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Abstract

Large language models (LLMs) are a promising venue for natural language un-1

derstanding and generation. However, current LLMs are far from reliable: they2

are prone to generating non-factual information and, more crucially, to contradict-3

ing themselves when prompted to reason about relations between entities of the4

world. These problems are currently addressed with large scale fine-tuning or by5

delegating reasoning to external tools. In this work, we strive for a middle ground6

and introduce a loss based on neuro-symbolic reasoning that teaches an LLM7

to be logically consistent with an external set of facts and rules and improves8

self-consistency even when the LLM is fine-tuned on a limited set of facts. Our9

approach also allows to easily combine multiple logical constraints at once in a10

principled way, delivering LLMs that are more consistent w.r.t. all constraints and11

improve over several baselines w.r.t. a given constraint. Moreover, our method12

allows LLMs to extrapolate to unseen but semantically similar factual knowledge,13

represented in unseen datasets, more systematically.14

1 Introduction15

Developing reliable large language models (LLMs) and safely deploying them is more and more16

crucial, particularly when they are used as external sources of knowledge [53, 30, 10, 6]. To do so,17

one would need LLMs to be factual [71], i.e., agreeing on single facts that appear in a knowledge18

base (KB), and logically consistent [37, 47], i.e., being able not to contradict themselves or a KB19

when prompted to perform complex reasoning. It has been abundantly shown that training on large20

datasets for question answering (QA) [63] alone cannot meet these desiderata [24, 39, 40, 23].21

Factuality and consistency are intimately related. Enforcing factuality alone generally boils down22

to fine-tuning an LLM on a large KB of atomic facts [34]. When predicting the truth values of23

these facts, a number of works try to enforce the simplest form of consistency: that the probability24

of a true fact shall be one minus the probability of its negation [12]. More sophisticated heuristics25

are possible, e.g., fine-tuning on a large QA dataset by jointly optimizing for truthfulness of model26

answers and contrastively pulling apart true and false facts [40]. All these approaches require large27

KBs and more crucially are tailored towards specific logical constraints.28

When it comes to self-consistency w.r.t. more complex reasoning scenarios, e.g., ensuring that LLMs29

can perform modus ponens without contradicting themselves [64, 47], one line of research focuses30

on employing external reasoning tools such as MAX-SAT solvers [8] at inference time [47, 31, 33].31

However, these approaches depend on the constant availability of a reasoner (and sometimes also of32

a natural language inference model [47]) which can increase the cost of inference for every reasoning33

step. At the same time, training the LLM to reason is not possible or hindered by the hardness of34

backpropagating through the solver [55].35
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In this work, we show how to improve factuality and self-consistency of LLMs without external36

components by leveraging recent advancements in neuro-symbolic learning [19]. This is done by37

turning complex reasoning tasks into logical constraints that can be incorporated via neuro-symbolic38

(NeSy) reasoning [20, 26]. Specifically, we fine-tune an LLM by a principled objective: maximising39

the probability of a constraint to hold, which goes under the name of weighted model counting [13]40

in probabilistic reasoning or semantic loss [75] when used as a regularizer in deep learning [77, 68].41

This in turn encourages the LLM to perform principled probabilistic reasoning at training time by42

maximising the probability of beliefs that comply with the provided set of constraints.43

We empirically show how given incomplete factual knowledge, e.g., by providing only a limited44

number of known facts, the LLM can learn truth beliefs for new facts while keeping logical consis-45

tency w.r.t. prior knowledge. Moreover, our approach is agnostic to the logical constraints consid-46

ered and can deliver a single training objective that can improve multiple consistency scores at once.47

In our experiments, with a single offline training session, LLMs trained with our objective outper-48

form models relying on external solvers, and are more factual and logically consistent in low-data49

regimes when compared to standard supervised fine-tuning over KBs of facts.50

Contributions. Summarizing, we: i) introduce Logically-Consistent LLMs (LOCO-LMS), a novel51

and principled fine-tuning strategy designed to improve factuality and (self-)consistency of LLMs52

based on probabilistic NeSy reasoning (Section 3), and ii) we rigorously evaluate the ability of53

LOCO-LMS to improve self-consistency w.r.t. several reasoning scenarios – when fine-tuned for54

certain constraints and evaluated over others – without hurting fluency (Section 5).55

2 Logical consistency through the lenses of probabilistic reasoning56

We formalize the different reasoning scenarios we would like an LLM to be (self-)consistent with,57

and highlight the shortcomings of commonly used LLMs when prompted to reason in this way.58

Factuality. We view a pre-trained LLM as a collection of truth beliefs about facts over which it59

can reason. The simplest reasoning task is factual reasoning, i.e., determining the veridicity of a60

fact. For example, consider the fact f in textual form “an albatross is a bird”. It can be commonly61

encoded in knowledge bases (KBs) such as BeliefBank [34] as a (subject-relation, property) pair, for62

instance, (albatross-is, bird). To inspect whether an LLM believes a fact to be true, we can prompt63

it with a question like “Is an albatross a bird?”, the LLM can supply a binary prediction of the form64

“Yes”/“No” or “True”/“False”,1 encoding its belief that the fact f holds or not. Therefore, given65

an LLM modeling a parameterized distribution pθ, we can consider the probability of generating a66

token xt encoding a binary answer, according to pθ, after observing the token sequence x1, . . . , xt−167

encoding the question about the fact, to be the probability of the LLM believing that the truth value68

zf of fact f is either true (⊤) or false (⊥). That is, for true facts,69

pθ(zf = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is an albatross a bird?") (1)

where ℓtrue is an affirmative token, e.g., one among “yes”, “true”, “Y”, “T”, etc. Analogously, we70

can compute pθ(zf = ⊥) by checking if the LLM answers a token ℓfalse is “no”, “false”, “N”, “F”,71

etc. To determine the model’s belief, we query 2 the most likely next token x̂t and check whether it72

falls in ℓtrue or ℓfalse, and set it to “undetermined” if it falls into neither.73

Given an external KB, we say an LLM is factually consistent, or simply factual, w.r.t. a fact f in74

the KB with truth value z∗f , if its answer (mapped to a truth assignment as described above) matches75

z∗f , and factually inconsistent otherwise.3 This perspective leads to interpreting factual reasoning as76

a binary question answering (QA) task [12, 34, 47]. From Equation (1), one can see that a simple77

strategy to make an LLM more factual is that of minimizing the cross-entropy (XENT) of pθ over78

an external KB containing training questions with ground truth answers. We compare against it in79

our experiments (Section 5).80

1 We note that such an answer can be highly dependent on the format of the prompt. For this reason, in our
experiments we use several prompts, whose format is detailed in Section 5.

2We keep a default temperature t = 1.0. Dropout is disabled to generate outputs systematically.
3Similarly, one could say that an LLM is factually self-consistent w.r.t. f if it answers in the same logically

consistent way (e.g., zf is always ⊤) when asked to answer the same prompt or different, but semantically
equivalent, prompts several times. Since this is harder to measure – as it strongly depends on the sampling
strategy – in this work we focus on factual consistency only.
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Negation consistency. While effective for many QA scenarios [40, 65], increasing factual consis-81

tency by XENT minimization does not prevent the LLM from being logically inconsistent under82

other simple constraints, e.g., contradiction [32, 15, 29]. Given a textual representation for a fact f ,83

e.g., “an albatross is a bird”, and another one f̃ encoding its negation, e.g., “an albatross is not a84

bird”, we say negation self-consistency holds if85

zf ⊕ zf̃ ⇐⇒ (zf ∧ ¬zf̃ ) ∨ (¬zf ∧ zf̃ ), (NEG)

where ⊕ denotes the logical operator XOR. In other words, we would like an LLM to consistently86

answer either affirmatively or negatively when asked about the truth of a statement and its negation.87

Negation consistency is very challenging for LLMs [32, 23, 29]. For example, in our experiments88

LLaMa-2 70b [66] answers “true” to both questions “Is an albatross an organism?” and “Is an89

albatross not an organism?”. From a probabilistic perspective, a simple sufficient condition for90

negation consistency is that pθ(zf = ⊤) = 1 − pθ(zf̃ = ⊤). This is hard to be systematically91

guaranteed and in practice has been addressed by applying ad-hoc heuristics during fine-tuning [12],92

which however cannot be exploited to enforce consistency to other constraints, such as implication,93

discussed next.94

Implication consistency. Given two textual representations of facts f1 (antecedent, e.g., “an alba-95

tross is a bird”) and f2 (consequent, “an albatross is an animal”) we say that the first implies the96

second if it holds that97

(zf1 → zf2) ⇐⇒ (¬zf1 ∨ zf2). (IMP)
As with factuality, consistency (resp. self-consistency) holds if the answers of the LLM to a prompt98

satisfy the truth values according with the above implication and an external KB (resp. the inner99

beliefs of the LLM). Furthermore, letting z∗f1 be the truth value of f1 recorded in the KB, we can100

define a factual variant of the implication that restricts the constraint to take z∗f1 into account, that101

is, when the LLM is prompted about f2, it should derive its truth value zf2 according to102

(zf1 = z∗f1) ∧ (zf1 → zf2) (F-IMP)

This can be seen as a relaxation of classical modus ponens reasoning [58]. While simpler to capture103

from text corpora, implication consistency can still be challenging for LLMs [33, 76]. For example,104

given the rule f1 → ¬f2, where f1: “an albatross is an animal” and f2: “an albatross is a virus”,105

we wish the LLM to answer with “Yes” and “No” respectively, which maps to the truth assignment106

zf1 = ⊤, zf2 = ⊥. LLaMa-2 70b violates the provided rule with the inconsistent belief, zf2 = ⊥,107

i.e. “an albatross is a virus” is labeled as “Yes”.108

Reverse implication consistency. Equation (IMP) is logically equivalent to ¬zf2 → ¬zf1 , never-109

theless an LLM that is logically consistent w.r.t. the implication of f1 over f2 might not necessarily110

be consistent w.r.t. the implication of f̃2 over f̃1, representing the negation of f2 and f1 respectively.111

For example, while LLaMa-2 70b is logically consistent w.r.t. zf1 → zf2 with f1 : “an albatross is112

an organism”, f2 : “an albatross is a living thing”, it violates zf̃2 → zf̃1 as it classifies zf̃2 : “an alba-113

tross is not a living thing” as false but zf̃1 : “an albatross is not an organism” as true. Furthermore,114

an LLM that is logically consistent w.r.t. reverse implication and factual w.r.t. a KB should be able115

to satisfy116

(zf̃2 = ¬z∗f2) ∧ (zf̃2 → zf̃1) (REV-F-IMP)

where ¬z∗f2 indicates the opposite of the truth value stored in the KB for f2. This factual reverse117

implication scenario can be thought as a relaxation of modus tollens [58].118

More complex constraints. As just discussed, constraints such as negation, logical implication and119

reverse implication already pose challenges to state-of-the-art LLMs in terms of consistency. While120

we will focus on the Llama 2 LLM family in this work, similar shortcomings have been highlighted121

for even larger models such as ChatGPT and GPT-4 [29]. Nevertheless, they constitute only a small122

fraction of the possible real-world reasoning scenarios LLMs can be asked to deal with. Consider for123

example the following textual representations of facts, as extracted from EntailmentBank [16]: f1 :124

“melting is a kind of phase change”, f2 : “the ice melts”, f3 : “the ice undergoes a phase change”,125

f4 : “phase changes do not change mass”, f5 : “the mass of the ice will not change”. They obey the126

following logical constraint127

(zf1 ∧ zf2 → zf3) ∧ zf4 → zf5 . (2)
In the next section, we will introduce our general framework that can improve logical consistency128

of fine-tunable LLMs w.r.t. any logical constraint expressible in propositional logic.129
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3 Logically-consistent LLMs via NeSy integration130

We assume we are given a KB comprising a limited set of textual statements and associated truth131

values DF = {(f1, z∗f1) . . . , (fn, z
∗
fn
)}, encoding simple facts such as “an albatross is a bird” (true)132

and “a computer is a bird” (false), and a set of logical constraints DC = {α1, . . . , αm} defined over133

facts in DF , comprising implications, negations or more complex constraints as defined in Section 2.134

Given a pre-trained LLM encoding a distribution pθ over tokens, our objective is to fine-tune it to135

be more consistent w.r.t. DF , DC and itself. As an important side benefit, we expect the fine-tuned136

LLM to generalize to – and be consistent with – the truth values of unseen facts fn+1, fn+2, . . . , that137

can be either logically inferred by applying the constraints in DC to DF (e.g., by applying modus138

ponens) or that are semantically similar to facts in DF . For example, since albatross and cockerel139

are birds, and since this is reflected by their semantic similarity as encoded by the LLM, we expect140

an LLM consistent with the constraint (“an albatross is a bird” → “an albatross can fly”) to correctly141

infer that “a cockerel can fly” too.142

A principled probabilistic approach to do so is to encourage the LLM pθ to allocate all probability143

mass to configurations of truth values that are consistent with the constraints αi ∈ DC , for instance144

by penalizing it proportionally to the probability it allocates to inconsistent truth values for all facts145

in the KB. For every αi, the total probability allocated to the consistent configurations is146

Pr(αi) := Ez∼pθ(z)[1{z |= αi}] =
∑

z|=αi

pθ(z) (3)

where z is a vector containing the truth assignments z1, . . . , zK of all the K facts appearing in the147

constraint αi, and z |= αi indicates that the assignment z satisfies the constraint. For example,148

consider two facts f1 : “a daffodil is a flower” and f2 : “a daffodil is mortal” and the constraint α′ :149

zf1 → zf2 stating that being a flower entails that the daffodil is mortal. Then, all the configurations of150

z = (zf1 , zf2) would satisfy α′ with the exception of (⊤,⊥) which clearly violates it. Equation (3) is151

a special instantiation of computing the weighted model count (WMC) [13, 68] of a logical formula152

αi, where the weights associated to each model (a satisfying assignment to the formula) are given153

by the probabilities encoded by the LLM.154

Furthermore, we can rewrite such probabilities pθ(z) as the product the probabilities of the truth155

values of each fact, noting that for many LLM architectures they are conditionally independent156

given the embeddings at the last layer. By taking the logarithm and reversing it into a minimization157

problem, we obtain the semantic loss (SL) [75] objective that our LOCO-LMS minimize:158

L(αi, pθ) = − log
∑

z|=αi

∏
j:z|=zfj

pθ(zfj )
∏

j:z|=¬zfj
(1− pθ(zfj )) (SL)

where j : z |= zfj (resp. j : z |= ¬zfj ) indicates that the j-th fact in αi is associated ⊤ (resp.159

⊥). Consider the implication constraint α′ as defined before for encoding that a daffodil is mortal160

for being a flower. Its satisfying assignments are z |= α′ ∈ {(⊤,⊤), (⊥,⊤), (⊥,⊥)}. Then, the161

summation in Equation (SL) amounts to computing:162

pθ(zf1 = ⊤)pθ(zf2 = ⊤)+(1−pθ(zf1 = ⊤))pθ(zf2 = ⊤)+(1−pθ(zf1 = ⊤))(1−pθ(zf2 = ⊤)))

where we can obtain the individual probabilities of facts being true directly by reading off the likeli-163

hood of utterances produced by the LLM, that is:164

pθ(zf1 = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is a daffodil a flower?”)
pθ(zf2 = ⊤) = pθ(xt = ℓtrue | x1, . . . , xt−1 = “Is a daffodil a mortal?").

In the case of a constraint such as Equation (F-IMP), the inner summation of the SL would reduce165

to a single configuration z = (⊤,⊤) when z∗f1 = ⊤, which can be interpreted as a special kind of166

cross-entropy computed only on pairs of facts considered to be jointly true in the KB, and to the167

set {(⊥,⊤), (⊥,⊥)} when z∗f1 = ⊥. Note that Equation (SL) is agnostic to the kind of logical168

constraint involved, and therefore makes our approach general enough to tackle several settings169

where consistency-preserving solutions have been devised for specific constraints [12, 33, 47].170

Crucially, the procedure to compute the models of a logical constraint can be automated. However,171

naively computing the sum in Equation (SL) would require exponential time w.r.t. the number172

of possible facts in z. In fact, computing the WMC of a logical formula is a #P-hard problem173
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in general [13]. However, thanks to recent advancements in neuro-symbolic reasoning, we can174

compute that probability and differentiate through it efficiently [18, 75, 2]. Specifically, we rely on175

modern compilers that translate a logical formula αi into compact and differential computational176

graphs called circuits [17, 70], such as sentential decision diagrams [18, 50, 14].177

To recap, during training we loop over every constraint in αi ∈ DC , prompt the LLM to gather the178

probabilities of every fact participating in αi to be true and plug them in our only loss, as described179

in Equation (SL). Then, we backpropagate as to fine-tune (some of) the parameters θ of the LLM,180

by using LoRA [28] and quantization [21] if necessary. This simple and principled recipe is able to181

scale well and is extremely effective at improving logical consistency on a number of well-known182

benchmarks, as discussed in Section 5.183

4 Related Work184

LLMs and factual reasoning. LLMs are increasingly being employed as implict KBs [53, 5], how-185

ever ensuring they are factually consistent is still an open challenge [72, 7]. A number of works186

augment LLMs with external KBs, especially in the context of QA, and with the primary aim of187

improving answer factuality [33, 47, 38]. A popular approach to do so is retrieval augmented gener-188

ation [35, 36], which however is not yet suited for more complex reasoning scenarios. Alternatively,189

external KBs have been used to improve reasoning, e.g., via prompt learning [51] or ex-post model190

editing [59]. However, current knowledge editing methods, including supervised fine-tuning, do191

not guarantee the propagation of factuality between units of knowledge related by logical relations192

[15, 4]. Mitigating hallucinations in LLMs [6, 57] is related to enforcing factuality, but as generated193

inconsistencies might not map to a single entry in a KB, they are harder to detect and prevent [27].194

More complex reasoning with LLMs. Much less attention has been posed to other forms of rea-195

soning, such as combining modus ponens, consistent negation and combination thereof. Even when196

this is done, reasoning is generally cast as a QA task, where an LLM has to predict the satisfiability197

of logical formulas of different complexities. To this end, benchmarks such as SimpleLogic [78] or198

LogicBench [52] have been proposed. Implication or entailment [43, 25] are also usually cast as a199

QA prediction task [56]. Datasets such as BeliefBank [34] provide collections of simple implication200

constraints to test this, while more sophisticated benchmarks such as EntailmentBank [16] collect201

more complex implications, e.g., trees of natural language statements. Shortcomings in consistent202

reasoning have been recently highlighted for larger LLMs such as ChatGPT and GPT-4 variants [29],203

which are however harder to fine-tune efficiently. Other works [9] highlighted how (even large)204

LLMs suffer from not being able to recognize the logical equivalence of “A is-a B” relationships205

and “B is-a A” ones. These relationships could be seen as a type of logical constraint, specifically206

concept membership to an ontology class, and hence could be modeled in our framework.207

For complex reasoning scenarios, logical consistency can be improved in a number of ways, the most208

successful of which involves external tools, such as MaxSAT solvers, which flip the predictions of209

an LLM to be (approximately) consistent with a set of related questions, as done by ConCoRD210

[47]. Analogously, self-consistency can be ameliorated by first constructing a belief graph – a factor211

graph relating the beliefs of an LLM fine-tuned on implications such as Entailer [64] – over which212

a MaxSAT solver is applied [33]. Higher level constraints can also be checked and enforced with213

external verifiers [73]. Differently from LOCO-LMS, backpropagating through these external tools214

is hard [54], furthermore, while they can guarantee self-consistency among facts within every call215

of a MaxSAT solver, this cannot be done for the same facts across different calls.216

Semantic loss & other NeSy approaches. Several variants of the semantic loss [75, 3, 1] and217

neural weighted model counting [68] have been proposed but, to the best of our knowledge, never218

employed to enforce logical consistency in LLMs. In our experiments we found that our simple219

formulation (Equation (SL)) is good enough to greatly improve consistency over previous state-of-220

the-art methods in NLP (Section 5). Closer to our work, [77] applied a semantic loss to instill221

first-order rule constraints in the embedding space of entities in encoder-only models to reason on222

the CLUTTR benchmark [60], comprising semi-synthetic stories involving hypothetical families.223

Fuzzy logic approaches [67] can be used to distill regularizers that can promote consistency [37].224

Differently from our probabilistic logic approach however, they are syntax-dependent, i.e., rewriting225

a constraint into a logically equivalent one would yield a different penalty term and can greatly226

influence optimization [67, 22].227
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5 Experiments228

5.1 RQ1: How do LOCO-LMS perform compared to external solvers?229

We reproduce the experimental setting of Mitchell et al. [47] to compare against ConCoRD, a230

symbolic layer that uses a MaxSAT solver to impose self-consistency for implication ex-post.231

Data. We train LOCO-LMS on the BeliefBank [34]. We use the three splits as in Mitchell et al. [47]:232

a “calibration" set of 1, 072 annotated facts about 7 entities of the form (subject, property, true/false)233

used for training, a “silver" set of 12, 636 facts about 85 entities used for evaluation, and a set of234

2224 valid abstract logical implications. We generate ground implication rules (DC) by looking up235

the subjects of all facts in the training set: if the antecedent or the consequent fact of the general236

constraint is known for that subject, we add the subject ground implication constraint to the dataset.237

Appendix A.1.1 details the whole process.238

To measure generalization across entities, we generate two controlled splits of the training cali-239

bration set: T1 facts, appearing either as antecedents or consequents in the constraints; T2 facts,240

appearing exclusively as consequents. The goal is to correctly guess the consequents by seeing only241

the antecedents and the constraints. We subsequently test the effects of pure supervised fine-tuning242

on a portion of random facts from the whole calibration set (T1+T2).243

Models. As in Mitchell et al. [47], we use Macaw-Large [63] (770M parameters), a sequence-to-244

sequence language model capable of multi-angle QA with fixed prompt templates. We keep the245

same prompts used for Macaw, reported in Appendix E.1. At test time, we verify the validity of the246

answer format and consider any invalid or negative response as a belief with label "false". We adopt247

a similar set of hyperparameters as for Macaw [63]: we fine-tune our models for 3 epochs with a248

learning rate fixed to γ = 3 · 10−4, batch size 4 with gradient accumulation (64/16 steps), on one249

nVidia A30 24GB GPU. We use AdamW [42] as optimizer with a default weight decay λ = 10−2.250

Competitors and Metrics. We compare ConCoRD as applied to Macaw-Large, using RoBERTa-251

ANLI [41] for relationship inference, versus a pre-trained Macaw-Large model from [63] as zero-252

shot baseline and our LoCo version of it (LoCo-Macaw). We evaluate our models for factuality253

and implication self-consistency. We measure the former with the F1 score to account for the un-254

balance between false and true facts [34]. Factuality is measured on the two splits (antecedents and255

consequents) and the complete facts set (Tot) for both calibration and silver splits. For implication256

self-consistency, sometimes named just “consistency” [37], we query beliefs from LLMs about the257

complete facts set and count the fraction of violated constraints in Dtest
C according to the implication258

rule (IMP), that is, when a true antecedent for the model implies a false consequent, to then compute:259

1− |{αi = (zj → zk) : zj = ⊤, zk = ⊥}| / |{αi = (zj → zk) : zj = ⊤}|. (4)
Results. Table 1 reports all metrics for all models. We firstly observe a net improvement in both260

factuality and logical consistency with our LOCO-LMS, compared to pre-trained Macaw-Large and261

the ConCoRD variant. Standard supervised fine-tuning with the XENT loss on antecedent facts is262

insufficient: due to a class imbalance between true facts (∼ 10%) and false facts (∼ 90%), the263

model tends to label any statement as “false”. This is accentuated in the training distribution (see264

Appendix A.1.1). Assuming the language model can access to a portion of consequent facts, LOCO-265

LMS still yields better logical consistency and factuality for unseen consequents in low-data regimes266

(e.g., 5-10% of the T1+T2 dataset) compared to canonical supervised fine-tuning. When they are267

allowed to see more data (e.g., 75% of the T1+T2 dataset), traditionally fine-tuned models can268

“cheat” and directly learn about the consequents (somehow equivalent to memorizing a single row269

of the truth table). In this scenario, LOCO-LMS achieve comparable logical self-consistency and270

factuality over consequents, but less on the antecedents.271

In conclusion, we observe our fine-tuning method allows Macaw-large to be more logically self-272

consistent than with an external solver. We conjecture that this is possible thanks to the high semantic273

similarity between facts in the train and test splits (Appendix D.1). In terms of inference speed, our274

LOCO-LMS take less time that querying the same base model and an additional reasoner4, at the275

cost of a one-time training step that can be amortized.5 Moreover, our semantic loss is more sample-276

efficient than XENT fine-tuning to achieve higher logical consistency especially with small portions277

of ground-truth data.278

4On BeliefBank, LOCO-LMS take 2405.28s at test time, compared to ConCoRD [47], 3669.33s.
5Training LOCO-LM takes 2124.48s on BeliefBank.
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Table 1: LOCO-LMS achieve
better logical self-consistency
and factuality than ConCoRD
[47] as measured via Equa-
tion (4) and F1 scores when
fine-tuned only on T1 facts only
and boost performance in the
presence of a small fraction of
T1+T2 facts (5-10%). A similar
trend is visible on training data
(Appendix A.1.1).

METHOD TRAIN SUBSET ANT F1 CON F1 TOT F1 IMP

CONCORD 0.91 0.91
MACAW-LARGE 0.52 0.90 0.81 0.83
MACAW+XENT T1 0.13 0.01 0.03 0.72
LOCO-MACAW T1 0.79 0.98 0.96 0.99

MACAW+XENT T1+T2 (5%) 0.23 0.78 0.72 0.82
LOCO-MACAW T1+T2 (5%) 0.67 0.83 0.81 0.92

MACAW+XENT T1+T2 (10%) 0.55 0.97 0.91 0.90
LOCO-MACAW T1+T2 (10%) 0.45 0.97 0.89 0.93

MACAW+XENT T1+T2 (75%) 0.85 0.99 0.97 0.98
LOCO-MACAW T1+T2 (75%) 0.79 0.99 0.95 0.98

5.2 RQ2: How do LOCO-LMS deal with different logical constraints?279

Setting. As in Section 5.1, we use BeliefBank to train and evaluate our LOCO-LMS on different280

types of logical rules. We use 90% and 10% of T1 facts for training and validation, respectively;281

T2 facts for testing. We employ two sets of labels to make our models less sensitive to the prompt282

format; at training time, one format is chosen with 50% chance for each batch; details in Appendix283

E.2. At test time we do not apply any strict parsing on the outputs: unless the token encodes the284

truth label (e.g., “Is a computer an electronic device? yes”), the output is considered as a negative285

answer.286

Models. To train larger language models, we choose the LLaMa-2 [66] family of decoder-only287

models, widely adopted in literature for its performance across a variety of tasks and domains. We288

consider three baselines: the available pre-trained 7b and 70b models, 4-bit NormalFloat quantized289

[21], with greedy sampling strategy, temperature t = 1.0 and dropout disabled; we also perform290

supervised fine-tuning of the 7b model (4-bit, with LoRA [28]) on the ground truth T1+T2 facts set,291

namely “LLaMa-2-7b + XENT”. We derive our LOCO-LMS fine-tuning with our proposed method292

LLaMa-2 7b, with 4-bit quantization and LoRA. We limit the generation to 4 tokens following the293

input. We adopt a similar set of hyperparameters to LoRA: we fine-tune our models for 5 epochs294

keeping the learning rate fixed to γ = 3 · 10−4, batch size 64, on 1 nVidia A100-40GB GPU. We295

use AdamW [42] as optimizer with a default weight decay λ = 10−2. We use the SL to finetune296

three LOCO-LM variants: for negation (NEG), factual implication consistency (F-IMP) and their297

conjunction, i.e., given an implication f1 → f2 we provide the SL with the constraint:298

(zf1 ⊕ zf̃1) ∧ (zf1 = z∗f1) ∧ (zf1 → zf2) ∧ (zf2 ⊕ zf̃2) (SUPER)

where f̃1 and f̃2 encode the textual negation of f1 and f2, generated via ConCoRD’s templates.299

Metrics. We fine-tune on NEG, F-IMP or SUPER and evaluate on all constraints. Specifically,300

we measure the implication self-consistency, defined in Equation (4), as well as the implication301

consistency:302

1− |{αi = (zj → zk) : z
∗
j = ⊤, zk = ⊥}| / |{αi = (zj → zk) : z

∗
j = ⊤}| (5)

where z∗j is the ground truth value of a fact. We also measure reverse implication consistency303

1− |{αi = (zk̃ → zj̃) : ¬z
∗
k = ⊤, zj̃ = ⊤}| / |{αi = (zk̃ → zj̃) : ¬z

∗
k = ⊤}| (6)

and the reverse implication self-consistency variant:304

1− |{αi = (zk̃ → zj̃) : zk̃ = ⊥, zj̃ = ⊤}| / |{αi = (zk̃ → zj̃) : zk̃ = ⊥}| (7)

where zk̃ and zj̃ are the truth values of the textual negations of facts k and j according to the model.305

For negation self-consistency we compute306

1− |{αi = (zj ⊕ zj̃) : zj = zj̃}| / |αi = (zj ⊕ zj̃)|. (8)

As in Section 5.1, we measure factuality (FAC) as the F1 score on a set of ground truth facts. Finally,307

we account for possible shifts in the language modeling distribution by computing its perplexity308

(PPL) on WikiText [46], formatted as a single token sequence.309
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Table 2: LOCO-LMS achieve higher (self-)consistency than off-the-shelf baselines and models
trained with supervised fine-tuning (+XENT) on the BeliefBank test split. Scores are averaged
across two sets of prompts and truth labels, for which results are reported in Appendix 7 and 8.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.39 0.52 0.13 0.42 0.30 0.15 0.32
LLAMA-2-7B FEW SHOT 52.30 0.53 0.71 0.34 0.38 0.48 0.47 0.48
LLAMA-2-7B COT 52.30 0.52 0.64 0.67 0.40 0.64 0.67 0.59
LLAMA-2-70B ZERO SHOT 44.90 0.47 0.69 0.81 0.13 0.31 0.91 0.55

LLAMA-2-7B + XENT T1+T2 116.85 0.25 0.46 0.01 0.07 0.81 0.01 0.27
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.44 0.65 0.43 0.96 0.28 0.36 0.52
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.99 0.99 0.07 0.00 0.99 0.07 0.51
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.74 0.77 0.77 0.87 0.71 0.77 0.77

Results. In Table 2, we first observe an overall boost in factuality for all LOCO-LMS over the310

7b baselines. Compatibly with Table 1, supervised fine-tuning is not sufficient to improve logical311

consistency significantly. Our LOCO-LM trained exclusively on IMP constraints performs best in312

factuality and implication consistency; however, as we haven’t trained it on negated facts, scores on313

negation consistency and reverse implication are notably low. Finally, fine-tuning a LOCO-LM on314

the combination of both constraints (SUPER), yields on average the most consistent language model,315

which on average surpasses even Llama 2 70B, a much larger model. Overall, fine-tuning with our316

method does not impact negatively fluency, as measured by perplexity.317

5.3 RQ3: Can finetuning LOCO-LMS help consistency on unseen KB?318

We report in Appendix C the evaluation of LOCO-LMS on EntailmentBank [16], a dataset employed319

by Kassner et al. [33] to assess reasoning on graphs of logical entailments. We test variants of LOCO-320

LMS trained on different logical constraints, in comparison to the baseline pre-trained model: we321

observe our fine-tuned models can maintain higher logical consistency across depths. We discuss322

some limitations and further developments based on supervised [33] or unsupervised [4] methods.323

6 Discussion and Further Work324

Limitations. One limitation of our approach is sensitivity to the choice of prompt format, a general325

phenomenon [74] that in our case means (self-)consistency improvements do not always carry over326

across formats. This can be partially addressed by fine-tuning using a mixture of formats, as we327

do in Section 5. While our SL is constraint-agnostic, in practice we fine-tune LOCO-LMS only328

against a combination of implications and exclusive ORs. While this setup is already richer than329

those studied in related works (Section 4) and achieves positive transfer to tasks requiring multiple330

reasoning steps, it leaves more room for future work on more complex benchmarks.331

LOCO-LMS fine-tuning relies on two assumptions: that the probabilities of facts are conditionally332

independent given the LLM inner state, and that the constraints in the KB are correct. The former333

readily applies to many LLMs, but assuming independence can bias the solutions learned by the SL334

[68]. For the latter, most KBs are well-curated, but fine-tuning models against incorrect or inconsis-335

tent rules can compromise consistency and fluency. Naturally, malicious users could intentionally336

train LOCO-LMS against invalid rules to steer the model towards logical conclusions of their choice337

or potential reasoning shortcuts [45, 44, 11].338

Our results show that LOCO-LMS have improved (self-)consistency compared to recently intro-339

duced consistency layers which rely on external solvers, such as ConCoRD. In future work, we340

plan to extend our analysis to more complex logical operators [69] and to consider more advanced341

probabilistic reasoning techniques that sport improved consistency guarantees [2]. Another promis-342

ing direction we have not explored is that of first materializing the beliefs of an LLM such as in343

REFLEX [33] and variants [4] and use the SL to improve consistency while potentially storing and344

re-using derived rules in a writable external KB [48, 49].345

8



References346

[1] Kareem Ahmed, Kai-Wei Chang, and Guy Van den Broeck. A pseudo-semantic loss for autore-347

gressive models with logical constraints. Advances in Neural Information Processing Systems,348

36, 2024.349

[2] Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari.350

Semantic Probabilistic Layers for Neuro-Symbolic Learning. In NeurIPS, 2022.351

[3] Kareem Ahmed, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck. Neuro-symbolic en-352

tropy regularization. In Uncertainty in Artificial Intelligence, pages 43–53. PMLR, 2022.353

[4] Afra Feyza Akyürek, Ekin Akyürek, Leshem Choshen, Derry Wijaya, and Jacob Andreas.354

Deductive closure training of language models for coherence, accuracy, and updatability, 2024.355

[5] Badr AlKhamissi, Millicent Li, Asli Celikyilmaz, Mona Diab, and Marjan Ghazvininejad. A356

review on language models as knowledge bases. arXiv preprint arXiv:2204.06031, 2022.357

[6] Konstantinos Andriopoulos and Johan Pouwelse. Augmenting llms with knowledge: A survey358

on hallucination prevention. arXiv preprint arXiv:2309.16459, 2023.359

[7] Isabelle Augenstein, Timothy Baldwin, Meeyoung Cha, Tanmoy Chakraborty, Giovanni Luca360

Ciampaglia, David Corney, Renee DiResta, Emilio Ferrara, Scott Hale, Alon Halevy, et al.361

Factuality challenges in the era of large language models. arXiv preprint arXiv:2310.05189,362

2023.363

[8] Roberto Battiti. Maximum satisfiability problem, pages 2035–2041. Springer US, Boston, MA,364

2009.365

[9] Lukas Berglund, Meg Tong, Max Kaufmann, Mikita Balesni, Asa Cooper Stickland, Tomasz366

Korbak, and Owain Evans. The reversal curse: Llms trained on" a is b" fail to learn" b is a".367

arXiv preprint arXiv:2309.12288, 2023.368

[10] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von369

Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the370

opportunities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.371

[11] Samuele Bortolotti, Emanuele Marconato, Tommaso Carraro, Paolo Morettin, Emile van372

Krieken, Antonio Vergari, Stefano Teso, and Andrea Passerini. A benchmark suite for sys-373

tematically evaluating reasoning shortcuts, 2024.374

[12] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in375

language models without supervision, 2022.376

[13] Mark Chavira and Adnan Darwiche. On probabilistic inference by weighted model counting.377

Artificial Intelligence, 172(6-7):772–799, 2008.378

[14] Arthur Choi and Adnan Darwiche. Dynamic minimization of sentential decision diagrams.379

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 27, pages 187–194,380

2013.381

[15] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple382

effects of knowledge editing in language models, 2023.383

[16] Bhavana Dalvi, Peter Jansen, Oyvind Tafjord, Zhengnan Xie, Hannah Smith, Leighanna Pi-384

patanangkura, and Peter Clark. Explaining answers with entailment trees, 2022.385

[17] Adnan Darwiche. A differential approach to inference in bayesian networks. Journal of the386

ACM (JACM), 50(3):280–305, 2003.387

[18] Adnan Darwiche. Sdd: A new canonical representation of propositional knowledge bases. In388

Twenty-Second International Joint Conference on Artificial Intelligence, 2011.389

9
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Figure 1: Our Logically Consistent (LoCo) LLMs can be fine-tuned in a unified way to be
more factual and consistent to several different forms of logical constraints such as direct (left),
reverse (middle) implications, negation and combinations thereof (Section 3) when compared to a
pre-trained LLaMa 2 70B or fine-tuned baseline such as LLaMa 2 7B.viva la semantic loss antifascista

A Detailed setting and results553

A.1 RQ1554

A.1.1 Data preprocessing555

We train LOCO-LMS on the BeliefBank [34], calibration split. This dataset is derived from Con-556

ceptNet [61], a large curated knowledge graph encoding factual knowledge and logical relations557

between entities at different levels of abstraction; we use the splits introduced by Mitchell et al. [47]558

for direct comparison. It consists of three pieces: a “calibration" set of 1, 072 annotated facts about559

7 entities of the form (subject, property, true/false) used for training, a “silver" set of 12, 636 facts560

about 85 entities used for evaluation, and a set of 2224 valid abstract logical implications. To use our561

SL, we require defining a set of ground constraints. We derive these as follows. For each general562

implication constraint, we lookup the subjects of all facts in the training set: if the antecedent or563

the consequent fact of the general constraint is known for that subject, we add the subject ground564

constraint to the dataset DC .565

We generate two splits: T1 facts, appearing either as antecedents or consequents in the constraints;566

T2 facts, appearing exclusively as consequents. The goal is to correctly guess the consequents by567

seeing only the antecedents and the constraints. In the calibration set, we count 796 antecedents568

and 276 consequents, spawning 14, 005 grounded constraints. In the silver set, we count 9, 504569

antecedents and 3, 132 consequents, spawning 169, 913 grounded constraints. We subsequently test570

the effects of pure supervised fine-tuning: a portion of random facts from the calibration set (T1+T2)571

is taken with the goal to predict the excluded antecedent or consequent facts. We train on T1 facts572

and evaluate on T2 facts for RQ2 as well: T1 facts (antecedents) constitute a valid subset for all the573

considered logical rules.574
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Table 3: LOCO-LMS achieve better logical self-consistency and factuality as measured via
Equation (4) and F1 scores when compared to cross-entropy fine-tuning (XENT) and baselines us-
ing external reasoners such as ConCoRD [47] measured on train (calibration set) facts. For RQ1
(Section 5), LOCO-LMS fine-tuned on T1 facts only outperform training-free baseline for all met-
rics. For RQ2, they boost performance in the presence of a small fraction of T1+T2 facts (5-10%).
For larger dataset sizes, LOCO-LMS are competitive for consistency and factuality on consequents.

Method Train size Antecedents F1 Consequents F1 Total F1 Logical consistency

RQ1

ConCoRD 0.91 0.91
MACAW 0.47 0.84 0.78 0.82
MACAW+XENT T1 0.46 0.08 0.14 0.79
LOCO-LM T1 0.98 0.99 0.99 1.00

RQ2

MACAW+XENT T1+T2 (5%) 0.31 0.73 0.69 0.90
LOCO-LM T1+T2 (5%) 0.34 0.77 0.72 0.92

MACAW+XENT T1+T2 (10%) 0.48 0.88 0.85 0.87
LOCO-LM T1+T2 (10%) 0.52 0.95 0.89 0.91

MACAW+XENT T1+T2 (75%) 0.69 1.00 0.97 0.97
LOCO-LM T1+T2 (75%) 0.65 1.00 0.97 0.99

A.2 RQ2575

Table 4: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Scores are averaged
across two sets of prompts and truth labels. We observe fine-tuning with our method allows for
higher logical consistency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.41 0.57 0.21 0.42 0.28 0.24 0.36
LLAMA-2-7B FEW SHOT 52.30 0.52 0.70 0.45 0.38 0.48 0.46 0.50
LLAMA-2-7B COT 52.30 0.52 0.64 0.67 0.40 0.64 0.67 0.59
LLAMA-2-70B ZERO SHOT 44.90 0.49 0.72 0.80 0.12 0.32 0.91 0.56

LLAMA-2-7B + XENT T1+T2 116.85 0.21 0.39 0.01 0.10 0.44 0.01 0.20
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.28 0.52 0.43 0.82 0.55 0.36 0.49
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.08 0.00 1.00 0.08 0.53
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.86 0.89 0.76 0.88 0.80 0.77 0.83

Table 5: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format 1
[true, false] is used. We observe fine-tuning with our method allows for higher logical consis-
tency to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.43 0.63 0.33 0.38 0.29 0.39 0.41
LLAMA-2-7B FEW SHOT 52.30 0.53 0.74 0.36 0.28 0.42 0.37 0.45
LLAMA-2-7B COT 52.30 0.67 0.76 0.77 0.32 0.74 0.77 0.66
LLAMA-2-70B ZERO SHOT 44.90 0.52 0,76 0.79 0.18 0.35 0.90 0.58

LLAMA-2-7B + XENT T1+T2 116.85 0.37 0.47 0.02 0.16 0.89 0.02 0.32
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.46 0.70 0.85 0.93 0.28 0.72 0.66
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.08 0.00 1.00 0.08 0.53
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.88 0.91 0.72 0.94 0.86 0.73 0.84

15



Table 6: LOCO-LMS evaluated on BeliefBank, training (calibration) split. Prompt format 2
[yes, no] is used. We observe fine-tuning with our method allows for higher logical consistency
to different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.39 0.51 0.08 0.46 0.27 0.09 0.30
LLAMA-2-7B FEW SHOT 52.30 0.52 0.66 0.55 0.48 0.55 0.55 0.55
LLAMA-2-7B COT 52.30 0.38 0.52 0.57 0.48 0.54 0.57 0.51
LLAMA-2-70B ZERO SHOT 44.90 0.46 0.68 0.81 0.05 0.28 0.93 0.54

LLAMA-2-7B + XENT T1+T2 116.85 0.05 0.32 0.00 0.04 0.00 0.00 0.07
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.09 0.33 0.00 0.70 0.82 0.00 0.32
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 1.00 1.00 0.08 0.00 1.00 0.08 0.53
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.84 0.87 0.79 0.82 0.74 0.80 0.81

Table 7: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 1 [true,
false] is used. We observe fine-tuning with our method allows for higher logical consistency to
different rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.41 0.55 0.22 0.41 0.30 0.25 0.36
LLAMA-2-7B FEW SHOT 52.30 0.53 0.75 0.37 0.27 0.41 0.37 0.45
LLAMA-2-7B COT 52.30 0.67 0.76 0.77 0.32 0.74 0.77 0.67
LLAMA-2-70B ZERO SHOT 44.90 0.50 0.72 0.80 0.20 0.34 0.89 0.58

LLAMA-2-7B + XENT T1+T2 116.85 0.40 0.52 0.02 0.11 0.82 0.02 0.31
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.44 0.64 0.86 0.92 0.28 0.72 0.64
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.98 0.98 0.07 0.00 0.98 0.07 0.51
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.75 0.78 0.72 0.91 0.74 0.72 0.77

Table 8: LOCO-LMS evaluated on BeliefBank, test (silver) split. Prompt format 2 [yes, no]
is used. We observe fine-tuning with our method allows for higher logical consistency to different
rules.

CONSISTENCY SELF-CONSISTENCY

MODEL TRAIN SUBSET PPL FAC IMP REV NEG IMP REV AVG

LLAMA-2-7B ZERO SHOT 62.41 0.37 0.48 0.04 0.43 0.29 0.04 0.28
LLAMA-2-7B FEW SHOT 52.30 0.53 0.67 0.57 0.49 0.58 0.53 0.56
LLAMA-2-7B COT 52.30 0.38 0.52 0.57 0.48 0.54 0.57 0.51
LLAMA-2-70B ZERO SHOT 44.90 0.44 0.65 0.82 0.05 0.29 0.93 0.53

LLAMA-2-7B + XENT T1+T2 116.85 0.11 0.39 0.00 0.03 0.80 0.00 0.22
LOCO-LLAMA-2-7B (NEG) T1 62.21 0.44 0.65 0.00 1.00 0.28 0.00 0.40
LOCO-LLAMA-2-7B (F-IMP) T1 67.15 0.99 0.99 0.07 0.00 0.99 0.07 0.52
LOCO-LLAMA-2-7B (SUPER) T1 62.23 0.73 0.75 0.81 0.83 0.67 0.82 0.77

A.3 RQ3576
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Table 9: LOCO-LMS can achieve higher consistency across depth than the baseline. Scores
are computed with Format 1 [true, false], reported in Appendix E.2. LOCO-LM fine-tuned
with on the implication rule achieves best consistency.

DEPTH

MODEL 1 2 3 4 5

LLAMA-2-7B 0.73 0.77 0.79 0.80 0.80

LOCO-LLAMA-2-7B (NEG) 0.03 0.03 0.03 0.04 0.05
LOCO-LLAMA-2-7B (F-IMP) 0.97 0.96 0.97 0.97 0.97
LOCO-LLAMA-2-7B (SUPER) 0.75 0.74 0.73 0.73 0.74

Table 10: LOCO-LMS can achieve higher consistency across depth than the baseline. Scores
are computed with Format 2 [yes, no], reported in Appendix E.2. LOCO-LM fine-tuned with
on the implication rule and the negation rule achieve best consistency. High sensitivity to prompts
should be considered.

DEPTH

MODEL 1 2 3 4 5

LLAMA-2-7B 1.00 0.75 0.38 0.42 0.46

LOCO-LLAMA-2-7B (NEG) 0.99 0.99 0.99 0.99 0.99
LOCO-LLAMA-2-7B (F-IMP) 0.99 0.99 0.99 0.99 0.99
LOCO-LLAMA-2-7B (SUPER) 0.62 0.62 0.63 0.63 0.64

Table 11: Distribution of answer labels from LOCO-LMS for different prompt formats on the
EntailmentBank test split.

LABELS: [yes, no] LABELS: [true, false]

MODEL YES NO INVALID TRUE FALSE INVALID

LLAMA-2-7B 1188 6 1441 615 1742 278

LOCO-LLAMA-2-7B (NEG) 2538 0 97 940 0 1695
LOCO-LLAMA-2-7B (F-IMP) 2557 0 78 2441 194 0
LOCO-LLAMA-2-7B (SUPER) 2079 486 70 874 1756 5

B EntailmentBank577

C Measuring the consistency of LOCO-LMS on unseen KB.578

Data. We evaluate LOCO-LMS on the EntailmentBank [16] test split, as proposed by Kassner et579

al. [33] to reason on graphs of logical entailments. It consists of 302 implication trees spawning580

805 constraints, with an average of 6.57 statement nodes and 2.66 constraints per tree; we consider581

each node of each tree as a statement with natural language with truth label set to 1. We limit582

the tree depth to 5. An illustrated example is provided in Appendix 2. As in 5.2, we test two583

prompt and label formats. We assume that a possible semantic overlap between the training and584

test distributions, BeliefBank and EntailmentBank respectively, could underlie higher consistency585

scores across entailment trees; we estimate such overlap in Appendix D.2.586

Competitors and Metrics. We test our LOCO-LMS based on LLaMa-2 7b and previously trained587

in 5.2 on BeliefBank, without applying any changes. As baseline model, we consider LLaMa-2 7b588

without quantization. This experimental setup is inspired by Kassner et al. [33], from whom we589

derive the notion of self-consistency on trees of entailments: each entailment tree t ∈ T is a direct590

acyclic graph with a single root encoding the hypothesis to be proved; a subtree t′ consists in each591

parents-child relationship in t, representing an entailment between the parent nodes (antecedents in592

logical conjunction) and the child (consequent). See Figure 2 for an example. For each tree t, we593

count the amount of violated subtrees t′, that is when a true conjunction of antecedents does not594
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melting is a kind of 
phase change

the ice melts

the ice undergoes a phase 
change

phase changes do not change 
mass

the mass of the ice will not 
change

Figure 2: An illustration of an entailment tree, namely a “prof", from EntailmentBank [16]. Blue
nodes are premises in logical conjunction, orange nodes are implications and the green node denote
the hypothesis to prove.

DEPTH

MODEL 1 2 3 4 5

LLAMA-2-7B 0.87 0.76 0.59 0.61 0.63

LOCO-LLAMA-2-7B (NEG) 0.51 0.51 0.51 0.52 0.52
LOCO-LLAMA-2-7B (F-IMP) 0.98 0.98 0.98 0.98 0.98
LOCO-LLAMA-2-7B (SUPER) 0.69 0.68 0.68 0.68 0.69

Table 12: LOCO-LMS can be consistent
across unseen trees of entailments from En-
tailmentBank when trained for implication con-
sistency (F-IMP) on BeliefBank. Finetuning for
negation alone (NEG) does not seem to improve
over the baseline.

imply a true consequent. Finally, we measure logical consistency as the fraction of the total violated595

subtrees over the total number of subtrees in T .596

Results. In Table C we report logical consistency across depths. Scores are averaged across two sets597

of prompts and labels, detailed results are reported in Appendix A.2. We observe the consistency de-598

creases across depths for the baseline model, until it flattens out, as more implications are evaluated.599

Conversely, LOCO-LM (F-IMP) and LOCO-LM (Super) achieve higher consistency across depths.600

While promising, these results should be interpreted with caution, for two reasons. Firstly, we ob-601

served variability in model predictions with varying prompt formats and labels (Appendix A.3),602

suggesting further engineering for more consistent answers. Second, while be measure a discrete603

semantic similarity between the two datasets (Appendix D.2) which can justify transfer, we note604

that our measure are cosine similarities and their effectiveness might depend on the pre-training task605

[62]. This encourages further research on employing neuro-symbolic methods to improve multi-hop606

consistency in LMs w.r.t. external KB [33] or the model’s own implications [4].607

D Semantic overlap608

We base our measurement for semantic overlap on cosine similarity, widely adopted in literature.609

We report our results with a note for caution: it is unclear whether embeddings could be similar for610

the semantic features we are seeking [62], suggesting further research on the topic.611

D.1 BeliefBank612

We measure the semantic overlap between the training and test distribution by constructing a613

Representation Dissimilarity Matrix (RDM) of Macaw’s embeddings (token average) between614

training and test entities. The main assumption is that semantically similar subjects may have615

similar properties, as a proxy for domain knowledge transfer.616

617
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Figure 3: Pairwise cosine similarities between entities in the training distribution (calibration, rows)
and the test distribution (silver, columns).

Table 13: Fraction k of facts in BeliefBank with cosine similarity above t with any fact in Entail-
mentBank, for t = {0.80, 0.85, 0.90}.

t k

0.80 0.41
0.85 0.22
0.90 0.02

D.2 BeliefBank-EntailmentBank618

We consider the training split, namely “calibration” in ConCoRD [47], from BeliefBank [34], and619

the test split from EntailmentBank [16] to estimate the knowledge that LOCO-LMS could transfer620

to entailment trees. We process BeliefBank as a set of 1, 072 facts, while EntailmentBank as a set of621

2, 635 facts. Both sets contain statements in natural language that are converted into vector embed-622

dings through encoding with LLaMa-2-7b [66]; the last layer logits are considered and a sentence623

representation is obtained by averaging across tokens. We consequently compute the pairwise co-624

sine similarities between fact embeddings from both sets. For each fact in BeliefBank, we take the625

maximum similarity with any fact from EntailmentBank, which should represent the existance of a626

unit of a similar knowledge between the two datasets. Given the volume of pairwise comparisons,627

we aggregate the results.628

E Prompts629

E.1 Prompts for Macaw-Large630

We query the language model for a belief label about a statement in natural language. We adopt the631

format:632

Prompt

$answer$ ; $mcoptions$ = (A) <pos_label> (B) <neg_label> ; $question$ = Is <subject> a
<property>?

633

We fix <pos_label> = "Yes." and <neg_label> = "No.". We converted the (<subject>,634

<property>) tuple in natural language with a formatting function provided by Mitchell et al. [47].635

Expected answers

$answer$ = <pos_label> ; $answer$ = <neg_label> ;
636

E.2 Prompts for LOCO-LMS637

We adopt two label sets to make the model less prompt sensitive:638

639

Format 1: [true, false]640

19



Prompt

You can answer only with "true" or "false". Is the fact true? Fact: <statement>
641

Expected answers

Answer: true
Answer: false

642

Format 2: [yes, no]643

Prompt

You can answer only with "yes" or "no". Is the fact true? Fact: <statement>
644

Expected answers

Answer: yes
Answer: no

645

20


	Introduction
	Logical consistency through the lenses of probabilistic reasoning
	Logically-consistent LLMs via NeSy integration
	Related Work
	Experiments
	RQ1: How do LoCo-LMs perform compared to external solvers?
	RQ2: How do LoCo-LMs deal with different logical constraints?
	RQ3: Can finetuning LoCo-LMs help consistency on unseen KB?

	Discussion and Further Work
	Detailed setting and results
	RQ1
	Data preprocessing

	RQ2
	RQ3

	EntailmentBank
	Measuring the consistency of LoCo-LMs on unseen KB.
	Semantic overlap
	BeliefBank
	BeliefBank-EntailmentBank

	Prompts
	Prompts for Macaw-Large
	Prompts for LoCo-LMs


