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Abstract
In recent years, Large Language Models001
(LLMS) have exhibited remarkable proficiency002
in comprehending and generating language.003
Consequently, LLMs have become an inte-004
gral part of AI system building. However, it005
has been observed that in the case of domain-006
specific QA (DSQA), direct prompting tech-007
niques do not fully leverage the capabilities of008
LLMs, especially in the case of a zero-shot set-009
ting, due to the scarcity of annotated data and010
the nonavailability of tailored retrieval data. To011
address this gap, we propose a self-knowledge012
generative prompting technique for DSQA that013
generates the necessary knowledge for accu-014
rate responses using LLMs in a zero-shot set-015
ting. By experimenting with LLMs of varied016
size ranging from 3.8B to 70B, we demonstrate017
significant improvements in the results, with018
marginal gains of over 4% to 10% on various019
datasets and even improving domain-specific020
models.021

1 Introduction022

LLMs have made tremendous progress in common-023

sense and open-domain QA (Zhao et al., 2024; Li024

et al., 2024), but the QA task still presents chal-025

lenges in handling domain-specific scenarios. This026

is due to the complexity of questions, especially027

where the understanding and synthesis of informa-028

tion from multiple parts of the question is required.029

Intrinsic ambiguity in the question can be yet an-030

other challenge that may require extensive context031

to answer accurately (Bhat et al., 2023). Along032

with this, the scarcity of annotated data and the033

inclusion of irrelevant, ambiguous, and insufficient034

information present yet another challenge in mak-035

ing an efficient DSQA model. For example, a036

Geographic QA needs to understand spatial data037

and geographic entities that are not common in038

general QA tasks (Mai et al., 2021). Similarly, QA039

in the medical domain always presents many chal-040

lenges, such as specificity, scarcity of annotated041

data, and inclusion of irrelevant, ambiguous, and 042

insufficient information (Jain et al., 2022). Intrin- 043

sic ambiguity in the question can be yet another 044

challenge that may require extensive context to 045

answer accurately (Bhat et al., 2023). 046

Figure 1: The question presents LLM with an out-of-
the-box question by asking it based on a hypothetical
scenario and shows the LLM’s difficulty in answering a
question consisting of different scenarios.

Recent literature has attempted to address these 047

challenges within specific domains, such as fine- 048

tuning an LLM using domain-specific data, etc. 049

However, this approach often compromises the 050

LLM’s performance across diverse tasks and its 051

ability to comprehend a wide range of instruc- 052

tions (Ceballos-Arroyo et al., 2024). Additionally, 053

developing such models is complicated by the ne- 054

cessity for curated domain data, which may not 055

be accessible for every field. This issue is partic- 056

ularly pronounced in zero-shot scenarios, where 057

there is insufficient data to utilize or train special- 058

ized retrieval-reader models, resulting in existing 059

methodologies failing to fully exploit the capabili- 060

ties of LLMs when they are invoked implicitly (Li 061

et al., 2024). 062

With these challenges, there are no techniques 063

that are presently available in the literature that can 064

utilize the potential of LLMs to solve zero-shot 065
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domain-specific QA problems. To fill this gap, here066

we focus on zero-shot DSQA without any training067

or external data. In this paper, we propose a new068

promoting technique called KnowDomain. that069

uses the capabilities of LLMs’ learned knowledge070

to enhance its adaptability to domain-specific QA,071

hence improving its performance while keeping072

its generality intact. Our approach utilises multi-073

step deep dive prompting, which involves first con-074

structing a knowledge base by presenting multiple075

thoughtfully created general sets of instructions to076

an LLM. Then this knowledge is combined to cre-077

ate a complete knowledge base, which is presented078

as in-context learning. The novelty of our frame-079

work is the selection of meticulously thought-out080

information such that it can be applied to any do-081

main with minimal change in LLM’s instructions.082

Contributions.083

(i) We develop KnowDomain Prompting with zero-084

shot learning to improve LLMs’ performance on085

DSQA.086

(ii) We present a new agriculture question answer-087

ing dataset focused on plant pathology to mitigate088

the possible data leakage with existing LLMs.089

(iii) We conduct an extensive analysis with mul-090

tiple baselines and models to show the effective-091

ness of KnowDomain Prompting on the Medical092

benchmarks dataset and our plant pathology data.093

While we demonstrate the superiority of our de-094

veloped prompting techniques on benchmark med-095

ical datasets and expert-created agricultural data096

focused on plant pathology, our framework is suit-097

able and can be applied to any domain.098

2 Related Work099

Zero-Shot Question Answering Zero-shot QA100

has become increasingly important for enabling101

large language models (LLMs) to generalize across102

tasks and domains without domain-specific fine-103

tuning. Early work like (Brown et al., 2020)104

demonstrated the power of large-scale language105

models to perform zero-shot QA through natural106

language prompting. While studies such as (Zhou107

et al., 2022) emphasize the benefits of multi-task108

training for improved zero-shot generalization,109

(Ma et al., 2021) also shows that training on se-110

lected key tasks can significantly boost zero-shot111

performance across QA benchmarks. (Gramopad-112

hye et al., 2024) converts tasks to multiple-choice113

formats and (Zhao et al., 2022) leverages novel114

question generation strategies. These methods col-115

lectively aim to reduce the dependency on anno- 116

tated data while maintaining strong QA capabili- 117

ties. 118

Prompting Strategies. Prompting strategies are 119

central to the success of zero-shot QA. Traditional 120

approaches such as Chain-of-Thought (CoT) (Ko- 121

jima et al., 2022; Wei et al., 2022) and Plan-and- 122

Solve (PS+) (Wang et al., 2023) simulate step- 123

by-step reasoning but often rely on handcrafted 124

or static prompt templates. Question-Analysis 125

Prompting (QAP) (Yugeswardeenoo et al., 2024) 126

enhances model comprehension by encouraging 127

intermediate question interpretation before answer 128

generation. Techniques like DDPrompt (Mu et al., 129

2024) adapt prompts dynamically based on input 130

complexity, improving both understanding and an- 131

swer accuracy, while EchoPrompt (Mekala et al., 132

2024) does this by reiterating the question. More 133

recently, the ARR (Analyzing, Retrieving, and Rea- 134

soning) framework (Yin and Carenini, 2025) intro- 135

duces a structured zero-shot prompting methodol- 136

ogy that decomposes the QA process into three 137

explicit steps: analyzing the intent of the ques- 138

tion, retrieving relevant background knowledge, 139

and reasoning through the final answer. It provides 140

stronger guidance to LLMs compared to conven- 141

tional zero-shot methods. 142

Knowledge-Driven Prompting Recent work on 143

knowledge-driven and self-adaptive strategies en- 144

ables more effective zero-shot generalization. Self- 145

prompting frameworks (Li et al., 2024) and Hin- 146

tQA (Mozafari et al., 2024) allow models to in- 147

trospect and generate contextually appropriate in- 148

formation without external retrieval. These ad- 149

vances help the model to know more context for 150

the questions, but they are mainly focused on han- 151

dling the ODQA. Although these models cannot 152

be directly applied in many cases for DSQA, with 153

modifications, a similar approach can be impactful 154

in special domains, where questions often require 155

deep contextualization, specialized vocabulary, and 156

multi-hop reasoning across concepts. 157

In specialized domains like healthcare, the value 158

of zero-shot QA is magnified due to the scarcity 159

of annotated data and the complexity of domain 160

knowledge. Several large-scale medical datasets 161

such as MedQA (Jin et al., 2020), MedMCQA (Pal 162

et al., 2022), MMLU-Medicine (Hendrycks et al., 163

2021), and PubMedQA (Jin et al., 2019) have facil- 164

itated benchmarking for medical LLMs. Recent ef- 165

forts in building medical-specific LLMs, including 166

PMC-LLaMA (Wu et al., 2023), MedAlpaca (Han 167
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et al., 2023), Meditron (Chen et al., 2023), MedL-168

LAMA (Med) and OpenBioLLM (Ankit Pal,169

2024)demonstrate that domain-aligned pretraining170

improves reasoning in clinical contexts. While171

many of these models benefit from fine-tuning or172

retrieval mechanisms, such as the extractive ap-173

proach in XAIQA (Stremmel et al., 2023) or the174

retriever-augmented method in MK-RAG (Shi et al.,175

2023), they depend on curated knowledge bases176

or records. Some studies also cite that fine-tuning177

LLMs on domain-specific data can improve in-178

domain performance, while several studies (Xu179

et al., 2021; Chen et al., 2023) caution that such180

specialization may restrict the model’s general rea-181

soning ability and reduce adaptability to new in-182

structions. This trade-off highlights the need for183

flexible prompting strategies that preserve gener-184

alization while supporting domain relevance. Col-185

lectively, these strands of research reveal a grow-186

ing emphasis on adaptive prompting and zero-shot187

learning to improve LLM generalisation.188

3 KnowDomain: A Zero-shot Prompting189

Our aim is to enable an LLM for robust domain-190

specific QA by familiarising it with intrinsic relat-191

able knowledge to better understand a given ques-192

tion. The procedure is listed in Algorithm 1.193

Algorithm 1 KnowDomain
QA_model (L,L′ : LLM,Q,Op,m)
1: for all (Qi, Opi) ∈ (Q,Op) do
2: Generate keywords Ki = {kw1, kw2, . . .} (L)
3: Entities: Filter non-important keywords

Ei = {ke1, ke2 . . .}
4: Generate knowledge for selected entities

Iei =L(kei)
5: Generate similar and abstracting questions(L)

SQi = {q1, q2, . . .}
6: Extract valid explanations

Exi = {e1, e2 . . .}
7: Create a similarity_matrix: sim(Iei,Iej)
8: Select m most dissimilar knowledge

I = {I1, I2, . . .}
9: Initialize gk_list = []

13: Create prompt pi
pi = prompt(Qi, Opi, gk_list[i], ei)

14: answer = L′(pi)

The initial step involves identifying challeng-194

ing domain-specific keywords that a general LLM195

might misinterpret if their meanings are not em-196

phasized. To achieve this, we provide LLMs with a197

set of fundamental criteria to extract only domain-198

specific keywords. Subsequently, we query each199

keyword to produce a succinct response regarding200

it. The objective is to enhance the LLM’s com- 201

prehensibility by addressing each keyword individ- 202

ually. This approach allows the LLM to concen- 203

trate on one keyword at a time, yielding a brief 204

response with reduced hallucination (Zhou et al., 205

2024; Maynez et al., 2020). Following this, we 206

request the model to generate a concise note that 207

may assist in addressing the questions, and we also 208

ask the model to formulate a set of ten new ques- 209

tions and answers related to the original inquiry, 210

ensuring the exclusion of any private or confiden- 211

tial information and refraining from directly an- 212

swering the questions. After all the generations, 213

we integrate this knowledge, which is provided to 214

the model in the final step, where we prompt the 215

model to respond to the original question. The 216

rationale behind this methodology is that the gen- 217

erated knowledge aids the LLM by deconstructing 218

the information presented as a question and supply- 219

ing it with pertinent knowledge, thereby enhancing 220

the model’s focus on the necessary information for 221

answering the question. The complete framework 222

is illustrated in Figure 2, and the statistics of the 223

generated knowledge are detailed in Table 1. 224

Table 1: Statistics of generated knowledge for Llama8B and
Llama80B model. ’Avg’ denotes average, ’K’ denotes key-
word and ’Q’ denotes generated question. The bold number
denotes the minimum value w.r.t model

Model Data Avg K Total K Avg Q Total Q

Llama
PFACT

4.05 1449 9.92 3550
Llama80B 3.95 1413 9.66 3460
Llama

PFAKE
5.67 851 9.79 1468

Llama80B 5.93 889 9.59 1438

Llama
MFCT

6.05 581 9.38 900
Llama80B 5.96 572 9.6 922
Llama

MNOTA
4.74 2372 9.66 4831

Llama80B 5.04 2522 9.43 4713
Llama

MFAKE
11.75 21835 9.36 17395

Llama80B 8.46 15717 9.64 17909
Llama

USMLE
9.65 12283 9.29 11826

Llama80B 10.79 13734 9.96 12676
Llama

MedMCQA
4.7 13247 9.58 26981

Llama80B 4.6 12966 9.65 27178

Llama All
Data

6.66 52618 9.57 66951
Llama80B 6.39 47813 9.65 68296

Avg/Total All Data 6.53 100431 9.61 135247

4 Experimental Setup 225

4.1 Datasets 226

For the experiment, we utilised four diverse 227

datasets, of which three are medical data and one 228

is self-curated plant pathology data, to assess the 229

performance of our technique comprehensively. 230
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Figure 2: KnowDomain: First, keywords and new questions are generated. Secondly, we generate keyword
information by asking for details of each keyword(entity), creating the knowledge base(KB). We have used the
LLaMA3 Instruct 8B model for both generations. Then, we filter and remove very similar information for keywords
and questions. Finally, the KB is used to answer the final question. Blue modules are frozen in the architecture,
while yellow modules can be fine-tuned.

These are MedHALT (Pal et al., 2023), MedM-231

CQA (Pal et al., 2022), MedQA_USMLE (Jin232

et al., 2020) and PlantQA. MedHALT dataset233

includes three different types for QA: a) False234

Confidence Test (MedHALT_FCT), b) None235

of the Above Test (MedHALT_NOTA), and c)236

Fake Question Test (MedHALT_FAKE). Also,237

PlantQA consist of two types of questions: a)238

Question bases on facts (PFACT) and b) fake239

questions based on fiction (PFAKE) similar240

to MedHALT_FAKE. In this paper, we use241

MFCT, MNOTA, MFAKE and USMLE as242

abbreviations respectively for MedHALT_FCT,243

MedHALT_NOTA, MedHALT_FAKE and244

MedQA_USMLE. Detailed descriptions of these245

datasets are provided in Appendix A.246

4.2 Language Models (LLMs)247

We selected multiple open-source LLMs with248

varying sizes and capabilities to ensure a ro-249

bust evaluation. These included LLaMA 3.1 In-250

struct 8B, Qwen (Yang et al., 2024), OpenBi-251

oLLM 8B (Ankit Pal, 2024), MedLLama 8B (Med),252

LLaMA 3.1 Instruct 70B (Dubey et al., 2024) and253

Phi-4-mini 3.82B (Abouelenin et al., 2025). We254

used the Instruct variants of all the mentioned255

LLMs to compare their performance under differ-256

ent prompting conditions. All the LLMs selected257

in this paper are open-source models, which will258

help interested researchers to continue with this259

analysis. Here, we will use some model abbrevia-260

tions as Llama, Llama70B, BioLLM, MedLLama, 261

and Phi4 for LLaMA 3.1 Instruct 8B, LLaMA 3.1 262

Instruct 70B, OpenBioLLM 8B, MedLLama 8B, 263

and Phi-4-mini 3.82B, respectively. 264

4.3 Prompting Techniques 265

To validate our framework, we compare it 266

with multiple inference-time prompting base- 267

lines, these are Base, COT (Kojima et al., 268

2022), QAP (Yugeswardeenoo et al., 2024), 269

EchoPrompt (Mekala et al., 2024), ARR (Yin and 270

Carenini, 2025), and HintQA (Mozafari et al., 271

2024). These prompts are a combination of step- 272

wise, deliberation-based, and knowledge-based 273

prompting. Where COT encourages models to 274

generate intermediate reasoning steps before ar- 275

riving at a final answer. QAP involves prompting 276

models to generate questions and answers about 277

a context before solving the main task, promot- 278

ing deeper comprehension. EchoPrompt guides 279

models to rephrase questions in a model-preferred 280

style before answering, enhancing understanding 281

and robustness across tasks. ARR prompting de- 282

composes the task into three stages-posing clari- 283

fying questions, refining the generation, and then 284

responding to boost reasoning quality and output 285

accuracy. HintQA integrates explicit hints or auxil- 286

iary questions into the prompt to steer the model 287

toward relevant reasoning paths, improving fac- 288

tual consistency and task-specific accuracy. The 289

prompt structure of each technique is mentioned 290
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in Table 10. Further detailed description of the291

prompt used is mentioned in Appendix C. In the292

results, we have used "Echo" as the abbreviation293

of EchoPrompt.294

4.4 Experimental Procedure295

In KnowDomain first, we generated the required296

knowledge as mentioned in Algorithm 1 using the297

Llama model. Then, for each LLM and dataset298

combination, we thoroughly compared the accu-299

racy of the baselines mentioned in Section 4.3 and300

the proposed method KnowDomain. We did label301

extraction in two phases. In step one, we extracted302

predictions using regular expressions, and then for303

the remaining not-matching datapoints, we used304

the Llama80B model for answer selection. Here we305

provide the options corresponding to the datapoint306

and model prediction, next we asked Llama70B307

to select the appropriate option given the predic-308

tion text. Our evaluation focuses on measuring309

the effectiveness of our technique in improving310

the reliability of LLMs with AI-generated domain311

information. The results of these experiments are312

presented and analysed in the subsequent sections.313

The default values for temperature, top_p, and seed314

are 0.2, 0.9, and 42, respectively. The temperature315

value was selected based on the analysis with dif-316

ferent models, since neither of the very low or high317

values gave the best performance in all cases, we318

selected the appropriate average of the tested range,319

which is 0.01, 0.1, to 0.5. The seed and top are320

based on general convention in the literature. All321

the results mentioned are of a single run with the322

max token values as mentioned in the Table 2. All323

the experiments are done on four 50GB NVIDIA324

RTX A6000, except the Llama80B, for which we325

used six 40GB NVIDIA A100 GPUs. The total time326

for experimenting took 2841 hours, where knowl-327

edge generation and question answering took 750328

and 2071 hours, respectively.329

By leveraging a diverse set of datasets, advanced330

language models, and a rigorous evaluation frame-331

work, our study provides a comprehensive assess-332

ment of the proposed prompting technique’s im-333

pact on making LLM robust in domain applica-334

tions.335

5 Results336

This section presents the extensive evaluation337

of the proposed approach with different prompt-338

ing techniques on various datasets using multiple339

LLMs. The objective is to assess the performance 340

of each approach and provide insights into their ef- 341

fectiveness in different scenarios. The focus of this 342

analysis is on the accuracy enhancements achieved 343

through our method. The evaluation across differ- 344

ent datasets reveals notable improvements in accu- 345

racy, particularly with our approach. KnowDomain 346

and its variants achieved the best performance for 347

each dataset over different models. The perfor- 348

mance of various LLMs utilising the proposed tech- 349

niques is summarised in Table 3. For instance, in 350

the USMLE dataset, the accuracy of Llama showed 351

a substantial increase of almost 10% from base 352

and HintQA, where generated knowledge is used. 353

This highlights the effectiveness of our method. In 354

both of the large dataset USMLE and MCQA, our 355

approach shows a gain of more than 10% in case 356

of USML for all the models. For BioLlama, the 357

multiprompt showed a gain of more than 20% from 358

its base case and more than 10% from all of the 359

prompting methods. Similarly MedLlama showed 360

gain of 15% on average. Both the BioLlama and 361

MedLlama are medical LLM even then providing 362

appropriated knowledge helped the models. In 363

case of MCQA, Multiprompt showed slight im- 364

provement compared to other promptings, except 365

for BioLlama, where it gained by a minimum of 366

7% The effectiveness of the method is consistent 367

in most of the data and model pairs, even show- 368

ing improvements in the case of domain-specific 369

models. Overall, these findings suggest that our 370

method yields substantial improvements across 371

datasets, emphasising its critical role in enhancing 372

the performance of LLMs. However, the results 373

also highlight that variation in accuracy based on 374

different prompts, especially among strategies in- 375

volving "trigger sentences" as the main method. 376

Highlighting the sensitivity of prompt variations 377

and the need for tailored approaches to maximise 378

its effectiveness. The method also showed better 379

performance w.r.t HintQA in all cases where LLM- 380

generated hints were used as a context/knowledge. 381

5.1 Ablation Studies 382

To gain a deeper understanding of the factors 383

that contribute to the success of MultiPrompt, 384

we perform a series of ablation studies. In this 385

section, we present a subset of these studies. 386

For a comprehensive set of ablation studies on 387

MultiPrompt, please refer to Appendix C. 388

389

Results on Fictional data 390
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Keyword Keyword Definition Notes and Question generation Hints generation Base Other prompts

128 256 512 512 64 512

Table 2: Value of Max tokens hyperparameter of LLM for different settings

Data Model Base COT QAP Echo ARR HintQA KD-K KD-NQ KD

PFACT

Llama 71.14 72.86 70 72 71.43 64 64.29 74 75.71
Qwen 66.86 67.14 64.86 67.14 66.29 59.43 66 75.43 75.43
BioLlama 54.57 55.43 34.86 49.71 57.43 59.71 55.14 69.14 72.86
MedLlama 63.71 58 67.43 64.86 54.29 64.29 60 74 73.14

MFCT

Llama 50 57.29 62.5 59.38 56.25 55.21 54.17 56.25 57.29
Qwen 55.21 54.17 59.38 60.42 53.12 46.88 51.04 64.58 58.33
BioLlama 44.79 37.5 27.08 44.79 44.79 47.92 50 59.38 55.21
MedLlama 53.12 54.17 62.5 52.08 56.25 55.21 52.08 60.42 58.33

MNOTA

Llama 21.2 29.2 19.4 28.6 26 25.8 46.2 39.8 41.2
Qwen 26.8 27.8 18.2 43.8 31 20.6 29 33 29.6
BioLlama 16.4 24.2 6 15.4 24.2 18.6 16.4 23.6 20.4
MedLlama 24.8 35.8 20.6 29.8 34.2 31 16.8 31.6 26.4

USMLE

Llama 61.9 68.03 66.3 67.09 61.43 61.12 56.17 70.54 70.62
Qwen 56.56 56.95 58.13 57.11 56.64 57.19 54.28 70.23 69.84
BioLlama 40.77 56.4 14.93 54.6 52.32 53.34 48.23 67.32 64.26
MedLlama 55.77 55.93 59.23 57.66 59.94 61.43 51.22 69.52 68.81

MCQA

Llama 57.6 60.32 58.91 60.19 58.63 52.88 52.73 60.33 59.59
Qwen 54.37 52.49 54.26 59.16 54.12 48.76 49.15 59.23 59.77
BioLlama 44.64 49.5 23.79 43.29 50.53 51.07 49.15 57.14 57.81
MedLlama 56.18 50.36 59.62 54.33 54.26 55.29 52.84 59.66 59.45

Table 3: Accuracy results across multiple models and datasets using different prompting. The table reports the accuracy(%) achieved by each model-dataset pair
under various prompting strategies. "KD-K" "KD-NQ" and "KD" refer to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with only
keyword knowledge and "KD-NQ" denotes QA with only notes and sample questions. Bolded values (if applicable) indicate the highest accuracy for each dataset
and model. colored cell denotes the best accuracy achieved for the data, and underline denotes if our method obtained the second highest accuracy for the data and
model. Blue columns and green columns represent methods with partial knowledge and full knowledge, respectively. This comparison highlights the effectiveness of
the proposed framework with performance variation due to both prompt design, model capabilities and nature of different datasets.

Data Model Base COT QAP Echo ARR HintQA KD-K KD-NQ KD KD-simple

PFAKE

Llama70B 72.67 35.33 54.67 42 40 83.33 34 87.33 80.67 82
Llama 18.67 22.67 14 31.33 33.33 72.67 32 50 43.33 85.33
Qwen 54.67 58 41.33 85.33 57.33 64.67 34 56.67 46 71.33
BioLlama 4.67 4.67 0 12 8.67 36 2.67 21.33 15.33 19.33
MedLlama 1.33 46.67 0.67 24 50.67 37.33 15.33 46 30 47.33
Phi4 58.67 38 53.33 42.67 40.67 41.33 62.67 58 54 53.33

MFAKE

Llama70B 16.2 8.72 21.2 22 8.5 36.17 10.06 18.26 26.065 18.14
Llama 5.92 7.48 4.36 19.27 11.46 40.9 13.35 6.46 12.11 76.37
Qwen 23.04 23.2 12.11 40.85 22.17 29.17 18.08 15.61 14.37 31.13
BioLlama 13.94 17.65 9.53 23.3 17.22 67.06 24.06 29.66 39.29 62.59
MedLlama 9.04 29.6 10.33 16.9 29.12 66.09 11.25 11.09 20.78 58.4
Phi4 14.59 13.72 14.1 13.89 10.66 15.12 15.45 13.46 12.49 14.1

PFAKE Combined 210.68 205.34 164 237.33 230.67 335.33 180.67 319.33 269.33 358.65
MFAKE 82.73 100.37 71.63 136.21 99.13 254.51 92.25 94.54 125.105 260.73

Table 4: Accuracy results across multiple models on fictional datasets using different prompting. The table reports the accuracy(%) achieved by each model-dataset
pair under various prompting strategies. "KD-K" "KD-NQ" and "KD" refers to our proposed KnowDomain prompting methods, where "KD-K" denotes QA with
only keyword knowledge, "KD-NQ" denotes QA with only notes and sample questions, KD-simple uses all the knowledge with a simple instruction, similar to
HintQA. All the notations are the same as mentioned in Table 3. This comparison highlights the effectiveness of generated knowledge with a simple instruction
where the correct answer is "I do not know".

We analyse the models on the counterfactual sce-391

narios where the fictional scenario was given in the392

question, and based on that model, the correct an-393

swer has to be selected as "I do not know". For this,394

we use the MedHALT_FAKE(MFAKE) dataset for395

counterfactual questions in the medical domain396

and PathologyQA_Fake(PFAKE) for counterfac-397

tual questions in plant pathology. Table 4 presents398

the model accuracy for these datasets on various399

prompting strategies. However, our method, Multi-400

stepPrompting, has performed better than the Base401

prompting. In general, methods with explicit rea- 402

soning requirements perform better with HintQA, 403

achieving values as high as 67% 404

Analysis with different model sizes In Figure 3, 405

we present an accuracy comparison between 406

models of different sizes across various datasets. 407

The models selected are Phi4(3.8B), Llama(8B) 408

and Llama(70B) . Our primary objective was to 409

evaluate the performance of smaller language 410

models (LLMs) up to 8 billion parameters. These 411

models are used to verify the usability of our 412
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Dataset M-8BKB M-70BKB

PFACT 75.71 68
PFAKE 43.33 68.67

FCT 57.29 75
FAKE 12.11 11.03
NOTA 41.2 41.2
USMLE 70.62 67.87
MCQA 59.59 71.38

Total 358.16 402.47

Table 5: Analysis with Knowledge Coalescence, where in ’M-8BKB’ Llama8B
model is used with generated knowledge and ’M-70BKB’ denotes the use of
Llama80B knowledge with Llama8B model. highlighting the overall effective-
ness of the better knowledge coalescence with a smaller model.

method across models of different sizes. For413

better comparison, we generated the knowledge414

for Llama70B. However, for Phi4, the knowledge415

used is of the llama8 B model. The method416

showed consistent performance across the models417

compared to different prompting strategies. We418

also note that the combined performance of419

only Notes and Questions performed better420

compared to complete knowledge, mostly due421

to its performance for the MCQA dataset. The422

complete results are given in Table 11423

424

Figure 3: Accuracy over Model of different sizes

Coalescing knowledge425

Considering the hypothesis that a larger model426

will generate better quality data, which is con-427

sistent with its performance on the QA task, we428

examine the effect of knowledge quality with429

our method. Here, we use the generated knowl-430

edge of Llama70B model as a knowledge base431

for Llama8B. Although it is believed that bet-432

ter knowledge will improve the model’s perfor-433

mance, the results obtained do not apply in all434

cases. From the Table 5 we can see that out of435

seven datasets, we see a large difference in the case436

of two datasets where the model performed worse437

than when the knowledge generated was from the438

same model. It should be noted that for the same 439

datasets, Llama70B performed better using its gen- 440

eration. 441

Effect of Sampling Temperature We tested the 442

Llama and Qwen models with six different tem- 443

perature settings, ranging from 0.1, 0.1, 0.2, 0.3, 444

0.4 and 0.5. Llama showed variance in the perfor- 445

mance without consistency between the different 446

datasets. However, Qwen showed very little varia- 447

tion across the different temperatures. Due to no 448

performance consistency within the datasets, we 449

selected the default value of 0.2 as the temperature 450

parameter. 451

Figure 4: comparison of Models over temperature

Effect of knowledge size To assess the impact 452

of the number of contextual questions provided 453

before answering, we conduct an ablation study 454

by varying this number between 3, 5, and 10. 455

The questions serve as auxiliary knowledge in- 456

tended to guide the model’s reasoning. To en- 457

sure the diversity of generated questions, we ap- 458

ply a cosine similarity-based filtering step that re- 459

moves semantically redundant content. Specif- 460

ically, we compute sentence embeddings using 461

the Sentence-Transformer model (Reimers and 462

Gurevych, 2020), and filter out any candidate that 463

exceeds a predefined similarity threshold with pre- 464

viously selected content. This encourages the final 465

set of questions to cover a broader range of dis- 466

tinct information. As shown in Table 6, includ- 467

ing 10 questions typically yields the highest accu- 468

racy across models, suggesting that this number 469

provides a good balance between informativeness 470

and focus. While decreasing from 10 questions, 471

it lacks complete information, slightly reducing 472

performance. Conversely, using only 3 questions 473

also limits the diversity of knowledge available to 474

the model. In Table 12, we have given detailed in- 475

formation, including performance on each dataset 476

and model. 477

Combining knowledge with various prompt- 478

ing techniques. Here, we analyse the Know- 479

Domain with prompts and instructions of ARR, 480
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Data KD-NQ3 KD-NQ5 KD
PFACT 228.86 233.43 297.14
PFAKE 151.33 162 134.66
MFCT 239.58 242.72 229.16
MNOTA 110.8 120.2 117.8
MFAKE 52.91 59.95 86.55
USMLE 274.39 276.98 273.45
MCQA 236.11 235.37 236.59
Total 1293.98 1330.65 1375.35

Table 6: Ablation study on the effect of including 3, 5, or 10 context questions
on model accuracy. The values mentioned for each data are summed over all
four base models. These questions are used as additional input to guide the
model’s reasoning. Accuracy is reported across multiple models and datasets.
Including 10 questions yields the best average performance.

Data Model KD KD-ARR KD-echo KD-simple

MFAKE Llama 12.11 10.93 12 76.37
Qwen 14.37 14.21 18.35 31.13

MFCT Llama 57.29 56.25 54.17 59.38
Qwen 58.33 59.38 60.42 58.33

MNOTA Llama 41.2 38.8 40.6 33.6
Qwen 29.8 29 29.8 29.4

Total 213.1 208.57 215.34 288.21
Avgerage 38.63 37.833 38.503 49.653

Table 7: Model Performance for KnowDomain with different prompts

EchoPrompt, and HintQA, and they are repre-481

sented respectively as KnowDomain-ARR(KD-482

ARR), KnowDomain-EchoPrompt(KD-echo), and483

KnowDomain-simple(KD-simple). It should be484

noted that for KnowDomain-simple, we did not485

use any generated hints but the templates men-486

tioned in the HintQA, and instead of hints, we used487

knowledge generated as per our method. Results488

for KnowDomain-simple were generated for a fic-489

tional and smaller dataset. This analysis shows490

that even though KnowDomain did not perform491

better than hintQA for the fictional task, knowl-492

edge with simplified instruction showed significant493

improvement for fictional medical data with the494

Llama model and achieved the best score for the495

dataset of 76% with KnowDomain-simple. Even496

in other cases, KnowDomain-simple consistently497

performed better or on par with HintQa, suggesting498

that simplified instructions or prompts can further499

help the model to understand the provided knowl-500

edge in a better way without distracting it from501

following complex instructions. All the results502

for this are mentioned in the Table 7. We also503

tested PFAKE with Llama for KnowDomain and504

KnowDomain-simple, and obtained accuracy of 46505

and 85.33, respectively. Signifying the simplicity506

of the prompt, especially in the case of fictional507

data.508

Compute Time Analysis In this, we analyse the509

time required for each step and the prompt meth-510

ods. In case of the generation keyword definition 511

took the most due to the inference required for 512

multiple keywords in each question. However, this 513

can be optimised in the case of creating a global 514

keyword database and hence reducing the multiple 515

inferences for the same keywords. Among differ- 516

ent prompting EchoPrompt, ARR, and QAP took 517

more time due to more token generation during 518

inference. Among models, Qwen took less time 519

than Llama, Medllama, and Phi4 took higher time 520

due to the high generation token, which shows the 521

difficulty in understanding the instruction and prop- 522

erly stopping generation if the correct answer is 523

obtained. 524

On GPU space requirement depending on dif- 525

ferent prompting, Llama70B needed an average 526

of 160GB to 200GB per run. Among the smaller 527

models, Qwen needs a higher GPU space of 27GB 528

to 45GB, and as the smallest model in this work, 529

Phi4 used 8GB to 12GB of GPU memory. 530

6 Conclusion 531

In this paper, we propose a knowledge-generating 532

prompting technique that uses zero-shot learn- 533

ing to solve Domain-Specific QA problems. We 534

have demonstrated our methods on several medi- 535

cal datasets and plant pathology data. Our method 536

consistently outperforms several baseline models, 537

establishing new benchmarks for medical large lan- 538

guage models (LLMs). Moreover, the consistent 539

performance gains across diverse datasets under- 540

score the broad applicability of our technique, par- 541

ticularly when applied to general-purpose LLMs. 542

We believe that our prompt engineering tech- 543

niques, which are presented in this paper, can help 544

to improve a general model for a specific domain 545

by just using its knowledge generation and without 546

compromising on the instructions understanding 547

capability of the model. 548

7 Limitations 549

In our prompting technique, we use the generated 550

text from an LLM to create a knowledge base, 551

which is later used to direct the development of 552

responses. Also, our technique needs more time 553

for the generation of the required knowledge than 554

only inference methods. Along with this, the gen- 555

erated text may not be free from the issue of LLM 556

hallucination and may contain incorrect informa- 557

tion. Since the generation of relevant text depends 558

on the reasoning abilities of LLMs, and the man- 559

8



ual prompts asked by users may impact it, incor-560

rect phrases may be produced during the ponder-561

ing phase of knowledge generation. The technical562

method of creating these prompts requires more563

work. We have not extensively analysed the effect564

of instruction. Our goal is for future research to565

build on our approach, which is more error-resilient566

by augmenting the current implementation with567

real-world correct data and more resilient to vari-568

ances of automatic prompt engineering. Hence,569

it can assist the existing framework in generating570

high-quality knowledge used in the later stages.571
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KnowDomain: Self Knowledge Generative Prompting for Large Language 971

Models in Zero-Shot Domain-Specific QA 972

Appendix 973

974

A 975

Dataset details 976

MedHALT (Pal et al., 2023) dataset includes three distinct tests to evaluate different aspects of model 977

performance. The False Confidence Test (FCT) presents multiple-choice medical questions with the 978

correct answer and also a randomly suggested correct answer. The model evaluates the validity of the 979

proposed answer and provides detailed explanations. It contains 95 questions. The None of the Above 980

Test (NOTA) involves multiple-choice questions where the correct answer is replaced by ’None of the 981

above.’ The model must identify this and justify its selection. This test includes 18,865 questions. The 982

Fake Question Test (FAKE) presents fake or nonsensical medical questions to determine if the model 983

can correctly identify and handle such queries. This test contains 1,857 questions. In this paper, we 984

use a random sample of 500 test data points of MedHALT_FAKE due to high computational resource 985

requirements. 986

MedMCQA (Pal et al., 2022) dataset consists of over 194k high-quality AIIMS and NEET PG entrance 987

exam multiple-choice questions covering 2.4k healthcare topics and 21 medical subjects. We have used 988

only single-answer questions for the evaluation, counting to 2816, for consistency with other datasets. 989

MedQA_USMLE (Jin et al., 2020) dataset includes 12,723 4-way multiple-choice questions from 990

practice tests for the United States Medical License Exams (USMLE), requiring biomedical and clinical 991

knowledge with 1273 test questions. 992

PlantPathologyQA is self-expert curated data based on plant pathology. It contains a total of 500 993

test data points, where 350 are factual questions and 150 are fictional questions. The factual question is 994

categorised in 24 categories, details are given in Table 9. The creation of a fictional question is similar to 995

the processes used for MedHALT_FAKE data generation. For this, we selected the random 75 factual 996

questions from PlantQA and then used these as the background questions, and we also selected two 997

sample questions from MedHALT_FAKE. Finally, we input these questions to GPT-4-turbo (OpenAI, 998

2023) and ask it to generate ten similar fictional questions. Later, these questions were verified to remove 999

any factual questions that may have been generated. However, we did not find any generation aligning 1000

with the facts. 1001

Table 8: Statistics of the data used in this paper

Data Domain Data Name Data Abb. Count
Plant
Pathology

PlantPathologyQA
PFACT 350
PFAKE 150

Medical
MedHALT

FCT 96
NOTA 500
FAKE 1858

MedQA_USMLE USMLE 1273
MedMCQA MedMCQA 2816

B Background on Prompting Methods 1002

Prompting is the process of creating natural language instructions, called prompts, to generate relevant 1003

text from a language model (Vatsal and Dubey, 2024). Text generation can be done for many tasks, 1004

ranging from classification and question answering to knowledge extraction. The prompts are designed 1005

to guide the LLMs in providing accurate responses to specific tasks without extensive retraining or 1006

fine-tuning and to generate the text in a structured manner. Prompting strategies include methods like 1007
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Table 9: Category-wise Count of Plant Pathology Topics

Fungi Virus Bacteria Control Epidemiology Nematode Plant parasite Terminology
137 58 45 21 21 15 9 8

Technique General Phytoplasma Parasite Journal Prokaryote Abiotic factor Cross protection
7 4 5 3 2 2 2 1

Fungicide Host Institute Book Method Mycorrhiza Transmission Viroid
1 1 1 1 1 1 1 1

basic/vanilla prompting, chain-of-thought, self-consistency, and many others, each tailored to enhance1008

the performance of LLMs on different natural language processing tasks. Some of the most commonly1009

used prompting methods are the following.1010

1. In Basic Prompting, we directly query the LLMs without any prompt engineering, which can1011

further improve the model performance. Basic prompting is also known as vanilla prompting.1012

2. In Chain-Of-Thought (COT) prompting method, a complex task is broken into a sequence of1013

simpler sub-tasks to get the final answer. By guiding Large Language Models (LLMs) through1014

a sequence of intermediate reasoning steps, COT aims to enhance the LLMs’ ability to perform1015

complex reasoning tasks effectively. This method has shown significant improvements over basic1016

prompting approaches, with notable performance gains observed in tasks like Mathematical Problem1017

Solving and Commonsense Reasoning (Wei et al., 2022; Kojima et al., 2022).1018

3. EchoPrompt (Mekala et al., 2024): EchoPrompt guides models to rephrase questions in a model-1019

preferred style before answering, enhancing understanding and robustness across tasks.1020

4. QAP Prompting: Question-Answer-Prompting (QAP) involves prompting models to generate1021

questions and answers about a context before solving the main task, promoting deeper comprehension.1022

We have used the QAP25 for the non-logical(Mathematical), less complex questions; it performed1023

better, and in our case, we have a non-mathematical question.1024

5. ARR Prompting (Yin and Carenini, 2025): Ask-Refine-Respond (ARR) prompting decomposes1025

the task into three stages: a) posing clarifying questions, b) refining the generation, and then c)1026

responding to boost reasoning quality and output accuracy.1027

6. HintQA Prompting (Mozafari et al., 2024): HintQA integrates explicit hints or auxiliary questions1028

into the prompt to steer the model toward relevant reasoning paths, improving factual consistency1029

and task-specific accuracy. We have used the base approach for HintQA, where hints are given1030

without any sorting. It is due to the inability to apply the mentioned scoring method due to the nature1031

of the questions and the option set. In the original paper, the answers were direct and non-optional1032

in nature. However, in our case, he options are part of the prompt passed to the models, and in many1033

cases, answers are not just an entity but a complete sentence involving a scenario.1034

These are a few of the extensively used prompting techniques. Many prompting techniques have been1035

applied based on different task requirements. This paper uses basic prompting and instruction-based COT1036

methods as baselines.1037
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Method Type Prompt Format

Base - “[question] [options] Answer: ”

COT TP “[question] [options] Answer: Let’s think step by step”

EchoPrompt TP “[question] [options] Answer: Let’s repeat the question and also think step by step.”

ARR TP “[question] [options] Answer: Let’s analyze the intent of the question, find relevant information,and
answer the question with step-by-step reasoning”

QAP TP “[question] [options] Generate relevant QA pairs to understand the context better.”

HintQA KP “According to following context, answer the question: Context: [hints] Question: [question] [options]
Answer:”

KnowDomain KP “[Knowledge] use this information for answering the question: [question] [options] Answer: ”

Table 10: Overview of various prompting formats where KnowDomain is the prompt of the proposed approach. Here, knowledge represents knowledge generated
by our method, and hints represents the hint generated based on HintQA. The blue text represents the knowledge generated by an LLM. TP and KP denote the
"Trigger Prompt" and "Knowledge Prompt" respectively. In trigger prompts a sentences/set of words are used as a trigger for answer generation while in knowledge
prompt, some knowledge is given to the model in inout prompt. In Base prompting no trigger sentence was used.

C Detailed Results 1038

This section contains the tables for Figure 3 and Figure 4. Figure 3 referees to table 11. 1039

D Prompts and Examples 1040

Here we mentioned the details of the prompt used for knowledge generation and question answering. 1041
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Model Data Base COT ARR KD-K KD-NQ KD

Phi4

FAKE 14.59 13.72 10.66 15.45 13.46 12.49
FCT 48.96 50 53.12 45.83 56.25 58.33
MCQA 50.18 48.4 51.53 42.33 55.29 54.47
NOTA 16 32 32.6 35.8 28.2 31
USMLE 51.37 54.99 54.2 45.64 65.28 62.06

Llama

FAKE 5.92 7.48 11.46 13.35 6.46 11.57
FCT 50 57.29 56.25 54.17 56.25 66.145
MCQA 57.6 60.37 58.63 52.73 60.37 65.485
NOTA 21.2 29.2 26 46.2 39.8 41.2
PFakeQA 18.67 22.67 33.33 32 50 56
PathQA 70.39 72.07 71.23 63.41 72.35 69.5533
USMLE 61.9 68.03 61.43 56.17 70.54 69.245

Llama70B

FAKE 16.2 8.72 8.5 10.06 18.26 26.065
FCT 80.21 75 77.08 71.88 80.21 82.29
MCQA 71.56 69.28 68.71 68.89 75.22 70.19
NOTA 12.8 35.4 34 20.4 38 36.8
PFakeQA 72.67 35.33 40 34 87.33 80.67
PathQA 84.36 69.27 72.07 76.82 84.08 84.64
USMLE 77.85 81.07 81.46 74 83.19 79.855

Table 11: Accuracy over Model of different sizes

Data Model KD KD-NQ3 KD-NQ5

MCQA

BioLlama 57.78 56.39 56.64
Llama 59.59 60.62 60.16
MedLlama 59.45 59.16 59.02
Qwen 59.77 59.94 59.55

MFAKE

BioLlama 39.29 25.08 28.79
Llama 12.11 4.36 5.17
MedLlama 20.78 8.83 11.14
Qwen 14.37 14.64 14.85

MFCT

BioLlama 55.21 58.33 59.38
Llama 57.29 57.29 59.38
MedLlama 58.33 60.42 64.58
Qwen 58.33 63.54 59.38

MNOTA

BioLlama 20.4 20.6 21
Llama 41.2 37.4 40.6
MedLlama 26.4 24.6 27.2
Qwen 29.8 28.2 31.4

PFACT

BioLlama 72.86 52.29 54.29
Llama 75.71 58.29 59.43
MedLlama 73.14 58.57 58.57
Qwen 75.43 59.71 61.14

PFAKE

BioLlama 15.33 16 18
Llama 43.33 39.33 42
MedLlama 30 40 44
Qwen 46 56 58

USMLE

BioLlama 64.18 65.12 66.77
Llama 70.62 71.25 71.01
MedLlama 68.81 68.5 69.6
Qwen 69.84 69.52 69.6

USMLE

Sum over all
models

273.45 274.39 276.98
MCQA 236.59 236.11 235.37
MFCT 229.16 239.58 242.72
PFACT 297.14 228.86 233.43
MNOTA 117.8 110.8 120.2
PFAKE 134.66 151.33 162
MFAKE 86.55 52.91 59.95

Table 12: Ablation study on the effect of including 3, 5, or 10 context questions on model accuracy. These questions are used as additional input to guide the model’s
reasoning. Accuracy is reported across multiple models and datasets. Including 10 questions yields the best average performance.
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Type Instruction
Entity Generation You are an ordinary person with no specialized medical or techni-

cal knowledge. Given a question, your task is to identify words or
phrases that may be difficult for a common person to understand.
Steps:
1. Read the question carefully.
2. Identify any words or phrases that might be difficult to under-
stand based on medical, technical, or uncommon terminology.
3. Your response should strictly follow this format: [ Difficult
words: <word1>, <word2>, <word3>, ... ]
(Separate words with commas and do not include any explana-
tions.)
4. Do not answer the question itself.
5. Always return words in the same context, e.g., if the word is
‘heart attack‘, return ‘heart attack‘ as a whole.

Notes and Question Generation You are domain expert on the given question. Your task is to figure
out the correct and important information from your knowledge to
answer the question. You can also generate a set of maximum ten
questions.

Steps:
1. Read the question carefully.
2. Identify the key medically and statistically relevant information.
3. Provide factual information that is evidence-based, with numer-
ical accuracy verified through established medical sources.
4. Generate up to ten relevant questions with answers that strictly
adhere to medical guidelines.
5. Your response should strictly follow this format:
[ Notes: <key medically accurate information >]
[ Questions answers: QAset1: { <question1 >: <answer1 >},
QAset2: { <question2 >: <answer2 >}, ... ]
(Separate entries with commas and do not provide explanations.)
6. Do not provide information unless it is well-established in
medical literature or guidelines. If uncertain, specify the need for
expert confirmation.
7. For statistical information (e.g., risk percentage, accuracy),
ensure consistency across answers.
8. Do not attempt to answer the question.
9. You should remember the output format mentioned and strictly
return output in the specified format.

Table 13: Prompt instructions for knowledge generation
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Type Instruction
Base You are in medical field and you must choose the option

for the question asked even if it’s from a different domain. Also,
when you
output the answer, use output format: [ {Answer: OPTION
<correct option>} ] to indicate the correct option.

MultiStep You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
1. Keyword set: Keywords and their definitions.
2. Question set: A set of useful questions.
3. Notes: Short notes relevant to the question.

All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

MultiStep Entity You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
Keyword set: Keywords and their definitions.
All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

MultiStep You are in the medical field and you must choose the option for
the question asked even if it is from a different domain.

You will be provided with the following knowledge:
1. Question set: A set of useful questions.
2. Notes: Short notes relevant to the question.

All this knowledge should be used to help understand, analyze,
and rectify the difficulty in the main question.

When you output the answer, use the following format:
[ {Answer: OPTION <correct option >} ] to indicate the correct
option.

Table 14: Prompt instructions for Question-answering
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