operators, logi- 723

cal connectives, atomic propositions, and temporal 724

bounds; and error severity classification into five 725

levels based on similarity thresholds (complete fail- 726

ure < 0.2, major errors 0.2− 0.4, moderate errors 727

0.4 − 0.6, minor errors 0.6 − 0.8, near matches 728

> 0.8). 729

The evaluation procedure follows eight system- 730

atic steps: (i) dataset loading and SpaCy initial- 731

ization; (ii) preprocessing to maintain word span 732

alignment; (iii) dependency parsing to generate UD 733

trees; (iv) pattern matching against twelve defined 734

8

patterns; (v) temporal/logical component extrac-735

tion; (vi) compositional STL formula construction;736

(vii) comparison with ground truth using evalua-737

tion metrics; and (viii) statistical analysis of pattern738

occurrences, error distributions, and complexity739

correlations. Within this framework, the evalua-740

tion focuses on three key analyses of UDR-STL741

relationships: (i) Pattern-to-STL mapping analysis742

exploring the relationship between specific UDR743

patterns and STL operator combinations; (ii) Pat-744

tern variation analysis examining extensive syn-745

tactic diversity by identifying sentences where ex-746

pected STL operators appear without canonical747

pattern matches, revealing variants such as "con-748

tinuously," "constantly," and "throughout" for the749

"always" operator, and quantifying coverage im-750

pact to determine which patterns exhibit the most751

variation; and (iii) Co-occurrence analysis between752

individual UDR patterns and STL components to753

identify systematic associations between syntactic754

structures and logical operators. This systematic755

approach ensures reproducibility while capturing756

both overall performance and detailed insights into757

the pattern-based approach’s strengths and limita-758

tions.759

A.2.7 Statistical Analysis760

Evaluation employs multiple metrics including761

exact match accuracy using advanced formula762

normalization handling operator equivalences763

and structural variations; similarity scores via764

SequenceMatcher providing gradient correctness765

measures (0-1); component-wise accuracy sepa-766

rately assessing temporal operators, logical connec-767

tives, atomic propositions, and temporal bounds;768

and error severity classification into five levels769

based on similarity thresholds (complete failure770

< 0.2, major errors 0.2 − 0.4, moderate errors771

0.4 − 0.6, minor errors 0.6 − 0.8, near matches772

> 0.8).773

We conduct three primary analyses to evaluate774

the UDR-STL relationships: (i) Pattern-to-STL775

mapping analysis exploring the relationship be-776

tween specific UDR patterns and STL operator777

combinations, quantifying how frequently each pat-778

tern correctly maps to its expected operator versus779

alternative mappings, and identifying systematic780

deviations from theoretical predictions; (ii) Pattern781

variation analysis examining extensive syntactic782

diversity by identifying sentences where expected783

STL operators appear without canonical pattern784

matches, revealing variants such as "continuously,"785

"constantly," and "throughout" for the "always" 786

operator, and quantifying coverage impact to deter- 787

mine which patterns exhibit the most variation; and 788

(iii) Co-occurrence analysis between individual 789

UDR patterns and STL components using lift anal- 790

ysis to identify systematic associations between 791

syntactic structures and logical operators, revealing 792

which pattern combinations most strongly predict 793

specific temporal logic constructs. 794

A.3 Tables 795

No. Pattern UD Pattern Logic Variation Cnt %

1
Any Time
Global

det("any")+
nmod("time")

G every time 1,079 1.16

det(every, time) 704 0.76
Subtotal 1,783 1.91

2
Become/
Change
Rise

compound
("become"|
"change")

↑ Φ becomes 0 0.00

Subtotal 0 0.00

3

Bounded
After

mark("after")+
nummod

F[k,∞] mark(after, instant) 17 0.02

mark(after, be) 3 0.00
mark(after, is) 3 0.00
All Others 9 0.01
Subtotal 32 0.03

4

Always advmod
("always")

G advmod(always, is) 1,704 1.83

during the first 904 0.97
during the next 472 0.51
All Others 7,813 8.38
Subtotal 10,893 11.69

5

Eventually advmod("event-
ually")

F at most 1,840 1.97

advmod(eventually,
be)

743 0.80

advmod(finally, be) 631 0.68
All Others 6,967 7.47
Subtotal 10,181 10.92

6

Bounded
For

mark("for")+
nummod

G[0,k] mark(for, :) 5 0.01

mark(for, ,) 4 0.00
mark(for, needs) 1 0.00
Subtotal 10 0.01

7

Bounded
Within

mark("within")
+nummod

F[0,k] within 3,000 3.22

within the first 1,046 1.12
within the coming 463 0.50
All Others 1,731 1.86
Subtotal 6,240 6.69

8

If-Then
Impl.

advmod("then")+
mark("if")

→ then 16,098 17.27

it is always 5,543 5.95
when 5,229 5.61
All Others 36,208 38.85
Subtotal 63,078 67.68

9
Negated
Always

advmod
("never")

¬G never 206 0.22

Subtotal 206 0.22

10
No Longer
Fall

advmod("no
longer")

↓ Φ NA 0 0.00

Subtotal 0 0.00

11

Until mark("until")+
advcl

U mark(before, ends) 467 0.52

mark(until, ends) 160 0.17
mark(until, is) 49 0.05
All Others 86 0.09
Subtotal 782 0.84

12
When First
Rise

mark("when")+
advmod("first")

↑ Φ NA 0 0.00

Subtotal 0 0.00
Grand Total 93,205 100.00

Table 3: Pattern variation analysis with logic operators

9

