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Abstract

Message-passing graph neural networks have become the dominant framework for learning
over graphs. However, empirical studies continually show that message-passing graph neural
networks tend to generate over-smoothed representations for nodes after iteratively applying
message passing. This over-smoothing problem is a core issue that limits the representa-
tional capacity of message-passing graph neural networks. We argue that the fundamental
problem with over-smoothing is a lack of diversity in the generated embeddings, and the
problem could be reduced by enhancing the embedding diversity in the embedding gener-
ation process. To this end, we propose genetic-evolutionary graph neural networks, a new
paradigm for graph representation learning inspired by genetic algorithms. We view each
layer of a graph neural network as an evolutionary process and develop operations based
on crossover and mutation to prevent embeddings from becoming similar to one another,
thus enabling the model to generate improved graph representations. The proposed frame-
work has good interpretablility, as it directly draws inspiration from genetic algorithms for
preserving population diversity. We experimentally validate the proposed framework on
six benchmark datasets on different tasks. The results show that our method significant
advances the performance current graph neural networks, resulting in new state-of-the-art
results for graph representation learning on these datasets.

1 Introduction

Graphs are a general data structure for representing and analyzing complex relationships among entities.
Many real-word systems, such as social networks, molecular structures, communication networks, can be
modeled using graphs. It is essential to develop intelligent models for uncovering the underlying patterns
and interactions within these graph-structured systems. Recent years have seen an enormous body of studies
on learning over graphs. The studies include graph foundation models, geometry processing and deep graph
embedding. These advances have produced new state-of-the-art or human-level results in various domains,
including recommender systems, chemical synthesis, and 2D and 3D vision tasks (Zhang et al., |2024; [Xie
et al.l |2024; |Chen et al., |2024; |[Kim et al.| 2023]).

Graph neural networks have emerged as a dominant framework for learning from graph-structured data. The
development of graph neural network models can motivated from different approaches. The fundamental
graph neural network was been derived as a generalization of convolutions to non-Euclidean data (Bruna
et al.l 2014), as well as by analogy to classic graph isomorphism tests (Hamilton et al., |2017). Regardless
of the motivations, the defining feature of the graph neural network framework is that it utilizes a form
of message passing wherein messages are exchanged between nodes and updated using neural networks
(Hamilton, 2020)). During each graph neural network layer, the model aggregates features from a node’s
local neighbourhood and then updates the node’s representation according to the aggregated information.

Message passing is at the heart of current graph neural networks. However, this paradigm of message passing
also has major limitations. Theoretically, it is connected to the Weisfeiler-Lehman (WL) isomorphism test
as well as to simple graph convolutions. The representational capacity of message-passing graph neural
networks is inherently bounded by the WL isomorphism test. Empirical studies continually find that massage-
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passing graph neural networks suffer from the problem of over-smoothing. That is, the representations for
all nodes can become very similar to one another after too many message passing iterations. These core
limitations prevent graph neural networks from more meaningful representations from graphs. In recent years,
increasing studies have been devoted to addressing the bottlenecks, such as normalization and regularization
techniques (Zhao & Akoglu, 2020b)), and combining the global self-attention mechanism (Rampasek et al.
2022)), exploring generalized message passing (Barcelo et al., 2020). Regardless of these advances, improving
the capability of graph neural network models still remains a fundamental challenge in learning from graph-
structured data.

To learn meaningful graph representations, it is crucial to generate embeddings for all nodes that depend on
both the graph structure and node attributes. However, when the over-smoothing phenomenon occurs, the
representations for all nodes begin to look identical to each other. The consequence is that the information
from node-specific features becomes lost. To prevent this issue, it is important to perserve the diversity of
generated embeddings throughout their layerwisely generation process. In this paper, we propose genetic-
evolutionary graph neural networks, a new paradigm for graph representation learning that integrates the idea
from genetic algorithms for maintaining population diversity into the message-passing graph neural network
framework.

Genetic algorithms, inspired by the Charles Darwin’s theory of natural evolution, emulate the process of
natural selection, wherein the fittest individuals are selected to reproduce and generate the next generation
of offspring. Genetic algorithms employ a set of evolution-inspired operations, including mutation, crossover,
and selection (Mitchell, |[1998]). Over multiple generations, biological organisms evolve based on the principle
of natural selection, or “survival of the fittest", enabling them to accomplish target tasks. Genetic algorithms
have been successfully applied in solving complex optimization and search problems. In machine learning,
genetic algorithms have also been used for feature selection (Babatunde et al.l |2014) and hyperparameter
tuning for models like neural networks and support vector machines (Alibrahim & Ludwig, |2021]).

In genetic algorithms, the crossover and mutation operations play a key role in generating diverse individuals
for selection, preventing the algorithms from premature convergence (Gupta & Ghafir, |2012)). Crossover
introduces variety by combining genetic information from different parents, and mutation introduces small
random changes in genetic information. In this work, we view the iterative node embedding process as an
evolutionary process, in which each layer of message passing produces a new generation of embeddings. We
introduce two crossover operations, i.e., cross-generation crossover and sibling crossover, and a mutation
operation, and we develop two graph neural network building blocks based on the operations. At each layer
of a graph neural network, we first use message passing to update node representations and then apply
crossover and mutation to prevent embeddings from becoming similar to one another, thus enabling the
model to learn improved graph representations.

The proposed framework for graph representation learning mimics the genetic evolutionary process. This
makes it interpretable and easy for understanding. It is a general paradigm that can be integrated into
different graph neural network models. We conduct experiments on six benchmark datasets on different graph
tasks. We show that the use of our framework significantly improves the performance of the baseline graph
neural networks, advancing the state-of-the-art results for graph representation learning on the datasets.

The main contributions of this paper can be summarized as follows. (1) This paper proposes a new framework
named genetic-evolutionary graph neural networks for learning from graph-structured data. The core idea
behind the proposed framework is to model each layer of a graph neural network as an evolutionary process.
We develop three key operations inspired by crossover and mutation from genetic algorithms to enhance the
diversity of generated embeddings at each layer. (2) The proposed framework offers good interpretability,
as it is directly inspired by biogenetics. It is a general paradigm which can be integrated into current
message-passing graph neural networks. Empirical evaluations are conducted on six popular datasets on
different graph tasks, and the results demonstrate that the proposed framework significantly improves the
performance of the baseline graph neural networks.
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2 Related Work

2.1 Graph Neural Networks

Most current graph neural networks can be categorized into spectral approaches and spatial approaches
(Velickovi¢ et al., 2018)). The spectral approaches are developed based on spectral graph theory. The key
idea of spectral graph neural networks is that convolutions are defined in the spectral domain through an
extension of the Fourier transform to graphs. In contrast, spatial graph neural networks define convolutions
in spatially localized neighbourhoods. The behaviour of the convolutions is analogous to that of kernels in
convolutional neural networks which aggregate features from spatially-defined patches in an image.

Both spectral and spatial graph neural networks are essentially message-passing neural networks that employ
a paradigm of message passing wherein embeddings are exchanged between nodes and updated using neural
networks (Gilmer et al., 2017). A common issue with message-passing graph neural networks is known
as the over-smoothing problem. This issue of over-smoothing was first identified by [Li et al.| (2018]). It
can also be viewed as a consequence of the neighbourhood aggregation operation in the message-passing
update (Hamilton) |2020)). The follow-up studies for limiting over-smoothing include graph normalization
and regularization techniques (Zhao & Akoglu, |2020a; |Chen et al.| 2022)), combing the global self-attention
with local message passing (Rampasek et all 2022), and improved graph attention approaches (Wu et al.,
2024). Additionally, there have been studies on uncovering over-smoothing in basic graph neural network
models from theoretical analysis (Oono & Suzuki, [2020)).

2.2 Genetic Algorithms

Genetic algorithm methods are inspired by the mechanisms of evolution and natural genetics (Srinivas &
Patnaik] 1994)). Genetic algorithms were first introduced by [Holland| (1992) as a heuristic method based on
the principle of nature selection. Over the past years, genetic algorithms have emerged as a powerful tool for
solving complex optimization and search problems across numerous fields such as scheduling, mathematics
and networks (Alhijawi & Awajan 2023)).

In machine learning, genetic algorithms have been applied for optimizing neural networks (Miller et al., [1989)
and designing neural network architectures (Jones, 1993)). Researchers have also used genetic algorithms for
optimizing hyperparameters in neural networks and support vector machines (Alibrahim & Ludwig, 2021;
Shanthi & Chethan| |2022). In object detection, hyperparameter evolution which uses a genetic algorithm
was applied for optimizing hyperparameters in YOLO models (Redmonl |2016]). [Sehgal et al. (2019) showed
that evolving the weights of a deep neural network using a genetic algorithm was a competitive approach
for training reinforcement learning models. [Shi et al| (2022) introduced to use evolutionary searching to
to optimize both graph neural network architecture and hyperparameters. [Liu et al| (2023) also used the
evolutionary strategy for optimize the graph neural network model.

3 Methodology

3.1 Graph Neural Networks

A graph G = (V,€) can be defined through a set of nodes V and a set of edges £ between pairs of these
nodes. Each node v € V is associated with a node-level feature x,,. Graph neural networks are a general
framework for reorientation learning over the graph G and {x,,Vu € V}. At its core, the graph neural
network framework iteratively updates the representation for every node using a form of message passing.
During each message-passing iteration, each node u € V aggregates the representations of the nodes in its
neighborhood, and the representation for node w is then updated according to the aggregated representation.
Following Hamilton| (2020)), this message-passing framework can be expressed as follows:

h() = Update®™ (=), Aggregate®™ ({h* =D, vo € N(w)})) , (1)

where Update and Aggregate are neural networks, and N (u) is the set nodes in u’s neighbourhood. The
superscripts are used for distinguishing the embeddings and functions at different iterations. At each iteration
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Figure 1: Crossover recombines of the genetic information of parents to produce an offspring. Mutation
introduces small random changes in genetic information.

k, the Aggregate function takes the set of embeddings of nodes in /() as input and generates an aggregated
message mﬁ\lﬁzu). The Update function then generates the updated embedding for node u based on the message

mj(\];zu) and u’s previous embedding hgkil). The embeddings at k = 0 are initialized to the node-level features,

ie., hgo) = Xy, Vu € V. After K iterations of message passing, every node embedding contains information
from its K-hop neighborhood.

This message passing formalism is currently the dominant framework for learning over graphs. However, a
common issue with message-passing graph neural networks is over-smoothing. The idea of over-smoothing is
that the embeddings for all nodes begin to become similar and are relatively uninformative after too many
rounds of message passing. This issue of over-smoothing can be viewed as a consequence of the neighborhood
aggregation operation. |Li et al.|(2018) showed that the graph convolution of the basic graph convolutional
network model (Kipf & Welling} 2016|) can be seen as a special form of Laplacian smoothing that generates
the representation for every node using the weighted average of a node’s itself and its neighbours’ embeddings.
But after applying too many rounds of Laplacian smoothing, the representations for all nodes will become
indistinguishable from each other. From the graph signal processing perspective, multiplying a signal by
high powers of the symmetric normalized adjacency matrix Agym = D~2AD3?, which corresponds to a
convolutional filter the lowest eigenvalues, or frequencies, of the symmetric normalized Laplacian Lgym =
1—Asym. Thus, the simple graph neural network that stacks multiple rounds of graph convolution converges
all the node representations to constant values within connected components on the graph, i.e., the “zero-
frequency" of the Laplacian (Hamilton) 2020)).

3.2 Genetic-Revolutionary Graph Neural Networks
3.2.1 Motivation

In the above, we discussed the over-smoothing problem in message-passing graph neural network. We see
that the fundamental issue is the loss of diversity of embeddings at each layer throughout the generation
process. Thus, we can view the trade-off between model performance and depth of popular graph neural
network models from this perspective. Graph neural networks need to model complex relationships and long-
term dependencies using more layers to improve the performance. However, using using too many layers will
eliminate node-specific features, which leads to significantly reduced model performance.

Graph neural networks generate embeddings for nodes through an iterative message-passing process. At
each message-passing iteration, the representation for every node is updated according to the information
information aggregated from the node’s graph neighbourhood. We can view this iterative process as an
genetic evolutionary process, wherein graph nodes are individuals of a population, and the model is to
evolve a population of nodes over multiple generations to obtain their expressive representations for graph
tasks.

In genetic algorithms, a very homogeneous population, i.e., little population diversity, is considered as the
major reason for premature converging to suboptimal solutions (Whitley, [2001). Therefore, it is crucial
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to preserve the diversity of population during the evolutionary process. Similarly, we need to maintain
the diversity of generated embedding in their generation to prevent the model from converging to a local
optimum in optimization.

To preserve the population diversity, genetic algorithms use the operators of crossover and mutation to
generate diverse individuals and select those best fit the environment to evolve over successive generations.
The crossover operation recombines of the characteristics of each ancestor of an offspring, and the mutation
operation randomly changes the genetic information to increase the variability (see Figure . In a similar
manner, we can generalize the mechanisms to the embedding generation process. By integrating crossover
and mutation methods within the message-passing framework, we can prevent generated embeddings from
becoming too similar to each other. This ultimately would enhance the model representational capacity.

3.2.2 Improving Graph Neural Networks with Genetic Operations

We view each layer of a graph neural network as a genetic evolution process, in which the nodes represent
individuals of a population and their embeddings represent chromosomes that store genetic information.
During each graph neural network layer, we first use message passing to update the embeddings for all
nodes and then use genetic operations to increase the diversity of generated embeddings. We propose
three operations inspired by genetic algorhtms: (1) cross-generation crossover, (2) sibling crossover, and (3)
mutation.

Genetically, crossover is a process in which the genetic information of two parents is recombined to produce
new offspring, resulting in the exchange of genetic material between parental chromosomes. This mechanism
forms the basis for driving biological variation, shaping differences in traits within species and introducing
novel traits previously unseen in a population. It basically helps promote the evolutionary process by
enabling novel gene combinations to emerge and spread across generations. Fundamentally, this process
creates diversity at the level of genes that reflects difference in chromosomes of different individuals.

Cross-generation crossover. Similar to crossover in genetics, the cross-generation operation in our frame-
work recombines the embedding for a node generated by message-passing and the node’s previous layer
—(k —(k —(k - - -

embedding. For hi ) — (hi,i, ceny hi,;) and hq(tk D - (hgjl 1), ey hikd 1)) which represent the embedding for

node u generated by message passing and u’s previous layer embedding, cross-generation crossover can be
expressed as follows:

h(®) = Crossover(ﬁik), h{s—=1)

k) .
where h{*) = hf“) A <p ®
e ) else '

U,

and A; ~ U(0,1) and p is a probability indicating information from the previous layer embedding. At each
dimension, the feature is randomly selected from the embedding generated using message passing or from
the embeding inputted to this layer. Because each round of message passing generates a smoothed version of
the input, recombining information from a node’s previous layer embedding reduces the smoothness of the
generated embeddings. This operation is a parameter-free method and can be integrated into current graph
nerual networks.

Sibling crossover is an operation that randomly selects information from siblings. In our impelmentation,
we generate multi-head outputs using message passing as siblings and update the embedding for a node by
randomly selecting information from the multi-head outputs.

h®) = Crossover

(Hik,headl), M,Hik,headz))

where hfff = Hffz’-h”),
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Algorithm 1 Pseudocode for cross-generation crossover in a PyTorch-like style.

# h, h_in: representaton generated by message passing and the previous layer embedding
# f_prob: probabilty of recombining information from parent
# self.dist: a Bernoulli distribution defined by torch.distributions.Bernoulli(torch.tensor(self.f_prob)):

def forward(self, h, h_in):

if self.training == True:
crossover_mask = self.dist.sample(h.shape) # generate crossover mask

# crossover from h and h_in

h = h_in * crossover_mask + h * (1 - crossover_mask)
else:

h = h_in * self.f_prob + h * (1 - self.f_prob)

return h

Algorithm 2 Pseudocode for mutation in a PyTorch-like style.

# self.running mean: the mean of h over the training set
# self.running_var: the variance of h over the training set
# self.mutation_prob: probility of mutation

def forward(self, h):
if self.training == True:
mean = h.mean([0])
var = h.var([0])
n = h.numel() / h.size(1)

with torch.no_grad():
# momentum update of running mean and running_ var
self.running_mean = self.momentum * mean + (1 - self.momentum) * self.running mean
self .running var = self.momentum * var * n / (n - 1) + (1 - self.momentum) * self.running var

# generate mutatioin noise
gaussian_noise = torch.randn(h.shape)

if self.training == True:

mutation_mask = dist.sample(h.shape) # generate mutation mask

h = (gaussian_noise * self.running_var + self.running mean) * mutation_mask + h * (1 - mutation_mask)
else:

h = self.running _mean * self.mutation_prob + h * (1 - self.mutation_prob)

return h

hij ~ C’ategorical(%, - %), and z is the number of heads. Each Hik’headh) in the multi-head outputs

represents a sibling generated using the same input. This operation also increases individual diversity by
randomly combining information from different siblings.

Mutation is the process in which some genes of individuals are randomly changed. In our framework, the
feature at each dimension is randomly replaced by a value sampled from a Gaussian distribution, wherein
the statistics are calculated using batches. For a batch of m vectors B = {hl,h2 ... h™} we calculate the
mean g and variance & of the feature over the training set as follows.

p < Ep(ug)

M R a(52
(5 — m— 1EB(6B)

(4)

where ;15 and 8% are the mean and variance of the batch B. Here we use the unbiased variance estimate.
Then we randomly sample a vector v from a multivariate Gaussian distribution N(0,I) and update the
feature as follows:

h! = (v8 + p)mask + h’ (1 — mask) (5)

where the mask ~ Bernoulli(mutation_rate). The mutation operation is also a parameter-free method. It
basically introduces randomness to features as a regularization method, enabling the model to explore new
space for optimization.



Under review as submission to TMLR

(h{1y {(h1y

Multi-head Message-passing
Message-passing

Layer
Sibling Crossover
rossover
Mutation Mutation

| |
v l

(a) (b)

Figure 2: Building block architectures: Block (a) applies cross-generation to a node’s embedding generated
using message passing and the node’s previous layer embedding, and Block (b) applies sibling crossover to a
set of outputs generated using multi-head message passing.

3.3 Model Architecture

Algorithm[T]and Algorithm[2]show our Pytorch-style pseudo-code for the cross-generation crossover operation
and mutation operation respectively. The code for sibling crossover can be easily adapted from Algorithm
We design two building blocks based on the cross-generation crossover operaton and sibling crossover
operation (see Figure. The first building block applies the cross-generation crossover after message passing,
followed by the mutation operation. Note that this building block is compatible with different graph neural
network models and it does not introduce additional trainable parameters. The other building block applies
sibling crossover to a set of multi-head outputs, followed by the mutation operation. This method requires
the model to generate multiple siblings using a multi-head message passing.

The embedding generation process takes the graph G = (V,€) and features for all nodes x,,,Vu € V, as
input. This is followed by K building blocks that generate hidden embeddings. Finally, a readout function
is applied to the output of the last block to generate the graph representation. For node-level tasks, the
embeddings generated by the last block are directly used.

4 Empirical Evaluation

4.1 Datasets and Setup

The experiments are conducted on six benchmark datasets, i.e., MNIST, CIFAR10, PascalVOC-SP, COCO-
SP, Peptides-func and Peptides-struct (Dwivedi et al., 2020; |2022)) on three graph tasks, graph classification,
node classification, and graph regression. We closely follow the setup as [Dwivedi et al.| (2020 2022) for
training and evaluating the models. The details of the datasets and evaluation metrics are provided in the
appendix section.

4.2 Results

CIFAR10 and MNIST. Table[I|reports the results on the two datasets on the superpixel classification task.
We use the GPS (Rampasek et al., 2022)) as the base model. The GPS model is a hybrid of local aggregation
and global aggregation architecture. It uses GatedGCN for local aggregation and uses Transformer for global
aggregation. We apply cross-generation and mutation (i.e., block (a) in Figure [2)) to the base GatedGCN
model. The crossover rate is set to 0.5 and mutation rate is set to 0.1. We see from Table [0 that our
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Table 1: Classification accuracy (%) on MNIST and CIFARI10 on the superpixel graph classification task.

The cross-generation crossover and mutation operations are applied to the base GPS model.

Model

MNIST

CIFAR10

GCN (Kipf & Welling,, 12016

MoNet (Monti et al., [2017)
GraphSAGE (Hamilton et al., [2017)
GIN (Xu et all 2019
GCNII (Chen et al., [2020)

PNA (Corso et al., [2020)

DGN (Beaini et al., 2021

CRaWT (Toenshoff et al, [2021)
GIN-AK+ (Zhao et al.l [2021)

3WLGNN (Maron et al.| [2019)

EGT (Hussain et al., |2022)

GatedGCN + SSFG (Zhang et al., 2022)
EdgeGCN (Zhang et al., [2023)
Exphormer (Shirzad et al.l [2023)

TIGT (Choi et al.|, 2024|)

RandAlign + GatedGCN (IZhang & XuL |2024D

90.705+0.218
90.805+0.032
97.312+0.097
96.485+0.252
90.667+0.143
97.944+0.12

97.944+0.050
95.075+0.961
98.173+0.087
97.985+0.032
98.432+0.059

98.550+£0.039

98.230+0.133
98.512+0.033

55.710+0.381
54.655£0.518
65.767£0.308
55.255+£1.527
56.081+£0.198
70.35£0.63
72.838+0.417
69.013+0.259
72.19£0.13
59.175£1.593
68.702+0.409
71.9384+0.190
76.12740.402
74.75440.194
73.955+0.360
76.39540.186

GPS (Rampasek et al., 2022)
Ours + GPS

98.051+£0.126

98.685+0.029

72.298+0.356
80.636+£0.195

Table 2: Results on PascalVOC-SP and COCO-SP on the node classification task. The cross-generation

crossover and mutation operations are applied to the base GPS model.

Model

PascalVOC-SP
(F1)

COCO-SP
(F1)

GCN Kipf & Welling (2016)

GINE Hu et al.| (2019

GCNII |Chen et al.| (2020

GatedGCN [Bresson & Laurent| (2017)
GatedGCN + RWSE (Rampasek et al., [2022)

0.1268+0.0060
0.1265+£0.0076
0.1698+0.0080
0.2873+0.0219
0.2860+0.0085

0.0841+£0.0010
0.1339+0.0044
0.1404+0.0011
0.2641+0.0045
0.2574+0.0034

Transformer + LapPE [Dwivedi et al.l (]2022[)

SAN + LapPE |[Dwivedi et al.[ (2022
SAN + RWSE ﬁm‘éﬁf
Exphormer |Shirzad et al. (2023))
RandAlign + GPS (Zhang & Xu|7 |2024D

0.2694+£0.0098
0.3230+£0.0039
0.3216+0.0027
0.3975+0.0037
0.4242+0.0011

0.2618+0.0031
0.2592+0.0158
0.2434+0.0156
0.3455+0.0009
0.3567£0.0026

GPS (Rampasek et al., 2022)
Fine-tuned GPS (]T('jnshoff et al.L |2023D

0.3748+0.0109
0.4440+£0.0065

0.3412+0.0044
0.3884+0.0055

Ours + Finetuned GPS 0.4832+0.0031 0.4002+0.0019

method improves the performance of the base model by a large margin, with a relative improvement of
0.648% and 11.53% on MNIST and CIFARIO0 respectively. It simultaneously outperforms both Exphormer
(Shirzad et al. [2023) and RandAlign (Zhang & Xul, [2024), which previously achieved the best performance
on MNIST and CIFAR10 respectively.

PascalVOC-SP and COCO-SP. The two datasets are long-range prediction datasets compared to MNIST
and CIFAR10. The task is to predict if a node corresponds to a region of an image which belongs to a
particular class. We use Finetuned GPS (Tonshoff et all 2023) as the base model. The Finetuned GPS is
also a hybrid of GatedGCN and Transformer architecture. We apply cross-generation and mutation to the
base GatedGCN model. The crossover rate is set to 0.9 and mutation rate is set to 0.05. The results are
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Table 3: Results on Pepti-func and Pepti-struct. The sibling crossover and mutation operations are applied
to the base GCN model.

Peptides-func

Peptides-struct

Model

(AP 1) (MAE )
GCN 0.5930+£0.0023 0.3496+0.0013
GINE 0.5498+0.0079 0.3547+0.0045

GCNII (Chen et al.| 2020])

GatedGCN
Gated + RWSE

0.5543+£0.0078
0.5864+0.0077
0.6069+0.0035

0.3420+£0.0013
0.3357£0.0006

Transformer+LapPE 0.6326+0.0126 0.252940.0016
SAN+LapPE 0.638440.0121 0.2683+0.0043
SAN+RWSE 0.6439+0.0075 0.2545+0.0012

Exphormer (Shirzad et al., [2023)
GPS (Rampasek et al., 2022)

Finetuned GPS (Tonshoff et al., [2023))

0.6527+0.0043
0.6535+0.0041
0.6534+0.0091

0.2481+£0.0007
0.2500+£0.0005
0.2509+0.0014

0.68604-0.0050

0.2460+£0.0007

Finetuned GCN (To6nshoff et al., [2023])
Ours + Finetuned GCN

0.7021+0.0034 0.2426+0.0014

Table 4: Ablation study: Importance of crossover and mutation on the model performance on CIFAR10 and
Pascal VOC-SP.

Base Model ‘ Crossover Mutation ‘ CIFARI10 PascalVOC-SP
X X 75.680+0.188  0.4440+0.0065
Finetuned GPS v X 79.434+0.228  0.4952+0.0098
(Tonshoff et al., [2023]) X v 77.029+£0.203  0.4554+0.0077
v v 80.636+0.195 0.483240.0031
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Figure 3: Impact of the crossover rate p on the model performance on CIFAR10 and Pascal VOC-SP.

reported in Table 2] Previously, Finetuned GPS achieved the best performance among the baseline models
on the two datasets. As compared to Finetuned GPS, the use of our method results in a relative improvement
of 8.83% and 3.04% respectively without using additional model parameters. Once again, our framework
achieves new state-of-the-art performance on the two datasets.

Peptides-func and Peptides-struct. We use Finetuned GCN (Tonshoff et al., 2023) as the base model
on the two datasets. We use sibling crossover and mutation to the base model. The number of siblings is
set to 2 and mutation rate is set to 0.1. The results are reported in Table Finetuned GCN is a strong
baseline model in previous work. We see from Table [3| that the use of framework further improve the model
performance.
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Table 5: Ablation study: Importance of crossover and mutation on the model performance on CIFAR10 and
PascalVOC-SP.
Base Model ‘ Crossover Mutation ‘ CIFARI10 Pascal VOC-SP

X X 75.6801+0.188  0.4440£0.0065
Finetuned GPS v X 79.4344+0.228  0.4952+0.0098
(Tonshoff et al., [2023)) X v 77.029+0.203  0.4554+0.0077
v v 80.636+0.195  0.483240.0031

Ablation Study. We conduct an ablation study on CIFAR10 and Pascal VOC-SP to analyse the importance
of crossover and mutation on the model performance. Table [5| shows the ablation study results. It can be
seen from Table [5| that the crossover operation plays a major role in improving the model performance. The
mutation operation helps further improve the model performance as a regularization method.

We further analyzed the impact of the crossover rate p on model performance on CIFAR10 and PascalVOC-
SP. Figure [3] shows the experimental results. We see that the best performance is achieved when p is set
to different values on the two datasets. When p is set to 0, it is equivalent to not using crossover. A
recommended strategy for tuning p is starting from 0.9 or 0.95 and then gradually decreasing it to find the
optimal value.

5 Conclusions

This paper presents a new framework called genetic-evolutionary graph neural networks for graph represen-
tation learning. The key idea of our approach is to view each layer of a graph neural network as a genetic
evolutionary process and use biogenetics-inspired operations to prevent the over-smoothing problem in graph
neural networks. We developed three operations, i.e., cross-generation crossover, sibling crossover and muta-
tion, inspired by genetic algorithms and presented two building blocks based on the the operations for graph
representation learning. An important advantage of the proposed framework lies in its interpretability, as it
frames layerwisely graph representation learning as an evolutionary process. The experimental evaluations
were conducted on six popular datasets on different graph tasks. The results showed that the use of our
framework significantly improves the performance of the base graph neural networks, achieving new state-
of-the-art performance for graph representation learning on these datasets. We also presented ablations of
our framework, showing the importance of each operation on the overall model performance.
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A Appendix

Datasets. The experiments were conducted on the following six benchmark datasets.

e MNIST and CIFARI1O0 are two datasets for superpixel graph classification (Dwivedi et al., [2020).
The superpixels are converted from original images in MNIST (LeCun et al.l [1998) and CIFAR10
(Krizhevsky et al., 2009) using the SLIC algorithm (Achanta et al., [2012]).

e PascalVOC-SP and COCO-SP are two datasets of superpiexels (Dwivedi et al., 2022)), which are
converted from images in original PascalVOC and COCO datasets. The task on the two datasets is
to predict if a node corresponds to a region of an image which belongs to a particular class.

o Peptides-func and Peptides-Struct (Dwivedi et al.,|[2022) are two datasets of peptides molecular
graphs. The nodes in the graphs represent heavy (non-hydrogen) atoms of the peptides, and the
edges represent the bonds between these atoms. The graphs are categorized into 10 classes based
on the peptide functions, e.g., antibacterial, antiviral, cell-cell communication. The two datasets
are used for evaluating the model’s performance for multi-label graph classification and multi-label
graph regression.

The statistics of the benchmark datasets used in the experiments are shown in below Table [6]

Evaluation Metrics. Following Dwivedi et al.| (2020) and Rampasek et al.| (2022), the following metrics
are used evaluation on different tasks. The performance on MNIST and CIFAR10 on graph classification
is evaluated using the classification accuracy. The performance on Pascal VOC-SP and COCO-SP on node
classification is evaluated using the macro weighted F1 score. The performance on Peptides-func on multi-
label graph classification is evaluated using average precision (AP) across the categories. The performance
on Peptides-struct on multi-label graph regression is evaluated using mean absolute error (MAE).
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Table 6: Statistics of the six benchmark datasets used in the experiments.

Dataset \ Graphs \ Nodes Avg. nodes/graph #Training #Validation #Test #Categories
MNIST 70K 40-75 55,000 5000 10,000 10
CIFAR10 60K 85-150 45,000 5000 10,000 10
PascalVOC-SP 11,355 5,443,545 479.40 8,489 1,428 1,429 20
COCO-SP 123,286 | 58,793,216 476.88 113,286 5,000 5,000 81
Peptides-func 15,535 2,344,859 150.94 70% 15% 15% 10
Peptides-struct 15,535 2,344,859 150.94 70% 15% 15 -
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