
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

PERFORMANT LLM AGENTIC FRAMEWORK FOR CON-
VERSATIONAL AI

Anonymous authors
Paper under double-blind review

ABSTRACT

The rise of Agentic applications and automation in the Voice AI industry has led
to an increased reliance on Large Language Models (LLMs) to navigate graph-
based logic workflows composed of nodes and edges. However, existing methods
face challenges such as alignment errors in complex workflows and hallucinations
caused by excessive context size. To address these limitations, we introduce
the Performant Agentic Framework (PAF), a novel system that assists LLMs in
selecting appropriate nodes and executing actions in order when traversing complex
graphs. PAF combines LLM-based reasoning with a mathematically grounded
vector scoring mechanism, achieving both higher accuracy and reduced latency. Our
approach dynamically balances strict adherence to predefined paths with flexible
node jumps to handle various user inputs efficiently. Experiments demonstrate
that PAF significantly outperforms baseline methods, paving the way for scalable,
real-time Conversational AI systems in complex business environments.

1 INTRODUCTION

Graph-based workflows are central to numerous business processes across industries such as education,
legal, healthcare, and customer support. These workflows represent decision-making steps as nodes,
and connections between them as edges. The rise of Conversational AI within these spaces introduces
new challenges. Autonomous agents, powered by large language models (LLMs), are increasingly
being used to navigate these workflows, enabling the automation of complex business processes
(Zhuge et al., 2023). Each node in the workflow contains specific instructions or prompts that guide
the agent’s speech generation and certain actions to trigger. Nodes can be classified into several types,
including Start Nodes, which define the root and entry point of a workflow; End Nodes, which signal
the termination of the workflow; and generic Nodes, which serve as intermediate decision points
containing speech instructions for the LLM to converse with users in predefined ways. Additionally,
Transfer Nodes in Conversational AI workflows allow for transitioning the conversation to another
autonomous or human agent. Edges between nodes may include logical conditions that dictate the
agent’s transitions, ensuring workflows are executed accurately.

Figure 1 illustrates how tasks such as determining health care eligibility can be broken down into
nodes, edges, and conditions. For example, a healthcare provider might use such a workflow to
efficiently filter out patients without the required insurance, reducing the burden on human agents.
However, workflows like these can rapidly grow in complexity. As shown in Figure 2, adding just a
few additional conditions to the conversation flow can drastically increase the number of nodes and
edges, making the workflow more difficult to manage and execute effectively.

Although LLMs such as GPT and LLAMA are built on autoregressive decoder-based transformer
architectures optimized for natural language generation, they are not inherently designed to handle
structured, multi-step processes with extensive context (Qiu & Jin, 2024; Shi et al., 2023). Existing
approaches have been to add a planning phase, where the LLM would take time to orchestrate
the action, and then proceed to the generation tasks (Valmeekam et al., 2023; Zhou et al., 2024).
However, this approach is not optimal to the Conversational AI use case, as it would increase the
overall latency by doubling the number of queries needed. Tasks such as managing end-to-end
customer service requests with non-standard return policies, performing outbound sales calls that
involve dynamic CRM updates, or redirecting users to appropriate departments after a sequence of
filtering questions require precision, alignment, and low-latency responses. These limitations force

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under Review at the ICLR 2025 Workshop on Reasoning and Planning for LLMs

Node 1 - Start node

Thank you for calling X HealthCare, 
can you give me a bit more 

information so I can route your call?

Node 2

Can you tell me if you have 
Medicaid, Medicare, Tricare, or 

Employer Coverage?

Node 7

Great, since you have Employer 
Coverage, I'm transferring you to 

a licensed agent for further 
assistance.

Caller indicates they have Medicaid

Caller indicates they have Medicare

Caller indicates they have employer coverage

Caller wants to hang up the call

Caller confirms willingness to provide
additional information

Node 3 - End node

No problem. Thank you for 
calling, have a nice day!

Caller indicates they have Tricare

Node 6

Since you have Tricare, we 
cannot service this request. 

Sorry!

Node 4

Since you have Medicaid, we 
cannot service this request. 

Sorry!

Node 5

Since you have Medicare, we 
cannot service this request. 

Sorry!

Node 9 - Transfer node 

Transferring you now, one moment 
please!

Action: transfer call to licensed agent 

Node 8 - End node

Thank you for calling, have a 
nice day!

Figure 1: Example illustration of an Agentic workflow for a healthcare call center use case, where
the Agent needs to route calls based on different conditions.

businesses to oversimplify workflows, sacrificing accuracy and operational efficiency—an outcome
that is contrary to their objectives.

The challenges inherent in adapting LLMs to graph-based workflows underscore the need for new
approaches that can accurately and efficiently execute workflows while respecting real-world con-
straints such as latency. While adding more reasoning steps could theoretically improve accuracy,
such methods are impractical for Conversational AI applications where rapid response times are
critical.

To address these challenges in the current Conversational AI space, this paper introduces the Per-
formant Agentic Framework (PAF), a novel solution for efficient graph traversal that balances
accuracy and latency in real-world applications. By leveraging both traditional decision-making
logic and mathematical methods for next-node selection, PAF enables agents to execute workflows
with greater precision and speed. Our experiments demonstrate that PAF significantly outperforms
baseline and traditional methods in both accuracy and latency, as evidenced by higher alignment
scores and reduced response times.

2 RELATED WORK

The reliance on LLM-based systems to execute graph-based workflows has seen significant research
attention, particularly in developing frameworks that aim to balance accuracy, latency, and alignment
with predefined workflows. Below, we discuss prominent related works and their limitations.

Agentic Frameworks. Serving as examples, LangChain (LangChain, 2023) and LangGraph (Lang-
Graph, 2023) streamline graph-based workflows by utilizing function calls and prompt chaining.
While effective for simple tasks, their reliance on keyword-based triggers often results in alignment
errors, especially in workflows with hundreds or thousands of nodes. These frameworks lack ro-
bustness for real-world applications where actions must be dynamically triggered at various points

2
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Node 5

I see you have cable internet. 
Can you tell me if your issue is 
affecting both WiFi and wired 

connections, or only one?

Node 6

I see you have fiber internet. 
Can you tell me if your issue is 
affecting both WiFi and wired 

connections, or only one?

Node 7

No problem, I will pass your 
information along to one of our 
technicians who will give you a 

call back.

Node 10

Got it, so it is affecting all of 
your devices. 

Node 9

Got it, so it is affecting your 
wired devices only. Let's 
troubleshoot your wired 

connection. 

Node 8

Got it, looks like the issue is 
only affecting your WiFi 

devices, let's troubleshoot 
your wireless connection.

Node 11 - End node

Thank you for calling, have a 
great day!

Node 13

Let me send a technician to 
your location right away. 

We will give you a call when 
we are 5 minutes away.

Node 12

 Do you see any lights on 
your modem?

Node 14

Great, can you now check if 
the Ethernet cable is 

connected between your 
modem and your router?

Node 15

Let's try restarting the 
modem and the router. 

Can you unplug both from 
the power outlet, wait one 
minute and then plug back 

in?

Node 16 - End node

We will see you shortly!

Node 17

Good to know that it's 
connected, let's restart 

your equipments and wait 
one minute before 

connecting them again.

Node 20

Has the issue been 
resolved?

Node 18

The Ethernet cable is not 
connected. Understood, let me 

email you the instructions to 
connect them.

Action: email connection 
instructions to caller

Node 24 - End node

Great! Glad I can help. Have a 
great day.

Node 23

No problem, I will pass your 
information along to one of our 
technicians who will give you a 

call back.

Node 21 - End node

I have sent the instructions, 
please follow them and your 

issue should be resolved. Thank 
you for calling, have a great day!

Node 25

Sorry to hear that, I will pass 
your information along to one of 
our technicians who will give you 

a call back.

Node 26 - End node

Thank you for calling, have a 
great day!

Node 27 - End node

Thank you for calling, have a 
great day!

Node 1 - Start node

Thank you for calling Company 
Y! My name is Roger, I am here 
to help you with your service 

today. Can I have your account 
number?

Node 2

What's your service 
address?

Node 3

Thank you for that information, 
do you have cable or fiber? 

Node 4 - End node

Thank you for calling, have a 
great day!

Node 19

Has the issue been 
resolved?

Node 22 - End node

Great! Glad I can help. Have a 
great day.

Issue is affecting wired devicesIssue is only affecting WiFi

Caller has fiber internet 

Issue is affecting both types of devices

Caller is not sure

Caller sees light on the modem
Caller does not see light on the modem

Ethernet is connected

Ethernet cable is not connected

Issue is resolved

Issue is still there

Issue is still there

Caller provides information

Caller wants to hang up the call

Issue is resolved

Caller has cable internet

Figure 2: Example illustration of an Agentic workflow for an internet service company helping callers
troubleshoot connection issues. This workflow demonstrates how a more complex use case can have
more conditions, nodes, and edges.

in conversations. Furthermore, their reliance on LLM-generated triggers leads to unreliability in
critical workflows, where adherence to predefined paths is essential for compliance and business logic
(LangChain, 2023; LangGraph, 2023). Additionally, limitations in LLM context windows further

3
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exacerbate their inefficiency in retaining relevant information across extended workflows, introducing
hallucinations and context drift during execution (Dong & Qian, 2024).

Conversational AI. Conversational AI has been a key focus for Natural Language Processing.
Existing Conversational AI solutions emphasize the need for multi-modality, guardrails, and advanced
tuning to enhance dialogue quality (Dong et al., 2023). Prior approaches to the Voice AI space have
proven to work in sandbox conversational settings (James et al., 2024), but lack the consistency
and accuracy required for production use. As noted, LLMs often miss certain abilities to maintain
performance in a dynamic conversational setting, unable to handle numerous tasks conditionally
while reducing hallucinations and staying within context (Gill & Kaur, 2023; Dong et al., 2023; Dong
& Qian, 2024).

MetaGPT and SOP Translation. MetaGPT leverages Standardized Operating Procedures (SOPs) to
structure workflows, enabling agents to replicate domain-specific expertise. However, its reliance on
iterative planning and validation increases latency, making it unsuitable for real-time applications.
For example, Gao et al. (2023) note that the planning phase requires additional LLM calls, which
adds computational overhead. While MetaGPT is effective for SOP alignment, it struggles with
unusual user inputs and extended workflows, leading to significant context drift. Its dependence on
domain-specific fine-tuning also hinders generalizability (Gao et al., 2023; Wang & Liu, 2024).

Comparison and Our Contributions. Existing frameworks have made valuable contributions but
are hindered by issues such as context drift, high latency, and alignment errors. PAF addresses
these limitations by replacing LLM planning phases with a mathematical decision-making approach,
combining vector-based node selection and specialized prompt engineering. Unlike previous methods,
PAF reduces context size while improving accuracy, making it a scalable and production-ready
solution for navigating graph-based workflows.

3 PERFORMANT AGENTIC FRAMEWORK (PAF)

PAF is a framework designed for Agentic workflows, enabling agents to navigate graph-based
structures composed of nodes and edges to execute predefined workflows. It is comprised of two
components: Basic PAF and Optimized PAF, each tailored to address specific challenges in workflow
execution.

3.1 BASIC PAF

Problem Formulation. PAF enables agents to operate by following nodes connected by logical
edges. During each generation turn, the agent follows the nodes in the graph according to the logical
conditions specified as outcomes of the node. If a condition is met, the agent navigates to and executes
the instructions of the next node in the graph.

LLM as a Judge for Node Identification. We leverage an LLM to identify the Agent’s location in
the map dynamically at each generation:

This design is particularly effective in production AI systems as it separates the generation tasks from
other downstream modules, like Text-to-Speech (TTS). This modular approach optimizes latency by
enabling parallel processing by TTS or other services. Compared to implementations where prompts
are added in a single body, Basic PAF achieves lower error rates by using a step-by-step logic tree
and reducing the need for additional validation iterations (Li & Yuan, 2023; Reddy & Gupta, 2021).

3.2 OPTIMIZED PAF

While Basic PAF offers significant improvements, it faces bottlenecks when workflows have many
nodes (e.g., 50 nodes with 4 conditions each). These bottlenecks arise as the agent struggles to
differentiate between semantically similar prompts on different branches.

Vector-Based Node Search. Optimized PAF addresses this by adding a vector-based scoring
mechanism to reduce the context window size and improve logical adherence:

Optimized Agentic Framework. Integrating the Vector-Based Node Search:

4
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Algorithm 1 LLM as a Judge for Node Identification
Input: ConversationHistory, NavigationMap, LastestIdentifiedNode
Output: UpdatedLatestIdentifiedNode
Step 1: Format Input for the LLM

Construct a prompt using ConversationHistory.
Add a contextual anchor by traversing from the StartNode to LastestIdentifiedNode and

collect the first-layer child Nodes in the map, e.g., "You were previously on Node
{LastestIdentifiedNode} with options...".

If LastestIdentifiedNode is unavailable, use: "This is the start of the task
{task}, proceed to Node 0."
Step 2: Query the LLM

Send the question: "Based on your latest responses, where are you
currently in the navigation map?"
Step 3: Process the Response

Parse the response to identify the node mentioned by the LLM.
Validate the identified node against NavigationMap.

Step 4: Return the Result
Output the validated node as UpdatedLatestIdentifiedNode.

Algorithm 2 Basic Agentic Framework
Input: ConversationHistory, NavigationMap, LatestIdentifiedNode
Output: UpdatedLatestIdentifiedNode
Step 1: Initialize LLM Instructional Message

Construct an instructional prompt for the LLM agent.
Add ConversationHistory to the prompt in a structured way.
Include instructions based on LatestIdentifiedNode.
Construct a navigation prompt by traversing NavigationMap and collecting all first-layer

children nodes’ instructions from StartNode to LatestIdentifiedNode.
Step 2: Query the LLM

Send the user question: "Based on the navigation map and your current
node, respond to the user question: {user question}."
Step 3: Process LLM Output in a Streaming Loop
while LLM agent streams output do

(a) Identify Current Node via Algorithm 1.
(b) Update LatestIdentifiedNode to the new identified node.
(c) Trigger any actions related to LatestIdentifiedNode.
(d) Update NavigationMap if necessary.

end while
Step 4: Return the Updated Node

UpdatedLatestIdentifiedNode← LatestIdentifiedNode

Compared to cosine similarity, our experiments found that the dot product captures subtle differences
in magnitude, beneficial for domain-specific jargon and context (Huang & Wang, 2021).

4 EXPERIMENT

We designed experiments to evaluate PAF against baseline methods in graph traversal and node
selection. We focus on latency, accuracy, and alignment with business logic, critical for Conversational
AI.

4.1 SETUP

Dataset Generation. We generated a synthetic dataset simulating real-world workflows, each entry
consisting of:

• SystemPrompt: A node navigation map with Agentic logic.

5
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Algorithm 3 Vector-Based Node Search
Input: NavigationMap, LatestIdentifiedNode, Threshold, LatestAgentResponse
Output: UpdatedLatestIdentifiedNode
Step 1: Vectorize Instructions & Agent Response

Compute embeddings for LatestIdentifiedNode, its child nodes, and
LatestAgentResponse.
Step 2: Compute Similarity Scores

Use dot product or another similarity metric between LatestAgentResponse embedding and
each node’s embedding.
Step 3: Select the Best-Matching Node

Choose the node with the highest similarity.
If the top score > Threshold, return that node as UpdatedLatestIdentifiedNode.

Step 4: Update or Fall Back
if score above Threshold then

return UpdatedLatestIdentifiedNode
else

return false (fall back to LLM-as-Judge)
end if

Algorithm 4 Optimized Agentic Framework
Input: ConversationHistory, NavigationMap, LatestIdentifiedNode, Threshold
Output: UpdatedLatestIdentifiedNode
Step 1: Precompute Node Embeddings

Vectorize instructions for all nodes in NavigationMap.
Step 2: Format Input for the LLM

Include ConversationHistory, instructions for LatestIdentifiedNode, plus first-layer chil-
dren instructions.
Step 3: Query the LLM Agent

Send the constructed message to the LLM agent.
Step 4: Process LLM Output in a Streaming Loop
while LLM outputs tokens do

(a) Perform Vector-Based Node Search (Alg. 3).
if a node is found with high confidence then

Update LatestIdentifiedNode accordingly.
else

Fallback to LLM-as-Judge (Alg. 1).
end if

end while
Step 5: Trigger Actions & Update Graph

Execute any node-specific actions and update NavigationMap if needed.
Step 6: Return Result

UpdatedLatestIdentifiedNode← LatestIdentifiedNode

• ConversationHistory: Turn-by-turn interactions.
• GoldenResponse: A verified reference response for alignment and context accuracy.

Conversations ended either upon reaching a terminal node or after a random turn limit (6–10). Golden
responses were manually verified to ensure correctness.

4.2 EVALUATION METRICS

• Semantic Similarity: Alignment (0–1) with the golden response using OpenAI’s text-2-
vec-3-small embeddings (OpenAI, 2025).

• Total Complete Hit Rate: Percentage of responses exceeding a similarity threshold (0.97).
• Mean and Median Similarity Scores: A measure of overall alignment.

Methods Compared:

6
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1. Baseline: Naive single-shot approach with the entire conversation and map in one prompt.
2. Basic PAF: Step-by-step logic (Algorithms 1 and 2).
3. Optimized PAF: Vector-based approach (Algorithms 1, 3, and 4).

4.3 HYPOTHESES AND STATISTICAL ANALYSIS

H1: Basic PAF has higher mean similarity than Baseline. H2: Optimized PAF has higher mean
similarity than Baseline. H3: Optimized PAF has higher mean similarity than Basic PAF.

We used one-sided paired t-tests (significance α = 0.05).

4.4 RESULTS

Table 1: Result Metrics Across Algorithms
Method Total Hits Count ¿ 0.8 Mean Median
Baseline 0 0 0.391 0.387
Basic PAF 16 14 0.481 0.400
Optimized PAF 35 22 0.594 0.496

Figure 3: Distribution of Similarity Scores for the three tested frameworks. “Naive” is Baseline,
“Base” is Basic PAF, and “Optimized” is Optimized PAF.

Table 2: Statistical Comparison Results (One-Sided Paired t-Tests)
Comparison t-statistic p-value
Baseline vs Basic PAF 2.9982 0.0020
Baseline vs Optimized PAF 7.3077 0.0000
Basic PAF vs Optimized PAF 4.2494 0.0000

Findings.

• H1: Basic PAF outperforms Baseline (p = 0.002).
• H2: Optimized PAF outperforms Baseline (p < 0.001).
• H3: Optimized PAF outperforms Basic PAF (p < 0.001).
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4.5 REPRODUCIBILITY

We provide the code for data generation, evaluation, and visualization in an anonymized repository.1

5 CONCLUSION

Our approach introduces novel mechanisms for leveraging LLMs to navigate graph-based workflows,
replacing the need for extensive planning phases and minimizing error rates. PAF achieves faster
response times and greater accuracy in real-world applications by reducing reliance on large context
windows and optimizing computational steps.

Key contributions include:

• Removing extra iterations for validation and planning, reducing latency.
• Improving alignment with a step-by-step logic tree that adds instructions incrementally,

governed by a predefined logic.
• Reducing the context window size by focusing only on relevant graph information.
• Introducing vector-based scoring to reduce LLM calls and prioritize high-confidence next-

node matches.

These improvements yield a more stable and controllable approach to help LLMs navigate workflows,
trigger actions, align with business goals, and reduce hallucinations—all with improved performance
in production settings.

6 FUTURE WORK

While Conversational AI serves as a compelling demonstration, PAF is broadly applicable. Planned
extensions include:

• Node Weights and Path Rules: Allowing more flexible graph structure with weighted
edges and dynamic transitions.

• Integration with Other Models: Evaluating domain-specific or smaller models to see how
well they adapt to graph-based workflows.

• Open-Source Model Improvements: Adapting PAF to emerging open-source LLMs to
enhance domain-specific tasks.
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