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ABSTRACT

Many works on graph neural networks (GNNs) focus on graph topologies and
analyze graph-related operations to enhance performance on tasks such as node
classification. In this paper, we propose to understand GNNs based on a feature-
centric approach. Our main idea is to treat the features of nodes from each label
class as a whole, from which we can identify the centroid. The convex hull of
these centroids forms a simplex called the feature centroid simplex, where a sim-
plex is a high-dimensional generalization of a triangle. We borrow ideas from
coarse geometry to analyze the geometric properties of the feature centroid simplex
by comparing them with basic geometric models, such as regular simplexes and
degenerate simplexes. Such a simplex provides a simple platform to understand
graph-based feature aggregation, including phenomena such as heterophily, over-
smoothing, and feature re-shuffling. Based on the theory, we also identify simple
and useful tricks for the node classification task.

1 INTRODUCTION

Graph Neural Networks (GNNs) have emerged as important tools in managing graph-structured data,
commonly found in application areas related to social networks, traffic systems, and biochemical
structures (Gilmer et al., 2017; Ying et al., 2018; Chen et al., 2020; Li et al., 2021; Chen et al.,
2022; Liu et al., 2022; Brody et al., 2022; Shen et al., 2023; Kang et al., 2023). The fundamental
idea is to apply the technique of message passing or information propagation, formally called graph
convolution (M. Defferrard, 2016; Shuman et al., 2013; Ortega et al., 2018). In this process, each
node aggregates information from its neighboring nodes and potentially itself. Such a process can be
repeated for multiple iterations, and the resulting aggregated information is expected to capture key
features and hence represent each node better.

However, it is observed that such an approach does not universally work for any graph-structured data.
Consider the node classification task, i.e., each node is associated with a label, and the labels of a test
set of nodes are to be determined. In graph-structured data with the heterophilic property (Pei et al.,
2020; Bo et al., 2021; Yan et al., 2022) (i.e., there are many edges connecting nodes from different
classes), basic graph convolution (M. Defferrard, 2016; Kipf & Welling, 2017) is demonstrated to be
ineffective, and significant modification is needed to get reasonable results (Pei et al., 2020). In many
subsequent works, rewiring becomes an important tool for handling graph heterophily, most notably
based on high-frequency graph spectral analysis. Another well-known phenomenon is oversmoothing
(Oono & Suzuki, 2020; Yan et al., 2022), which renders training a deep graph convolution neural
network extremely challenging. Oono & Suzuki (2020) studies the phenomenon by exploring the
topological information of the underlying graphs inherent in the graph spectra. Techniques such as
skip connections (Li et al., 2019; Chen et al., 2020) and diffusion with memory (Kang et al., 2024)
have been proposed to address oversmoothing. In this paper, we study the node classification task in
GNN models that involves node feature aggregation. We provide a unified theoretical framework to
understand and analyze GNN phenomena, including graph heterophily and oversmoothing mentioned
above, while new observations are also discussed.

We consider a graph as an extrinsic property of a dataset, and its construction can suffer from
uncertainty and arbitrariness (Zhang et al., 2019; Dong & Kluger, 2023; Ji et al., 2023b). We regard
node features as an intrinsic property, which is model-agnostic and does not change if the graph
is modified. Unlike some works mentioned above that rely on graph structure and graph spectral
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Cora, Texas Actor

Figure 1: Illustrations of (parts of) the feature centroid simplexes associated with different datasets.
Such a simplex is a graph-independent and model-agnostic intrinsic feature property. For example,
we notice that simplexes of Cora, Texas datasets have a more regular shape. Though the Texas dataset
is heterophilic, there are still GNN methods based on feature aggregation that achieves high accuracy
on this dataset (improving GCN from ≈ 60% to ≈ 90%). On the other hand, for the Actor graph, it
does not seem that any approach can significantly improve upon GCN to the level we observe for the
Texas dataset. We hope that our framework, based on studying the shape of the shown simplexes,
provides a plausible explanation for this phenomenon.

properties, we focus mainly on graph-independent information that can be extracted from features,
hoping to have some fundamental understanding of each dataset from a feature-centric perspective.
In turn, we gain new insights into graph-based approaches.

Our main technical idea is to treat the features of nodes from each label class as a whole (in node
classification), from which we can identify the centroid called the class centroid. We see, from explicit
datasets, that the unprocessed feature of a node v (with label c) needs not to be close in Euclidean
distance to the class centroid of c. However, aggregating features of nodes belonging to the same
class may output a feature much closer in distance to the class centroid. This prompts us to study
each class centroid as the sole representative of its label class.

For this purpose, we take a geometric approach and consider the convex hull of these class centroids,
forming a simplex called the feature centroid simplex, which is a high-dimensional generalization of
a triangle (see Fig. 1). We borrow ideas from coarse geometry (Bridson & Häfliger, 2011) to analyze
the geometric properties of the feature centroid simplex, by comparing them with basic geometric
models, e.g., regular simplexes and degenerate simplexes. Such a geometric consideration provides a
simple platform for us to understand graph-based feature aggregation and gain new insights into GNN
phenomena. Moreover, different basic geometric models correspond to different intrinsic properties
of features, from which we explore possible explanations for the “hardness” of datasets.

In summary, we propose to interpret the role of the graph as used to determine how aggregation is
performed, which mitigates feature variance. Thus the feature centroid simplex is enough to capture
essential intrinsic dataset properties. We use new geometric tools to study such a simplex. Our main
contributions are summarized as follows:

• We study GNN phenomena through the lens of node features instead of graph topologies.
We introduce the notion of feature centroid simplex and develop a theoretical framework
based on coarse geometry and probability theory. It provides us with tools for understanding
and analyzing GNN models.

• We give alternative explanations to known observations and gain new insights into why it is
hard to achieve significant results for certain datasets by any means. Moreover, we justify
the effectiveness of some well-known GNN models from our perspective.

• Based on these theoretical findings, we identify surprisingly simple graph-independent tricks
that are demonstrated to enhance the node classification performance of GNN models on
certain datasets. We also explain why they work or fail on different datasets.

Due to space constraints, a notation list and proofs are delegated to Appendix A and Appendix B. We
provide substantial numerical evidence to support our claims in Appendix E.

2 THE FEATURE SIMPLEX AND ITS COARSE MODELS

In this section, we present the probabilistic model for the feature space of each label class and propose
a geometric framework to study its properties. As a preview, we use the topological concept of
“simplex” to capture essential information about node features and introduce the notion of quasi
isometry as the main tool for the study in the next section.
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2.1 THE PROBABILISTIC FEATURE MODEL AND FEATURE SIMPLEX

Assume that G = (V,E) is a connected, undirected graph of size n = |V |. We consider the following
feature model. Each node vi is associated with an m-dimensional feature xi = (xi

1, . . . , x
i
m)⊺ in

[0, 1]m ⊂ Rm. Let C be the finite set of class labels. We assume that node features x1, . . . , xn are
identically independently generated via the following steps:

S1 For each (node) index i = 1, . . . , n, a class c is randomly chosen according to a prescribed
distribution γ (e.g., uniform distribution).

S2 A feature is generated according to a prescribed class-specific distribution γc.

To avoid technicalities, we provide an informal version of the following geometric statement to
convey the key message. In Appendix B, we give a detailed specification of γc and a formal statement
of the lemma.
Lemma 1 (Informal). With high probability, {x1, . . . , xn} are in a convex position, i.e., none of xi

is in the convex hull of the remaining feature vectors.

We assume {x1, . . . , xn} are in a convex position for subsequent discussions. We have verified that
the lemma holds for all datasets used in Section 5 below. Intuitively, the features are random points
either on the vertices of a unit hypercube or in a high-dimensional unit ball. In either case, they
are in a convex position with high probability due to the high-dimensional stochastic separation
phenomenon (Gorban et al., 2018).

For each node vi, recall xi is its feature vector, and let ci ∈ C be its label class.
Definition 1. For each class c, denote Dc = {vi ∈ V | ci = c} of size nc = |Dc| and define its
feature convex hull as ∆c = conv({xi | vi ∈ Dc}), the convex hull of {xi | vi ∈ Dc}.

By the assumption following Lemma 1, Dc is the vertex set of the convex polytope ∆c. Moreover,
∆c is a (nc − 1)-simplex as it is homeomorphic to the standard nc − 1-simplex (Hatcher, 2002, p. 9):

∆nc = {(y1, . . . , ync)
⊺ ∈ [0, 1]nc |

∑
1≤i≤nc

yi = 1}. (1)

For a simplex, a useful representative is its centroid.
Definition 2. For each class c, let ec be the probabilistic centroid of the class defined as ec =
Ex∼γc

[x]. Moreover, the geometric centroid gc of the samples of class c is 1
nc

∑
vi∈Dc

xi ∈ ∆c.

Intuitively, the probabilistic and geometric centroid are close to each other if nc is large. More
precisely, we have the following simple observation.
Lemma 2. There is a constant K independent of n such that for δ > 0 that is sufficiently small,
P(∥ec − gc∥ > δ) ≤ exp(−Kncδ

2 + 1/4).

Convention: This observation will be used subsequently, and we will refer to the same K and δ in
Lemma 2 without further mentioning.

Probabilistic centroids {ec | c ∈ C} are useful for theoretical analysis. However, in practice, we do
not gain access to them. By the lemma, if we have sufficiently many samples for each class, we do
not lose much information by using the geometric centroid gc as a proxy of ec.

Recall that the objective of the node classification problem is to assign a discrete probability distribu-
tion µv = {yc ∈ [0, 1] | c ∈ C} to each node v ∈ V . Geometrically, such a distribution µv belongs to
the probability simplex ∆C = conv({pc ∈ R|C| | c ∈ C}), which is the standard (|C| − 1)-simplex
(here, pc is the one-hot vector of label class c). Ideally, features near ec ≈ gc ∈ Rm (cf. Lemma 2)
should be matched with pc via a learning model (illustrated in Fig. 2). This prompts us to study the
following simplexes and analyze their relations with ∆C .
Definition 3. The feature centroid simplex is the (|C| − 1)-simplexes ∆e = conv({ec | c ∈ C}) and
its proxy is ∆g = conv({gc | c ∈ C}).

In this next subsection, we discuss coarse geometry, which serves as the main tool to study feature
centroid simplexes and GNNs.
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2.2 COARSE GEOMETRY AND STANDARD MODELS

Recall that ∆C has the ideal shape of being a regular simplex of equal side-length
√
2, both ∆e

and ∆g are unlikely to be so. However, if they approximately have a regular shape, we can already
draw useful conclusions (cf. Section 3). For this, we borrow ideas from coarse geometry (Bridson &
Häfliger, 2011), from which we modify the notion of quasi-isometry (Bridson & Häfliger, 2011, p.
138) to obtain the following simplified version.
Definition 4. Given ϵ ≥ 0, simplexes ∆1 = conv({y1, . . . , yk}) and ∆2 = conv({z1, . . . , zk})
are ϵ-quasi isometric, denoted by ∆1 ≈ϵ ∆2, if for any (a1, . . . , ak)

⊺, (b1, . . . , bk)
⊺ ∈ ∆k−1 the

standard (k − 1)-simplex (see (1)), we have

−ϵ ≤

∥∥∥∥∥∥
∑

1≤i≤k

aiy
i −

∑
1≤i≤k

biy
i

∥∥∥∥∥∥−

∥∥∥∥∥∥
∑

1≤i≤k

aiz
i −

∑
1≤i≤k

biz
i

∥∥∥∥∥∥ ≤ ϵ. (2)

gc1 ec1

gc2

ec2

gc3
ec3

∆g

∆e
∆c

GNN model

Figure 2: A schematic picture of
the geometric concepts, e.g., centroids,
∆g,∆e,∆C . Nodes with different col-
ors/shapes represent features belonging
to different classes.

Being ϵ-quasi isometric essentially means that the distance
between any pair of points in ∆1 is close, up to an ϵ error,
to the distance between the corresponding pair of points
in ∆2. Hence, geometrically, ∆1 is a small perturbation
of ∆2. While such a condition is usually hard to verify
directly, we have the following version that only requires
checking the vertices of the simplexes.
Definition 5. A set of points {y1, . . . , yk} is vertex ϵ-
quasi isometric to {z1, . . . , zk} if for any i ̸= j, we have
∥(yi − yj)− (zi − zj)∥ ≤ ϵ.
Lemma 3. Suppose {y1, . . . , yk} is vertex ϵ-quasi
isometric to {z1, . . . , zk}. Then we have ∆1 =
conv({y1, . . . , yk}) ≈ϵ ∆2 = conv({z1, . . . , zk}).

Recall that two simplexes are congruent to each other if
every pair of corresponding edges has the same length.
Hence, we can use edge lengths of ∆1,∆2 to probe their
quasi-isometric relation. In Appendix E.2, we analyze the

shapes of ∆g for different datasets using the above notions.

Model shapes The basic idea of the paper is to compare feature centroid simplexes with standard
geometric models. As a preview of the next section, ∆1 will be the subject we want to study, e.g., ∆g

and ∆e, while ∆2 will be a model simplex of special shapes. We end this section by describing some
of these model shapes to be used later.

We have seen regular simplexes, which are simplexes with equal side lengths. A related notion is the
following.
Definition 6. Points {x0, x1, . . . , xk} are said to form a (r1, r2)-regular k simplex for r1, r2 > 0
if the base ∆′ = conv({x1, . . . , xk}) is a regular (k − 1)-simplex of side length r1, and ∥x0 − xi∥
is the same for every 1 ≤ i ≤ k. Moreover, the distance from x0 to the centroid of ∆′ is r2. We call
conv({x0, x1, . . . , xk}) the associated (r1, r2)-regular k-simplex.

For a preview, x0 shall be used as a comparison point to the origin 0.

There are also examples where ∆e is “thin”, i.e., some sides have much smaller lengths than others.
Definition 7. We call a k − 1-simplex ∆ with vertices z1, . . . , zk degenerate if for some i ̸= j,
zi = zj (see Appendix E.2 for a more general definition).

We shall see such a shape corresponds to a “hard” dataset.

3 THE GEOMETRY OF GNN MODELS

In this section, we use the geometric setup of Section 2 to analyze the GNN convolution layer.
Formally, a GCN layer consists of a convolution layer, a linear layer, and a ReLU activation. From
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empirical evidence in Appendix E Table 7, we observe that including the ReLU activation does not
improve GCN performance in some datasets. Moreover, a 1-layer model is only slightly worse than a
2-layer model. Hence, to simplify the theoretical analysis in this section, we consider a 1-layer model
without ReLU.

Models of eventual GCN type Though our theoretical analysis shall focus on GCN as above, the
discussion in this section can surely be extended to more sophisticated models. For this, we define
a model M to be of eventual GCN type if there is a weighted graph G′ (possibly different from
the original graph G) such that the output of M is the same as a GCN model applied to G′, with
the exact same input features. For such a model, our framework can be used directly to analyze
M, in conjunction with the property of G′. As a preview, let Nv be the neighbors of a node v.
If G′ is weighted, it suffices to replace |Nv| in various expression below, with 1/∥Wv∥2, where
Wv = (wvi,v)vi∈Nv

is the edge weight vector and wvi,v is the weight of the edge (vi, v) (using
results in Barber (2024)).

Many GNN models are of (or related to) eventual GCN type. For example, attention-based models
(Veličković et al., 2018; Lee et al., 2022; Lv et al., 2021) essentially generate a weighted graph for
convolution, where the edge weights are the attention scores. There are models having rewiring or
edge deletion as their components (Rong et al., 2020; Suresh et al., 2021; Topping et al., 2022; Ji
et al., 2023a). They are clearly of eventually GCN type, where G′ is the new graph topology. In a
neural diffusion model (Chamberlain et al., 2021; Rusch et al., 2022; Zhao et al., 2023), the basic
idea is to iteratively use a forward Euler feature updating scheme to model the solution of a diffusion
equation. The update rule resembles a GCN convolution on a weighted graph that may change in
each iteration. The adaptive nature adds flexibility that may mitigate unfavorable phenomena such as
oversmoothing. These models can also be analyzed using our framework analogous to our discussion
above by keeping track of the shape of ∆e,∆g in updates.

3.1 FEATURE AGGREGATION

Recall that for each node v, let Nv be the 1-hop neighbor of v, including v itself. The convolution
(M. Defferrard, 2016) updates the feature of v as

yv =
1

|Nv|
∑

vi∈Nv

xi. (3)

We are interested in the location of yv in the feature space Rm, particularly its proximity to the
vertices and special points on the simplex ∆e. To state the following main result, for c ∈ C, let
Nv,c = Nv ∩Dc and define its mixed centroid

eNv
=

1

|Nv|
∑

vi∈Nv

eci . (4)

Theorem 1. (a) We have P(∥yv − eNv∥ ≤ |C|δ) ≥
(
1− exp(−Kδ|Nv|+ 1/4)

)|C|
.

(b) Suppose there is ϵ ≥ 0 and a regular (|C| − 1)-simplex ∆ = conv({uc | c ∈ C}) with (the
common) side length r such that: {ec | c ∈ C} is vertex ϵ-quasi isometric to {uc | c ∈ C}.
Then, for any c ∈ C, we have

P
(
∥yv − ec∥ ≥ r√

2
dv,c − ϵ− |C|δ

)
≥

(
1− exp(−Kδ|Nv|+ 1/4)

)|C|
,

where d2v,c = (1− |Nv,c|
|Nv| )

2 +
∑

c′ ̸=c(
|Nv,c′ |
|Nv| )2.

Discussions Notice that the probability bound in Theorem 1 (a) only involves |Nv|. Intuitively, this
means that if a node has sufficiently many neighbors (disregarding their label classes), then with high
probability, its aggregated feature is close to the point in ∆e aggregated, in the same way, from its
vertices. In (b), the model simplex, which is a regular one, plays an essential role. Notice that dv,c ≈ 0
if and only if |Nv,c| ≈ |Nv|. Otherwise by (b), if r ≫ ϵ, then with high probability ∥yv − ec∥ has a
large lower bound. As a consequence, it may be prudent during training to avoid directly fitting a
node, with many neighbors from different classes, to its ground-truth class. We propose tricks based
on this and demonstrate that they work better for datasets with more regular ∆g in Section 5 (see also
discussions in Section 4 and a thorough analysis of simplex shapes in Appendix E.2).
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3.2 THE LEARNED LABEL DISTRIBUTION

Following feature aggregation, the convolution layer is a linear transformation. Recall that the goal of
any model is to generate an element in the probability simplex ∆C for each node v ∈ V . We want to
investigate the probability distribution a linear layer following the feature aggregation can possibly
generate.1 For this, we first introduce a less strict type of simplexes than regular simplexes.

We have used a regular simplex to approximate the simplex ∆e. As illustrated in Appendix E.2
Fig. 7, for many datasets, centroids in {gc | c ∈ C} are approximately equal in distance to 0. Hence,
(r1, r2)-regular simplexes introduced in Definition 6 are reasonable model shapes. For the next result,
we introduce the following quantity for any (r1, r2)-regular k-simplex.

Suppose {x0, x1, . . . , xk} form an (r1, r2)-regular k-simplex ∆ with base ∆′. We define:

ρ(r1, r2) = min

{
r1√

2(k!)1/(k−1)
, r

1/(k−1)
2 k1/2(k−1)

}
, (5)

which is independent of the locations of x0, x1, . . . , xk.

Recall features x1, . . . , xn, and vectors yv, eNv
defined earlier in (3), (4). We have the following.

Theorem 2. Recall ∆C = conv({pc | c ∈ C}). Assume that {0} ∪ {ec | c ∈ C} is vertex ϵ-quasi
isometric to {0} ∪ {zc | c ∈ C} that form an (r1, r2)-regular simplex. Suppose

√
|C|ϵ < ρ(r1, r2)

and define ρ(r1, r2, ϵ) = (ρ(r1, r2)−
√
|C|ϵ)−1 > 0. Then there is a linear transformation L from

the feature space to R|C| such that the following holds.

(a) For each c ∈ C, if ŷc = argminy∈R|C|
∑

vi: class c∥L(xi)− y∥, then

P
(
∥pc − ŷc∥ ≤ ρ(r1, r2, ϵ)δ

)
≥ 1− exp(−Kncδ

2 + 1/4).

(b) For any node v, let µv ∈ ∆C be the neighborhood class label probability distribution of v,
i.e., µv(c) = |Nv,c|/|Nv|. Then

P
(
∥L(yv)− µv∥ ≤ ρ(r1, r2, ϵ)|C|δ

)
≥ (1− exp(−Kδ|Nv|+ 1/4))

|C|
.

Discussions We point out that L(yv) in Theorem 2 (b) corresponds exactly to one GCN layer.
Intuitively, the result essentially claims that for each node v, the linear fitting L and hence the GCN
layer generates a probability distribution that is almost the same as the neighborhood class label
distribution of v, with high probability. A numerical verification using a thought experiment is in
Appendix E.3, showing if νv is known, then forcing the output distribution to be similar to νv solves
the classification problem.

Notice by (5), the factor ρ(r1, r2, ϵ) in the upper bound is small if r1, r2 ≫ ϵ. This occurs again if
{0} ∪ {ec | c ∈ C} forms a simplex of relatively regular shape. Therefore, in GNN model design,
re-shaping ∆e into a more regular shape is a strategy worth considering (see Section 5). In the next
subsection, we discuss the consequence if ∆e does not have a regular shape.

3.3 DEGENERATE MODEL SIMPLEXES

We have thus far discussed only feature centroid simplexes having an almost regular shape. In this
subsection, we consider the contrary of having an almost degenerate shape. For the next result, recall
yv, eNv defined in (3) and (4).

Corollary 1. Suppose there is an ϵ ≥ 0 and a degenerate simplex ∆ = conv({uc | c ∈ C}) (with
uci = ucj , i ̸= j) such that: {ec | c ∈ C} is vertex ϵ-quasi isometric to conv({uc | c ∈ C}). Define
eNv

∈ ∆e by replacing eci with ecj and vice versa. Then

P
(
∥yv − eNv

∥ ≤ |C|δ + ϵ
)
≥

(
1− exp(−Kδ|Nv|+ 1/4)

)|C|
.

1This simplified setting is convenient for theoretical analysis. In a GNN model, softmax is usually used and
we discuss its effect Appendix H.
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∆C ∆C ∆C

Homophilic case Heterophilic case MLP

Figure 3: In the homophilic case, the aggregated features (solid disc, while circles are the original
features and they are more scattered) are matched approximately to the correct vertex in the probability
simplex, while in the heterophilic case, the features are no longer suitable to fit with vertices of
the probability simplex. Therefore, in the heterophilic case, GCN may even underperform against a
vanilla MLP, though for the latter the features are more scattered.

Discussions The result suggests that if ∆e is almost a degenerate simplex, i.e., it is thin, then there
is no way to very accurately identify the summands in yv by observing it. Notice that for such a ∆e,
if it has sides whose length is much larger than ϵ, then it cannot be reasonably modeled by a regular
simplex as in Theorem 1 and Theorem 2. The quasi isometric model of ∆e is an intrinsic property of
features independent of the graph. Therefore, many models of eventual GCN type, which rely only
on altering the aggregation mechanism, cannot resolve this inherent issue of features. This is verified
by the feature re-shuffling phenomenon in the next section. Datasets (e.g., the Actor dataset) that
satisfy the conditions of Corollary 1 are shown in Appendix E.2 and studied further in Appendix E.4,
Appendix E.6. We explain the general poor performance of GNN models on these datasets.

4 PHENOMENA IN GNNS

We first summarize general insights derived from the feature-centric perspective in Section 3 to guide
our discussions: (a) Feature aggregation is essential to reduce feature variance (see a discussion on
the use of normalized adjacency matrix in Appendix H). (b) The efficiency of feature aggregation
depends on the shape of the feature centroid simplex, which is an intrinsic graph-independent property.
(c) We should aim to aggregate features of nodes of the same class in both training and testing, which,
a priori, is the role of the graph structure. (d) However, (c) is not always easily achievable. In this
case, the model output label distribution should be interpreted in conjunction with the aggregation
mechanism and the graph structure.

Homophilic graphs v.s. heterophilic graphs If a graph is homophilic (illustrated in Fig. 3), then
for most of the nodes, their neighbors belong to the same type, i.e., for a node v with label c,
|Nv,c|/|Nv| ≈ 1 and |Nv,c′ |/|Nv| ≈ 0 for any c′ ̸= c. In this case, eNv

≈ ec and by Theorem 1 (a),
the aggregated feature yv is close to ec with high probability. Hence, yv can be fitted close to pc via
the linear map L as in Theorem 2, while the output probability distribution of a node v is close to
the neighborhood class label distribution µv . Test error will thus likely occur for those nodes whose
neighbors contain a significant number of nodes from different classes. For a simple verification (on
Cora), for each test node vi of class ci, we compute µvi(ci) (defined in Theorem 2(b)). Its average
value is ≈ 0.911 for correctly classified nodes, while only ≈ 0.668 for misclassified nodes.

On the other hand, in a heterophilic graph (illustrated in Fig. 3), many nodes have neighbors belonging
to different label classes, i.e., for a node v of label class c, |Nv,c| is significantly smaller than Nv . In
this case, dv,c in Theorem 1 is significantly larger than 0, which implies that the aggregated feature
yv is bounded away from ec with high probability by Theorem 1 (b). It thus causes significant error if
we try to fit yc with the vertex pc in the probability simplex ∆C . This is why simple MLP sometimes
works better as shown in Yan et al. (2022). In Section 5, we focus on heterophilic graphs to address
the above issues.

Oversmoothing It is observed in Oono & Suzuki (2020) that oversmoothing is due mainly to the
Markovian property of feature aggregation. Oono & Suzuki (2020) explains the phenomenon from a
graph spectral perspective. Here, we use our geometric perspective of node features to provide another
point of view, which can be easily visualized. If we disregard the ReLU function, for a T -layer model,
we essentially consider T -steps of neighborhood aggregation, followed by a linear transformation. We
inspect the change of the simplex ∆g = conv({gc | c ∈ C}). Recall that gc = 1

nc

∑
vi∈Dc

xi ≈ ec

7
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by Lemma 2. After the aggregation step, gc becomes

g(1)c =
1

nc

∑
vi∈Dc

1

|Nvi |
∑

vj∈Nvi

xj =
1

nc

∑
vi∈Dc

1

|Nvi |
∑
c′∈C

∑
vj∈Nvi,c

′

xj

=
∑
c′∈C

( 1

nc

∑
vi∈Dc

1

|Nvi |
∑

vj∈Nvi,c
′

xj
)
.

Let αc,c′ = 1
nc

∑
vi∈Dc

|Nvi,c′ |/|Nvi |. For each c, there are some c′ ̸= c such that αc,c′ ̸= 0 as

each neighbor of Dc belongs to a different class. Hence, αc,c′ < 1. Then g
(1)
c from above becomes∑

c′∈C αc,c′
∑

vj∈Dc′

(
1

αc,c′nc

∑
vi∈Dc,vj∈Nvi

1
|Nvi

|

)
xj . By a mean-field type assumption, we as-

sume for vj belonging to the same class, the non-zero coefficients in front of xj are approximately
the same. The coefficient is non-zero if vi is within the 1-hop neighbor of the entire set Dc. If there
are many such vj’s, then

∑
vj∈Dc′

( 1
αc,c′nc

∑
vi∈Dc,vj∈Nvi

1
|Nvi

| )x
j ≈ ec′ . Therefore, in conclu-

sion, g(1)c ≈ e
(1)
c =

∑
c′∈C αc,c′ec′ , i.e., after a single layer of aggregation, the average g

(1)
c of

the updated feature {yv, v ∈ Dc} is approximately e
(1)
c . The update coefficients {αc,c′ , c

′ ∈ C}
depend only on the dataset but not on the iteration number. By the same argument, define iteratively
e
(t)
c =

∑
c′∈C αc,c′e

(t−1)
c′ . We study how ∆

(t)
e = conv({e(t)c , c ∈ C}) evolves for t ≥ 1 to under-

stand the features updates in each iteration. The above formula implies that the vertices of ∆(t)
e are

updated via the matrix M = (αc,c′)c,c′∈C .
Lemma 4. M is a stochastic matrix and it has a unique stationary distribution

ec1

ec2
ec3

gc1

gc2

gc3

t = 0

t = 1

t = 2

Figure 4: An illustration of
oversmoothing. The simplex
conv({e(t)c , c ∈ C}) in each
iteration is represented by a
(colored) triangle. After suf-
ficiently many iterations, it
shrinks towards the center.

As a consequence of the lemma, if (sc)c∈C is the stationary distri-
bution of M , then each e

(t)
c converges to

∑
c∈C scec. Therefore, we

have the oversmoothing phenomenon as ∆(t)
e converges to a single

point at t → ∞. A schematic picture is shown in Fig. 4.

We numerically verify by training a deep GCN and study the volume
Vol(∆(t)

g ) of the resulting ∆
(t)
g after the t-th layer, expecting to see

it diminishing. For Cora, after 4 layers, the (average) volume is
reduced to ≈ 1.7% of the initial (average) volume. For Texas, after
7 layers, the (average) volume is reduced to ≈ 2.6% of the initial
(average) volume. The observations support the theory.

Feature re-shuffling Our result in Section 3.3 predicts the fol-
lowing: for a dataset, if the feature centroid simplex ∆e is almost
degenerate, then it imposes a significant challenge for the classifica-
tion task. This phenomenon is observed for the Chameleon, Squirrel,
and Actor datasets (see results in Section 5 and also Appendix E
for further discussions). By the definition of degeneracy, there are
at least two classes ci, cj , whose associate centroids eci , ecj are very
close. Therefore, it is expected that if we re-shuffle the features of

nodes of classes ci, cj (possibly resulting in nodes of class ci having features of class cj), there
will be no significant drop or boost in the classification result. This is verified by the results in
Table 1. The study reveals the model-agnostic intrinsic difficulties for the classification task from the
feature-centric geometric perspective.

Table 1: Based on the study in Appendix E.4, we re-shuffle features of class (c1, c2), (c1, c3) and
(c2, c3) using vanilla GAT, GAT, ACM-GCN (as top performers in Table 2 below) for the Chameleon,
Squirrel and Actor datasets respectively. Re-shuffling does not harm the performance. For Cora and
Citeseer, GCN is applied, and re-shuffling significantly improves the performance.

Chameleon Squirrel Actor Cora Citeseer

Pre re-shuffle 71.64±2.69 61.67±5.00 34.39±1.31 80.95±0.41 70.91±0.48
Post re-shuffle 71.27±1.93 62.74±3.88 34.12±1.35 86.36±0.26 79.36±0.39
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Aggregated features

Pre re-shuffle Post re-shuffle

Figure 5: Re-shuffling makes
features of nodes connected by
an edge less similar. The re-
sulting aggregated feature is
thus closer to the class cen-
troid.

For easier datasets whose ∆e is more regular (e.g., Cora, Citeseer),
re-shuffling nodes belonging to the same class may even improve
model performance. A graph is usually constructed with resulting
edges connecting nodes with similar features. However, aggregating
similar features is less useful in reducing feature variance. Therefore,
re-shuffling may overcome such a shortcoming and after re-shuffling,
the aggregated features can be closer to the centroid (see Fig. 5). This
is verified on Cora and Citeseer in Table 1, and similarly observed
in Lee et al. (2024).

In conclusion, the study supports the presumption that a key role of
the graph is for feature aggregation to reduce feature variance, and
the aggregation alone does not resolve intrinsic issues arising from
the suboptimal shape of the simplex ∆e.

5 EXPERIMENTS

Simple tricks The theoretical findings suggest simple generic tricks might be employed to enhance
the performance of GNN models. We propose two such graph independent tricks with justification:

(1) Recall by Theorem 1 (a), the aggregated feature of a training node vi is approximate eNvi
defined

in (4). For eNvi
to be close to eci , it is desirable to have more nodes in the neighbor of vi to have the

same label ci. A simple trick for this is to independently randomly add edges between training nodes
of the same class, with probability η (a hyperparameter).

(2) By Theorem 1 (b) and discussions in Section 4, the aggregated feature yvi of a training node vi
can deviate from eci if it has a large percentage of neighbors not from the same class ci (see also
Fig. 3). Thus, the better yvi fits with pci , the more error it causes in testing. We thus propose a very
early stopping by training E (a hyperparameter) epochs for a small E .

The proposed tricks fall into a few common generic categories of machine learning techniques. In
Appendix C: Related Works, we discuss how they differ from existing methods, belonging to the
same categories, at the conceptual level.

The tricks are model-agnostic and can be applied (either separately or jointly) to most GNN models.
Given a based model M, we use “M-AE” to denote its modification when the tricks are incorporated.
The tricks are simple and have minimal effect on the computation complexity. We consider GCN (Kipf
& Welling, 2017), GAT (Veličković et al., 2018), ACM-GCN (Luan et al., 2022), GraphCON (Rusch
et al., 2022), CDE (Zhao et al., 2023), and GloGNN (Li et al., 2022) as base models. Experimental
details are in Appendix D. We shall focus on heterophilic datasets, which have rich structures to
analyze (see results for homophilic and large scale non-homophilous datasets in Appendix F.1, which
also contains discussions on the feature scarce scenario).

The results are shown in Table 2. Among 48 comparisons, the above tricks significantly (in terms
of p-value) improve the performance in 34 instances, and the improvement is insignificant in 14
instances, mainly for Chameleon, Squirrel, and Actor datasets. As we have explained in Section 3.3,
due to the feature centroid simplex being approximately degenerate, it does not seem that any model
is particularly effective for these datasets (though some are relatively better).

In Appendix E.2, Appendix E.4, and Appendix E.5, we thoroughly analyze Chameleon, Squirrel,
and Actor datasets. We explain why these are the more difficult datasets from our point of view. We
also observe that it is more likely to mistakenly predict the class cj for the ground-truth class ci if
∥gci − gcj∥ is small, which is consistent with theory and the feature re-shuffling study in Table 1.

The feature normalization trick In Appendix E Fig. 7 and Fig. 9, we observe that a common
issue with Chameleon, Squirrel, and Actor datasets is that features of most nodes are not expressive
in the sense that they have a small norm. The resulting simplex ∆g thus has a less regular shape (cf.
Section 3.3). We apply a simple normalization trick that normalizes each feature vector to have norm
1. Intuitively, the procedure relatively increases the size of each component of features with a small
norm. In turn, the shape of the simplex ∆g may become more regular, which is supported by the

9
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Table 2: Node classification results(%). The best result for each dataset is highlighted in blue. “-I”
and “-II” stand for 1 and 2 layers respectively.

Method Texas Cornell Wisconsin Chameleon Squirrel Actor

GCN-I 68.92±7.95 62.97±4.36 62.97±4.36 59.19±2.33 42.96±1.46 30.68±0.45
GCN-I-AE 79.45±8.30 69.73±7.63 71.37±7.66 63.54±4.16 45.06±6.22 34.30±2.89
GCN-II 58.11±7.07 60.54±9.30 56.47±7.98 65.42±2.02 48.51±1.82 27.39±1.22
GCN-II-AE 63.24±4.22 61.08±5.30 61.96±6.46 66.25±4.15 50.96±3.17 30.85±1.59

GAT-I 77.57±6.95 70.81±8.87 69.61±6.46 66.71±3.10 54.21±3.21 28.66±1.21
GAT-I-AE 81.08±6.51 74.05±10.69 71.96±8.59 68.93±5.98 55.02±5.55 32.35±1.87
GAT-II 65.14±10.50 60.81±10.89 61.57±7.03 71.64±2.69 61.67±5.00 28.09±1.60
GAT-II-AE 66.48±10.48 67.30±8.15 63.31±8.36 72.24±3.21 62.37±5.54 31.82±1.58

ACM-GCN 88.92±4.26 86.76±7.49 88.24±5.11 71.29±8.06 55.07±8.96 34.39±1.31
ACM-GCN-AE 90.81±5.30 88.91±6.56 91.18±6.46 73.38±9.78 58.08±9.65 42.60±3.93

GraphCON 88.65±4.65 82.97±4.37 87.84±4.54 64.30±3.45 43.34±4.00 30.26±1.53
GraphCON-AE 91.08±4.37 84.86±4.86 89.22±2.52 65.13±3.77 43.57±4.69 32.46±2.64

CDE 84.86±5.69 72.97±4.68 82.16±6.10 59.93±0.97 43.49±1.84 36.41±1.08
CDE-AE 85.41±5.01 75.68±5.27 85.69±3.83 60.09±2.27 44.01±1.69 36.58±1.05

GloGNN 82.16±5.57 82.97±4.02 84.90±5.55 69.78±2.38 57.61±1.28 37.11±1.57
GloGNN-AE 83.78±4.19 83.24±4.95 86.27±3.82 69.32±2.52 57.65±1.44 37.33±1.43

analysis in Appendix E.6. We see its usefulness from Table 3. The trick is also shown to be very
effective for the Ogbn-arxiv dataset in Appendix F.1 Table 10.

Table 3: Normalization (suffix: “-AEN”) applied to M: GCN-I, the overall best model ACM-GCN.
Method GCN-I GCN-I-AE GCN-I-AEN % ↑ over M ACM-GCN ACM-GCN-AE ACM-GCN-AEN % ↑ over M
Chameleon 59.19±2.33 63.54±4.16 71.91±7.72 21.5% 72.29±8.06 73.38±9.79 75.22±9.99 4.05%
Squirrel 42.96±1.46 45.06±6.22 52.10±7.09 21.3% 55.07±8.96 58.08±9.65 59.47±11.41 7.99%
Actor 30.68±0.45 34.30±2.89 35.96±3.15 17.2% 34.28±2.76 42.60±3.93 47.62±6.38 38.9%

The output probability distribution In Theorem 2 (b), it is predicted that the output label dis-
tribution νv of a node v is approximately its neighborhood label distribution µv. We measure their
difference by the mean of ℓv = ∥νv −µv∥1 (the choice of ∥·∥1 is explained in Appendix H), averaged
over all test nodes. From the results in Table 4 (on GCN-I), we see that the tricks indeed improve the
average ℓv . As eventual GCN models change the graph structure, more results in Appendix F.3 show
that most other models underperform in this metric.

As we show in Appendix E.3 and Fig. 10, knowing {µv | v ∈ V } accurately is sufficient for the node
classification problem. In conjugation with Theorem 2 (b), we propose estimating {µv | v ∈ V } as an
alternative objective for future work. It is possible to further reduce ℓv by conformal prediction, as a
mean of distribution denoising. Details can be found in Appendix F.2.

Table 4: The performance of the tricks in the metric of average ℓv = ∥νv − µv∥1.
Method Texas Cornell Wisconsin Chameleon Squirrel Actor

GCN-I 0.6874 0.7286 0.7204 0.7360 0.6240 0.9044
GCN-I-AE 0.6181 0.6482 0.5634 0.6934 0.5834 0.8877

6 CONCLUSIONS

In this paper, we propose a theoretical framework for understanding GNN models based on coarse
geometric models of feature centroid simplex. It allows us to have a glimpse into theoretical ex-
planations of GNN phenomena such as oversmoothing and feature re-shuffling, and to enhance
our understanding of the mechanisms and fundamental limitations of GNN models. We discuss the
limitations of our framework and propose future directions in Appendix G.
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A LIST OF NOTATIONS

For easy reference, we list the most used notations in Table 5.

Table 5: List of notations

Graph, Vertex set, Edge set G (with subscripts), V, E

Features and vectors xi, yi, zi

Nodes v, v′

A set of coordinates J (with subscripts)

A set of label classes C

Label classes c (with subscripts)

The set of nodes belong to a class c Dc

Size of Dc nc

Probabilistic centroid (of a class c) ec

Geometric centroid (of a class c) gc

Convex hull conv(·)
Simplex ∆ (with subscripts)

The probability simplex ∆C

The feature centroid simplex and its proxy ∆e,∆g

Aggregated feature yv

1-hop neighbors, neighbors of class c Nv, Nv,c

Mixed centroid eNv

Neighborhood class label probability distribution µv

B THEORETICAL DISCUSSIONS AND PROOFS

To make Lemma 1 precise, we consider the following specific models for each γc.

For each class c ∈ C, we assume that there is a set of class-specific coordinates Jc of Rm such that
the following holds:

(a) Let Sc be the subset of Rm consisting of vectors (x1, . . . , xm)⊺ such that xj = 0 if j /∈ Jc

and xj ∈ (0, 1] if j ∈ Jc. There is a probability distribution γc on Sc such that features of
class c nodes are drawn independently from Sc according to γc.

(b) There is an m1 such that if c1 ̸= c2, then |Jc1 ∩ Jc2 | ≤ m1.
(c) There is an m2 > m1 such that for each c, |Jc| ≥ m2.

The range [0, 1] is adopted without loss of much generality since a component of a feature often
represents a probability or a correlation. Most applications also have bounded feature component
values, which can be normalized to be within [0, 1]. For many datasets (e.g., those in Appendix D.1),
the components of each initial feature vector are always either 0 or 1.

Model 1 For each feature x belonging to the class c and each axis index i ∈ Jc, the i-th component
xi of x follows the Bernoulli distribution with parameter pc,i, independently for different i.

Model 2 For each i ∈ Jc, xi follows a continuous distribution on [0, 1] with density bounded by b,
which is independent of c. For different i, the continuous distribution are independent but
possibly non-identical.
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For example, the first model is used for features in datasets such as Cora, Citeseer, Pubmed, while the
second model is used for word embedding features and pixel values for CV. We can now state and
prove the precise version of Lemma 1 as follows.
Lemma 5. There is a B < 1 that depends on b while is independent of m,n such that the following
holds: F = {x1, . . . , xn} are not in convex position is at most nBm2/

√
π.

Unless n is much larger than m2, the features are in a convex position with high probability.

Proof. For Model 1, each feature is a vertex of the m-dimensional hypercube [0, 1]m, which is a
convex set. Therefore, F is always in a convex position.

For Model 2, suppose xj is in the convex combination of F ′ ⊂ F . Then we may assume that
xj and F ′ belong to the same class c, for otherwise, xj is the convex combination of the form
xj =

∑
x∈F ′ axx, ax > 0. For some x, xj and x belong to different classes. However, this is

impossible as follows. Recall that each component of either xj or x ∈ F is non-negative. Since
m1 < m2, there is an index i such that either xj

i or xi is zero, but not both. This is a contradiction.

Therefore, we have at most n i.i.d. vectors belonging to an m2 dimensional subspace of Rm. Accord-
ing to the model for γc, such a probability is at most nBm2 (for some B < 1 independent of m,n)
by Gorban et al. (2018) Example 4 and Theorem 2. This proves the lemma.

Lemma 2 follows essentially from concentration type of inequalities, while Lemma 6 below is due to
the additional assumption on the feature model.

Proof of Lemma 2. We form independent random vectors yi = xi − ec. As each component of yi is
in [−1, 1], E(∥yi∥2) = σ2 < ∞. The result follows now from the vector Bernstein inequality (Kohler
& Lucchi, 2017, Lemma 18) applied to {yi} with K = 1/8σ2.

For different classes c, c′, a lower bound on ∥ec − ec′∥ tells us how different classes are separated
away from each other. We have the following observation regarding this.
Lemma 6. Assume that there is a universal lower bound b′ on the mean for each non-zero component
(in Jc) of all classes. Then ∥ec − ec′∥ ≥ (2m2 − 2m1)

1/2b′. Moreover, we have P
(
∥gc − gc′∥ ≤

(2m2 − 2m1)
1/2b′ − 2δ

)
≤ exp(−K(nc + n′

c)δ
2 + 1/2).

Proof. By our assumptions on Jc and Jc′ , for vectors ec−ec′ , there are at least 2m2−2m1 non-zero
entries. The absolute value of each such entry is at least b′. Therefore, ∥ec−ec′∥ ≥ (2m2−2m1)

1/2b′.
The second half follows from Lemma 2 and the triangle inequality.

We next show that vertex ϵ-quasi isometry implies ϵ-quasi isometry of simplexes.

Proof of Lemma 3. The following notations are used exclusively for this proof for convenience. We
prove the lemma by induction on the number of vectors k, for two sets of vectors {z1, . . . , zk}
and {z′1, . . . , z′k} that are the vertex ϵ-qusi isometric. Let ∆ = conv({z1, . . . , zk}) and ∆′ =
conv({z′1, . . . , z′k}).
The case k = 2 is trivial. For k = 3, consider w1, w2 ∈ ∆. It suffices to show the case when
w1, w2 are on two different sides of the triangle ∆. For otherwise, we can always find a (smaller)
triangle in ∆ such that w1, w2 are on the two sides. Then without loss of generality, we assume that
w1 = az1 + (1− a)z2 and w2 = bz1 + (1− b)z3 for some a ≥ b. Let the corresponding vectors in
∆′ be w′

1 and w′
2. Hence,

∥(w1 − w2)− (w′
1 − w′

2)∥
=∥(a− b)

(
(z1 − z3)− (z′1 − z′3)

)
+ (1− a)

(
(z2 − z3)− (z′2 − z′3)

)
∥

≤(a− b)∥(z1 − z3)− (z′1 − z′3)∥+ (1− a)∥(z2 − z3)− (z′2 − z′3)∥
≤(a− b)ϵ+ (1− a)ϵ = (1− b)ϵ ≤ ϵ.

Notice that this implies the conclusion of the ϵ-quasi isometry (by the triangle inequality), hence
we have settled the case k = 3. Assume the claim holds for 2, . . . , k and consider k + 1. For
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w1

w2

q1 q2p1 p2

z1

zi1 = zi2

Figure 6: An illustration of the points w1, w2, q1, q2, p1, p2, zi1 , zi2 .

w1, w2 ∈ ∆, we can always find a triangle with vertices {z1, q1, q2} with q1, q2 in the face Λ1 =
conv({z2, . . . , zk+1}) of ∆ such that the following holds (illustrated in Fig. 6):

• Both q1 and q2 are on Λ1.

• w1 is on [q1, z1] and w2 is on [q2, z1]. Hence, w1 (resp. w2) is a convex combination of
q1, z1 (resp. q2, z1).

• q1 is on a line segment [zi1 , p1], where 2 ≤ i1 ≤ k + 1 and p1 is in proper faces of Λ1.
Therefore, p1 is a convex combination of at most k vertices of ∆ as zi1 is missing. The same
holds for q2 on a line segment [zi2 , p2], 2 ≤ i2 ≤ k + 1.

Correspondingly, we have w′
1, w

′
2, q

′
1, q

′
2, p

′
1, p

′
2, z

′
i1
, z′i2 in ∆′, with the exact same convex combina-

tion coefficients. To conclude ∥(w1 − w2)− (w′
1 − w′

2)∥ ≤ ϵ, it suffices to successively apply the
induction hypothesis to

• The proper face of ∆ (resp. ∆′) missing zi1 (resp. missing z′i1) and the proper face of ∆
(resp. ∆′) missing zi2 (resp. missing z′i2 ) to obtain

∥(z1 − p1)− (z′1 − p′1)∥ ≤ ϵ, ∥(z1 − p2)− (z′1 − p′2)∥ ≤ ϵ.

• The triangle conv({z1, p1, zi1}) (resp. conv({z′1, p′1, z′i1})) and the triangle
conv({z1, p2, zi2}) (resp. conv({z′1, p′2, z′i2})) to obtain

∥(z1 − q1)− (z′1 − q′1)∥ ≤ ϵ, ∥(z1 − q2)− (z′1 − q′2)∥ ≤ ϵ.

• The proper face of ∆ (resp. ∆′) missing z1 (resp. z′1) to obtain

∥(q1 − q2)− (q′1 − q′2)∥ ≤ ϵ.

• The triangle conv({z1, q1, q2}) (resp. conv({z′1, q′1, q′2})) to obtain

∥(w1 − w2)− (w′
1 − w′

2)∥ ≤ ϵ.

The lemma is proved.

We are now ready to prove the main results of the paper.
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Proof of Theorem 1. For (a), recall Nv,c is the set of neighbors of v whose label is c. We estimate
∥yv − eNv

∥ as follows (notice terms with |Nv,c| = 0 are ignored):

∥yv − eNv∥2 = ∥
∑
c∈C

|Nv,c|
|Nv|

ec −
∑
c∈C

1

|Nv|
∑

vi∈Nv,c

xi∥2

≤(
∑
c∈C

|Nv,c|
|Nv|

∥ec −
1

|Nv,c|
∑

vi∈Nv,c

xi∥)2

≤(
∑
c∈C

|Nv,c|
|Nv|

)(
∑
c∈C

|Nv,c|
|Nv|

∥ec −
1

|Nv,c|
∑

vi∈Nv,c

xi∥2) by Cauchy-Schwartz

=
∑
c∈C

|Nv,c|
|Nv|

∥ec −
1

|Nv,c|
∑

vi∈Nv,c

xi∥2.

We apply Lemma 2, there is a K independent of v such that

P

∥ec −
1

|Nv,c|
∑

vi∈Nv,c

xi∥ ≤ (
δ|Nv|
|Nv,c|

)1/2


≥1− exp(−K|Nv,c| ·

δ|Nv|
|Nv,c|

+ 1/4)

=1− exp(−Kδ|Nv|+ 1/4).

Therefore, with probability at least (1− exp(−Kδ|Nv|+ 1/4))|C|, we have

∥yv − eNv∥2 ≤
∑
c∈C

|Nv,c|
|Nv|

· δ|Nv|
|Nv,c|

= |C|δ.

This proves the claim.

To prove (b), it suffices to prove ∥ec − eNv
∥ ≥ rdv,c − ϵ, and then the claim follows from (a) by

using the triangle inequality. By Lemma 3, the condition on the vertex ϵ-quasi isometry implies
that ∆e ≈ϵ ∆. Let u ∈ ∆ be the vector that corresponds to eNv

∈ ∆e, i.e., u =
∑

c∈C
|Nv,c|
|Nv| uc.

As ∆ is a regular simplex of size length r, ∥u − uc∥ = rdv,c/
√
2. This can be derived from the

probability simplex, which is a regular simplex of side length
√
2. By ϵ-quasi isometry, we have

∥ec − eNv∥ ≥ ∥u− uc∥ − ϵ = rdv,c/
√
2− ϵ. The result follows.

Proof of Theorem 2. Let V1 (resp. V2) be the subspace of the feature space spanned by {ec | c ∈ C}
(resp. {zc | c ∈ C}). Recall the vertex set of the probability simplex ∆C in R|C| is {pc | c ∈ C}.
We define a linear transformation L1 : R|C| → V1 induced by pc 7→ ec, c ∈ C. Similarly, define
L2 : R|C| → V2 induced by pc 7→ zc, c ∈ C. Let σ1 (resp. σ2) be the least singular value of L1

(resp. σ2). Order C by c1, . . . , cl, l = |C|, then the columns of L1 (resp. L2) are {ec1 , . . . , ecl} (resp.
{zc1 , . . . , zcl}).

As ∆ = conv({0} ∪ {zc | c ∈ C}) is an (r1, r2)-regular simplex, up to rotation, ∆ can be positioned
as follows:

• In V2, first form ∆′ = {z′c | c ∈ C}, where each z′c is on a unique (positive) coordinate axis
with the only non-zero coordinate r1/

√
2.

• z′0 is the unique point placed below ∆′ such that conv({z′0, z′c | c ∈ C}) is (r1, r2)-regular.

• ∆ = conv({z′0, z′c | c ∈ C})− z′0.

Notice that rotation does not change the size of the determinant and singular values of L2. For the
above special ∆, the determinant of L2 has size vol(∆) and a singular value of L2 is either r2

√
k
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(whose eigenvector is (1, . . . , 1)⊺) or
(
vol(∆)/(r2

√
k)
)1/(k−1)

. Recall that the volume of ∆ is

vol(∆) =

√
krk−1

1 r2

k!
√
2k−1

.

Therefore, the constant ρ(r1, r2) is the least singular value σ2 of L2.

Let p =
∑

1≤i≤l aipci ̸= 0 be a vector in V1 that realizes σ1 of L1, i.e.,
∑

1≤i≤l a
2
i = 1 and

∥L1(p)∥ = σ1. By the Cauchy-Schwartz inequality, t =
∑

1≤i≤l |ai| satisfies t2 ≤ l = |C| and
hence t ≤

√
|C|.

Assume without loss of generality that a1, . . . , ak ≥ 0 and ak+1, . . . , al < 0. We estimate

1

t
σ1 =

1

t
∥
∑

1≤i≤l

aiL1(pci)∥ =
1

t
∥
∑

1≤i≤l

aieci∥

=∥
∑

1≤i≤k

ai
t
eci −

∑
k+1≤j≤l

aj
t
ecj∥.

As
∑

1≤i≤k
ai

t ≤ 1 and
∑

k+1≤j≤l
aj

t ≤ 1, both vectors
∑

1≤i≤k
ai

t eci and
∑

k+1≤j≤l
aj

t ecj are in
conv({0} ∪ {ec | c ∈ C}). By vertex ϵ-quasi isometry of {0} ∪ {ec | c ∈ C} with {0} ∪ {zc | c ∈ C},
we have

∥
∑

1≤i≤k

ai
t
eci −

∑
k+1≤j≤l

aj
t
ecj∥

≥∥
∑

1≤i≤k

ai
t
zci −

∑
k+1≤j≤l

aj
t
zcj∥ − ϵ

=
1

t
∥L2(p)∥ − ϵ ≥ 1

t
σ2 − ϵ.

Therefore, we have

σ1 ≥ σ2 − tϵ ≥ σ2 −
√

|C|ϵ = ρ(r1, r2, ϵ)
−1 > 0.

This implies that L1 is invertible and the operator norm ∥L−1
1 ∥ is bounded by ρ(r1, r2, ϵ). We finally

define L to be L−1
1 on V1 and 0 on the orthogonal complement of V1.

It is now easy to prove the two claims. For (a), it is easy to verify that ŷc = (
∑

vi: class c L(x
i))/n.

Hence,

∥pc − ŷc∥ = ∥L(ec)− L(gc)∥ ≤ ρ(r1, r2, ϵ)∥ec − gc∥.
Therefore, (a) follows from Lemma 2. Similarly, for (b), we have

∥L(yv)− µv∥ = ∥L(yv)− L(eNv
)∥ ≤ ρ(r1, r2, ϵ)∥yv − eNv

∥.
The claim in (b) follows from Theorem 1.

Proof of Corollary 1. Let the vectors in ∆ that corresponds to eNv
and eNv

be u and u respectively.
As the simplex ∆ is degenerate, we have u = u. Therefore, by the vertex ϵ-isometry and Lemma 3,
we have ∥eNv

− eNv
∥ ≤ ϵ. The corollary follows immediately from Theorem 1 (a).

Proof of Lemma 4. To show M is stochastic, we compute for each c ∈ C:∑
c′∈C

αc,c′ =
∑
c′∈C

1

nc

∑
vi∈Dc

|Nvi,c′ |
|Nvi |

=
1

nc

∑
vi∈Dc

∑
c′∈C

|Nvi,c′ |
|Nvi |

=
1

nc

∑
vi∈Dc

1 = 1.

As each node has a self-connection, M is aperiodic. For any proper subset C ′ of C, the set of nodes
∪c∈C′Dc has some neighbors whose class labels do not belong to C ′. For otherwise, the proper
subset ∪c∈C′Dc is a union of connected components of G, which contradicts the assumption that
G is connected. This implies that any (C\C ′)× C ′ subblock of M contains some positive entries.
Therefore, M is irreducible. Being aperiodic and irreducible, M has a unique stationary distribution
(see Lalley (2016)).
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C RELATED WORKS

The proposed trics The tricks proposed in Section 5 belong to the following generic categories of
machine learning techniques: rewiring, early stopping, and feature normalization. However, different
research works propose different realizations of the above categories of machine learning techiniques.
The theoretical motivation and the explicit procedure differentiate approaches belonging to the same
category.

For “rewiring”, DropEdge (Rong et al., 2020) proposes to randomly drop a fraction of edges in each
iteration to alleviate the side-effects of oversmoothing. Bober et al. (2023) proposes to add or remove
edges to change the graph curvature for issues such as over-squashing. Ji et al. (2023a) considers
random edge removal at estimated class boundaries to (relatively) enhance intra-class connectivities.
In contrast to these earlier works, we propose rewiring by adding edges to reduce feature variance.
The trick is derived directly from our theoretical findings as discussed in Section 5 (see the subsection
on Simple tricks (1)).

“Early stopping” is usually used to reduce overfitting (Prechelt, 2012) or as a regularization in boosting
(Jiang, 2004). In our paper, we propose extremely early stopping (for heterophilic graphs). It is based
on the idea that we want to prevent the aggregated features of training nodes from fitting to their
respective label classes, which is unlike what people usually do. This is because the aggregated
features are likely to be close to the mixed centroids as we have discussed in Section 4.

For “feature normalization”, people usually do so in general machine learning for model stability
and efficiency, and to standardize different scales when features are measured (Singh & Singh, 2020;
Subasi, 2020). For GNN, for example, Zhao & Akoglu (2020) (the PairNorm model) proposes a
post-processing normalization layer in terms of the total pairwise squared distance introduced in the
paper, to alleviate oversmoothing. However, initial feature realization is rarely implemented in GNNs.
We propose doing so for the very specific reason of reshaping the simplicial complex ∆g (supported
by Theorem 2 and Corollary 1).

Geometry and GNNs Recent works have used more complicated topological and geometric tools
to model node correlations or to capture hidden structural network information. For example, Horn
et al. (2022) applies topological data analysis to retrieve global topological information such as
the number of cycles to enhance GNN expressiveness. The survey Papillon et al. (2024) contains a
comprehensive overview of models when graphs are replaced with more complicated and expressive
structures such as cellular complexes and hypergraphs. On the other hand, Han et al. (2024) on
geometric graph neural networks summarizes approaches given additional geometric information
such as explicit locations of nodes in a 3D space. They put emphasis on geometric invariance and they
are particularly useful for bio-chemical datasets. Unlike these works, our theme is on the geometry
of the features instead of the network structure. Hence, though geometric and topological tools are
employed, the subjects of study are different.

D DATASETS AND IMPLEMENTATION DETAILS

D.1 DATASETS

The following datasets are used and studied at various places in the paper (including the appendices):
Cora, Citeseer, PubMed, Ogbn-arxiv, Texas, Cornell, Wisconsin, Chameleon, Squirrel, Actor, Penn94,
arXiv-year, and genius (see Lim et al. (2021)). Their statistics are shown in Table 6.

D.2 HYPERPARAMETERS

There are two hyperparameters used in the tricks in Section 5: η for the edge addition probability and
E for the number of epochs in training. They are tuned according to the following general procedure.
For η, we will first consider η = 1, 0.5, 0.2, 0.1, 0.001, 0.0001 and then fine-tune around one of these
values using the validation set. We also keep track of the number of edges as a useful reference when
tuning, as graphs for different datasets may have large difference in edge size. For example, the Texas
graph has only 295 edges and an average degree of ≈ 3.2 while the Squirrel graph has 217k edges
and an average degree of ≈ 83.5.
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Table 6: Dataset statistics
Dataset Nodes Edges Classes Node Features Data splits

Cora 2708 5429 7 1433 standard
Citeseer 3327 4732 6 3703 standard
PubMed 19717 88651 3 500 standard

Ogbn-arxiv 169343 1166243 40 128 standard

Texas 183 295 5 1703 48%/32%/20%
Cornel 183 280 5 1703 48%/32%/20%

Wisconsin 251 466 5 1703 48%/32%/20%
Chameleon 2277 36101 5 2305 48%/32%/20%

Squirrel 5201 217073 5 2089 48%/32%/20%
Actor 7600 33391 5 932 48%/32%/20%

Penn94 41554 1362229 2 4814 50%/25%/25%
arXiv-year 169343 1166243 5 128 50%/25%/25%

genius 421961 984979 2 12 50%/25%/25%

For the number of epochs, let E0 be the number of epochs of the base model (E0 = 1000 for CDE and
GloGNN and = 200 for other base models). We consider E = E0/20, E0/10, E0/4, E0/2 and then
fine-tune around one of these values.

D.3 IMPLEMENTATION

The tricks are simple and thus straightforward to implement. The source code is provided in the
supplementary materials uploaded in the submission. Experiments are performed on a workstation
with a single NVIDIA GeForce RTX 3090 GPU and 24GB memory.

E NUMERICAL EVIDENCE AND DISCUSSIONS

In this appendix, we provide numerical evidence with discussions to support various claims of the
paper.

E.1 CHOICE OF THE MODEL FOR ANALYAIS

In Table 7, we show results from different variants of GCN on Cora and Citeseer datasets, to justify
our choice of single-layer convolution without ReLU for theoretical analysis in Section 3.

Table 7: Test accuracies of GCN variants on Cora and Citeseer (C: Convolution layer, R: ReLU)
CRCR CRC CC CR C

Cora 71.7% 80.3% 81.1% 77.9% 77.6%
Citeseer 63.7% 70.8% 71.8% 66.7% 68.4%

E.2 THE SHAPES OF ∆g

In Fig. 7, we show the pairwise Euclidean distance of {gc | c ∈ C} for all the datasets in Appendix D.1.
In addition, we also show the distance from each gc to the origin (cf. Theorem 2).

From Fig. 7, we may have a rough estimation of how each ∆g deviates from a regular simplex. This is
measured by a pair (ϵ, r) such that ∆g is vertex ϵ-quasi isometric to a regular simplex of side length
r. For simplicity, we compute the proxies (max∆g

−min∆g
)/2 and (max∆g

+min∆g
)/2 for ϵ and

r respectively, where max∆g (resp. min∆g ) is the maximum (resp. minimum) among all pairwise
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Figure 7: The pairwise distance of {gc | c ∈ C} for all the datasets. For the Texas dataset, class 2 is
omitted as there is only 1 node from class 2. The last row/column contains the distance of each gc to
0.

vertex distances of ∆g . In Table 8, we tabulate their ratio τ as a proxy for ϵ/r. The smaller its value
is, the more regular the shape of ∆g is.

We see that for Chameleon, Squirrel, and Actor, the estimated τ is ≈ 0.5 or larger, which indicates
their ∆g’s are much less regular. Moreover, from Fig. 7, we can sketch the shape of each ∆g. From
the illustration in Fig. 8, each ∆g has sides with relatively small lengths or side triangles with small
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Table 8: The estimated value τ for each dataset.
Cora Citeseer Texas Cornel Wisconsin Chameleon Squirrel Actor

0.174 0.255 0.177 0.236 0.342 0.653 0.494 0.599

areas. Therefore, they resemble degenerate simplexes discussed in Section 3.3. This explains why
GNN models generally perform poorly on these datasets by Corollary 1.

A more general notion of degeneracy (as compared with that defined in Section 3.3) is that some uc

belongs to the convex hull of {uc′ | c′ ̸= c} (this notion describes better the shape of Actor). If ∆e is
ϵ-quasi isometric to a degenerate simplex in this sense, then similar to Corollary 1, it will be hard to
identify a feature, that corresponds to the label class c, unambiguously.

gc1

gc2

gc4

gc5

Chameleon

gc1

gc2

gc4
gc5

Squirrel

gc1

gc2
gc3

gc4

Actor

Figure 8: We show the illustrations of a part of ∆g for Chameleon, Squirrel and Actor datasets. For
visualization, we can only show the tetrahedron formed from 4 vertices.

We offer a plausible explanation of the above phenomenon on the shapes of ∆g . For each dataset, we
compute and tally in Fig. 9 the 1-norm (i.e., number of non-zero components) of the original feature
of each node. From Fig. 9, we see that for Chameleon, Squirrel, and Wisconsin, node feature sizes are
much smaller than those of other datasets on average. Consequently, centroids can be very close to 0
and hence close to each other, as observed in Fig. 7. Intuitively, this suggests that for these datasets,
the features are not sufficiently expressive.

E.3 THE USEFULNESS OF KNOWING µv

To numerically verify the discussions following Theorem 2, we consider a thought experiment by
assuming that µv of each v is known (caution: this is hypothetical and the information is unavailable in
the actual problem). Let νv be the output label distribution of a GCN model. We add the regularization
term η√

n

∑
v∈V ∥νv − µv∥ to the loss ℓ of the model, where η is the regularization weight. We vary η

and the test accuracies are shown in Fig. 10. From the results, we see that the regularization term
indeed plays a dominant role. Moreover, a 1-layer GCN is better than a 2-layer GCN. This is due
to that a 1-layer GCN considers exactly the 1-hop neighbor of each node. The observations indeed
verify the conclusion of Theorem 2 (b). Of course in theory, if the normalized adjacency matrix is
invertible, then knowing the ground truth label of each node is equivalent to knowing µv for each
node.

E.4 AGGREGATED FEATURES AND CENTROIDS

To understand the relation between node features and centroids, we perform the following study. Fix
a label class c. We randomly choose 5 nodes from each class and find the distance from their average
features to gc. This process is repeated for 60 instances. In addition, for the class c, we also obtain
results for the average over 10 random nodes and over 20 random nodes. From Fig. 11, we see that
for Cora, Citeseer, Texas, Cornell, and Wisconsin datasets, averaging over nodes with label c is closer
to gc. However, the same is not observed in Chameleon, Squirrel, and Actor datasets. For example,
averaging features of 10 random nodes with label c is not necessarily closer to gc than averaging
features of 5 random nodes from a different class. A possible reason is that different centroids for
these datasets can be very close to each other (e.g., (gc1 , gc2) for Chameleon, (gc2 , gc3) for Squirrel
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Figure 9: The norm (i.e., number of non-zero components) of the original feature of each node.

Figure 10: A regularization scheme that uses neighborhood label distributions.

and (gc2 , gc3) for Chameleon for actor). The observation is consistent with our discussions regarding
the shapes of ∆g .

We investigate the features aggregated from a single-layer graph convolution. For each dataset, we
randomly choose 50 nodes. For each choose vi with label vi, we compute its aggregated feature yvi ,
and find its Euclidean distance to the ground-truth gci , the mixed centroid eNvi

and the centroid of
a random wrong class. From the results shown in Fig. 12, we see that for the homophilic datasets
Cora and Citeseer, the distance to the mixed centroid is almost the same as that to the true label
centroid, and both are smaller than the distance to a wrong label centroid. The former observation
reflects the homophilic property. For Texas, Cornell, and Wisconsin, as predicted by Theorem 2, the
distance to the mixed centroid is noticeably smaller than that to the true label centroid. On the other
hand, consistent with our earlier discussions on Chameleon, Squirrel, and Actor, the three types of
differences are all very similar, rendering classification difficult measured either in both accuracy or
ℓv (see Section 5).
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Figure 11: Euclidean distances from average features to class centroids. We only show the results for
one fixed c. Generally, a similar pattern is observed for other classes given the same dataset. In the
legends, “:10” or “:20” means average over 10 or 20 sample respectively.

E.5 ERRORS AND CENTROID DISTANCES

Our theory suggests a strong (negative) correlation between test error and the distance between class
centroids. More specifically, for each class ci, we count the number of test nodes with ground-truth
label ci while wrongly predicted as cj , for each j ̸= i. The results are shown in Fig. 13. If we look at
each row, say the i-th row of the tables, then we observe the following general pattern. Entries with
relatively larger error count for that row usually correspond to smaller centroid distances for the same
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Figure 12: We show the distance from yvi to its ground-truth label centroid, the mixed label centroid,
and a random wrong label centroid, for 50 randomly chosen vi.

row (right column of Fig. 13). (Though it is not true for every single instance.) This is consistent with
our theory.
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Figure 13: In the left column, we show the summary of test error for each dataset. In each table, the
(i, j)-th entry is the number belonging to the error type that predicts label class ci as class cj . The
right column is taken from Fig. 7 for comparison.

E.6 FEATURE NORMALIZATION

We analyze the normalization trick (Section 5) when applied to Chameleon, Squirrel, and Actor
datasets. As the features are changed, we re-compute the resulting pairwise distance of the centroids
{gc | c ∈ C} (cf. Fig. 7).

Comparing Fig. 7 and Fig. 14, it is observed that the resulting ∆g becomes more regular. To quantify,
for the three datasets, we compute the value τ (cf. Table 8) and find that it reduces from approximately
0.653, 0.494 and 0.599 to 0.497, 0.284 and 0.592 respectively. This is consistent with the performance
improvement seen in Section 5 Table 3. Moreover, we notice that for the Actor dataset, the change in
τ is small, and so is the corresponding performance improvement for the vanilla 1-layer GCN model.

In Fig. 14, we also show the distance from average features to the centroid of each class (cf. Fig. 11).
Comparing Fig. 11 with Fig. 14, we see that after feature normalization, the average features of a class
ci are closer (to its centroid gci ) than the average features of a different class. The observation is more
prominent for the Chameleon and Squirrel datasets, accounting for the effectiveness of normalization
for these datasets.
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Figure 14: We show the pairwise pairwise distance of gc, c ∈ C for the datasets after normalization
(cf. Fig. 7). Moreover, we also show figures analogous to Fig. 11 after normalization.

F MORE RESULTS

F.1 RESULTS ON MORE DATASETS

Homophilic graphs In Table 9, we show the classification results for homophilic graphs. The
proposed tricks generally improve the performance of base models. However, the tricks have a
stronger impact on the heterophilic datasets.

For the Ogbn-arxiv dataset, we see that the best accuracy among all models is ≈ 60%. According to
our discussion, the dataset is likely to be intrinsically difficult by having an almost degenerate ∆g.
We verify that this is indeed the case, as its estimated τ value (cf. Table 8) is ≈ 0.67. Based on our
discussion in Section 5, the normalization trick might be useful to enhance the performance, and it is
indeed true as shown in Table 10.

Large scale non-homophilous graphs In Table 11, we show the node classification results for a
few large scale non-homophilous graphs introduced in Lim et al. (2021). We use the model LINKX
proposed in Lim et al. (2021) as the based model and apply jointly the edge addition and early
stopping tricks described in Section 5. We see an improvement in the test accuracy for each dataset.
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Table 9: Node classification results(%) for homophilic graphs. “-I” and “-II” stand for 1 and 2 layers
respectively. For the base models, we use directly the source code and data split by the respective
authors. Suffix “-AE” is for the models with edge addition and early stopping tricks.

Method Cora Citeseer PubMed Ogbn-arxiv

GCN-I 75.64±0.53 70.66±0.84 76.97±0.18 42.54±0.88
GCN-I-AE 76.29±0.37 71.03±0.72 77.00±0.15 45.35±1.26
GCN-II 80.95±0.41 70.91±0.48 79.29±0.23 37.72±0.55
GCN-II-AE 81.19±0.69 71.32±0.24 79.96±0.25 44.72±0.40

GAT-I 63.50±0.83 54.98±4.30 66.54±3.17 52.02±1.46
GAT-I-AE 64.48±0.64 57.18±2.33 69.74±4.43 52.21±1.07
GAT-II 73.44±2.50 67.82±1.46 75.99±0.98 53.40±0.36
GAT-II-AE 73.73±2.21 68.36±0.52 76.12±0.68 53.63±0.51

ACM-GCN 84.19±0.02 75.42±0.02 89.07±0.02 58.84±1.00
ACM-GCN-AE 84.63±0.01 76.95±0.02 90.30±0.01 59.01±1.24

GraphCON 87.44±1.35 75.10±2.37 87.20±0.88 60.43 ± 1.21
GraphCON-AE 87.91±1.40 75.41±2.02 87.38 ±0.66 60.67 ± 0.72

CDE 83.80±1.19 73.45±1.60 89.80±0.28 OOM
CDE-AE 83.88±0.88 73.72±1.72 89.85±0.25 OOM

GloGNN 86.22±1.17 75.22±1.83 87.79±0.22 60.00±0.33
GloGNN-AE 86.52±1.23 75.26±1.61 87.97±0.26 60.24±0.22

Table 10: Normalization (suffix: “-AEN”) is applied to ACM-GCN for Ogbn-arxiv.
Method ACM-GCN ACM-GCN-AE ACM-GCN-AEN % ↑ over M
Ogbn-arxiv 58.84±1.00 59.01±1.24 66.63±0.48 13.2%

Limited feature information We study the performance of our proposed tricks for small feature
sizes by randomly removing a fraction of features. We choose the best base model ACM-GCN and
consider retaining 1/2, 1/4, 1/8 feature dimensions. The results are shown in Table 12 and we see
that our proposed tricks generally improve the performance.

Table 11: Node classification results(%) for large scale non-homophilous graphs. Suffix “-AE” is for
the model with tricks.

Method arXiv-year Penn94 genius

LINKX 54.05±0.36 83.79±0.59 90.54±0.22
LINKX-AE 62.60±0.21 84.56±3.69 94.61±0.16

Table 12: Node classification results(%) if a fraction of feature dimension is retained.
Feature dimension Full 1/2 1/4 1/8

Chameleon
ACM-GCN 71.29±8.06 61.95±7.13 52.70±5.36 44.17±3.87
ACM-GCN-AEN 75.22±9.99 63.53±7.37 56.09±5.36 46.07±4.92

Squirrel
ACM-GCN 55.07±8.96 49.67±7.43 42.10±5.08 36.27±2.72
ACM-GCN-AEN 59.47±11.41 50.49±7.81 44.10±5.93 37.67±2.38

Actor
ACM-GCN 37.28±2.76 33.74±2.34 31.32±1.67 26.89±0.97
ACM-GCN-AEN 47.62±6.38 35.09±1.91 32.33±1.53 29.23±0.85
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F.2 CONFORMAL PREDICTION

As we have argued in Section 5, we may consider estimating the neighborhood label distribution µv

of each node v as an alternative objective. We have seen that the tricks proposed in Section 5 improve
the estimated µv for Texas, Cornell, and Wisconsin datasets. We have also provided possible reasons
regarding why improvements are not seen for Chameleon, Squirrel, and Actor datasets.

On the other hand, conformal prediction for GNNs has recently drawn much attention (Clarkson,
2023; Zargarbashi et al., 2023; Huang et al., 2023). In a nutshell, it removes each class with a very
small predicted probability, based on a calibration node set. We view each removed class as “noise”,
and thus conformal prediction is viewed as a denoising process. More specifically, for each test node
v, let νv be its predicted probability, regarding as a finite set of weights. We apply the simple scheme
in Angelopoulos & Bates (2021, Section 1) to remove small weights in νv, using a fraction of the
validation set as the calibration set. The remaining weights are normalized to give ν′v . We evaluate by
computing ℓ′v = ∥ν′v − µv∥1 (against ℓv = ∥νv − µv∥1).

From the results in Table 13, we see that conformal prediction indeed achieves the desired denoising
effect for Texas, Cornell, and Wisconsin datasets. Consistently, for the difficult datasets Chameleon,
Squirrel, and Actor, conformal prediction has minimal effect.

Table 13: The conformal prediction results.
Method Texas Cornell Wisconsin Chameleon Squirrel Actor

GCN-I 0.6874 0.7286 0.7204 0.7360 0.6240 0.9044
GCN-I-C 0.7281 0.7260 0.7423 0.9846 0.8718 0.9160
GCN-I-AE 0.6181 0.6482 0.5634 0.6934 0.5834 0.8877
GCN-I-AE-C 0.5886 0.5952 0.5328 0.9671 0.8834 0.9098

F.3 MORE RESULTS ON AVERAGE ℓv

In Table 14, we observe that the 1-layer GCN (GCN-I) indeed generally has the smallest average ℓv ,
which agrees with what the theory predicts. This is because other eventual GCN models essentially
change the graph structure and each νv is expected to be similar to the neighborhood label distribution
in the new graph. As observed in Section 5, GCN-I-AE generally improves the metric of average ℓv .

Table 14: The results on average ℓv for different models
Method Texas Cornell Wisconsin Chameleon Squirrel Actor

GCN-I 0.6874 0.7286 0.7204 0.7360 0.6240 0.9044
GCN-I-AE 0.6181 0.6482 0.5634 0.6934 0.5834 0.8877
GCN-II 0.7803 0.7435 0.7842 0.8899 0.7323 0.9550
GCN-II-AE 0.8182 0.7161 0.7218 0.8337 0.6961 0.9322

GAT-I 0.6686 0.6726 0.6975 1.0335 0.8966 0.9774
GAT-I-AE 0.6642 0.6598 0.6707 0.9090 0.8784 0.9156
GAT-II 0.7669 0.7652 0.7989 1.1305 1.0255 1.0305
GAT-II-AE 0.7229 0.7051 0.7235 1.0605 1.0213 0.8668

ACM-GCN 0.6702 0.6596 0.8062 1.0791 0.8308 0.9736
ACM-GCN-AE 0.6567 0.6788 0.7894 0.9760 0.7685 0.9214

GraphCON 0.7697 0.7890 0.8296 1.1419 1.0386 0.9804
GraphCON-AE 0.7337 0.7200 0.7879 1.1161 1.0297 0.9614

CDE 1.2348 1.1720 1.1424 1.2093 1.1140 0.8412
CDE-AE 1.2153 1.1676 1.1361 1.2078 1.1138 0.8374

GloGNN 1.6223 1.3085 1.4972 1.1801 0.9598 1.0368
GloGNN-AE 1.6397 1.3045 1.5049 1.1648 0.9561 1.0285
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Softmax
(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

Figure 15: An illustration of the effect of the softmax function.

G LIMITATIONS

The framework gives us a glimpse into theoretical explanations of many GNN phenomena and
enhances our understanding of the mechanisms and fundamental limitations of GNN models. Given
a dataset, we also aspire to use the framework to rigorously identify the hardness (quantitatively).
From our theoretical and numerical results, the quasi-isometric shape of the feature centroid simplex
demonstrates its usefulness in distinguishing easy datasets (e.g., Taxes) from hard ones (e.g., Actor).
However, we are not able to prove that any numerical invariants associated with the shape can give a
guaranteed error (lower) bound, i.e., the Bayesian error, for any GNN models. We will investigate
further in future works.

Technically, the reliance of our framework on node features faces challenges when there are few
useful features. For example, this occurs for many graph classification tasks (see Table 15), where the
graph labels largely depend on the graph structure. For such a task, our proposed framework does
not immediately give an insightful understanding of the dataset. A possible solution is to apply the
framework in conjunction with position encoding of the nodes as features.

Table 15: Graph classification results(%). The base models are GIN (Xu et al., 2019) and PANDA
(Choi et al., 2024). We apply the only relevant trick for classification: feature normalization (suffix:"-
N"). We observe a slight improvement over the base model, which prompts further investigation is
needed to understand how our framework might be adopted for graph classification.

Method MUTAG Proteins ENZYMES

GIN 88.83±6.10 75.60±1.34 48.35±4.47
GIN-N 90.11±4.35 75.71±1.18 49.52±4.91

PANDA 88.49±4.90 74.46±2.22 46.33±4.73
PANDA-N 89.50±3.86 75.509±2.70 47.16±4.13

H MISCELLANEOUS

The softmax function Given a feature vector, it is a common practice to obtain a probability
distribution by applying the softmax function to the components. For the convenience of theoretical
analysis, we have not discussed the effect of the softmax function. As the softmax function is not a
linear transformation and is always nonzero, it will not match the vertices of a simplex ∆ to that of
the probability simplex ∆c. However, it is approximately so as illustrated in Fig. 15. Moreover, the
softmax function is order-preserving (of the components), therefore, omitting the softmax function
does not change prediction accuracy.

The ∥·∥1-evalutation metric In Section 5, we have proposed considering average ℓv as an evalu-
ation metric. This is essentially an 1-norm. We choose this over the 2-norm because the 1-norm is
the same as the Wasserstein metric on the discrete space C of label classes (Villani, 2009; Ji et al.,
2023a). Moreover, 1-norm reflects better sparsity under the condition that for any given node, most
of its neighbors belong to 1 or 2 classes. However, the metric is used as a measure of the closeness
between the predicted distribution νv and the ground-truth distribution µv. Using 2-norm is also a
reasonable choice.
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Normalized adjacency matrix In the early work Kipf & Welling (2017), it is already noted that
the normalized version of the adjacency matrix should be used for convolution. On the other hand,
Xu et al. (2019) claims that using the adjacency matrix as the aggregator is more expressive. For
the node classification, our perspective suggests that feature aggregation is to reduce class feature
variance. Therefore, the normalized adjacency matrix serves this purpose better.
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