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ABSTRACT

Explaining a complex black-box system in a post-hoc manner is important to un-
derstand its predictions. In this work we focus on two objectives, namely on
how well the estimated explanation describes the classifier’s behavior (faithful-
ness), and how sensitive the explanation is to input variations or model configu-
rations (robustness). To achieve both faithfulness and robustness, we propose an
uncertainty-aware explanation model, Variational Perturbations (VP), that learns a
distribution of feature attribution for each image input and the corresponding clas-
sifier outputs. This differs from existing methods, which learn one deterministic
estimate of feature attribution. We validate that according to several robustness
and faithfulness metrics our VP method provides more reliable explanations com-
pared to state-of-the-art methods on MNIST, CUB, and ImageNet datasets while
also being more efficient.

1 INTRODUCTION

Explainable AI is becoming an essential field to understand the underlying process of a black-box
system. This is especially required in safety-critical applications where transparent communication
between machine learning system and human users is crucial (Lipton, 2018; Doshi-Velez & Kim,
2017). We particularly focus on explaining an image classification model in a post-hoc manner
via feature attribution (Simonyan et al., 2013), i.e. contribution of each feature of an input image
towards the classifier’s prediction.

We propose a perturbation-based explanation method called Variational Perturbations (VP) to learn
a posterior distribution of feature attribution for each image input and corresponding classifier out-
puts. We design the likelihood function to follow the property of explanation that features are likely
to have higher attribution when they are considered sufficient to provide similar classifier outputs
compared with that of original image input. As our prior being the standard Gaussian distribu-
tion makes the posterior intractable, we use a variational Bayesian method (Hoffman et al., 2013;
Kingma & Welling, 2013) to approximate it. The approximate posterior is represented by a neural
network which is optimized with the dataset used for training the classifier.

When it comes to reliably estimating feature attribution-based explanations, faithfulness measures
the quality of an estimated feature attribution describing the classifier’s behavior and robustness
seeks to have roughly similar feature attribution when explaining subtle variations of different
inputs, i.e. stability, or the same input but with different experimental configurations, i.e. con-
sistency (Ribeiro et al., 2016; Ghorbani et al., 2019). Considering both faithfulness and robust-
ness have been discussed previously in the literature for self-explainable models (Alvarez-Melis &
Jaakkola, 2018a; Lee et al., 2019) and gradient-based methods (Dombrowski et al., 2019), but not
for perturbation-based methods.

The faithfulness of our VP model comes from the design of the likelihood function. Furthermore,
when optimizing the approximate posterior, globally exploring the search space of feature attribution
by sampling from the approximate posterior makes the explanation more robust to variations of input
or experimental configurations. To evaluate these two traits, we compare VP with state-of-the-art
methods with respect to several consistency, stability, and perturbation metrics on MNIST, CUB
and the large-scale ImageNet datasets. We observe that our method has the best performance in
the overall ranking of the methods while being efficient, over ×1000 faster compared to some of
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previous methods, e.g., MP (Fong & Vedaldi, 2017), RISE (Petsiuk et al., 2018), EP (Fong et al.,
2019), and AP (Elliott et al., 2021).

In summary, our contributions are: 1) We propose a perturbation-based explanation method, VP, that
estimates a distribution of feature attribution, 2) We conduct our experiments on three datasets of
varying difficulty and compare our method to seven state-of-the-art visual explanation methods, and
3) We show that our method is robust to input perturbations and experimental settings and faithful
to explanation of the classifier decision while being efficient in inferring the feature attribution.

2 RELATED WORKS

Faithfulness on explanation. Estimating the importance of features of an input image in a post-
hoc manner has been studied in many different ways. Perturbation-based explanation is one of the
methodology where a feature attribution is estimated by locally perturbing an image or features of
an image to infer the importance. The simplest way of perturbing a region of image is to replace the
region with zero values (Ribeiro et al., 2016; Lundberg & Lee, 2017; Petsiuk et al., 2018) or with
a blurred image (Fong & Vedaldi, 2017; Fong et al., 2019). However, images perturbed by these
methods could lead to out-of-distribution samples, leading to unintended artifacts for explanation.
To address this issue, Zintgraf et al. (2017) and Chang et al. (2019) replace the region by inpainting.
Previously mentioned methods need a considerable time to infer a single explanation since they
have to perform optimization. To address this issue, Dabkowski & Gal (2017) and Chen et al.
(2018) propose a learnable explainer where the output is a feature attribution, and it is obtained by a
single forward pass in the inference phase. Our method belongs to a perturbation-based explanation
method. We make a comparison with some of the key methods in this domain.

Backpropagation-based explanation methods aim to explain a classifier’s output signal by tracing it
back through the classifier to endow relavance score for each input features. The first deep neural
network approach in this family, i.e. Simonyan et al. (2013) approximates a classifier of a given input
as a linear function by Taylor expansion, and considers the gradient of the input as feature attribu-
tion. However since the gradient only considers local sensitivity, it does not satisfy several axioms
of explanation. Follow-up works have proposed methods satisfying axioms (Sundararajan et al.,
2017; Srinivas & Fleuret, 2019) or reducing noise in saliency by ensembling (Smilkov et al., 2017;
Adebayo et al., 2018; Hooker et al., 2019; Kapishnikov et al., 2021). Also along with gradient-based
methods, handcrafted propagation rules have been proposed (Zeiler & Fergus, 2014; Springenberg
et al., 2015; Bach et al., 2015; Shrikumar et al., 2017; Kindermans et al., 2018).

Robustness on explanation. The notion of robustness on explanation was first introduced by
Alvarez-Melis & Jaakkola (2018b). There have been approaches to improve the robustness on
stability by building self-explainable models (Alvarez-Melis & Jaakkola, 2018a; Lee et al., 2019)
or gradient-based methods (Dombrowski et al., 2019). Zhao et al. (2021) introduce a Bayesian
framework that incorporates prior knowledge to build a local surrogate model which ensures robust-
ness to kernel settings and stability of explanation. Finally, Slack et al. (2020) recently proposed
BayesLIME, a Bayesian local explanation which can captures two kinds of uncertainty, which are
feature importance uncertainty and error uncertainty. Based on the uncertainty, it ensures reliability
and provides the way to address inconsistency on randomness derived from sampling nearest inputs
for training a local explainer. While BayesLIME captures uncertainty of each feature attribution
caused by finite number of sampling from the nearest inputs, our method captures that uncertainty
caused by ambiguity of relative importance between different features.

3 VARIATIONAL PERTURBATIONS
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Figure 1: Graphical model.

In this section, we introduce our Variational Perturbations (VP)
method for generating perturbation-based explanations. Let us de-
fine a pretrained multi-class classifier that we aim to interpret as
f : RC×H×W → ∆K−1 where x ∈ RC×H×W is an input with
C, H , and W to be channel, height, and width of the input image,
and ŷ ∈ ∆K−1 is a K-dimensional predictive probability output
with sum of elements equal to 1. To explain the behaviour of the
classifier’s output signal by feature attribution map, we introduce a
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random variable s ∈ RH×W that describes the importance of each feature in a given image. By
observing the feature attribution s with input image x, we understand why the function f gives out-
put signal ŷ (Figure 1). Our goal is to calculate the posterior distribution of the feature attribution,
p(s|x, ŷ). By Bayes’ rule, the posterior is stated as:

p(s|x, ŷ) = p(ŷ|x, s) p(s|x) / Z , (1)

where Z is the marginal likelihood. We should model two terms, the likelihood p(ŷ|x, s) and the
prior p(s|x), in order to calculate the posterior.

3.1 MODELING LIKELIHOOD AND PRIOR

For designing the likelihood, we focus on the “response to occluding” property in explanation: the
importance of each feature in an image is determined by observing the response of the classifier’s
output when the feature is occluded (Zeiler & Fergus, 2014). If output signal changes considerably
when some part of an image is deleted, that erased region is regarded as cue for the classifier’s out-
put. Based on this concept, Fong & Vedaldi (2017); Dabkowski & Gal (2017) suggest “smallest
sufficient region (SSR)” where they aim to find the smallest but sufficient cue region for explaining
the classifier output. The difference between SSR and our approach is that we do not consider the
smallest sufficient region, but rather rank the features to obtain relative importance among differ-
ent features. Moreover, we consider not the target class but the predictive probability output ŷ to
interpret the model itself. The likelihood is designed such that the aforementioned properties satisfy:

− log p(ŷ|x, s, k) = DKL[ f(x) ‖ f(x� τ (k)(s)) ] + const , (2)
p(ŷ|x, s) = Ep(k)[ p(ŷ|x, s, k) ] , (3)

whereDKL is a Kullback-Leibler (KL) divergence, τ (k)(·) is a top-k operator, and� is a perturb op-
eration that makes local perturbation of input x. The top-k operator applied to the feature attribution
map, τ (k)(s) ∈ {0, 1}H×W , acts as a mask where [τ (k)(s)]h,w = 1 when sh,w corresponds to one
of the biggest k% attributions in s. This way, the conditional likelihood in equation 2 considers only
the selected features in the input. We make local perturbation of input x by replacing the unselected
region in an image with the baseline input x̃, x�m = x◦m+ x̃◦ (1−m), where ◦ is a pointwise
multiplication. We bring three settings for the baseline input x̃ in our experiment: blurred baseline1,
noise baseline2, and mean baseline3.

Equation 2 states that the predictive probability ŷ is more likely when the distance between the
classifier’s predictive probability of input x and that of perturbed input is close for a given k. We
do not consider the ground-truth class or the top-1 predicted class, but rather all of the classes with
predictive probability to examine the classifier’s behavior itself. We set p(k) as uniform distribution
U(0, 100) to consider various values of k, and take the expectation over p(k) to get the likelihood
p(ŷ|x, s) in Equation 3.

The easiest way of modeling the prior distribution p(s|x) is to first assume that s and x are inde-
pendent, p(s|x) = p(s), and then design p(s) as a standard Gaussian distribution, p(vec(s)) =
N (vec(s);0, I), where vec(s) ∈ RHW is a vectorized version of s. Other ways of modeling the
prior (Carvalho et al., 2010; Blundell et al., 2015; Louizos & Welling, 2016) is out of our scope.

3.2 VARIATIONAL INFERENCE ON FEATURE ATTRIBUTION

As modeling the likelihood as Equation 3 and the prior as standard Gaussian distribution makes the
posterior intractable in Equation 1, we approximate it with the distribution qθ(s|x) parameterized

1We define “blurred baseline” as an input image blurred with Gaussian kernel.
2The “noise baseline” is defined as Gaussian noise.
3We term “mean baseline” when the baseline is set to be the per channel mean of an original image and

added by Gaussian noise.
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Figure 2: Schematic description. Our Variational Perturbations (VP) method is based on training an explainer
qθ of which the output is a distribution of feature attribution. The reconstruction loss Lrecon forces the explainer
to provide a faithful feature attirbution while the regularization loss Lreg regularizes the explainer to follow a
prior distribution. Since our goal is to explain a classifier’s prediction, we freeze the classifier in training.

by θ where the objective is to minimize the KL divergence between qθ(s|x) and p(s|x,ŷ):

minimize
θ

DKL[ qθ(s|x) ‖ p(s|x, ŷ) ]

=minimize
θ

Eqθ(s|x)[− log p(ŷ|x, s) ] +DKL[ qθ(s|x) ‖ p(s|x) ] (4)

≤minimize
θ

Eqθ(s|x)Ep(k)[− log p(ŷ|x, s, k) ]︸ ︷︷ ︸
(∗)

+DKL[ qθ(s|x) ‖ p(s|x) ]︸ ︷︷ ︸
(∗∗)

. (5)

The inequality in Equation 5 stems from the Jensen’s inequality. We apply a mean-field approxima-
tion with univariate Gaussian for each factorized term of approximate posterior, qθ(vec(s)|x) =
N ( vec(s) ;µθ(x),diag(νθ(x)) ), where µθ(·) ∈ RHW is a mean of the distribution and
diag(νθ(·)) ∈ RHW×HW is a diagonal covariance matrix with the main diagonal to be νθ(·) ∈
RHW . The parameter θ is optimized with the training dataset used for training the classifier f ,
and the reparameterization trick (Kingma & Welling, 2013) is applied during optimization. The
schematic description is shown in Figure 2.

3.3 OPTIMIZATION

The non-differentiable top-k operator in Equation 2 prevents the gradient flowing back through the
parameter θ when using gradient descent for optimizing the Equation 5. Chen et al. (2018) address
this issue by using k times of Gumbel softmax (Jang et al., 2017; Maddison et al., 2017). However,
this does not select the exact k% pixels, but a number less than k%. This makes a distribution shift
in the explanation manifold between the training phase and the inference phase (more in Appendix
A). Instead, we use a SOFT operator proposed by Xie et al. (2020). This is a differentiable operator
that approximates the top-k operator with almost exact selection of k% pixels.

There are two terms in the objective function in Equation 5, i.e. the reconstruction loss (*) and
the regularization loss (**). As we dissect the the regularization loss, it is factorized into HW
number of KL divergence between two univariate Gaussian. This causes the regularization loss
to be dominant in the objective function. To keep a balance between two terms, we introduce a
regularization coefficient β (≈ 1/HW ) multiplied to the regularization loss (Higgins et al., 2017).

In practice, we generate a feature attribution map starting from a smaller resolution followed by
upsampling. More specifically, a spatial dimension of µθ(·) and νθ(·) isH ′×W ′ whereH ′ = H/m
and W ′ = W/m with an upsample size m. It is then upsampled using a bilinear interpolation to
have a spatial size of H ×W .
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4 EXPERIMENTS

In this section we present experiments on our method and baseline methods. The quantitative com-
parisons on robustness (consistency and stability) and faithfulness are shown in §4.2. Then we
compare qualitative results and show that our method passes a sanity check in §4.3. In §4.4 we
compare the time complexity of the explanation methods. Finally, we summarize the overall results
and provide a conclusion in §4.5.

4.1 DATSETS, METRICS, AND IMPLEMENTATION DETAILS

Datasets and classifiers. We use the standard benchmark MNIST (LeCun et al., 1998), CUB
(Welinder et al., 2010), and ImageNet (Russakovsky et al., 2015) datasets with varying levels of
difficulty for our experiments. For MNIST classifier, we use three convolutional layers followed by
two linear layers that have 99.52% accuracy. For CUB and ImageNet classifiers we use ResNet50
(He et al., 2016) model that has 77.8% and 76.1% accuracies, respectively.

Training details. We use convolutional neural networks with five layers for MNIST dataset, and
12 layers for CUB and ImageNet datasets to represent µθ(·) and νθ(·). We use the downsample
size m = 2 for MNIST and m = 8 for CUB and ImageNet datasets as a default setting. The
regularization coefficient β is set to be 1/(1000HW ) for MNIST and 1/(100HW ) for CUB and
ImageNet datasets where H and W are spatial size of input image. If not mentioned, the mean of
approximate posterior µθ(·) is used while performing qualitative and quantitative experiments.

Compared methods. We compare our method with InputGrad (Simonyan et al., 2013), MP (Fong
& Vedaldi, 2017), RealTime (Dabkowski & Gal, 2017), L2X (Chen et al., 2018), RISE (Petsiuk
et al., 2018), EP (Fong et al., 2019), and AP (Elliott et al., 2021). Since our method belongs to
perturbation-based method, we focus on comparing our method with previous perturbation-based
methods which are MP, RISE, EP, and AP. We also compare our method with RealTime and L2X
that infer a feature attribution in a real time. InputGrad represents the gradient-based methods. For
Realtime, AP and EP we use the authors implementations, for RISE we use the TorchRay4 library
and we reimplemented other methods. We carefully optimized all the methods on these datesets to
obtain the best results.

VP and nVP. To examine whether the uncertainty-aware explanation method is necessary for pro-
viding a faithful and robust explanation, we additionally propose a non-variational method where
other settings are same with VP except for the standard deviation part. While training the explainer
of this method, we ignore the regularization loss and the explainer provides only the mean values
µθ(·) and not the standard deviation values νθ(x). As a result, in the training process the feature
attribution is not sampled from the output of the explainer but the mean µθ(·) itself is used as an
input of the top-k operator. We name this method as nVP. By comparing nVP with VP, we examine
the effectiveness of globally exploring the search space of feature attribution by sampling from the
distribution in the training process.

Metrics. We evaluate the robustness and faithfulness of each explanation method using three met-
rics. We take a look at the robustness of explanation to different hyper-parameter setting (consis-
tency), and then observe the robustness of explanation to subtle change of input (stability) (Alvarez-
Melis & Jaakkola, 2018a). For faithfulness, we measure the perturbation metric (Samek et al., 2016;
Petsiuk et al., 2018). We explain the details of each metrics in each subsection.

4.2 QUANTITATIVELY EVALUATING ROBUSTNESS AND FAITHFULNESS

While most of the compared methods, i.e. InputGrad, RealTime, MP, RISE, EP, and AP, provide ex-
planation on the classifier’s output of specific target class, L2X and our method offer explanation on
classifier’s output of all classes. For a fair comparison with our method, we take quantitative evalua-
tions on samples where classifier’s prediction is correct with probability over than 0.5. Furthermore,
we use randomly selected 200 samples as the default subset of the dataset for quantitative evaluation
and report the mean and the standard deviation due to the variations in the time complexity of the
evaluated methods (we provide a quantitative analysis of this in Sec.4.4).

4https://github.com/facebookresearch/TorchRay
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Figure 3: Consistency over different resolution. We evaluate feature attribution results with different up-
sampling size. Red (blue) colors represent higher (lower) attribution. We observe that our method highlights
similar regions of the bird across different size of upsampling. However, for instance, nVP with upsample size
8 captures a bird object while upsample size 4 highlights background as well as the object. This indicates that
the variational training leads to more robust explanations.

SSIM PC PSNR
Dataset MNIST CUB ImageNet MNIST CUB ImageNet MNIST CUB ImageNet
RealTime N/A 0.56 0.47 N/A 0.38 0.27 N/A 14.59 0.39
L2X 0.40 0.62 0.32 0.59 0.58 0.37 9.49 9.56 8.95
MP 0.52 0.54 0.42 0.48 0.67 0.60 11.50 14.10 10.25
RISE 0.11 0.47 0.30 0.07 0.30 0.01 12.51 15.63 13.56
EP 0.58 0.72 0.58 0.81 0.83 0.57 13.15 13.95 10.09
nVP 0.49 0.60 0.72 0.81 0.47 0.47 13.07 13.44 11.34
VP (Ours) 0.56 0.70 0.78 0.85 0.74 0.70 13.81 16.34 13.79

Table 1: Consistency evaluation. We measure the similarity of feature attribution on different size of upsam-
pling. For every measurement in SSIM and PC metrics, the standard deviation was smaller than 0.05, and in
PSNR it was under 0.5. We can not report RealTime results on MNIST as this explainer fundamentally uses
features extracted from ResNet50 pre-trained on ImageNet not applicable for MNIST dataset.

4.2.1 EVALUATING EXPLANATION ROBUSTNESS VIA CONSISTENCY TO PARAMETERS

In consistency evaluation, we measure the robustness of the explanation to different hyper-parameter
settings by measuring the difference of feature attribution maps by structural similarity (SSIM)Wang
et al. (2004), Pearson’s correlation (PC), and peak signal-to-noise ratio (PSNR) metrics as well as
we conduct a qualitative study. For the perturbation-based explanation methods that use mask as
feature attribution, first the mask is usually smaller than the input image. It is then interpolated by
bilinear upsampling to get the final feature attribution. The explanation method should provide a
consistent feature attribution for different size of upsampling. As InputGrad and AP does not use
mask for estimating the feature attribution, they do not appear in our consistency evaluation.

Our qualitative evaluation in Figure 3 shows consistent results by highlighting important regions for
the classification no matter the upsample resolution. However, for MP, RealTime, L2X, and RISE
the attribution maps differ based on the upsample resolution. For instance, L2X with upsample
size 4 captures the bird while with upsample size 8 it highlights a larger portion of the background.
Similarly, nVP highlights the background for the feature attribution with upsample size 4 indicating
that the VP is more consistent than its non-variational counterpart.

For our quantitative evaluation on CUB and Imagenet datasets, for each input sample and explana-
tion method, we measure the SSIM, PC, PSNR scores between two feature attribution maps with
upsample sizes of {4, 8}, {8, 16}, and {4, 16}, respectively, then average three measurements. For
MNIST dataset, {1, 2}, {2, 4}, and {1, 4} are used. We randomly draw 50 input samples and av-
erage the evaluation results. We repeat this 4 times and report the mean of the averages in Table 1.
Since the standard deviation of the averages is lower than 0.05 in the SSIM and Pearson’s correlation
metrics and 0.5 in the PSNR metric for all measurements, we omit to report them in the table.
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Probability difference Logit difference KL divergence
Dataset MNIST CUB ImageNet MNIST CUB ImageNet MNIST CUB ImageNet
Input-grad. 0.44 0.40 0.06 7.61 4.07 0.86 0.24 1.59 0.39
RealTime N/A 0.29 0.04 N/A 2.84 0.97 N/A 0.92 1.07
L2X 0.43 0.48 0.15 7.65 4.21 2.25 0.24 1.38 2.05
MP 0.37 0.54 0.17 5.61 4.78 2.51 0.30 1.64 1.85
RISE 0.22 0.52 0.01 4.52 4.96 0.43 0.33 1.66 0.50
EP 0.40 0.31 0.14 6.87 2.63 1.08 0.35 0.58 0.31
AP 0.51 0.50 0.08 8.25 5.07 1.75 0.31 1.94 1.52
nVP 0.70 0.43 0.16 12.91 4.21 2.16 0.37 1.38 1.57
VP (Ours) 0.70 0.54 0.17 12.97 5.18 2.30 0.37 1.71 1.68

Table 3: Perturbation evaluation. We measure the faithfulness of each explanation method by perturbing the
input. The area between plots of top-k and low-k perturbations on k = {0, 10, 20, · · · , 100} is reported. KL
divergence values on CUB are ×10−2 and on ImageNet are ×10−3.

We observe that EP and our method have the best performance on the consistency: out of nine
evaluations our method has the best on six measurements and three for EP. In case of SSIM metric
on MNIST and CUB datasets, there is a 0.02 difference favoring EP over our method, on the large-
scale ImageNet dataset that difference is 0.2 where our method performs significantly better than
EP. Also, VP surpasses nVP across all datasets and metrics, i.e. see the last two rows in Table 1,
indicating that our variational explanation is robust to different resolutions.

4.2.2 EVALUATING EXPLANATION ROBUSTNESS VIA STABILITY TO INPUT IMAGE

Dataset MNIST CUB ImageNet
Input-grad. 1.53± 0.27 0.32± 0.13 0.37± 0.11
RealTime N/A 0.84± 0.85 0.47± 0.38
L2X 0.99± 0.25 0.69± 0.21 0.69± 0.14
MP 3.73± 2.08 0.93± 0.52 1.42± 0.37
RISE 0.16± 0.19 0.23± 0.24 0.03± 0.03
EP 3.48± 0.88 1.73± 0.56 2.06± 0.57
AP 1.60± 0.26 0.52± 0.11 0.64± 0.07
nVP 0.13± 0.03 0.52± 0.11 0.33± 0.22
VP (Ours) 0.06± 0.01 0.33± 0.16 0.29± 0.17

Table 2: Stability evaluation.

Stability measures the robustness of explanation
to subtle change in an input image. To mea-
sure stability, Alvarez-Melis & Jaakkola (2018b)
propose a local Lipschitz value, stability(x) =

maxxi∈Bε(x)
‖g(x)−g(xi)‖2
‖x−xi‖2 , where g(·) is the ex-

plainer with output to be a feature attribution,
and Bε(x) is the ball of radius ε centered at
x. Since some of explanation methods are non-
differentiable, the authors propose Bayesian opti-
mization to get the stability measurement. In our
case, we use the Bayesian optimization proposed by Wang et al. (2016) to solve the problem on high
dimension (e.g., for ImageNet dataset the search space is 3× 224× 224 dimension). We randomly
select 30 images and report the mean and the standard deviation in Table 2.

We observe that in MNIST dataset our method has the best performance by 0.06. RISE has the best
performance on CUB and ImageNet datasets, followed by our method with 0.33 and 0.29, respec-
tively. RISE has a higher stability since it repeats sampling the mask from the uniform distribution
(e.g., 5000) and perform weighted average of masks, making the effect of subtle change of input
insignificant with the cost of efficiency. Compared to nVP, VP has better performance across all
datasets. This also supports the necessity of variational perturbations.

4.2.3 EVALUATING EXPLANATION FAITHFULNESS VIA PERTURBING THE INPUT
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Figure 4: Perturbation evaluation.

We consider two types of perturbation metrics: top-k per-
turbation and low-k perturbation (Petsiuk et al., 2018;
Samek et al., 2016). For the top-k (low-k) perturbation
metric, image pixels corresponding to the largest (small-
est) k% attributions are substituted with gray color, then
measure the output change of the classifier. The expla-
nation method is thought to be better when the output
change is bigger for top-k perturbation, and smaller for
low-k perturbation. To observe the unified measurement
for perturbation metric, we first plot top-k perturbation
and low-k perturbation measurements from k = 0 to 100,
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Figure 5: Qualitative results on CUB and ImageNet (top) and Sanity Check of VP on CUB (bottom). Red
(blue) represents higher (lower) attribution. The first and the second rows are example attribution maps from
CUB dataset, the third and the fourth rows are from ImageNet dataset. In the fourth row (left) we show visual
inspection for sanity check and (right) each x-tick label indicates a layer to which the classifier’s (ResNet50)
weight is initialized from the top layer.

and then calculate the area between two plots as shown in Figure 4. The explanation method is
considered better when the area is bigger. We look at two different types of output change, i.e. prob-
ability difference on ground-truth class and KL divergence on predictive probability vectors. The
results are reported in Table 3.

For the metric of probability difference, our method has tied for the first place with nVP or MP by
scoring 0.7, 0.54, and 0.17 for MNIST, CUB, and Imagenet datasets, respectively. For the metric of
logit difference, our method ranked first on MNIST and CUB with the score 12.97 and 5.18 while
MP had the best score with 2.51 on ImageNet dataset. For the KL divergence metric, our method,
AP, and L2X had the best score of 0.37, 1.94, and 2.05 on MNIST, CUB, and ImageNet datasets,
respectively. We also observe in the last two rows in Table 3 that compared with nVP, VP has equal
or better performance across three datasets and three perturbation metrics.

4.3 QUALITATIVE EVALUATION OF FEATURE ATTRIBUTION MAPS

Visualizing Feature Attribution Maps on CUB and ImageNet. To observe which region is con-
sidered important for each explanation method, we visualize samples on CUB and ImageNet datasets
in Figure 5 (top). For L2X and EP, k = 20%. We observe that while InputGrad has a noisy map, AP
reduces the adversarial noise by constraining the difference of classifier’s response of intermediate
layers with perceptual loss. MP shows distracted attribution for some sample images since it does
not globally explore the importance of features when optimizing the mask. EP highlights the region
related with objects. For L2X method, we should manually choose the size k. However, it is non-
trivial to decide whether k should be large or small to explain each samples. For the first example
in the figure, the object (or possible cue location) is smaller than 20% of the size of input image,
making the L2X explanation to capture on the background with k = 20% setting. Our method
sometimes highlights a small and discrete region (e.g., bird head and leg in the second row in Figure
5), and sometimes a bigger region (e.g., all parts of tennis ball in third row).

Sanity Check. The prerequisite for the explanation method is to pass the sanity check (Adebayo
et al., 2018). This is to identify whether the explanation method provides a feature attribution that
is dependent of a classifier. It is tested by randomizing the classifier’s parameters. The difference
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between the feature attribution obtained from the original classifier and the parameter-initialized
classifier is measured by structural similarity index (SSIM). The explanation method is regarded
as passing the sanity check if the SSIM decreases as the number of initialized layers of classifier
increases as shown in Figure 5 (bottom). This is because the explanation of randomized classifier
should differ from that of original classifier. Since the similarity measurement converges to a small
value as the number of initialized layers increases (0.3 for SSIM), this indicates that our method
passes the sanity check. The sanity check on Pearson’s correlation metric and more examples are
shown in Appendix B.

4.4 TIME COMPLEXITY ANALYSIS
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Figure 6: Time complexity. Time to infer a
feature attribution in Quadro RTX 6000.

We measure the time taken to infer a feature attribution of
a single image for each explanation method. We observe
in Figure 6 that some of the perturbation-based methods,
e.g. MP, RISE, EP, and AP, take a considerable amount of
time, up to×1000 slower for inferring an explanation of a
single sample compared to our method. This is because,
for MP, EP, and AP, there is an optimization process to
generate the explanation, and for RISE a process of infer-
ring multiple samples takes a considerable time. For InputGrad, it takes more time than our method
since it requires back-propagate operation. Instead, RealTime, L2X, and our method infer the ex-
planation in real time since they obtain the result by single forward propagation. Therefore, these
methods are advantageous in situation where multiple inputs are required for explanation.

4.5 SUMMARY OF RESULTS, DISCUSSION AND CONCLUSION
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Figure 7: Rank matrix over all metrics. The score
in each cell of the rank matrix indicates the number of
times the explanation method had a specific ranking.
From the left matrix to the right one, it shows the
results of the consistency, stability, and perturbation
benchmark. Darker cells indicate higher numbers.

In this section, we summarize all our results of ro-
bustness and faithfulness to compare explanation
methods at a glance. First, we rank all explana-
tion methods with respect to all datasets by the
evaluation metric. We then count the number of
times each explanation method is ranked to a spe-
cific rank. For instance, VP takes the first place
six times out of nine in consistency evaluation as
observed in Table 1. This counting is recorded
for all explanation methods with all ranking in a
matrix form. We then compute the mean rank of
each explanation method where this mean is used
for sorting the rank matrix. The results are shown
in Figure 7.

We observe that our method has the first ranking
in the consistency and perturbation benchmarks,
and takes the second place in the stability bench-
mark, meaning that VP has a steady performance
in both robustness and faithfulness. On the other
hand, baseline methods tend to be placed in a high
rank only in one or two of the three benchmarks.
For instance, while RISE takes the first ranking in the stability benchmark, it places fifth and sixth
in the consistency and perturbation benchmarks, respectively. The final observation in Figure 7 is
that VP outperforms nVP across all three benchmarks. There is two gap of ranking between VP and
nVP in the consistency benchmark, and one gap for the stability and perturbation benchmarks.

In conclusion, we proposed a perturbation-based explanation model that estimates a distribution of
feature attribution. This model is trained to optimize a loss function that forces the model to provide
a faithful and robust feature attribution. In the inference phase, our method is timely efficient since
it only takes a single forward-propagation for inferring the feature attribution. By comparing our
method with baseline methods in both quantitative and qualitative manner, we showed that our
method achieves both faithfulness and robustness of explanation.
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5 ETHICS AND REPRODUCABILITY STATEMENT

Explaining a black-box system is essential especially when it is deployed in a real world, for exam-
ple in medicine or in societal contexts, where users or developers require a trustworthy about the
system’s prediction. Explainability has been on a strong emphasis in the European Data Protection
Regulation (GDPR) and will be increasingly more important in the future for AI legislation. The
methodology we propose makes one step progress towards building a trustworthy system. How-
ever, the explanation methods should yet to be handled with care since the ground-truth explanation
usually does not exist. Therefore, better metric for evaluating the explanation methods should be
developed further to address the issue.

Regarding our experimental setup: The properties of the datasets depend on data collection practices
and other design choices made during dataset creation. In this work, we use standard open-sourced
datasets that do not require ethical approval.

For reproducability of our method, we provide the detailed hyperparameter setting in §4.1 and the
pseudo-code in Appendix E. We will release the fully executable code as soon as our paper get
accepted. Since our method does not require a lot of resources for training, e.g., an hour for CUB
and 18 hours for ImageNet dataset with single Quadro RTX 6000 GPU, its low computational cost
also makes it easy to reproduce the results presented in our paper.
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APPENDIX

A APPROXIMATING TOP-K OPERATOR: L2X VS VP

Image L2X
Training phase

L2X
Test phase

Figure 8: Explanation discrepancy between training
phase and test phase for L2X when k = 20%.

Top-k operator is non-differentiable since this
operator selects k indices of pixels correspond-
ing to top-k values. This hinders the gradient
to flow backward through the explainer in the
training phase of L2X or VP. To address this
issue, L2X uses k times of Gumbel softmax
(Jang et al., 2017; Maddison et al., 2017) for
differentiable approximation of the top-k oper-
ator. More specifically, they first draw k times
of sampling, say M1,M2, · · · ,Mk, from the Concrete distribution, where M j is the Gumbel soft-
max with having HW size of dimension. They then get a final mask M by taking the maximum
value along each indices of k samples, Mi = maxjM

j
i . This process allows duplicate selection,

leading to selecting less number of pixels than k. As seen in Figure 8, when k = 20%, top-k ap-
proximator of L2X captures less size of region than 20% (middle figure), while in the test phase we
exactly choose 20% pixels by top-k operator (right figure). This makes a distribution shift in gener-
ating a mask between the training phase and the inference phase. Instead, we use a SOFT operator
(Xie et al., 2020) which is a differentiable approximator of top-k operator that almost exactly selects
k% pixels.
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Figure 9: Sanity Check on CUB dataset.

We show more examples of sanity check in Figure 9 (a) and the plots of SSIM and PC metrics
in Figure 9 (b). Since the similarity measurement converges to a small value as the number of
initialized layers increases, i.e. 0.3 for SSIM and 0 for PC, this indicates that our method passes the
sanity check.

C MORE QUALITATIVE EXAMPLES

Additional qualitative examples on MNIST, CUB, and ImageNet datasets are shown in Figure 10,
11, and 12, respectively.

D PERTURBATION EVALUATION

We present a Table 4 that is same with Table 3, but with standard deviation reported.
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probability difference logit difference KL divergence
Dataset MNIST CUB ImageNet MNIST CUB ImageNet MNIST CUB ImageNet
Input-grad. 0.44 0.40 0.06 7.61 ± 0.46 4.07 ± 0.19 0.86 ± 0.40 0.24 ± 0.03 1.59 ± 0.09 0.39 ± 0.35
RealTime * N/A 0.29 0.04 N/A 2.84 ± 0.31 0.97 ± 0.35 N/A 0.92 ± 0.09 1.07 ± 0.22
L2X 0.43 0.48 0.15 7.65 ± 0.43 4.21 ± 0.26 2.25 ± 0.31 0.24 ± 0.01 1.38 ± 0.05 2.05 ± 0.24
MP 0.37 0.54 0.17 5.61 ± 0.87 4.78 ± 0.27 2.51 ± 0.16 0.30 ± 0.03 1.64 ± 0.08 1.85 ± 0.14
RISE * 0.22 0.52 0.01 4.52 ± 0.65 4.96 ± 0.46 0.43 ± 0.12 0.33 ± 0.04 1.66 ± 0.15 0.50 ± 0.12
EP * 0.40 0.31 0.14 6.87 ± 0.48 2.63 ± 0.18 1.08 ± 0.14 0.35 ± 0.03 0.58 ± 0.08 0.31 ± 0.08
AP * 0.51 0.50 0.08 8.25 ± 0.36 5.07 ± 0.31 1.75 ± 0.19 0.31 ± 0.02 1.94 ± 0.12 1.52 ± 0.15
nVP 0.70 0.43 0.16 12.91 ± 0.54 4.21 ± 0.60 2.16 ± 0.25 0.37 ± 0.02 1.38 ± 0.14 1.57 ± 0.15
VP (Ours) 0.70 0.54 0.17 12.97 ± 0.54 5.18 ± 0.47 2.30 ± 0.24 0.37 ± 0.02 1.71 ± 0.09 1.68 ± 0.16

Table 4: Perturbation evaluation. We measure the faithfulness of each explanation methods by perturbing an
input. For every measurements on probability difference, the standard deviation was below 0.05. KL divergence
values on CUB are ×10−2 and on ImageNet are ×10−3.

E PSEUDO-CODE

1 classifier = ResNet50()
2 explainer_vp = ExplainerVP()
3 soft_topk_approximator = SOFTTopkApproximator()
4

5 optimizer = torch.optim.Adam(explainer_vp.parameters())
6

7 # loss function
8 def loss_fn(outputs_masked, outputs_origin,
9 mu, logvar, targets, beta):

10 B = outputs_masked.size(0)
11 recon_loss = kl_divergence(outputs_masked, outputs_origin)
12 reg_loss = -0.5 * \
13 torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) / B
14 return recon_loss + beta * reg_loss
15

16 # train
17 for inputs, targets in train_loader:
18 B, C, H, W = inputs.size()
19

20 # output of origin image
21 with torch.no_grad():
22 outputs_origin = classifier(inputs)
23

24 # get mask from feature attribution
25 topk_ratio = torch.FloatTensor(1).uniform_(0., 1.).item()
26 attr_mu, attr_logvar, attr_sampled = explainer_vp(inputs)
27 mask = soft_topk_approximator(attr_sampled, topk_ratio)
28

29 # output of perturbed image
30 inputs_baseline = get_baseline_images(inputs, baseline_type)
31 inputs_masked = inputs * mask + inputs_baseline * (1 - mask)
32 outputs_masked = classifier(inputs_masked)
33

34 # update parameters of VP explainer
35 loss = loss_fn(outputs_masked, outputs_origin,
36 attr_mu, attr_logvar, beta)
37 loss.backward()
38 optimizer.step()

Listing 1: Python pseudo-code for VP.
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Image InputGrad L2X MP RISE EP AP VP (Ours)

Figure 10: Examples of feature attribution on MNIST dataset.
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Image InputGrad RealTime L2X MP RISE EP AP VP (Ours)

Figure 11: Examples of feature attribution on CUB dataset.
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Image InputGrad RealTime L2X MP RISE EP AP VP (Ours)

Figure 12: Examples of feature attribution on ImageNet dataset.
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