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Abstract

Translating natural language requirements into
Signal Temporal Logic (STL) is essential for
safety-critical systems but requires mathemati-
cal expertise. We propose a translational gram-
mar mapping Universal Dependencies (UD)
structures to STL operators through twelve
theoretically-motivated patterns, evaluated on
7,003 expert-annotated sentence-STL pairs.
Our patterns achieve 97.8% coverage in detect-
ing temporal expressions, revealing systematic
correspondences between syntactic structures
and logical operators. Analysis uncovers rich
syntactic variation (e.g., 70+ variants for con-
ditionals) and probabilistic pattern-operator re-
lationships, demonstrating that while our pat-
terns reliably identify temporal expressions,
their mapping to STL operators exhibits statis-
tical tendencies rather than deterministic rules.
These findings provide foundational insights
for developing hybrid approaches that model
uncertainty explicitly, combining syntactic pat-
terns with semantic understanding to advance
interpretable natural language interfaces for
temporal logic specification.

1 Introduction

Formal specifications in temporal logic are essen-
tial for verifying safety-critical systems, synthesiz-
ing correct-by-construction controllers, and defin-
ing precise requirements for autonomous agents.
However, translating natural language require-
ments into Signal Temporal Logic (STL) remains
challenging due to expertise required in mathe-
matical logic. Consider a seemingly simple re-
quirement: "For each moment within the first 2
to 46 time units, the signal must consistently stay
above 8.9." Translating this requires understanding
that "for each moment" maps to a global opera-
tor (G), "within the first 2 to 46 time units" de-
fines temporal interval [2,46], and "consistently
stay" reinforces universal quantification, yielding
Gi2,46)(signal > 8.9). This challenge has moti-
vated emerging research heavily relying on deep

learning and generative Al. Researchers train neu-
ral networks or fine-tune models like DeepSTL (He
et al., 2022) and NL2TL (Chen et al., 2023), using
human feedback and part-of-speech tagging to pro-
duce labeled NL-STL datasets for training (Fang
et al., 2025; Chen and Manning, 2014). However,
these approaches lack generalizability and provide
insufficient interpretability in how linguistic struc-
tures map to STL syntax.

In this proposed paper, we argue that Univer-
sal Dependencies (UD) (De Marneffe et al., 2021;
Nivre, 2020) provides cross-linguistically consis-
tent syntactic annotation enabling systematic map-
ping between natural language and temporal logic
operators. Grounded in universal grammar princi-
ples (Chomsky, 1965), UD’s success across 100+
languages suggests temporal reasoning follows uni-
versal syntactic patterns. Specifically, one may ask:
Is there a fundamental logical relationship between
UDR components and STL operator composition
that transcends individual languages? This moti-
vates our research objective: to propose a trans-
lational grammar that maps syntactic depen-
dency relationships in Universal Dependencies
to Signal Temporal Logic operator composition,
leveraging universal grammatical principles to
ensure broad applicability across natural lan-
guage variations.

Our investigation focuses on identifying and an-
alyzing these patterns, not to propose yet another
translation framework, but to enhance our under-
standing of how natural language grammar relates
to STL grammar. Our paper makes two unique
contributions:

First, we propose a formal logic for mapping
UDR in combination with a dictionary for temporal
words into UDR patterns. We then, establish a
new grammar that defines a formal (probabilistic)
relationship between UDRs and STL, also referred
to as UDR patterns in this paper.

And second, we empirically examine this trans-



lational grammar based on a dataset of 7,003 pairs
of natural language and STLs used in prior re-
search. Specifically, we examine twelve core
patterns that emerge from analyzing the rela-
tionship between UD syntactic structures and
STL operators. For instance, we find that
advmod(stay, consistently) systematically
signals universal quantification, nmod(within,
units) + nummod(units, 46) specifies tem-
poral bounds, and mark(if, _) + advmod(then,
_) indicates logical implication. These patterns
are not learned from data but derived from linguis-
tic principles, providing an interpretable bridge
between natural language and formal logic. The
identification of such patterns follows the tradition
of linguistic analysis in temporal expression recog-
nition (Verhagen et al., 2010) while extending it to
formal logic operators.

This understanding has important implications
for future research and the design of learning-based
architectures, including in-context learning as well
as LLM-finetuning (Chen and Manning, 2014). By
understanding these fundamental correspondences,
we increase the generalizability of future learning-
based approaches (e.g., if trained based on datasets
enriched by our logic, and also increase the in-
terpret ability of LLM). Beyond that, it will also
allow the successful creation of STL that ensure the
safety of Al systems used in robotics and other ap-
plications while simultaneously offering important
means to verify the safety of a system.

2 Theoretical Foundations

2.1 Signal Temporal Logic

Signal Temporal Logic extends propositional logic
with temporal operators over dense-time signals.
STL formulas follow the grammar:

=t g | d1Ad2 | $1V 2 | Fia5)9 | Gla,] | d1Uja,p102 (1)

where 7 represents atomic predicates (x ~ p),
¢ denotes STL formulas, and [a, b] specifies time
intervals. The temporal operators F[, ;) (Eventu-
ally), Gjqp (Always), and U,y (Until) quantify
over time intervals, with Boolean connectives pre-
serving their classical semantics (Maler and Nick-
ovic, 2004). Complete formal definitions are pro-
vided in Appendix A.1.

2.2 Universal Dependencies

Universal Dependencies (Nivre et al., 2016) repre-
sents syntax as directed graphs G = (V, E, £) with

word nodes V, dependency edges E, and labels
¢ : E — R from 37 universal relations. Depen-
dency patterns P = (7, h, d, C') consist of relation
r, head/dependent constraints h/d, and contextual
constraints C', matching edges when all constraints
are satisfied. Complete formal definitions are pro-
vided in Appendix A.1.

2.3 Translational Grammar: UDR-STL
Patterns

We propose twelve core patterns (Table 1) pro-
viding comprehensive STL coverage for cyber-
physical system specifications. These patterns, se-
lected through theoretical analysis of STL oper-
ators (Maler and Nickovic, 2004) and empirical
validation showing over 90% coverage (Chen et al.,
2023), systematically map Universal Dependencies
to STL: advmod relations encode temporal quantifi-
cation (patterns 4, 5, 8, 9), mark+nummod capture
bounded constraints (patterns 3, 6, 7), and lexical
patterns identify state transitions (patterns 2, 10,
12) and logical relationships (patterns 1, 8).

Pattern | Pattern Pattern Logic Op.
No. | Name
1 Any Time Global det("any")+nmod("time") G
2 Become/Change Rise compound("become"/ T ¢
"change")
3 Bounded After mark("after")+nummod Flk,00]
4 Always advmod("always") G
5 Eventually advmod("eventually") F
6 Bounded For mark("for")+nummod G[0.k]
7 Bounded Within mark("within")+nummod F[0.k]
8 If-Then Implication advmod("then")+mark("if") —
9 Negated Always advmod("never") -G
10 No Longer Fail advmod("no longer") 1o
11 Until mark("until")+advcl U
12 ‘When First Rise mark("when")+advmod("first") T ¢

Table 1: Pattern definitions and their corresponding
logic operators

The patterns exploit systematic correspondences
between linguistic quantification and temporal
logic. Determiners (any, every) parallel univer-
sal quantification (G), while indefinites map to
existential quantification (F') (Barwise and Cooper,
1981). Temporal adverbs directly lexicalize quanti-
fiers, prepositional phrases with numerals encode
metric constraints, and subordinating conjunctions
establish temporal ordering (Partee, 1984). The
Until operator’s dual requirements — eventual satis-
faction and continuous maintenance — mirror adver-
bial clause structures, demonstrating how syntactic
subordination encodes semantic scope (Emerson
and Halpern, 1986).

Pattern design leverages formal semantic princi-
ples: negation duality (—Giq 3¢ = Fq47¢) mo-
tivates Pattern 9’s never encoding (Horn, 2001);



material conditional correspondence justifies Pat-
tern 8’s if-then mapping (Kratzer, 1991); and edge
operators (1 ¢ = —¢U¢, | ¢ = ¢U—¢) capture
state transitions through inchoative/cessative predi-
cates (Dowty, 1979). This compositional approach
aligns with natural language semantics (Montague,
1973), where patterns serve as atomic operations
combining per STL formation rules, preserving
interpretability essential for verification tasks (Kon-
rad and Cheng, 2005).

3 Methodology

We evaluate the proposed Universal Dependencies
to Signal Temporal Logic mapping framework us-
ing the circuit_total_refined dataset (Chen
et al., 2023), containing 7,003 natural language
sentences paired with expert-annotated STL for-
mulas. The dataset provides comprehensive cover-
age of temporal operators (G, F, U and bounded
variants) with varying proposition complexity (0-4
per sentence). Implementation details including
computational infrastructure, parsing pipeline con-
figuration, and complete algorithmic descriptions
are provided in Appendix A.2.

Our approach employs SpaCy 3.8.0 (Honnibal
and Montani, 2017) to generate Universal Depen-
dencies parses, from which we extract temporal
and logical components using twelve theoretically-
motivated patterns (Table 1). The pattern-based ex-
traction framework maps UD structures to STL op-
erators through four components: pattern detection,
temporal component extraction, logical operator
identification, and atomic proposition extraction
(where atomic predicates are assumed to be pre-
identified in the dataset). Extracted components
are compositionally combined following STL for-
mation rules, with operator precedence and scope
determined by syntactic hierarchy.

Evaluation employs multiple metrics including
exact match accuracy, similarity scores (0-1), and
component-wise assessment of temporal operators,
logical connectives, and proposition boundaries.
We conduct three primary analyses: (i) Pattern-to-
STL mapping analysis examining relationships be-
tween UD patterns and STL operators, (ii) Pattern
variation analysis quantifying syntactic diversity
beyond canonical forms, and (iii) Co-occurrence
analysis identifying systematic associations be-
tween syntactic structures and logical operators.

UDR Pattern vs STL Component Co-occurrence Heatmap
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Figure 1: Heatmap of UDR and STL Co-occurences
4 Results

We analyzed 7,003 natural language sentences
paired with STL formulas to evaluate our pattern-
based extraction approach using multiple statistical
techniques.

4.1 Pattern Descriptives

Pattern detection analysis achieved 97.8% cover-
age (6,850 out of 7,003 sentences), with an average
of 4.76 patterns detected per sentence. However,
only 9 of the 12 proposed patterns showed actual
occurrences in the dataset, with Pattern 8 (If-Then
Implication) dominating at 16,098 instances, fol-
lowed by Pattern 4 (Always) with 6,251 instances
and Pattern 5 (Eventually) with 5,353 instances.
The complete absence of edge detection patterns
(Patterns 2, 10, 12) suggests a fundamental mis-
alignment between the theoretical pattern design
and actual linguistic usage in the dataset.

Pattern variation analysis, detailed in Table 3
in the Appendix, revealed extensive syntactic di-
versity beyond canonical forms. Pattern 8 (If-
Then Implication) exhibited the highest variation
with 63,078 total occurrences across multiple real-
izations including "then" (16,098), "it is always"
(5,543), "when" (5,229), and numerous other vari-
ants. Pattern 5 (Eventually) showed 10,181 oc-
currences with variants like "at most" (1,840) and
adverbial modifications, while Pattern 7 (Bounded
Within) had 6,240 instances dominated by "within"
(3,000), and Pattern 1 (Any Time Global) showed
modest usage (1,783 total).

Co-occurrence analysis in Figure 1 in the Ap-
pendix showed the If-Then Implication pattern with
particularly high co-occurrence with logical impli-
cation operators (30,219 instances), while temporal
operators demonstrated broad distribution across



patterns. The extensive variation and unexpected
mappings indicate that single syntactic patterns cor-
respond to multiple logical interpretations, requir-
ing context-dependent analysis beyond canonical
pattern matching.

4.2 UDR-STL Pattern

Pattern Expected Inst. Total Actual Key Finding

STL Var. Map
1. Any Time Global g 1,079 1,783 A Unexpected logic
2. Become/Change T 0 0 - Absent
¢
3. Bounded After Flk,00] 32 32 Flk, 0o)Aligned
4. Always g 6,251 10,893 g 1,139 unique STLs
5. Eventually F 5,353 10,181 F 927 mappings
6. Bounded For 9[0,k)] 10 10 Gg,) Minimal
7. Bounded Within ]:[O,Ic] 3,568 6,240 F Lost bounds
8. If-Then Impl. — 16,098 63,078 — 70+ variants
9. Negated Always -G 206 206 -G Limited
10. No Longer Fall 1 0 0 - Absent
¢
11. Until u 712 782 u Moderate
12. When First Rise T 0 0 - Absent
¢

Table 2: UDR-STL Pattern Analysis Summary

The empirical analysis (Table 2) reveals 97.8%
pattern detection yet fundamental mapping chal-
lenges. Pattern 8 (If-Then Implication) dominates
with 16,098 instances across 63,078 occurrences in
70+ variants, while edge detection patterns (2, 10,
12) are completely absent. Co-occurrence analysis
shows strong If-Then/logical operator alignment
(30,219 instances) but broad distribution of G and
F across patterns. Critically, unexpected mappings
(Pattern 1— A instead of G, Pattern 7—F instead
of F(g 1) demonstrate that syntactic patterns alone
cannot determine semantic interpretation, necessi-
tating probabilistic frameworks that integrate syn-
tax with semantic and contextual analysis.

5 Discussion

Our empirical investigation reveals both the
promise and fundamental challenges of syntax-
based approaches to temporal logic translation. The
striking contrast between high pattern detection
(97.8%) and low exact match accuracy illuminates
a critical insight: while syntactic patterns success-
fully identify temporal expressions, the mapping
to STL operators is inherently probabilistic rather
than deterministic, with significant variability yet
to be explored.

5.1 The Syntax-Semantics Gap

Pattern 8 (If-Then Implication) exemplifies the fun-
damental mismatch between linguistic expression
and logical formalization — despite 16,098 correct
mappings to implication operators, it manifests

through 70+ syntactic variants. This many-to-many
relationship reveals natural language’s richer rep-
resentational system compared to temporal logic’s
rigid operators. Unexpected mappings (Pattern 1
producing A instead of G, Pattern 7 losing bounds)
confirm that syntax alone cannot disambiguate log-
ical intent.

5.2 Probabilistic Nature of Patterns

Our patterns demonstrate statistical tendencies
rather than deterministic rules. While reliably iden-
tifying temporal expressions, their STL operator
mappings exhibit probabilistic behavior influenced
by context and linguistic variation. This suggests
successful NL-to-STL systems must model uncer-
tainty explicitly, treating pattern-operator mappings
as distributions. The extensive within-pattern vari-
ability indicates rich linguistic phenomena requir-
ing empirical characterization of these probability
distributions.

5.3 Theoretical and Practical Implications

The absence of edge detection patterns (2, 10, 12)
suggests STL’s mathematically rise (1 ¢) and fall
(I ¢) operators lack direct linguistic correlates,
with natural language expressing state transitions
through alternative mechanisms our patterns miss.
This indicates bottom-up approaches from linguis-
tic phenomena may prove more effective than top-
down logical operator mapping. Practically, Pattern
8’s dominance shows conditional structures form
temporal specification backbones, while high pat-
tern co-occurrence (30,219 instances) demonstrates
compositionality requiring multi-pattern analysis.
The probabilistic relationships argue for machine
learning approaches over deterministic rules.

5.4 Future Work

Future work can leverage these findings through:
(1) In-context learning using our patterns with
labeled NL-UDR-STL triplets for enhanced zero-
shot translation; and (2) Fine-tuning approaches
producing novel datasets to train specialized archi-
tectures. Research could integrate UD representa-
tions into transformer embeddings, using syntactic
patterns as inductive biases for improved temporal
logic translation.

6 Limitations

Our approach makes several assumptions that merit
explicit discussion. First, we assume compositional



semantics — that complex temporal expressions can
be systematically decomposed into our twelve pat-
terns — which may not hold for idiomatic or context-
dependent expressions in natural language. Second,
our evaluation relies on SpaCy’s UD parsing accu-
racy; errors in syntactic analysis propagate through
our pipeline, and parser performance on techni-
cal specifications may differ from its training on
general web text. The patterns themselves were
derived theoretically rather than empirically, poten-
tially missing naturalistic expression patterns that
emerge from actual usage.

Our empirical validation is limited to a single
English dataset (circuit_total_refined) with
7,003 sentences from the circuit/hardware domain,
which may not generalize to other temporal speci-
fication domains such as medical protocols, legal
contracts, or aerospace requirements. The dataset’s
focus on STL may not extend to other temporal
logics (LTL, CTL, MTL), and our binary pattern
matching approach cannot capture gradient mem-
bership or probabilistic relationships between syn-
tax and semantics. Furthermore, we conducted a
single evaluation run without cross-validation, lim-
iting our understanding of result variance.

These limitations suggest important directions
for future work: expanding to multilingual datasets,
incorporating probabilistic pattern matching, val-
idating across diverse domains, and developing
methods robust to parser errors. We emphasize
that our findings establish a baseline understand-
ing of syntax-semantics relationships rather than a
complete solution, providing a foundation for hy-
brid approaches that can address these limitations
through integration with semantic understanding
and contextual reasoning.
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A Appendix

A.1 Formal Preliminaries

A.1.1 Signal Temporal Logic

STL formulas are defined recursively using the
following grammar (He et al., 2022; Mao et al.,
2024; Chen et al., 2023):

pu= T d [P A2 | P11V b2 @)

| Flap® | Glapn® | @1l g p) P2

Where: (i) m# represents atomic predicates (e.g.,
x ~ u where z is a variable, ~ is a comparison
operator, and y is a value); (ii) ¢, ¢1, @2, ... Op
are STL formulas, and (iii) [a, b] represents time
intervals where a,b € R and a < b.

A.1.2 Atomic Predicates

An atomic predicate 7 in STL is a basic compari-
son of the form = ~ pu, where z is a real-valued sig-
nal variable, ~€ {<, <,=,>, >, #} is a compari-
son operator, and 4 € R is a constant, representing
the simplest testable condition that can be evaluated
as true or false at any given time instant (Maler and
Nickovic, 2004). In the context of cyber-physical
systems, atomic predicates typically express con-
straints on sensor readings (e.g., femperature >
25), actuator states (e.g., valve_position = 1), or
derived signals (e.g., velocity < 50).

A.1.3 Logical Operators

The logical operators within STL operate on STL
formulas ¢, ¢1, and ¢ as follows: (i) ~¢, meaning
the negation of formula ¢, (ii) ¢1 A ¢2, meaning
the conjunction (and) of formulas ¢; and ¢2, (iii)
¢1 V ¢2, meaning the disjunction (or) of formulas
¢1 and @2, (iv) 1 = ¢, meaning the implica-
tion from ¢; to ¢2, and (v) ¢1 & ¢, meaning the
equivalence between ¢ and ¢o (Maler and Nick-
ovic, 2004). These operators preserve their classi-
cal Boolean semantics at each time point, enabling
compositional specification of complex logical re-
lationships between temporal properties.

A.1.4 Temporal Operators

The temporal operators within STL are: (i) F, )¢
(Eventually/Finally), meaning the formula ¢ must
be true at least once within the time interval [a, b],
formally 3t € [a,b] : &(t); (i) Gjapo (Al-
ways/Globally), meaning the formula ¢ must be
true throughout the entire time interval [a, b], for-
mally V¢ € [a,b] : ¢(t); and (iii) ¢1U|4 p)P2 (Un-
til), meaning ¢; must hold until ¢5 becomes true
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within the time interval [a, b], formally 3t € [a, b] :
p2(t) AVt € [a,t) : ¢1(t') (Maler and Nickovic,
2004; Donzé€ et al., 2013). The bounded time inter-
vals enable precise specification of real-time con-
straints essential for cyber-physical systems.

A.1.5 Extended Operators

For practical applications, STL often includes de-
rived operators that can be expressed using the core
grammar: (i) Rise operator T ¢ = —¢lU ¢, detecting
positive edges; (ii) Fall operator | ¢ = ¢l ¢, de-
tecting negative edges; (iii) Weak Until g1 Weo =
Go1 V (p1ldpa), where ¢q holds indefinitely or un-
til ¢o; and (iv) Release ¢1Rpo = —(—p1UU—¢2),
the dual of Until (Pnueli, 1977).

A.1.6 Universal Dependencies

Universal Dependencies (Nivre et al., 2016) repre-
sents syntax as directed graphs G = (V, E, {) with
word nodes V, dependency edges E, and labels
¢ : E — R from 37 universal relations including
core arguments (nsubj, obj), modifiers (advmod,
nmod), and function words (mark, det).

A.1.7 Dependency Relations

The 37 universal relations are organized into sev-
eral categories: (i) Core arguments: nsubj (nom-
inal subject), obj (object), iobj (indirect ob-
ject); (i) Non-core dependents: obl (oblique),
vocative, expl (expletive), dislocated; (iii)
Nominal dependents: nmod (nominal modifier),
appos (apposition), nummod (numeric modifier);
(iv) Clausal dependents: advcl (adverbial clause),
acl (clausal modifier), ccomp (clausal comple-
ment); (v) Modifier words: advmod (adverbial
modifier), amod (adjectival modifier); (vi) Func-
tion words: aux (auxiliary), cop (copula), mark
(marker), det (determiner), case (case marking)
(De Marneffe et al., 2021).

A.1.8 Dependency Patterns

A dependency pattern P = (r, h,d,C') consists
of relation r, head/dependent constraints h/d, and
contextual constraints C'. Pattern P matches edge
(u,v) when all constraints are satisfied. For tem-
poral expressions, key patterns include: (i) advmod
patterns for temporal adverbs (e.g., always, even-
tually); (ii) mark + nummod patterns for bounded
expressions (e.g., within 5 seconds); (iii) advcl pat-
terns for subordinate temporal clauses (e.g., until X
happens); and (iv) compound patterns combining
multiple relations for complex expressions.

A.2 Detailed Methodology
A.2.1 Dataset

We utilize the circuit_total_refined lifted NL-
STL pairs dataset constructed by Chen et al. (2023)
evaluation', containing 7,003 natural language sen-
tences paired with their corresponding Signal Tem-
poral Logic (STL) formulas. Each entry consists
of six fields: (i) ID: unique sentence identifier; (ii)
Sentence: natural language expressing temporal
properties; (iii) LTL: temporal logic formula with
English operators (e.g., "always", "eventually");
(iv) Logic Sentence: sentence with marked atomic
propositions; (v) Logic LTL: formula with propo-
sitions as word spans (Span ¢, 5); and (vi) Propo-
sitions: list of atomic propositions. The dataset
provides comprehensive coverage of temporal oper-
ators (G, F, U and bounded variants), diverse syn-
tactic structures, varying proposition complexity (0-
4 propositions per sentence), and expert-annotated
ground truth formulas for evaluation.

A.2.2 Computational Infrastructure

All evaluations and analyses were conducted on
NVIDIA Saturn Cloud utilizing 2xNVIDIA A100
GPUs, 32 CPU cores, 512GB RAM, and 5TB disk
storage over approximately 514 hours of compute
time. The implementation employed SpaCy 3.8.0
with the en_core_web_lg model (Honnibal and
Montani, 2017) for dependency parsing follow-
ing Universal Dependencies v2 guidelines (Nivre,
2020), selected for its state-of-the-art accuracy
and comprehensive syntactic coverage. The soft-
ware stack comprised Python 3.x (Van Rossum
and Drake Jr, 2009) with core libraries includ-
ing JSON for data serialization (Charollais, 2017),
regular expressions for pattern matching, difflib
for similarity computation, and explicit memory
management through garbage collection. The
SpaCy pipeline was configured with tokenization
preserving exact positions for ground truth align-
ment, part-of-speech tagging using Penn Treebank
tagset (Marcus et al., 1994), dependency pars-
ing, named entity recognition, and lemmatization.
This infrastructure supported a multi-stage pro-
cessing pipeline encompassing data loading from
the circuit_total_refined dataset (Chen et al.,
2023), preprocessing for token alignment, linguis-
tic analysis via dependency parsing, UD pattern
extraction, STL formula construction, and com-

'This dataset originally came from He et al. (2022), which
was then transformed by Chen et al. (2023) in their evaluation.



prehensive evaluation through similarity metrics.
The substantial computational resources enabled
efficient batch processing and in-memory caching
strategies, ensuring both reproducibility and com-
putational efficiency across the 7,003 sentence
dataset.

A.2.3 Universal Dependencies Parsing

Each sentence undergoes preprocessing to maintain
word span alignment with ground truth annotations.
SpaCy’s pipeline transforms text into annotated lin-
guistic structures through tokenization (preserving
position information), part-of-speech tagging (pro-
viding grammatical categories), and dependency
parsing (constructing directed graphs with 37 UD
relation types). The parser produces dependency
trees capturing both local and long-distance rela-
tionships crucial for temporal expressions. This
structured representation enables identification of
systematic correspondences between syntactic pat-
terns and temporal logic operators.

A.2.4 Pattern-Based Extraction Framework

The pattern extraction framework implements
twelve core patterns designed to map Universal
Dependencies structures to Signal Temporal Logic
operators. These patterns, defined in a structured
dictionary, capture temporal relationships through
specific dependency configurations as featured in
Table 1. The extraction pipeline processes sen-
tences through four integrated components: pat-
tern detection traverses dependency trees match-
ing against canonical patterns and lexical variants;
temporal component extraction maps keywords
like "always," "eventually,”" "within," and "for" to
STL operators (G, F, Fg 1), Gox)) with associ-
ated bounds; logical operator extraction identifies
connectives (A, V, 1, —, <) through compound
phrase detection and token analysis; and atomic
proposition extraction analyzes dependency sub-
trees to identify signal references and comparison
operators. Throughout this process, the system
maintains precise word span alignment, with each
extracted component storing its token span, opera-
tor type, textual representation, and Universal De-
pendencies evidence, enabling compositional STL
formula construction while preserving linguistic
provenance for error analysis and interpretability.

nn

A.2.5 STL Formula Construction

The STL formula
a  compositional

construction employs
approach  through the

construct_stl_formula_independent  func-
tion, which processes extracted components
in three stages. First, semantic role extraction
analyzes the Universal Dependencies parse to
identify whether propositions serve as conditions,
assertions, or temporal bounds based on depen-
dency markers (mark, aux, advcl) and modal
expressions. Second, logical structure building
determines operator precedence and scope by
analyzing the syntactic hierarchy, with temporal
operators applied according to their position in
the dependency tree and logical connectives main-
taining their syntactic scope. Third, the system
constructs the final STL formula by recursively
combining atomic propositions with temporal
operators (G, F, U) and logical connectives (A, V,
-, —), applying bounded intervals where numeric
modifiers are present. The construction process
handles nested temporal expressions through depth-
first traversal of the logical structure, ensuring
correct operator precedence (negation > temporal
> conjunction > disjunction > implication) while
preserving the semantic relationships encoded in
the dependency parse. Formula normalization
standardizes spacing, operator symbols, and
parenthesization to enable consistent comparison
with ground truth annotations.

A.2.6 Evaluation of UDR and STL
Relationships

This study evaluates the proposed formal rela-
tionship between Universal Dependencies Rela-
tions and Signal Temporal Logic through com-
prehensive empirical analysis of 7,003 sentence-
STL pairs. The evaluation framework employs
multiple metrics: exact match accuracy using ad-
vanced formula normalization handling operator
equivalences and structural variations; similarity
scores via SequenceMatcher providing gradient
correctness measures (0-1); component-wise accu-
racy separately assessing temporal operators, logi-
cal connectives, atomic propositions, and temporal
bounds; and error severity classification into five
levels based on similarity thresholds (complete fail-
ure < 0.2, major errors 0.2 — 0.4, moderate errors
0.4 — 0.6, minor errors 0.6 — 0.8, near matches
> 0.8).

The evaluation procedure follows eight system-
atic steps: (i) dataset loading and SpaCly initial-
ization; (ii) preprocessing to maintain word span
alignment; (iii) dependency parsing to generate UD
trees; (iv) pattern matching against twelve defined



patterns; (v) temporal/logical component extrac-
tion; (vi) compositional STL formula construction;
(vii) comparison with ground truth using evalua-
tion metrics; and (viii) statistical analysis of pattern
occurrences, error distributions, and complexity
correlations. Within this framework, the evalua-
tion focuses on three key analyses of UDR-STL
relationships: (i) Pattern-to-STL mapping analysis
exploring the relationship between specific UDR
patterns and STL operator combinations; (ii) Pat-
tern variation analysis examining extensive syn-
tactic diversity by identifying sentences where ex-
pected STL operators appear without canonical
pattern matches, revealing variants such as "con-
tinuously," "constantly,” and "throughout" for the
"always" operator, and quantifying coverage im-
pact to determine which patterns exhibit the most
variation; and (iii) Co-occurrence analysis between
individual UDR patterns and STL components to
identify systematic associations between syntactic
structures and logical operators. This systematic
approach ensures reproducibility while capturing
both overall performance and detailed insights into
the pattern-based approach’s strengths and limita-
tions.

A.2.7 Statistical Analysis

Evaluation employs multiple metrics including
exact match accuracy using advanced formula
normalization handling operator equivalences
and structural variations; similarity scores via
SequenceMatcher providing gradient correctness
measures (0-1); component-wise accuracy sepa-
rately assessing temporal operators, logical connec-
tives, atomic propositions, and temporal bounds;
and error severity classification into five levels
based on similarity thresholds (complete failure
< 0.2, major errors 0.2 — 0.4, moderate errors
0.4 — 0.6, minor errors 0.6 — 0.8, near matches
> 0.8).

We conduct three primary analyses to evaluate
the UDR-STL relationships: (i) Pattern-to-STL
mapping analysis exploring the relationship be-
tween specific UDR patterns and STL operator
combinations, quantifying how frequently each pat-
tern correctly maps to its expected operator versus
alternative mappings, and identifying systematic
deviations from theoretical predictions; (ii) Pattern
variation analysis examining extensive syntactic
diversity by identifying sentences where expected
STL operators appear without canonical pattern
matches, revealing variants such as "continuously,"

"constantly," and "throughout" for the "always"
operator, and quantifying coverage impact to deter-
mine which patterns exhibit the most variation; and
(>iii) Co-occurrence analysis between individual
UDR patterns and STL components using lift anal-
ysis to identify systematic associations between
syntactic structures and logical operators, revealing
which pattern combinations most strongly predict
specific temporal logic constructs.

A.3 Tables
No. Pattern UD Pattern Logic Variation Cnt %
Any Time det("any")+ G every time 1,079 1.16
1 Global nmod("time")
det(every, time) 704  0.76
Subtotal 1,783 191
) Become/ compound 1 ® becomes 0 0.00
Change ("become” |
Rise "change")
Subtotal 0 0.00
Bounded mark("after”)+ F[k,oo] mark(after, instant) 17 0.02
After nummod
3 mark(after, be) 3 0.00
mark(after, is) 3 0.00
All Others 9 001
Subtotal 32 0.03
Always advmod G advmod(always, is) 1,704  1.83
("always")
4 during the first 904 097
during the next 472 0.51
All Others 7813 838
Subtotal 10,893 11.69
Eventually — advmod("event- F at most 1,840 1.97
ually”)
5 advmod(eventually, 743 0.80
be)
advmod(finally, be) 631 0.68
All Others 6,967 747
Subtotal 10,181 10.92
Bounded mark("for")+ G[0,k] mark(for, :) 5 0.01
For nummod
6 mark(for, ,) 4000
mark(for, needs) 1 0.00
Subtotal 10 0.01
Bounded mark("within") F[0,k] within 3,000 3.22
Within +nummod
7 within the first 1,046 1.12
within the coming 463 0.50
All Others 1,731 1.86
Subtotal 6,240  6.69
If-Then advmod("then")+ — then 16,098 17.27
Impl. mark("if")
8 it is always 5,543 5.95
when 5229 5.6l
All Others 36,208 38.85
Subtotal 63,078 67.68
Negated advmod -G  never 206 0.22
9 Always ("never")
Subtotal 206 0.22
10 No Longer  advmod("no 1P NA 0 0.0
Fall longer™)
Subtotal 0 0.00
Until mark("until”)+ U mark(before, ends) 467 0.52
advcl
11 mark(until, ends) 160  0.17
mark(until, is) 49  0.05
All Others 86  0.09
Subtotal 782  0.84
12 When First mark("wher}")+ T & NA 0 0.00
Rise advmod("first")
Subtotal 0 0.00

Grand Total 93,205 100.00

Table 3: Pattern variation analysis with logic operators



