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ABSTRACT

The rise of Agentic applications and automation in the Voice Al industry has led
to an increased reliance on Large Language Models (LLMs) to navigate graph-
based logic workflows composed of nodes and edges. However, existing methods
face challenges such as alignment errors in complex workflows and hallucinations
caused by excessive context size. To address these limitations, we introduce
the Performant Agentic Framework (PAF), a novel system that assists LLMs in
selecting appropriate nodes and executing actions in order when traversing complex
graphs. PAF combines LLM-based reasoning with a mathematically grounded
vector scoring mechanism, achieving both higher accuracy and reduced latency. Our
approach dynamically balances strict adherence to predefined paths with flexible
node jumps to handle various user inputs efficiently. Experiments demonstrate
that PAF significantly outperforms baseline methods, paving the way for scalable,
real-time Conversational Al systems in complex business environments.

1 INTRODUCTION

Graph-based workflows are central to numerous business processes across industries such as education,
legal, healthcare, and customer support. These workflows represent decision-making steps as nodes,
and connections between them as edges. The rise of Conversational Al within these spaces introduces
new challenges. Autonomous agents, powered by large language models (LLMs), are increasingly
being used to navigate these workflows, enabling the automation of complex business processes
(Zhuge et al., 2023)). Each node in the workflow contains specific instructions or prompts that guide
the agent’s speech generation and certain actions to trigger. Nodes can be classified into several types,
including Start Nodes, which define the root and entry point of a workflow; End Nodes, which signal
the termination of the workflow; and generic Nodes, which serve as intermediate decision points
containing speech instructions for the LLM to converse with users in predefined ways. Additionally,
Transfer Nodes in Conversational Al workflows allow for transitioning the conversation to another
autonomous or human agent. Edges between nodes may include logical conditions that dictate the
agent’s transitions, ensuring workflows are executed accurately.

Figure|l|illustrates how tasks such as determining health care eligibility can be broken down into
nodes, edges, and conditions. For example, a healthcare provider might use such a workflow to
efficiently filter out patients without the required insurance, reducing the burden on human agents.
However, workflows like these can rapidly grow in complexity. As shown in Figure 2] adding just a
few additional conditions to the conversation flow can drastically increase the number of nodes and
edges, making the workflow more difficult to manage and execute effectively.

Although LLMs such as GPT and LLAMA are built on autoregressive decoder-based transformer
architectures optimized for natural language generation, they are not inherently designed to handle
structured, multi-step processes with extensive context (Qiu & Jin, [2024; |Shi et al.| |2023)). Existing
approaches have been to add a planning phase, where the LLM would take time to orchestrate
the action, and then proceed to the generation tasks (Valmeekam et al., 2023 [Zhou et al., [2024).
However, this approach is not optimal to the Conversational Al use case, as it would increase the
overall latency by doubling the number of queries needed. Tasks such as managing end-to-end
customer service requests with non-standard return policies, performing outbound sales calls that
involve dynamic CRM updates, or redirecting users to appropriate departments after a sequence of
filtering questions require precision, alignment, and low-latency responses. These limitations force
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Node 1 - Start node

Thank you for calling X HealthCare,
can you give me a bit more
information so | can route your call?
\
o Caller wants to hang up the call
Caller confirms willingness to provide \\ _—
additional information

Node 3 - End node

Node 2

No problem. Thank you for
calling, have a nice day!

Can you tell me if you have
Medicaid, Medicare, Tricare, or
Employer Coverage?

Caller indicates they have Medicaid Caller indicates they have employer coverage

f Caller indicates they/Kave Medicare Caller indicates\they have Tricare \

S
+

Node 7

Node 6

Node 4 Node 5
Great, since you have Employer
Since you have Medicaid, we Since you have Medicare, we Since you have Tricare, we Coverage, I'm transferring you to
cannot service this request. cannot service this request. cannot service this request. alicensed agent for further
Sorry! Sorry! Sorry! assistance.

—

Node 8 - End node

Node 9 - Transfer node

Transferring you now, one moment
please!

Thank you for calling, have a
nice day!
Action: transfer call to licensed agent

Figure 1: Example illustration of an Agentic workflow for a healthcare call center use case, where
the Agent needs to route calls based on different conditions.

businesses to oversimplify workflows, sacrificing accuracy and operational efficiency—an outcome
that is contrary to their objectives.

The challenges inherent in adapting LLMs to graph-based workflows underscore the need for new
approaches that can accurately and efficiently execute workflows while respecting real-world con-
straints such as latency. While adding more reasoning steps could theoretically improve accuracy,
such methods are impractical for Conversational Al applications where rapid response times are
critical.

To address these challenges in the current Conversational Al space, this paper introduces the Per-
formant Agentic Framework (PAF), a novel solution for efficient graph traversal that balances
accuracy and latency in real-world applications. By leveraging both traditional decision-making
logic and mathematical methods for next-node selection, PAF enables agents to execute workflows
with greater precision and speed. Our experiments demonstrate that PAF significantly outperforms
baseline and traditional methods in both accuracy and latency, as evidenced by higher alignment
scores and reduced response times.

2 RELATED WORK

The reliance on LLM-based systems to execute graph-based workflows has seen significant research
attention, particularly in developing frameworks that aim to balance accuracy, latency, and alignment
with predefined workflows. Below, we discuss prominent related works and their limitations.

Agentic Frameworks. Serving as examples, LangChain (LangChain, |2023) and LangGraph (Lang-
Graph, 2023) streamline graph-based workflows by utilizing function calls and prompt chaining.
While effective for simple tasks, their reliance on keyword-based triggers often results in alignment
errors, especially in workflows with hundreds or thousands of nodes. These frameworks lack ro-
bustness for real-world applications where actions must be dynamically triggered at various points
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Node 5 Node 6 3

Thank you for calling, have a
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I see you have cable internet
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Node 16 - End node
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/ Node 17
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/ Node 18

Node 19
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connect them,
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instructions to caller
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Node 23
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resomed? Node 21 - End node
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Node 22 - End node
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/
S
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~—

Issue is resolved Node 27 - End node

Thank you for calling, have a
great day!

Node 24 - End node Issue is still there Node 25

Node 26 - End node
Sorry to hear that, | will pass
your information along to one of
our technicians who will give you
a call back.

Great! Glad | can help. Have a

great day. Thank you for calling, have a
great day!

-~/

Figure 2: Example illustration of an Agentic workflow for an internet service company helping callers
troubleshoot connection issues. This workflow demonstrates how a more complex use case can have
more conditions, nodes, and edges.

in conversations. Furthermore, their reliance on LLM-generated triggers leads to unreliability in
critical workflows, where adherence to predefined paths is essential for compliance and business logic
(CangChainl, 2023} [LangGraphl 2023)). Additionally, limitations in LLM context windows further
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exacerbate their inefficiency in retaining relevant information across extended workflows, introducing
hallucinations and context drift during execution (Dong & Qian, [2024).

Conversational Al Conversational Al has been a key focus for Natural Language Processing.
Existing Conversational Al solutions emphasize the need for multi-modality, guardrails, and advanced
tuning to enhance dialogue quality (Dong et al., 2023). Prior approaches to the Voice Al space have
proven to work in sandbox conversational settings (James et al., 2024), but lack the consistency
and accuracy required for production use. As noted, LLMs often miss certain abilities to maintain
performance in a dynamic conversational setting, unable to handle numerous tasks conditionally
while reducing hallucinations and staying within context (Gill & Kaur, 2023} Dong et al., 2023; |Dong
& Qianl 2024).

MetaGPT and SOP Translation. MetaGPT leverages Standardized Operating Procedures (SOPs) to
structure workflows, enabling agents to replicate domain-specific expertise. However, its reliance on
iterative planning and validation increases latency, making it unsuitable for real-time applications.
For example, |Gao et al.| (2023)) note that the planning phase requires additional LLM calls, which
adds computational overhead. While MetaGPT is effective for SOP alignment, it struggles with
unusual user inputs and extended workflows, leading to significant context drift. Its dependence on
domain-specific fine-tuning also hinders generalizability (Gao et al., 2023} [Wang & Liu, [2024).

Comparison and Our Contributions. Existing frameworks have made valuable contributions but
are hindered by issues such as context drift, high latency, and alignment errors. PAF addresses
these limitations by replacing LLM planning phases with a mathematical decision-making approach,
combining vector-based node selection and specialized prompt engineering. Unlike previous methods,
PAF reduces context size while improving accuracy, making it a scalable and production-ready
solution for navigating graph-based workflows.

3 PERFORMANT AGENTIC FRAMEWORK (PAF)

PAF is a framework designed for Agentic workflows, enabling agents to navigate graph-based
structures composed of nodes and edges to execute predefined workflows. It is comprised of two
components: Basic PAF and Optimized PAF, each tailored to address specific challenges in workflow
execution.

3.1 BAsIc PAF

Problem Formulation. PAF enables agents to operate by following nodes connected by logical
edges. During each generation turn, the agent follows the nodes in the graph according to the logical
conditions specified as outcomes of the node. If a condition is met, the agent navigates to and executes
the instructions of the next node in the graph.

LLM as a Judge for Node Identification. We leverage an LLM to identify the Agent’s location in
the map dynamically at each generation:

This design is particularly effective in production Al systems as it separates the generation tasks from
other downstream modules, like Text-to-Speech (TTS). This modular approach optimizes latency by
enabling parallel processing by TTS or other services. Compared to implementations where prompts
are added in a single body, Basic PAF achieves lower error rates by using a step-by-step logic tree
and reducing the need for additional validation iterations (Li & Yuan| 2023 |Reddy & Guptal, [2021)).

3.2 OPTIMIZED PAF

While Basic PAF offers significant improvements, it faces bottlenecks when workflows have many
nodes (e.g., 50 nodes with 4 conditions each). These bottlenecks arise as the agent struggles to
differentiate between semantically similar prompts on different branches.

Vector-Based Node Search. Optimized PAF addresses this by adding a vector-based scoring
mechanism to reduce the context window size and improve logical adherence:

Optimized Agentic Framework. Integrating the Vector-Based Node Search:
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Algorithm 1 LLM as a Judge for Node Identification

Input: ConversationHistory, NavigationM ap, LastestIdentified N ode
Output: UpdatedLatestIdentifiedNode
Step 1: Format Input for the LLM

Construct a prompt using C'onversationHistory.

Add a contextual anchor by traversing from the StartNode to LastestIdentified N ode and
collect the first-layer child Nodes in the map, e.g., "You were previously on Node
{LastestIdentifiedNode} with options...".

If LastestIdentified Node is unavailable, use: "This is the start of the task
{task}, proceed to Node 0."
Step 2: Query the LLM

Send the question: "Based on your latest responses, where are you

currently in the navigation map?"
Step 3: Process the Response

Parse the response to identify the node mentioned by the LLM.

Validate the identified node against Navigation M ap.
Step 4: Return the Result

Output the validated node as Updated LatestIdenti fied N ode.

Algorithm 2 Basic Agentic Framework

Input: ConversationHistory, NavigationM ap, LatestIdentified N ode
Output: UpdatedLatestIdentified N ode
Step 1: Initialize LLM Instructional Message

Construct an instructional prompt for the LLM agent.

Add ConversationHistory to the prompt in a structured way.

Include instructions based on LatestIdentified N ode.

Construct a navigation prompt by traversing NavigationM ap and collecting all first-layer
children nodes’ instructions from StartNode to LatestIdenti fiedN ode.
Step 2: Query the LLM

Send the user question: "Based on the navigation map and your current
node, respond to the user question: {user question} "
Step 3: Process LLM Output in a Streaming Loop
while LLM agent streams output do

(a) Identify Current Node via Algorithm T}

(b) Update LatestIdentifiedNode to the new identified node.

(c) Trigger any actions related to LatestIdentified N ode.

(d) Update NavigationM ap if necessary.
end while
Step 4: Return the Updated Node

UpdatedLatestIdentifiedNode < LatestIdentifiedNode

Compared to cosine similarity, our experiments found that the dot product captures subtle differences
in magnitude, beneficial for domain-specific jargon and context (Huang & Wang|, 2021)).

4 EXPERIMENT

We designed experiments to evaluate PAF against baseline methods in graph traversal and node
selection. We focus on latency, accuracy, and alignment with business logic, critical for Conversational
AL

4.1 SETUP

Dataset Generation. We generated a synthetic dataset simulating real-world workflows, each entry
consisting of:

* SystemPrompt: A node navigation map with Agentic logic.
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Algorithm 3 Vector-Based Node Search

Input: NavigationM ap, LatestIdentifiedN ode, Threshold, Latest Agent Response
Output: UpdatedLatestIdentified N ode
Step 1: Vectorize Instructions & Agent Response
Compute embeddings for LatestIdentifiedNode, its child nodes, and

Latest Agent Response.
Step 2: Compute Similarity Scores

Use dot product or another similarity metric between Latest Agent Response embedding and
each node’s embedding.
Step 3: Select the Best-Matching Node

Choose the node with the highest similarity.

If the top score > Threshold, return that node as Updated LatestIdentified N ode.
Step 4: Update or Fall Back
if score above Threshold then

return UpdatedLatestIdentifiedNode
else

return false (fall back to LLM-as-Judge)
end if

Algorithm 4 Optimized Agentic Framework

Input: ConversationHistory, NavigationM ap, LatestIdenti fied N ode, T hreshold
Output: UpdatedLatestldentifiedNode
Step 1: Precompute Node Embeddings

Vectorize instructions for all nodes in Navigation M ap.
Step 2: Format Input for the LLM

Include ConversationHistory, instructions for LatestIdenti fied N ode, plus first-layer chil-
dren instructions.
Step 3: Query the LLM Agent

Send the constructed message to the LLM agent.
Step 4: Process LLM Output in a Streaming Loop
while LLM outputs tokens do

(a) Perform Vector-Based Node Search (Alg. .

if a node is found with high confidence then

Update LatestIdentified N ode accordingly.
else
Fallback to LLM-as-Judge (Alg.[I).

end if
end while
Step 5: Trigger Actions & Update Graph

Execute any node-specific actions and update Navigation M ap if needed.
Step 6: Return Result

UpdatedLatestIdentifiedNode <— LatestIdentifiedNode

* ConversationHistory: Turn-by-turn interactions.

* GoldenResponse: A verified reference response for alignment and context accuracy.

Conversations ended either upon reaching a terminal node or after a random turn limit (6—10). Golden
responses were manually verified to ensure correctness.

4.2 EVALUATION METRICS

* Semantic Similarity: Alignment (0-1) with the golden response using OpenAlI’s text-2-
vec-3-small embeddings (OpenAl, 2025).

* Total Complete Hit Rate: Percentage of responses exceeding a similarity threshold (0.97).
* Mean and Median Similarity Scores: A measure of overall alignment.

Methods Compared:
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1. Baseline: Naive single-shot approach with the entire conversation and map in one prompt.
2. Basic PAF: Step-by-step logic (Algorithms|[T]and 2).
3. Optimized PAF: Vector-based approach (Algorithms|[T} 3} and ).

4.3 HYPOTHESES AND STATISTICAL ANALYSIS

H1: Basic PAF has higher mean similarity than Baseline. H2: Optimized PAF has higher mean
similarity than Baseline. H3: Optimized PAF has higher mean similarity than Basic PAF.

We used one-sided paired t-tests (significance av = 0.05).

4.4 RESULTS

Table 1: Result Metrics Across Algorithms

Method Total Hits Count ; 0.8 Mean Median
Baseline 0 0 0.391 0.387
Basic PAF 16 14 0.481 0.400
Optimized PAF 35 22 0.594 0.496

Distribution of Similarity Scores (KDE)

337 3 Naive
[ Base
[ Optimized

Density

T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 14
Similarity Score

Figure 3: Distribution of Similarity Scores for the three tested frameworks. ‘“Naive” is Baseline,
“Base” is Basic PAF, and “Optimized” is Optimized PAF.

Table 2: Statistical Comparison Results (One-Sided Paired t-Tests)
Comparison t-statistic  p-value
Baseline vs Basic PAF 2.9982 0.0020

Baseline vs Optimized PAF 7.3077 0.0000
Basic PAF vs Optimized PAF ~ 4.2494 0.0000

Findings.

* H1: Basic PAF outperforms Baseline (p = 0.002).
e H2: Optimized PAF outperforms Baseline (p < 0.001).
e H3: Optimized PAF outperforms Basic PAF (p < 0.001).
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4.5 REPRODUCIBILITY

We provide the code for data generation, evaluation, and visualization in an anonymized repositoryﬂ

5 CONCLUSION

Our approach introduces novel mechanisms for leveraging LLMs to navigate graph-based workflows,
replacing the need for extensive planning phases and minimizing error rates. PAF achieves faster
response times and greater accuracy in real-world applications by reducing reliance on large context
windows and optimizing computational steps.

Key contributions include:

* Removing extra iterations for validation and planning, reducing latency.

* Improving alignment with a step-by-step logic tree that adds instructions incrementally,
governed by a predefined logic.

* Reducing the context window size by focusing only on relevant graph information.

¢ Introducing vector-based scoring to reduce LLM calls and prioritize high-confidence next-
node matches.

These improvements yield a more stable and controllable approach to help LLMs navigate workflows,
trigger actions, align with business goals, and reduce hallucinations—all with improved performance
in production settings.

6 FUTURE WORK

While Conversational Al serves as a compelling demonstration, PAF is broadly applicable. Planned
extensions include:

* Node Weights and Path Rules: Allowing more flexible graph structure with weighted
edges and dynamic transitions.

* Integration with Other Models: Evaluating domain-specific or smaller models to see how
well they adapt to graph-based workflows.

* Open-Source Model Improvements: Adapting PAF to emerging open-source LLMs to
enhance domain-specific tasks.
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