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ABSTRACT

Transferring CLIP for open-vocabulary video recognition has shown impressive
effectiveness. To fit the video domain, the model undergoes fine-tuning on a video
dataset and is expected to generalize well on data with unseen categories. How-
ever, this fine-tuning paradigm overlooks the variations of the representation space
beyond the training distribution, leading to the sub-optimal adaptation effect. In
this paper, we introduce TACO, a simple yet effective framework to mitigate the
potential negative effects induced by the inconsistency between fine-tuning and
evaluation objectives. We formulate a more concrete adaptation principle by
delving into the deficiencies of existing paradigms. Specifically, we propose a
task decoupling method that mitigates the knowledge overfitting by incorporat-
ing a specialization projection. Moreover, we offer new insights into the preser-
vation of the generalization and technically introduce Relative Structure Distil-
lation, which maintains the consistent relative structure between in-distribution
and out-of-distribution representation spaces through knowledge distillation. Our
proposed TACO establishes state-of-the-art performance on diverse benchmarks
under cross-dataset and base-to-novel settings. Code will be released.

1 INTRODUCTION

Open-vocabulary learning aims to identify novel visual concepts defined by language vocabularies
unseen during the training phase. This setting has been driven by the rapid progress of large-scale
Vision—Language Models (e.g., CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021)), which learn
aligned multimodal representations by pretraining on massive image-text pairs. With its strong
generalization to unknown concepts, such foundation models offer great practicality for real-world
applications and have been widely adapted to various downstream tasks (Zhou et al., 2022; Gu et al.,
2022; Cho et al., 2024; Lin et al., 2024). Inspired by this progress, recent studies have explored
adapting CLIP for general video recognition (Ni et al., 2022; Rasheed et al., 2023; Zhu et al., 2024),
avoiding the costly computation and video data collection for pretraining from scratch.

For open-vocabulary video recognition, while CLIP provides a decent starting point for context
understanding, effective adaptation remains challenging, specifically in empowering models to ac-
curately capture the temporal dynamics encoded in videos of unknown categories. To achieve this,
it is believed that the key lies in introducing video-specific knowledge while preserving the original
pretrained generalization. Following this principle, recent studies (e.g., Open-VCLIP (Weng et al.,
2023), FROSTER (Huang et al., 2024)) typically seek a middle ground between specialization and
generalization, thereby alleviating the catastrophic forgetting problem induced by fine-tuning (Ku-
mar et al., 2022; Zheng et al., 2023) and yielding promising results. However, although underpin-
ning many recent advances, the essence of this principle remains insufficiently clarified, providing
little concrete direction for method evolution. As a natural extension, our questions are: (i) Can
fine-tuning learn new knowledge suitable for open-vocabulary video recognition? (ii) What is the
essence of preserving the pretrained generalization during fine-tuning?

We explore the above questions by rethinking the inconsistency between standard fine-tuning and
the open-vocabulary task, where models are tuned to pursue decent performance on training data but
evaluated on out-of-distribution (OOD) categories. Since the training dataset is limited in scale and
diversity, such inconsistency problem is inherently present in existing fine-tune paradigms and leads
to sub-optimal open-vocabulary adaptation effects. By observing performance changes when mixing
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Figure 1: A representation space illustration of the inconsistency between the standard fine-tuning
and open-vocabulary evaluation objectives. Triangles indicate the visual embedding, squares repre-
sent the text embedding, and circles denote sampled OOD embeddings.

the evaluation vocabulary, it reveals that the knowledge introduced by standard fine-tuning exhibits
severe in-distribution (ID) bias. We then delve into the impact of feature space selection and show
that keeping alignment with the initial OOD semantic space is crucial for preserving generalization.

Building upon these findings, we present TACO, a simple yet effective framework towards task-
consistent open-vocabulary video adaptation. Our inspiration stems from observing the deficien-
cies of existing fine-tuning methods relative to a hypothesized ideal adaptation framework, where
the video and text data used for fine-tuning are virtually unlimited. By remedying these deficien-
cies, TACO makes refinements in both introducing new knowledge and preserving generalization.
Specifically, instead of directly mapping video inputs to the optimization space, we propose decou-
pling the adaptation task into learning generalized knowledge and optimizing specific objectives.
This is achieved by incorporating a Specialization Projection on top of the visual encoder during
fine-tuning, separating the encoder’s output from the optimization space and thereby mitigating the
in-distribution bias. We discuss specific projection designs in the context of VLMs adaptation. As
for the generalization capability, we offer new insights into the role of fine-tuning the text encoder
and the essence of preserving generalization. Technically, we propose a novel distillation objective
termed Relative Structure Distillation. Distinct from existing distillation terms, the proposed objec-
tive regularizes the relative structure between ID and constructed OOD spaces to be consistent with
its initial state, closing the gap between training and evaluation objectives. Overall, our proposed
TACO is highly concise and exhibits great scalability. It can be seamlessly integrated into existing
video learners across various architectures and model sizes, delivering significant improvements.

Our main contributions can be summarized as follows:

* We introduce TACO, a simple yet effective framework for open-vocabulary video adaptation.
TACO aims to mitigate the potential negative effects induced by the inconsistency between fine-
tuning and evaluation objectives, which has been overlooked in previous studies.

* We revisit the existing fine-tuning paradigm, identify its deficiencies in terms of introducing new
knowledge and preserving generalization, and formulate a more explicit adaptation principle (§ 2).

* We propose a space decoupling method that mitigates the knowledge overfitting by incorporating
Specialization Projection. Moreover, we present Relative Structure Distillation, which effectively
preserves generalization by keeping the relative alignment of OOD space during fine-tuning (§ 3).

* Our proposed TACO sets a new state-of-the-art performance on cross-dataset and base-to-novel
settings across multiple benchmarks. Comprehensive ablation studies demonstrate the effective-
ness and versatility of our method. (§ 4)

2 ANALYSIS: REVISITING OPEN-VOCABULARY ADAPTATION FOR VIDEO

2.1 PRELIMINARY: ADAPTING CLIP FOR VIDEO RECOGNITION

To transfer the powerful generalization of the CLIP model (Radford et al., 2021) to the video do-
main, recent studies have fine-tuned its joint embedding space using video-text data and obtained
promising results (Ni et al., 2022; Rasheed et al., 2023; Zhu et al., 2024). We briefly describe the
standard fine-tuning paradigm in this context. Consider a CLIP-based video learner composed of a
visual encoder fy, () and a text encoder fjy, (-), where 6,, and 0, are the parameters of each encoder.
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Given a video V' € RT*HXWx3 ith T frames and the corresponding text description C' € Sy

embedded in a set of pre-defined templates (e.g., "This is a video about []”), we extract the visual
embedding v € RP, the text embedding ¢ € R, and compute their similarity sim(v, ¢) as follows:
. v,C
V=0 V). €= fuC), simv.e) = T m
where D is the dimension of the joint embedding space. During fine-tuning, the video-specific
knowledge is injected by maximizing the similarity if V' and C' are matched, otherwise minimizing
it. Formally, the training objective can be written as:

Lcg =Eqvoyun|CE(o(sim(v, €)), one_hot(C))], (2)
where D is the fine-tuning dataset, C E(-, -) is the cross-entropy loss, and o is the softmax operation.

2.2 INCONSISTENCY BETWEEN OPEN-VOCABULARY ADAPTATION AND EVALUATION

Following the above fine-tuning paradigm, great efforts have been made to adapt CLIP for open-
vocabulary video recognition (Weng et al., 2023; Huang et al., 2024; Zhu et al., 2024; Yu et al.,
2025). These methods typically conduct fine-tuning on the Kinetics-400 (Kay et al., 2017) dataset,
and the derived model is expected to generalize well on test data with unseen categories Cicsr €
Stest, Where S N Stest = (). However, the standard fine-tuning objective is optimized restrictively
within the in-distribution (ID) space, neglecting the basic setting of evaluating open-vocabulary tasks
in the OOD space. We argue that such inconsistency between training and evaluation objectives leads
to suboptimal effects in both introducing new knowledge and preserving generalization.

In-distribution bias in learning new knowledge. To
endow the model with generic video knowledge for tem-
poral modeling, the fine-tuning data is expected to be as
large-scale and diverse as possible. In existing works,
while Kinetics-400 (K400) can serve as a good proxy on
the video side, its text space is bounded by a fixed num- w0

ber of 400 action categories. During fine-tuning, the op-

timization objective forces the visual encoder to learn a 20 TS0l

mapping function from the video input space to a narrow = e

embedding space. As aresult, the new knowledge learned ° Corresponding Corresponding AL

by the visual encoder severely overfits the limited ID text + K400 (ID)

space and is not suitable for open-vocabulary tasks. To  Fjgure 2: Accuracy drops when expand-
demonstrate this, we measure how ID and OOD perfor-  jng the vocabulary used for evaluation.
mance change as we expand the vocabulary used for eval-

uation. As shown in Figure 2, when expanding the corresponding vocabulary of each dataset with
ID categories (i.e. K400), OOD performance significantly drops while ID performance is marginally
affected. This phenomenon suggests that the visual embedding of the adapted model suffers from
severe in-distribution bias.

A closer look at preserving generalization. To better T oL FT oL
understand the essence of preserving generalization, we Text Text Text Text
investigate the impact of each fine-tuned encoder on gen- |*' 663 62 ' 84 67.3
eralization by replacing it with the corresponding CLIP’s

. : ! CLIP - 414 609 P 628 609
original encoders during evaluation. We show the har-  visua " 9 Visual %% -
monic mean of zero-shot performances in Figure 3 (a). (a) Standard FT model (b) Our FT model

Interestingly, replacing the fine-tuned text encoder with
CLIP’s text encoder has almost no impact on the results
(66.3% vs. 66.2%), which suggests that the OOD gen-
eralization of the adapted model is grounded in CLIP’s
original semantic space. However, fine-tuning inevitably leads to changes in the OOD representa-
tion space (evidenced in Figure 4), as the representations of the test data are not orthogonal to the
ID subspace spanned by the training data (Kumar et al., 2022). This change may further distort
the alignment between visual and text embeddings in OOD space and result in diminished general-
ization. Based on these findings, we hypothesize that maintaining the representation alignment in
0OD space is crucial for preserving generalization. As shown in Figure 3 (b), properly regularizing
the OOD space with our method can further enhance the generalization, validating our hypothesis.

Figure 3: Replacing the encoders of
the standard fine-tuning model and our
model with the original CLIP encoders.



Under review as a conference paper at ICLR 2026

[Text sim: 1.00] FT Model (frozen text encoder)

The role of fine-tuning the text encoder. Our hypoth- | = (Cueah i
esis naturally raises a question: Since the generalization

relies on the original CLIP text space, can we freeze the
text encoder to prevent the alignment shift in OOD space?
Unfortunately, the answer is no, as previous works show
that fine-tuning the text encoder can bring improvements e

to zero-shot performance (Rasheed et al., 2023; Huang | | ___— \

et al., 2024). To prove this, we visualize the similarity Similarities to CLTP visual embeddings
distributions between visual embeddings from the CLIP
model and various ﬁne.-tU.I.lf.:d models in Figure 4, anq cal- visual embeddings between the CLIP
culate the overall 31m11ar1tles. between text embeddm'gs. model and various fine-tuned models in
It can b.e observed that .freezmg the text encodqr during  op space (UCE, HMDB, and K600).

fine-tuning causes the visual embeddings to deviate sub-

stantially from those of CLIP, whereas fine-tuning the text

encoder can effectively mitigate such deviation. Based on this, we argue that the role of fine-tuning
the text encoder is to relieve the overfitting in visual embeddings, rather than learning new textual
knowledge. However, there is still a noticeable deviation for both fine-tuned visual and text em-
beddings in OOD space, which degrades the generalization capability. We believe such deviation
should be further curbed during fine-tuning, which was overlooked in previous studies.

Probability density

Figure 4: Similarity distributions of

3 METHODOLOGY

Building upon the above findings, we conclude that an effective open-vocabulary adaptation strategy
requires considering: (i) Introducing new knowledge while mitigating its overfitting to known cate-
gories. (ii) Maintaining the representation alignment in OOD space for preserving generalization.
With this in mind, we propose a simple yet effective framework TACO, as presented in Figure 5.
Details will be elaborated in the following sections.

3.1 SPECIALIZATION PROJECTION FOR MITIGATING KNOWLEDGE OVERFITTING.

In the standard fine-tuning paradigm, the representation space is typically identical to the optimiza-
tion space, as the output visual embeddings are directly fed into the objective function for parameter
optimization. This paradigm is desirable when the optimization space is capable of delivering ex-
tensive supervision to the visual representations. Conversely, the narrow supervision from limited
text categories will collapse the open distribution of CLIP’s visual representations into a restricted
space, leading to overfitting.

To address this, our insight is to decouple the representation space from the optimization space by
incorporating a Specialization Projection between the two spaces. The representation space is ex-
pected to learn more generic knowledge around the original CLIP space, while the optimization
space is dedicated to minimizing the fine-tuning objective. During evaluation, we discard the pro-
jection head for more generalized representations. Specifically, we first encode the video input V'
into the representation space with the visual encoder fp, (+), and then transform it to the optimization
space with a projection network A(-):

b = h(fo,(V)) + fo.(V), &)

where © € RP is the projected visual embedding. Our design is inspired by self-supervised con-
trastive learning (Chen et al., 2020a;b; Oquab et al., 2023), where an MLP is placed on top of the
encoder during the pre-training stage, and discarded afterwards when fine-tuning on downstream
tasks. However, applying such a strategy for VLMs adaptation is non-trivial since there is only one
training phase. In this context, we need to consider the effective decoupling effect while keeping
the alignment between text and pre-projection visual embeddings. To keep the alignment, we apply
the residual connection (He et al., 2016) and remove the non-linear activation in the projection head.
Different from the critical role of the non-linear activation in contrastive learning, we find that it
distorts the representation alignment when the text encoder is tunable. The projection head is pa-
rameterized as two consecutive linear layers. We apply different learning rates to the projection head
and visual encoder to achieve more effective decoupling. Besides, we do not incorporate projection
to the text encoder, since its role is not to learn new textual knowledge as described in Section 2.2.
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Figure 5: An overview of the TACO framework.

3.2 RELATIVE STRUCTURE DISTILLATION FOR PRESERVING GENERALIZATION

Existing fine-tuning paradigm naturally partition the semantic space into ID and OOD spaces, where
a model fine-tuned on the known training distribution is expected to generalize to unseen categories.
While achieving great advances, these studies overlook the importance of OOD space for preserving
generalization. Based on our findings, our insight is that the fine-tuning process should regularize the
entire semantic space to protect the representation alignment. To achieve this, we propose Relative
Structure Distillation, a novel regularizer that maintains the consistent relative structure over the
entire semantic space during fine-tuning by knowledge distillation (Hinton et al., 2015).

Relative structure distillation. To preserve the pre-trained generalization during adaptation, one
direct approach is to constrain the adapted model from deviating too far from the pre-trained version
by mimicking its logits or features (Huang et al., 2024; Addepalli et al., 2024). For example, one can
adopt the frozen CLIP as the teacher model and extract the normalized visual embedding v, and text
embedding c;. The Kullback-Leibler (KL) divergence loss can be utilized to match the distribution
between teacher and student logits:

ﬁKLZDKL(U('UtCtT/T)HU('Us CI/T))v S

where ¢ denotes the softmax operation, 7 is a temperature parameter, v and cs are the normalized
embeddings from the adapted model. However, existing distillation methods typically focus on the
matching within the training distribution since the distillation data is identical to the training data,
leaving them ineffective in suppressing deviations beyond the training distribution. To address this,
we propose anchoring the relative structure of the ID and OOD spaces with generated OOD semantic
points. Formally, given a video and text input, we first obtain the normalized teacher embeddings
vg, ¢, € RP and student embeddings ¥s,cs € RP, respectively. Note that ¥ is derived from the
projected visual embedding in Equation 3. Subsequently, we sample N normalized OOD semantic
embeddings across the entire semantic space, denoted as z € RV <P The generated OOD points do
not need to be associated with the training data, but expected to cover enough semantics. We take z
as anchors and regularize its relative relations to the ID embeddings with a modified KL objective:

Lrsp = Dr(o(vd ="z lef /1) || o8 =T 2 el /7). 5)

Instead of distilling the embedding similarities within the training distribution, our objective aims to
keep the consistency of relative structure between ID and OOD spaces throughout the fine-tuning.

Generation of OOD Embeddings. To cover enough semantics, the OOD embeddings should ide-
ally span the entire semantic space. One possible way is to sample from a large authentic corpus.
For example, leveraging the textual descriptions in existing large-scale video-text datasets (e.g. We-
bVid (Bain et al., 2021)) or prompting large-language models (Hurst et al., 2024) to generate poten-
tial video categories. But the sampled texts may not uniformly span the semantic space and require
an additional embedding process. To address this, we formulate the generation of OOD semantic
embeddings as a problem of uniform sampling on a unit hypersphere. Specifically, leveraging the
rotational invariance of the Gaussian distribution, we draw N samples from the standard Gaussian
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Table 1: Performance comparison with state-of-the-art methods under the base-to-novel setting.
“HM” indicates the harmonic mean of the accuracy on base and novel sets.

Method Venue K400 HMDB UCF SSv2

BASE Novel HM | BASE Novel HM | BASE Novel HM | BASE Novel HM
CLIP (Radford et al., 2021) ICML21 62.3 534 575 ] 533 468 498 | 785 63.6 703 49 53 5.1
ActionCLIP (Wang et al., 2021) arXiv'21 61.0 462 52,6 | 69.1 373 485 | 90.1 58.1 707 | 133 10.1 115
X-CLIP (Ni et al., 2022) ECCV’22 74.1 564 640 | 694 455 550 | 899 589 712 8.5 6.6 7.4
VPT (Ju et al., 2022b) ECCV’22 69.7 37.6 488 | 462 16.0 238 | 905 404 558 8.3 53 6.4
AIM (Yang et al., 2022) ICLR’23 74.6 625 68.0 | 64.0 516 57.1 | 89.8 76.4  82.6 8.5 7.9 8.2
ST-Adapter (Pan et al., 2022) NeurIPS’22  73.6 62.0 673 | 653 489 559 | 855 76.8  80.9 9.3 8.4 8.8
ViFi-CLIP (Rasheed et al., 2023) ~ CVPR’23 76.4 61.1 679 | 738 533 619 | 929 67.7 783 | 162 12.1 139
Open-VCLIP (Weng et al., 2023)  ICML’23 76.5 62.6 689 | 703 504 587 | 948 775 853 | 16.0 1.0 13.0
FROSTER (Huang et al., 2024) ICLR’24 71.8 643 704 | 74.1 580 651 | 953 800 87.0 | 183 122 146
Open-MeDe (Yu et al., 2025) ICCV’25 772 63.8 699 | 73.6 564 639 | 949 785 859 | 17.1 123 143
TACO (ours) 78.2 63.8 703 | 744 623 678 | 958 822 885 | 177 124 146

distribution A/(0, I) in each iteration and project onto the unit hypersphere with normalization. The
sampled vectors can be regarded as generic OOD embeddings and directly applied to Equation 5.

Design of the teacher model. Previous methods suggest that using the frozen CLIP as the teacher
model is a good choice for preserving generalization (Huang et al., 2024; Zheng et al., 2023). How-
ever, the distillation supervision from the frozen CLIP may hinder the model’s ability in learning
new knowledge. In our work, the teacher model is designed as an exponential moving average
(EMA) model with its parameters updated at each iteration as 6 = mé + (1 — m)6, where m is a
momentum coefficient, § and 6 are the parameters of the teacher and student models, respectively.
This mechanism ensures the teacher model remains consistent while evolving with new knowledge.
The overall learning objective can be written as

L=Lcg+ ALRrsD, (6)
where we set A = 0.4 by default.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Evaluation Protocols. We thoroughly evaluate our method with two common protocols: Cross-
dataset and Base-to-novel evaluation. (i) Cross-dataset: In this setup, the model is trained on
Kinetics-400 (Kay et al., 2017) and then evaluated on other datasets with out-of-distribution vo-
cabulary, including UCF-101 (Soomro et al., 2012), HMDB-51 (Kuehne et al., 2011), and Kinetics-
600 (Carreira et al., 2018). For UCF and HMDB, we evaluate on both the full dataset and three
validation splits. For K600, we adopt the three splits provided by (Chen & Huang, 2021). Each split
contains 160 categories sampled from 220 unseen categories. (ii) Base-to-novel: In this protocol, a
dataset is divided into two disjoint category sets: base classes and novel classes. The model is tuned
on base classes and evaluated on both base and novel classes. Evaluation datasets including K400,
UCF, HMDB, and Something-Something v2 (Goyal et al., 2017). During inference, we sample 3
temporal clips with a center crop (i.e. 3 X 1 views) per video.

Implementation Details. We use the CLIP (Radford et al., 2021) pre-trained ViT-B/16 and ViT-
L/14 models in our experiments. During fine-tuning, we sparsely sample 8 frames as the video
input. The pre-processing includes random cropping and resizing to the size of 224 x 224, along
with random horizontal flips and random grayscale. We adopt AdamW (Loshchilov & Hutter, 2017)
as the optimizer with a weight decay of 0.2. The initial learning rate is set to 3.75 x 10~% with a
total batch size of 192, following a half-period cosine learning rate decay. For parameters in the
specialization projection, the initial learning rate is increased to 5 x 10~°. Furthermore, we set the
number of OOD semantic embeddings N to 200 and the momentum coefficient m to 0.9998. Please
see supplementary for more details.

4.2 MAIN RESULTS

Base-to-novel video recognition. In Table |, we compare our method with the state-of-the-art
results under the base-to-novel setting, which reflects the model’s joint ability to fit video-specific



Under review as a conference paper at ICLR 2026

Table 2: Zero-shot classification performance compared with the state-of-the-art methods under the
cross-dataset setting, evaluated on the validation splits of UCF-101, HMDB-51, and Kinetics-600.

Method Venue Encoder Frames UCF-101 HMDB-51 Kinetics-600
ActionCLIP (Wang et al., 2021) arXiv'21 ViT-B/16 32 58.34+3.4 40.8+54 67.7+1.1
A5 (Juet al., 2022a) ECCV’22 ViT-B/16 32 69.3+4.2 443422 -
X-CLIP (Ni et al., 2022) ECCV’22 ViT-B/16 32 72.042.3  44.61+5.2 65.24+0.4
ST-Adapter (Pan et al., 2022) NeurIPS’22  ViT-B/16 8 76.9+0.8 51.5+0.6 60.2+1.8
Vita-CLIP (Wasim et al., 2023) CVPR’23 ViT-B/16 8/32 75.0£0.6  48.61+0.6 67.440.5
ViFi-CLIP (Rasheed et al., 2023) CVPR’23 ViT-B/16 32 76.840.7  51.31+0.6 71.2+1.0
OTI (Zhu et al., 2023) ACMMM’23  ViT-B/16 8 83.3+0.3 54.2+1.3 66.9+1.0
Open-VCLIP (Weng et al., 2023) ICML’23 ViT-B/16 8 83.44+1.2 53.9+1.2 73.0+0.8
MAXI (Lin et al., 2023) ICCV’23 ViT-B/16 16/32  78.240.8  52.3+0.7 71.54+0.8
FROSTER (Huang et al., 2024) ICLR24 ViT-B/16 8 84.841.1 54.841.3 74.8+0.9
OST (Chen et al., 2024) CVPR’24 ViT-B/16 8 77.9+1.3  549+1.1 73.940.8
MOoTE (Huang et al., 2024) NeurIPS’24  ViT-B/16 8 83.4+0.7 55.840.9 70.2+0.6
Open-MeDe (Yu et al., 2025) ICCV’25 ViT-B/16 8 83.7+£1.3  54.6+1.1 73.7+0.9
TACO (ours) ViT-B/16 8 85.6+1.2  60.0+0.5 77.0+0.9
X-Florence (Ni et al., 2022) ECCV’22 Florence 32 732442  48.44+49 68.84+0.9
Text4Vis (Wu et al., 2023a) AAAT’ 23 ViT-L/14 8 82.64+0.7 524404 72.1+£0.9
OTI (Zhu et al., 2023) ACMMM’23  ViT-L/14 8 88.1£1.0  59.3%+1.7 70.6+0.5
Open-VCLIP (Weng et al., 2023) ICML’23 ViT-L/14 8 87.6+£1.2  59.04+0.6 81.1+0.8
DiST (Qing et al., 2023) ICCV’23 ViT-L/14 32 749408 57.5+1.6 75.04+0.7
MoTE (Huang et al., 2024) NeurlPS’24  ViT-L/14 8 88.74£0.6  61.441.3 78.4+0.9
TACO (ours) ViT-L/14 8 91.4+0.7 64.2+0.8 83.9+0.7

Table 3: Zero-shot performance of UCF and Table 4: Integrating our TACO with various
HMDB on the full dataset. * indicates evaluation adaptation methods can significantly improve the

with the full validation set on HMDB. zero-shot generalization.

Method Encoder UCF HMDB Type | Method | UCF HMDB K600
CLIP (Radford et al., 2021) VIT-B/16 749  46.7 | ST-Adapter (Panctal,2022) | 779 503 602
AIM (Yang et al., 2022) VITLB/16 79.0  49.5 Adapter-based T (T fgi fg; ]13597
ST-Adapter (Pan et al., 2022) ViT-B/16 779 503 ‘ - - -
Open-VCLIP* (Weng et al., 2023)  ViT-B/16  83.5 53.2 | Vita-CLIP (Wasim et al., 2023) | 78.6 50.5 67.4
FROSTER* (Huang et al., 2024)  ViL-B/16 850 545 Prompt-based - TACg( ours) 8‘;-3 52‘; 73-;
TACO (ours) VITLB/16 859 54.6 | T 2L 4

- - \ CLIP + LoRA (Hu et al., 2022) | 80.5 50.4 71.2
Text4Vis (Wu et al., 2023a) ViT-L/14  79.6 49.8 LoRA-based + TACO(ours) 83.1 54.4 747
BIKE (Wu et al., 2023a) VIT-L/14 808  52.8 | A 426 +40 435
OTI (Zhu et al., 2023) ViT-L/14 883 558 ‘ Fine-tuned CLIP 23 520 T34
MoTE (Zhu et al., 2024) ViT-L/14 894  56.3 Fully-tuned + TACO(ours) 84.8 542 756
TACO (ours) ViT-L/14  91.6 59.9 | A +2.0 22 422

biases while being adapted to unknown categories. Our method exhibits excellent performance on
the K400, HMDB, and UCF datasets, primarily focusing on the improvements for novel categories.
This demonstrates its ability to rapidly acquire generic video knowledge with a few less relevant
samples. Besides, the temporal-heavy nature of SSv2 necessitates additional techniques (e.g., cross-
frame attention (Weng et al., 2023; Huang et al., 2024)) to capture the fine-grained temporal dynam-
ics. Since our method is built upon the original CLIP architecture, the performance of SSv2 does not
show a notable improvement over other models. Overall, our method presents superior performance
in the base-to-novel setting.

Cross-dataset video recognition. Table 2 presents comparisons with the state-of-the-art meth-
ods under the cross-dataset setting, which assesses the model’s generalization towards out-of-
distribution categories. Our method sets a new state-of-the-art performance across all datasets, yield-
ing significant improvements over existing approaches. The excellent performance can be scaled up
with the network architecture, indicating the effectiveness and scalability of our method. The same
trend can also be observed when evaluating with the full dataset, as shown in Table 3. Overall,
our adapted model exhibits remarkable OOD generalization, which can be attributed to the well-
preserved structure of the representation space during the fine-tuning. As shown in Figure 4, our
method can effectively mitigate the embedding deviations in OOD space and therefore improve the
generalization capability.
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Table 5: Ablation studies on the components and key details. We report the cross-dataset perfor-
mance on UCF, HMDB, and K600 split1, using the ViT-B/16 network. UCF; and K600, denote the
results of freezing the text encoder during the fine-tuning. Default settings are colored in gray.

(a) Effects of the proposed compo- (b) Various types of the Specializa- (c) Generation of the OOD seman-

nents. tion Projection. tic embeddings.
Spec. Proj. Lrsp ‘ UCF HMDB K600 Trpe ‘UCF K600 UCF; K600 ¢ Methods ‘ UCF HMDB K600
82.8 520 734 None 82.8 734 815 69.7 LLM 83.7 532 74.6
v 837 532 748 MLP 822 733 831 719 WebVid-10M 84.2 53.8 75.5
4 845 529 752 Transformer|81.2 72.4 827 71.5 Random 75.2 46.8 69.2
v v 848 542 75.6 Two linear |83.7 74.8 82.8 72.1 N(0,1) 84.8 54.2 75.6
(d) Effects of regularizing the OOD (e) Effects of the OOD embeddings (f) Effects of using rephrased text
space in distillation. number N. and weight ensemble.
Type ‘ UCF HMDB K600 Number ‘ UCF HMDB K600 Methods ‘ UCF HMDB K600
L2 Loss 83.6 52.8 75.0 100 84.8 53.9 75.4 None 84.8 542 75.6
KL divergence | 83.3 53.1 74.9 200 84.8 54.2 75.6 +Rephrased text | 86.0  54.3 77.4
LRsSD 84.8 54.2 75.6 400 84.6 54.0 75.7 +Weight ensemble | 85.9 54.6  78.1

4.3 ABLATION STUDIES

Applicability to various adaptation methods. To demonstrate the scalability of our method, we
integrate TACO with representative parameter-efficient adaptation techniques, including adapter-
based, prompt-based, and LoRA-based approaches. As presented in Table 4, the concise design
of our method enables a direct integration with various methods and yields consistent performance
improvements. Besides, we observe that our method achieves the optimal results when combined
with a fully fine-tuned approach. This suggests that when transferring CLIP to the video domain,
the model requires sufficient capacity to strike a balance between fitting the video bias and keeping
the pre-trained generalization.

Component-wise analysis of TACO. To analyze the effect of each proposed component, we per-
form in-depth ablations with the ViT-B/16 network in Table 5a. Our baseline is the ViT-B/16 CLIP
model adapted under the standard fine-tuning paradigm. The results show that the Specialization
Projection and Relative Structure Distillation contribute respectively to the generalization perfor-
mance in terms of introducing new knowledge and preserving generalization. Their combination
yields a promising synergistic effect, demonstrating the effectiveness of our method.

Various implementations of the specialization projection. We ablate the different types of spe-
cialization projection in Table 5b. Two baseline models are adopted in this study, differing in
whether the text encoder is fine-tuned. When the text encoder is frozen during the fine-tuning
process, all three implementations can lead to performance improvements. Instead, MLP and Trans-
former lead to degraded generalization when the text encoder is tunable. We believe this is due to the
activation function leading to a substantial shift to the projected embeddings, which in turn distorts
the alignment between text and pre-projected video representations. Moreover, two simple linear
layers can effectively decouple the representation and optimization spaces, delivering consistent
improvements over both baselines.

Various implementations of the specialization projection. We study the effects of different
OOD embedding generation methods in Table 5c. We first generate about 3000 real video categories
by prompting the LLM model (Hurst et al., 2024) and collect the text descriptions in a large-scale
video-text dataset (Bain et al., 2021), and then utilize the K-means (McQueen, 1967) clustering
to reduce the number of the embeddings. The results show that our proposed Gaussian sampling
method outperforms the OOD categories with authentic semantics, and does not require additional
computation. Besides, we try to replace the z " z in Equation 5 with a randomly initialized tensor
of the shape D x D. The model collapsed during training, indicating that OOD embeddings must
reside in the same semantic space as the fine-tuned model.

Effects of regularizing the OOD space in distillation. In Table 5d, we show that keeping the
space structure of the OOD space in distillation is crucial for preserving generalization. Compared
to the vanilla knowledge distillation techniques using the L2 or KL divergence objective, our method
can effectively curb the deviation in the OOD space and achieve better performance.
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Varying the number of the OOD samples. We ablate the number of OOD samples N in Table 5e.
N = 200 is sufficient to represent the structure of the sampled OOD space and yields the best result.

Effects of the rephrased text and weight ensemble. To further enhance the generalization per-
formance, we incorporate the rephrased text descriptions from FROSTER (Huang et al., 2024) and
the weight ensemble technique (Weng et al., 2023) into our method. Each can provide additional
performance improvements. Besides, for the weight ensemble, we found it to be quite effective
when the model is over-trained. But when the model does not exhibit obvious overfitting, it may
impose a negative effect. In contrast, our method can be applied to models under any condition and
leads to the generalization improvement.

5 RELATED WORK

Adapting VLMs to video recognition. Adapting VLMs to video recognition tasks has been
shown to be effective. In this paradigm, the main challenges lie in effectively injecting the video-
specific knowledge and preserving the original generalization inherent in VLMs (Rasheed et al.,
2023). For the former, a line of research models the video temporal dynamics by incorporating ad-
ditional parameterized modules, such as well-designed adapters (Pan et al., 2022; Yang et al., 2022),
prompts (Ju et al., 2022a; Wasim et al., 2023; Ju et al., 2022b), and the Transformer layers (Wu
et al., 2023a;b; Zhu et al., 2024). For example, X-CLIP Ni et al. (2022) proposes an attention-based
and multi-frame integration module for cross-frame information exchange. For the latter, Open-
VCLIP (Weng et al., 2023) seeks a middle ground between generalization and specialization by
interpolating the model weights along its optimization trajectory. FROSTER Huang et al. (2024)
alleviates the overfitting by ensuring the learned features do not diverge too far from the frozen
CLIP through knowledge distillation. Open-MeDe Yu et al. (2025) leverages the meta-optimization
to mitigate the inherent static bias of the pre-trained model during adaptation. Despite achieving
remarkable results in open-vocabulary evaluation, we believe their adaptation effects remain con-
strained by the inconsistency between the fine-tuning and evaluation objectives. Our method offers
new insights into the above challenges and delivers significant improvements in generalization ca-
pability.

Knowledge distillation for VLMs. Applying knowledge distillation constraints for adapting pre-
trained models has been widely explored (Pei et al., 2023; Li et al., 2024), with the aim of enhancing
the generalization capability. The core principle is to have the student model mimic the teacher’s
logits or features, thereby transferring the teacher’s generalized knowledge to the student (Yang
et al., 2024; Mistretta et al., 2024; Dai et al., 2022) or regularizing the student to not deviate from
the teacher (Huang et al., 2024; Addepalli et al., 2024). For example, CLIPPING (Pei et al., 2023)
transfers the plentiful knowledge from a larger model to a computationally efficient student model
(MobileViT) through layer-wise alignment. FROSTER (Huang et al., 2024) prevents the model
from overfitting in fine-tuning by designing the residual feature distillation. However, these meth-
ods typically focus on aligning features or logits within the training data distribution. Instead, we
emphasize the importance of the OOD space for preserving the generalization, and propose a novel
distillation objective to maintain the relative structure of the OOD space during adaptation.

6 CONCLUSION

In this work, we present TACO, a simple yet effective framework designed to address the incon-
sistency between fine-tuning and evaluation objectives. By analyzing the limitations of existing
paradigms, we formulate a concrete adaptation principle and introduce a task decoupling strategy
with a specialization projection to alleviate knowledge overfitting. Furthermore, we propose Relative
Structure Distillation, which preserves generalization by maintaining consistent relative structures
between ID and OOD embedding spaces. Extensive experiments demonstrate that TACO achieves
state-of-the-art performance across diverse benchmarks under cross-dataset and base-to-novel set-
tings.
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A LLM USAGE STATEMENT

In this work, large language models (LLMs) were used solely as general-purpose tools for language
polishing and improving the clarity of writing. All other uses of LLMs, if any, have been explicitly
stated in the main text. The authors take full responsibility for the content of this paper.

B LIMITATION AND BROADER IMPACT

Limitation While our approach achieves strong performance on open-vocabulary tasks, we ob-
serve that its improvements are relatively limited on datasets where temporal information plays a
critical role. A promising direction for future research is to integrate our framework with existing
temporal modeling techniques to better handle such scenarios. In addition, our method requires
setting a relatively small momentum parameter for the teacher model to maintain consistency in the
0OOD space. However, we observe that the optimal value of this parameter may vary across datasets,
which could limit the robustness of our approach. A potential future direction is to develop a more
stable strategy for updating the teacher model.

Broader Impact Adapting foundation models to downstream tasks has become a prevailing trend
in machine learning. We argue that exploring effective strategies for adapting vision-language mod-
els to open-vocabulary tasks is both timely and necessary for real-world applications. This work
seeks to offer insights that contribute to the broader and long-term use of foundation models. While
our study focuses on video recognition, which has wide-ranging applications such as surveillance,
it is crucial that concerns regarding privacy and individual rights are thoroughly considered prior to
practical deployment.

Table 6: Hyper-parameter details during fine-tuning.

\ Value

Optimization details
Batch size 192
Optimizer AdamW
Weight decay 0.2
Adam (1,05 0.9, 0.999
Learning rate (Projection) Se-5
Learning rate (CLIP layers) 3.75e-6
Learning rate decay Cosine
Training epochs 15
Linear warm-up epochs 5 (cross-dataset), 2 (bas-to-novel)
Augmentation
RandomResizedCrop

Area [0.08, 1.00]

Aspect ratio [3/4, 4/3]

Crop size 224
Random Horizontal Flip 0.5
Random Gray scale 0.2

C MORE IMPLEMENTATION DETAILS

In Table 6, we present the hyper-parameters set for optimization. For both the Cross-dataset and
Base-to-novel settings, we trained the model for 15 epochs. All experiments are conducted using 3
NVIDIA GeForce RTX 4090.

For cross-dataset evaluation, the methods are evaluated on three official splits or the full dataset of
UCF-101 and HMDB-51. For Kinetics-600, we adopt the three splits provided by (Chen & Huang,
2021). Each split contains 160 categories out of 220 new categories that do not exist in K400. We
report the average Top-1 accuracy and the standard deviation on three splits. To further enhance the
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generalization performance, we incorporate the rephrased text descriptions from FROSTER (Huang
et al., 2024) and the weight ensemble technique (Weng et al., 2023) into our method.

For base-to-novel evaluation, we do not apply weight ensemble since it may affect the model’s per-
formance on the base category. Following the previous work (Huang et al., 2024), we employed the
rephrased text descriptions in this setting. Besides, we do not apply the rephrased text descriptions
to the SSv2 dataset.

D ADDITIONAL ABLATIONS

Training cost analysis of TACO. We report the actual

training time of our method with respect to the baseline in - Taple 7: Ablation study on the train-
Table 7. The wall-clock time of training is benchmarked on  jpg costs of TACO.

34090 GPUs with a batch size of 192. GPU days are calcu-

lated by the number of GPUs multiplied by the training time " jothod | GPU-hours
in hours. As shown in the table, applying the specialization Finetoned CLIP 363
projection does not introduce additional training overhead | Specialization Projection 36.4
over the baseline, due its light implementation. Incorporat- + LRrsD 37.8

ing Lrsp brings a +1.4 days training time increase since it
requires an additional forward pass for the teacher model.

Effects of varying momentum coefficients. In this
study, we explored the impact of different teacher models Taple 8: Effects of varying momen-
on generalization performance and the effects of the mo- ym coefficients.

mentum parameter. As shown in the table, using the frozen
model as the teacher model (i.e. momentum=1.0) yields
inferior results. We believe this is because its supervision

Momentum | UCF HMDB

signals constrain the model’s ability to learn new knowl- 1.0 83.8 53.1
edge. Using the EMA update strategy strikes a good bal- 0.99998 84.2 54.0
ance between maintaining consistency and incorporating 0.9998 84.8 54.2
new knowledge. Besides, we found that using a smaller 0.998 84.1 53.8

momentum parameter yields better results, indicating the
importance of preserving the consistency of the OOD space structure.

E TEXTUAL PROMPTS USED IN EVALUATION

Following the previous work (Zhu et al., 2024), we adopt a set of hand-craft textual prompt templates
to generate text embeddings during the evaluations. Following CLIP (Radford et al., 2021), we
perform prompt ensembling over the 28 templates in order to provide comprehensive semantics.
The templates are listed in Table 9.

F DATASET DETAILS

Kinetics-400 (Kay et al., 2017) is a large-scale dataset in the video domain. The dataset contains
~240k training videos and ~20k validation videos in 400 human action categories, with an average
length of 10 seconds. The high quality of the dataset makes it the most popular benchmark for video
recognition

Kinetics-600 (Carreira et al., 2018) is an extension of Kinetics-400, consisting of ~392k training
videos, ~30k validation videos, and ~60k test videos in 600 human action categories. The dataset
contains an additional 220 new action categories over Kinetics-400. We evaluate the zero-shot
performance on 220 new categories and adopt three splits provided by the previous work (Chen &
Huang, 2021). We use its test set for evaluation and report the average performance on three splits.

UCF-101 (Soomro et al., 2012) is an action recognition dataset that contains 13,320 videos in
101 action categories, collected from YouTube. There are three official splits of training data and
validation data.
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Table 9: Textual prompt templates of TACO.

Templates

"a photo of {category}.’

>a photo of a person {category}.

’a photo of a person using {category}.

"a photo of a person doing {category}.’

’a photo of a person during {category}.’

’a photo of a person performing {category}.’

"a photo of a person practicing {category}.

’a video of {category}.’

’a video of a person {category}.

"a video of a person using {category}.

’a video of a person doing {category}.’

’a video of a person during {category}.

"a video of a person performing {category}.’

’a video of a person practicing {category}.’

’a example of {category}.

"a example of a person {category}.’

’a example of a person using {category}.

’a example of a person doing {category}.’

"a example of a person during {category}.

’a example of a person performing {category}.
’a example of a person practicing {category}.
’a demonstration of {category}.

’a demonstration of a person {category}.’

’a demonstration of a person using {category}.
’a demonstration of a person doing {category}.
’a demonstration of a person during {category}.’
’a demonstration of a person performing {category}.’
’a demonstration of a person practicing {category}.’

HMDB-51 (Kuehne et al., 2011) contains 7k videos in 51 action categories, collected from movie
clips and web videos. There are three official splits of the dataset, each with 3,570 training data and
1,530 validation data. is a collection of realistic videos from various sources, including movies and
web videos. The dataset comprises 7,000 video clips from 51 action categories.

Somethin-Something V2  (Goyal et al., 2017) is a temporal-heavy dataset that requires the fine-
grained temporal understanding capability of the model. It contains 220,000 videos in 174 action
categories.
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