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ABSTRACT

Language agents have shown promising performance in automating web-based
tasks, but the complexity and vast search spaces of real-world websites challenge
reactive agents in identifying optimal solutions. While tree search agents offer
enhanced exploration by interacting with actual websites, they often incur high
costs, potential risks, and are challenging to implement for real-world websites.
This paper explores a novel paradigm leveraging large language models’ (LLMs)
internal world models for planning in complex environments, presenting a middle
ground between reactive agents and tree search agents. Results on two representa-
tive benchmarks, VisualWebArena and Mind2Web-live, demonstrate that our ap-
proach largely closes the gap between reactive agents and tree search agents, while
maintaining efficiency and safety advantages. Notably, tree search can be consid-
ered as approaching an upper bound for our method, as it explores actual websites
rather than simulations. This work opens new avenues for research into more
effective and secure strategies for autonomous agents in complex, dynamic envi-
ronments. It represents a step forward in improving upon reactive agents while
approaching the performance of tree search methods, without incurring their im-
plementation challenges and costs.1

1 INTRODUCTION

Planning, a cornerstone of artificial intelligence since its inception, continues to drive remarkable ad-
vancements in the field. From AlphaGo’s (Silver et al., 2016) groundbreaking performance to recent
investigations into scaling inference-time compute with large language models (LLMs) (Wang et al.,
2024; Feng et al., 2023; Brown et al., 2024), these developments underscore planning’s pivotal role
in propelling AI capabilities to unprecedented heights. Notably, recent research demonstrates that
augmenting LLMs with advanced inference-time algorithms, such as tree search (Yao et al., 2023;
Hao et al., 2023), effectively improves performance on complex reasoning tasks compared to stan-
dard chain-of-thought (CoT) reasoning (Wei et al., 2022). These methods of scaling inference-time
compute through planning algorithms enables LLMs to explore multiple potential solution paths,
yielding more robust and accurate outputs.

However, translating these successes to complex real-world environments presents formidable chal-
lenges. This difficulty has contributed to a notable lag in research progress on planning in real-world
scenarios. Specifically, the underlying dynamics or transitions of complex environments, such as
the Web (Deng et al., 2023; Koh et al., 2024a; Pan et al., 2024b) or physical environments (Li et al.,
2024; Shridhar et al., 2020), are often unknown or incomputable. This complexity prevents the
direct use of search algorithms to find the best plans ahead of time. Consequently, most existing
works adopt the reactive agent paradigm, where an action is directly executed based on the current
observation at each step, without engaging in planning (Zheng et al., 2024; He et al., 2024; Cheng
et al., 2024; Hong et al., 2024; Lai et al., 2024). However, this approach often leads to suboptimal
outcomes due to insufficient exploration of the environment. To address the limitations of reactive
agents, one might seek to conduct online exploration with the environment to implement tee search
algorithms effectively. Yet, conducting online planning through real-time environmental exploration
poses significant challenges in terms of efficiency and raises potential safety concerns (Koh et al.,

1Code and data will be released upon acceptance.
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Figure 1: Schematic illustrating various approaches for web agents formulated as a search problem
over the webpage. Each node represents a webpage. Blue nodes are web pages actually visited.
White nodes outlined with dashed lines are webpages that exist but are not visited. Pink nodes are
not actually visited, but the agent can derive simulated observation with the world model. The Star
node is the target the agent is required to reach. The number of nodes represents the order of being
visited.

2024b; Putta et al., 2024). In addition, tree search may not always be viable in real-world environ-
ments due to the difficulty in backtracing; many actions in these contexts are irreversible, compli-
cating the search process.

In this paper, we strive to find a middle ground between planning using fully online tree search
and purely reactive agents based on CoT reasoning. Specifically, we build upon the hypothesis that
LLMs may inherently encode an internal world model of the environment, as suggested by previous
research (Hao et al., 2023; Kim et al., 2024). While these studies indicate LLMs’ potential for world
modeling, they have primarily focused on simple, constrained environments (e.g., blocksworld). Our
work pioneers the investigation of LLM-based world models in complex, real-world scenarios, par-
ticularly web navigation. We leverage LLMs as simulators to predict state transitions after executing
actions, enabling model-based planning without actual environmental exploration (see Figure 1).
To realize this, we devise a multi-stage framework for our model-based planning, comprising four
stages: action proposal, self-refinement, simulation, and scoring. The latter two stages correspond
to the transition model and reward model commonly used in world modeling. With the transition
model, we simulate task execution within an imagined environment; with the reward model, we eval-
uate and score each simulated playout to guide the planning process. This synergy enables efficient
exploration of potential action sequences without real-world interaction. Our planning algorithm’s
concept resembles model predictive control (MPC; Garcia et al. (1989); Kouvaritakis & Cannon
(2016)), which effectively manages error accumulation in simulations: only the first action of the
top-ranked simulated trajectory is executed, with new simulations generated from the resulting state.
This process iterates until the model decides to terminate.

To validate the effectiveness of our model-based planning paradigm, we test it on open-ended web
environments, where an agent is expected to automate diverse tasks over real-world websites that
entail a tremendous search space (e.g., booking a flight or looking for a specific product). We
demonstrate the effectiveness of our proposed method on two representative benchmarks that sup-
port online interaction: VisualWebArena (Koh et al., 2024a) and Mind2Web-live (Pan et al., 2024b).
Our model-based planning approach significantly outperforms the reactive agent on both datasets.
Although its performance still falls short of tree search with actual interactions, it’s important to
note that the tree search agent can be viewed as an upper bound for our simulation-based method.
Moreover, model-based planning offers superior flexibility compared to tree search, which is often
inefficient and impractical to implement on real-world websites.

In summary, our paper presents a pioneering study on model-based planning utilizing the internal
world models of LLMs in complex environments. As an initial exploration in this domain, we
prioritize establishing the viability and potential of this paradigm over performance optimization.
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Our novel approach effectively narrows the performance gap between reactive agents and tree search
agents in real-world scenarios, demonstrating the promise of LLM-based world models for planning
tasks. Through our experiments, we have not only validated the potential of this approach but also
identified key limitations and challenges, providing valuable insights to guide future research in this
emerging field.

2 RELATED WORK

2.1 WEB AGENTS

Driven by the goal of automating tedious and repetitive web-based tasks, web agents powered by
(multimodal) language models have made substantial progress in various aspects. Benchmarks
have evolved from MiniWoB++ (Shi et al., 2017; Liu et al., 2018) to WebShop (Yao et al., 2022)
and WebArena (Zhou et al., 2023), offering increasingly realistic website simulations. VisualWe-
bArena (Koh et al., 2024a) and Mind2Web (Deng et al., 2023) challenge models’ ability to handle
visual information and generalize across diverse tasks, websites, and domains.

Reactive Agent. Significant progress has been made to enhance the fundamental capabilities of
web agents through both prompting closed-source models (Zheng et al., 2024; He et al., 2024; Deng
et al., 2023) and training models using HTML and webpage screenshots (Lee et al., 2023; Gur et al.,
2023; Furuta et al., 2023; Hong et al., 2024; Baechler et al., 2024). Additionally, models’ abilities to
ground web agent actions to elements have been improved through training on action-coordinate pair
data (You et al., 2024; Cheng et al., 2024). Further advancements have been achieved by training on
web agent trajectories, utilizing both human-annotated trajectories (Shaw et al., 2023; Hong et al.,
2024; Deng et al., 2023; Lai et al., 2024) and synthesized exploration trajectories (Furuta et al.,
2023; Song et al., 2024; Patel et al., 2024).

Tree Search Agent. Pan et al. (2024a) introduces a reward model based on GPT-4V, designed
to provide both step-wise and trajectory-level rewards to guide inference-time search. Search
Agent (Koh et al., 2024b) investigates inference-time search algorithms in interactive web envi-
ronments, enabling explicit exploration and multi-step planning. In contrast to Search Agent, which
employs a variant of best-first tree search, AgentQ (Putta et al., 2024) and WebPilot (Zhang et al.,
2024) utilize Monte Carlo Tree Search (MCTS) as their primary search strategy.

While tree search on websites has demonstrated significant improvements, it still presents several
limitations. First, the search process substantially increases inference time due to the need for ex-
tensive exploration, which is difficult to parallelize given its inherently sequential nature. Secondly,
search necessitate backtracking to previous states. Although it is possible to implement in sandbox
environments with heavy overhead by resetting the environment and storing the action sequence
leading to a specific state (Koh et al., 2024b), is not feasible for real-world websites. Finally, search
heightens the risk of destructive actions that may irreversibly alter the website’s state, potentially
causing harmful side effects.

2.2 WORLD MODELS

World models, a cornerstone of model-based reinforcement learning (Luo et al., 2024) since the
introduction of Dyna by Sutton (1991), are typically trained on observed state transitions to predict
future states and rewards. In addition to learned models, simulators with physical engines (Kolve
et al., 2017; Puig et al., 2018) can also serve as world models. These world models enable efficient
training through simulated experiences, reducing environmental interactions and improving sample
efficiency (Ha & Schmidhuber, 2018). Beyond their role in training, researchers have explored
the use of world models to facilitate planning (Pascanu et al., 2017; Schrittwieser et al., 2020).
Fundamentally, world models in reinforcement learning often involve task-specific training, with a
primary focus on enhancing data efficiency in the agent learning process.

In contrast to traditional world models in reinforcement learning, LLMs employed as world models
primarily focus on facilitating decision-making in planning rather than training. This distinction
leads LLM-based models to prioritize key task abstractions over the high-fidelity simulations typi-
cally required in reinforcement learning. Recent research has demonstrated the potential of LLMs

3
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Instruction: 
Please navigate to the 'Data
Storage' category and purchase
the least expensive disk with
512GB of memory.

The 'Office Products' category will display
three sub-categories: 'Office Electronics',
'Office & School Supplies', and 'Office
Furniture & Lighting'.

The 'Electronics' category will display three
sub-categories: 'Computers & Accessories',
'Accessories & Supplies', and 'Car & Vehicle
Electronics'.

The webpage will display search results,
including a list of products, each of which
includes the product title, price, and an
'Add to Cart' button.

Click 
”Electronics”

Click “Office 
Products”

Type "Disk” 
into textbox

0.8

The webpage will display 'Office
Electronics' sub-category results with
products, and the sub-menu will show
'Printers&Accessories' and other categories.

The webpage will display 'Computer
Accessories' sub-category results, including
'Data Storage', 'Tablet Accessories', and
others.

The 'Electronics' category will display three
sub-categories: 'Computers & Accessories',
'Accessories & Supplies', and 'Car & Vehicle
Electronics'.

Click ”Office 
Electronic”

Click 
Computer

Accessories

Click 
“Electronics”

0.2

0.1

Figure 2: Illustration of our MPC-based planning using LLM simulation. The LLM simulates tra-
jectories for three candidate actions: (1) Click “Electronics”, (2) Click “Office Products”, and (3)
Type “Disk” into textbox. Through simulation and scoring of the simulated trajectories, the LLM
identifies Click “Electronics” as the most promising action and executes it. The blue textboxes rep-
resent LLM-generated state change descriptions resulting from each simulated action. This example
demonstrates a planning horizon of 2 steps.

as world models for simple environments, leveraging their encoded broad world knowledge (Hao
et al., 2023; Kim et al., 2024). Our study aims to advance this field by investigating the capabil-
ities of LLM-based world models in more complex real-world environments, specifically diverse
websites.

3 METHOD

Web agents automating tasks in open-ended online environments face vast, complex search spaces
where reactive or greedy strategies often fall short (Koh et al., 2024a). Conversely, tree search
methods based on online interaction frequently incur high costs and raise safety concerns (Koh
et al., 2024b; Putta et al., 2024). This paper pioneers a novel paradigm: harnessing LLMs’ internal
world models for virtual exploration through simulation. We posit that this new paradigm could
establish a middle ground between reactive agents and tree search agents, potentially striking an
optimal balance between accuracy and efficiency.

However, achieving good performance with model-based planning is not trivial, primarily due to the
high complexity of real-world websites, which poses critical challenges for accurate simulation. In-
accurate simulations may diverge from the actual environment, potentially proposing actions within
the multi-step simulation that are not actually available in the real environment. Poor simulation
quality can also negatively impact the accurate assessment of action selection. To address these
issues, we employ a Model Predictive Control (MPC)-based planning framework with LLMs’ sim-
ulation, representing an initial effort to unlock the potential of model-based planning with LLMs for
web automation.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1: LLM-based Model Predictive Control for Web Agents
Input: Task instruction I , initial observation o0
Output: Sequence of actions a0, a1, . . . , aT
t← 0;
while task not completed do
A′

t ← ActionProposal(ot);
At ← SelfRefinement(A′

t);
if |At| = 1 then

at ← the single action in At;
end
else

best score← −∞;
for at0 ∈ At do

o′t0 ← ot;
for h← 0 to H − 1 do

if h > 0 then
ath ← π̂(I, o′th);

end
o′th+1 ← T̂ (o′th , a

t
h);

end
score← R̂(I, {ot, at0, o′t1 , at1, . . . , o′tH−1, a

t
H−1, o

′t
H});

if score > best score then
best score← score;
at ← at0;

end
end

end
Execute at and observe ot+1;
t← t+ 1;

end

3.1 MPC-BASED PLANNING

MPC (Garcia et al., 1989; Kouvaritakis & Cannon, 2016) is a classic control method that addresses
model inaccuracies. It computes an optimal trajectory in simulation, but only implements the first
action before re-planning with new observations. This step-wise planning approach is particularly
well-suited to complex web environments, where obtaining a perfect world model is extremely chal-
lenging, if not impossible. Formally, given a natural language task instruction I , the planning al-
gorithm seeks to find a trajectory of actions a0, a1, . . . , aT that completes the task in the target
environment. This environment is governed by a deterministic transition function T : S × A → S ,
where S and A represent the state and action spaces, respectively. However, due to the complexity
of real-world websites, T is typically unknown. Moreover, the agent does not have direct access to
the state st ∈ S of the environment. Instead, it must determine its actions based on an observation
ot ∈ O of the current state st. At each time step t, given a set of candidate actions At proposed
from the environment, our MPC-based planning solves:

at = arg max
at
0∈At

R̂(I, {ot, at0, o′t1 , at1, . . . , o′tH−1, a
t
H−1, o

′t
H}) (1)

subject to: 
o′t0 = ot
ath = π̂(I, o′th), h = 1, . . . ,H − 1

o′th+1 = T̂ (o′th , a
t
h), h = 0, . . . ,H − 1

(2)

Here, H is the planning horizon (i.e., simulation depth), O′ is the simulated observation space,
T̂ : O′ × A → O′ is the proxy transition function, and π̂ is the policy function used in simulation.
R̂ evaluates the entire trajectory given the task instruction, with its output range in [0, 1]. This
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simplification of evaluating the whole trajectory at once, rather than summing step-wise rewards,
allows for easier implementation within the LLM framework. Functions T̂ , π̂, and R̂ can all be
simulated using LLMs, leveraging the LLM’s world knowledge for complex web environments.
This process repeats at each time step, with a new optimization problem solved based on the latest
observation.

Specifically, finding the solution to Equation 1 involves four stages using the LLM: action proposal,
self-refinement, simulation, and scoring (see Figure 2). The action proposal stage maps from the
current observation to a set of promising actions: O → 2A. This stage identifies promising actions
to improve the coverage. After obtaining a set of candidate actions from the action proposer. The
self-refinement stage refines the candidate actions obtained from the action proposer, determining
which merit further exploration: 2A

′ → 2A. These two stages in combination generate At. If |At|
equals one, we execute the action directly without proceeding into the following stages. Otherwise,
we further simulate a trajectory of length H for each action in it using T̂ and π̂. Finally, each
trajectory will be evaluated using R̂ to obtain a numerical score, and the first action of the best-
scored trajectory will be selected for execution.

Algorithm 1 outlines our planning framework. For the action proposal and scoring stages, we adapt
the sampling approach introduced by Koh et al. (2024b), modifying their prompts to suit our context.
Detailed prompts for each stage are provided in Appendix A.

3.2 STATE REPRESENTATION

A crucial aspect of our model-based planning lies in the design choice of O′, i.e., the state repre-
sentation within simulation.2 Ideally, one would aim to align the simulated observation space O′

with the actual observation spaceO. However, actual observations typically involve multimodal per-
ception, including screenshots with Set-of-Marks annotations (Yang et al., 2023). This multimodal
nature presents a challenge for current LLMs, which are limited to uni-modal generation, making it
infeasible to use identical representations in simulations.

In designingO′, we face unique constraints. Generating or processing visual elements is beyond the
capability of text-based LLMs. Moreover, decoding complete HTML or accessibility trees within
the simulation is computationally intensive and prone to errors, potentially introducing noise that
could compromise the planning process. To address these challenges, we opt for a natural language
description of the predicted state change as the new observation in simulation. This approach offers
several advantages:

Compatibility: It aligns with the text-based nature of LLMs, enabling seamless integration within
the simulation process.

Flexibility: Natural language can capture a wide range of state changes, from simple UI updates to
complex interactions.

Efficiency: Textual descriptions are computationally less demanding than generating or processing
complex structural representations.

Relevance: We can focus on describing the most pertinent changes, filtering out irrelevant details
that might distract from the planning task.

Concrete examples of state change description simulated by LLMs can be found in Figure 2. We
provide further insights in our design choice for O′ in Section 5.1.

2In our simulation context, we use “state representation” and “observation representation” interchangeably.
While these terms may have distinct meanings elsewhere, their boundaries often blur within LLM-based simu-
lated environments.
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4 EXPERIMENTS

4.1 SETUP

To properly test our planning framework’s real-world performance, we use benchmarks with on-
line evaluation, capturing the dynamic nature of web interactions. We focus on two representative
benchmarks: VisualWebArena (VWA; Koh et al. (2024a)), which emphasizes a multimodal setting,
and Mind2Web-live (Pan et al., 2024b), which operates with HTML by default. VWA comprises
910 tasks across three locally hosted websites: Shopping, Classifieds, and Reddit. In contrast,
Mind2Web-live includes 104 tasks spanning 69 real-world websites. We adhere to the default set-
tings of both benchmarks: for VWA, we use screenshots with Set-of-Marks prompting as the obser-
vation space, while for Mind2Web-live, we use HTML. For our LLM, we choose the most advanced
multimodal LLM available, GPT-4o, as it best serves our aim to pioneer model-based planning with
LLMs and explore the full potential of this envisioned paradigm. In our experiments, we empiri-
cally set the planning horizon H to 1. A comprehensive analysis of this parameter is presented in
Section 5.1.

To demonstrate the effectiveness of our proposal, we primarily compare our approach with two
major baselines: the reactive agent and the tree search agent. For VWA, we evaluate against both
baselines, using search agent (Koh et al., 2024b) as a representative implementation of tree search.
However, for Mind2Web-live, we only compare with the reactive agent. Implementing a tree search
agent for Mind2Web-live presents insurmountable challenges due to the complexity and dynamic
nature of real-world websites. The lack of a controlled environment makes it virtually impossible to
perform reliable backtracing, a crucial component of tree search.

Table 1: Results on VisualWebArena and Mind2Web-live. Our MPC-based planning approach ef-
fectively narrows the performance gap between the reactive baseline and tree search, even without
additional exploration of the website. For Mind2Web-live, implementing tree search algorithms
poses significant challenges due to the requirement for website backtracing, leading us to omit tree
search performance metrics. This limitation further underscores the flexibility of our MPC-based
planning method. We also include additional baselines (denoted by gray cells) to provide broader
context. While these comparisons may not directly assess our core hypothesis, they offer valuable
background for understanding our method’s performance in the web navigation landscape. † We
run the reactive baseline on VWA by ourselves because local hosting requirements may lead to
hardware-dependent performance variations.

Benchmark Observation O Method Completion Rate Success Rate

VisualWebArena Screenshot+SoM

Gemini-1.5-Pro + Reactive (Koh et al., 2024a) - 12.0%
GPT-4 + Reactive (Koh et al., 2024a) - 16.4%

GPT-4o + Reactive (Koh et al., 2024a) - 17.7%†

GPT-4o + Tree Search (Koh et al., 2024b) - 26.4%
GPT-4o + MPC (Ours) - 23.6% ((33.3%)

Mind2Web-live HTML

GPT-4 + Reactive (Pan et al., 2024b) 48.8% 23.1%
Claude-3-Sonnet + Reactive (Pan et al., 2024b) 47.9% 22.1%
Gemini-1.5-Pro + Reactive (Pan et al., 2024b) 44.6% 22.3%

GPT-4-turbo + Reactive (Pan et al., 2024b) 44.3% 21.1%
GPT-3.5-turbo + Reactive (Pan et al., 2024b) 40.2% 16.5%

GPT-4o + Reactive (Pan et al., 2024b) 47.6% 22.1%
GPT-4o + MPC (Ours) 49.9% 25.0% ((13.1%)

4.2 MAIN RESULTS

Effectiveness. We present the overall performance results in Table 1. Our MPC-based plan-
ning approach demonstrates substantial improvements over the reactive agent on both VWA and
Mind2Web-live datasets. Notably, on the VWA dataset, our proposed method achieves a 33.3%
relative performance gain. Meanwhile, our proposal still underperforms the tree search baseline in
terms of overall success rate. Despite these improvements, our approach still falls short of the tree
search baseline in terms of overall success rate. It is important to note, however, that surpassing the
accuracy of tree search is not the primary objective of our proposed method. In fact, the tree search
agent can be considered an upper bound for our approach, as it engages in actual interactions rather

7
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than simulations. On Mind2Web-live, MPC-based planning outperforms the reactive baseline by
2.9% (a relative gain of 13.1%), which is less significant than the improvement on VWA. However,
it’s worth noting that the Mind2Web-live dataset does not offer as much discriminative power, as
evidenced by the minimal performance differences across multiple base LLMs shown in Table 1.
The strong results on both VWA and Mind2Web-live indicate the effectiveness of our method across
different observation settings.

We further conduct a more granular analysis comparing our proposed method to the reactive baseline
on the VWA dataset across multiple dimensions. Table 3 demonstrates that our model-based plan-
ning approach consistently outperforms the reactive baseline across all websites and task difficulty
levels, approaching the upper-bound performance achieved by tree search. On tasks of medium
difficulty according to the official annotation by VWA, model-based planning even surpasses the
performance of tree search (i.e., 22.2% vs. 24.1%). Despite its promise, model-based planning still
struggles with hard tasks in VWA that necessitate multistep simulations. The accuracy of simula-
tions diminishes as the number of steps increases, presenting a significant challenge for handling
hard tasks.

Efficiency. Another key advantage of model-based planning is its efficiency compared with tree
search using actual explorations. As shown in Table 2, tree search requires approximately three
times more steps than the baseline across all environments, whereas our method maintains compa-
rable action steps. Notably, tree search introduces about ten times more wall clock latency due to
the extra actions and backtracking, while the simulation overhead in our approach is minimal and
can be further reduced with increased parallelization.

Table 2: Action steps and wall clock time on VWA.

(a) Number of Action Steps

Steps Reactive Tree Search MPC
Classifieds 3.4 9.9 4.1
Reddit 5.1 13.6 5.2
Shopping 4.5 11.4 4.5

(b) Task Completion Wall Clock Time

Seconds Reactive Tree Search MPC
Classifieds 68.3 749.2 183.6
Reddit 83.5 972.1 233.7
Shopping 87.7 785.7 179.4

Table 3: Success rate breakdown based on different dimensions. γ =
SRmpc−SRreactive

SRtree search−SRreactive
measures

the extent to which MPC narrows the gap between the reactive agent and the tree search agent.

(a) Websites

Websites Reactive Tree Search MPC γ

Classifieds 16.8% 26.5% 22.6% 59.8%
Reddit 15.3% 20.5% 18.6% 63.5%
Shopping 19.4% 29.0% 26.5% 74.0%

(b) Task Difficulty

Difficulty Reactive Tree Search MPC γ

Easy 28.8% 42.3% 37.4% 63.7%
Medium 16.4% 22.2% 24.1% 132.8%
Hard 10.7% 14.9% 12.7% 47.6%

5 DISCUSSION

5.1 STATE REPRESENTATION AND PLANNING HORIZON

Our MPC-based planning approach relies on two critical dimensions for simulation: the state rep-
resentation and the planning horizon (i.e., the simulation depth). To gain deeper insights into its ef-
fectiveness and limitations, we investigate how various configurations affect the final performance.
Given the high computational cost of these experiments, we conduct this analysis using a subset of
the VWA dataset, comprising 100 shopping tasks with officially annotated human trajectories.

In addition to the state change description used in our primary experiments, we explore alternative
approaches where GPT-4o predicts either the HTML code or the accessibility tree of the resulting
webpage within the simulation. For each of these state representations, we evaluate planning hori-
zons of 1, 2, and 3 steps. As depicted in Figure 3, all three state representations significantly out-
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Figure 3: We demonstrate the performance on a subset of the VWA dataset, varying both the state
representation within simulations and the planning horizon. Planning with long horizon with simu-
lation remains challenging, regardless of the state representation employed.

perform the reactive baseline. However, their effectiveness diminishes as the planning horizon ex-
tends to 3 steps, indicating a common limitation in long-horizon simulation across these approaches.
Specifically, the policy π̂ within the simulation tends to hallucinate relevant actions for task comple-
tion, even when such actions may not exist in the current state predicted by T ′. Notably, the state
change representation exhibits the most pronounced performance degradation as planning horizons
extend. This decline is particularly severe with a planning horizon of 3, where performance falls be-
low that of the reactive baseline. This vulnerability stems from its implicit specification of available
interactive elements on the current webpage, requiring the model to infer these elements by applying
changes to the initial state. In contrast, HTML and accessibility tree representations provide explicit
element information. Consequently, the state change approach is more susceptible to hallucination
during extended simulations. Despite this limitation, the state change approach remains a viable
choice given the current capabilities of LLMs. It matches the performance of HTML and accessi-
bility tree representations for planning horizons less than 3 while consuming fewer output tokens.

5.2 ABLATION STUDY

Reactive

Reactive w/ Reranking

MPC w/o Self-Refinement MPC
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Figure 4: Ablation study on the simulation
stage and self-refinement stage.

To determine if the observed improvements come
from specific parts of our model-based planning ap-
proach, we perform ablation studies on the simula-
tion and self-refinement stages, using the same sub-
set from Section 5.1. We pay special attention to the
simulation stage, which is the core of model-based
planning. One might argue that the improvement
mainly comes from reranking candidate actions, re-
gardless of whether this ranking is based on simu-
lation. To test this idea, we conduct an experiment
where we remove the simulation stage completely
and instead ask the reward model to directly evalu-
ate each candidate action. As shown in Figure 4, this
modified approach does lead to some improvement
over the baseline, but the gain is small and still falls
well behind planning with simulation. These results
confirm that the LLM-based world model simulation
plays a crucial role in the planning process. Further-
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more, we observe a decrease in performance when removing the self-refinement stage. Upon closer
examination, we find that this decline is primarily due to the self-refinement module’s ability to ef-
fectively filter out less relevant candidate actions when the next optimal action is clear. In contrast,
directly simulating all actions may introduce additional noise that can negatively impact perfor-
mance.

6 CONCLUSION

In conclusion, our MPC-based planning approach demonstrates significant improvement over reac-
tive baselines, effectively narrowing the gap with tree search methods across various web navigation
tasks. This approach shows particular promise in scenarios where tree search implementation is
challenging, highlighting its flexibility. However, to enable longer-horizon planning, future work
must focus on enhancing the model’s faithfulness to the real environment through targeted train-
ing. Additionally, exploring more sophisticated state representations within simulations presents a
promising avenue for further performance gains.

LIMITATIONS

Our study, as a pioneering exploration of MPC-based planning with LLMs for web navigation,
naturally comes with certain limitations that pave the way for exciting future research directions:

Simplicity of Planning Algorithm. In this preliminary work, we deliberately employed a straight-
forward planning algorithm to demonstrate the core potential of our approach. While effective, this
simplicity leaves ample room for future enhancements. More sophisticated planning techniques,
such as Monte Carlo Tree Search (MCTS), could be integrated to further improve performance. As
a foundational study, our focus was on establishing the viability of the concept rather than opti-
mizing every aspect of the system. This strategic choice allows future research to build upon our
findings and explore more advanced planning strategies within the framework we’ve established.

Computational Cost. Our current implementation, utilizing state-of-the-art models like GPT-4o,
incurs significant API costs (approximately $1 per task on VWA). This cost reflects our prioritization
of exploring the full potential of LLM-based planning without immediate constraints. For practical
applications, future work could investigate cost-effective alternatives such as fine-tuning specialized
models for simulation tasks. Our approach of using the most advanced available model serves as
an upper bound, demonstrating the maximum potential of this paradigm. This sets a benchmark for
future optimizations that balance performance and efficiency.

These limitations underscore the nature of our work as a proof-of-concept, opening up numerous
avenues for future research and optimization. By establishing the foundational potential of MPC-
based planning with LLMs, we have laid the groundwork for a new paradigm in web navigation,
inviting further innovations that can refine and extend our approach.
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A PROMPTS FOR FOUR STAGES IN MPC-BASED PLANNING

A.1 ACTION PROPOSAL

Action Proposal

You are an autonomous intelligent agent tasked with navigating a web browser. You will be given
web-based tasks. These tasks will be accomplished through the use of specific actions you can issue.
Here’s the information you’ll have: {Web Information}
The user’s objective: {Task Objective} This is the task you’re trying to complete.
The current web page screenshot: {Web Page Screenshot Image} This is a screenshot of the
webpage, with each interactable element assigned a unique numerical id. Each bounding box and its
respective id shares the same color.
The observation, which lists the IDs of all interactable elements on the current web page with their
text content if any, in the format [id][tagType][text content]. tagType is the type of the
element, such as button, link, or textbox. text content is the text content of the element. For example,
[1234][button][’Add to Cart’] means that there is a button with id 1234 and text content
’Add to Cart’ on the current web page. [][StaticText][text] means that the element is
of some text that is not interactable.
The current web page’s URL: {Web URL} This is the page you’re currently navigating.
The open tabs: {Previous Tabs} These are the tabs you have open.
The previous action: {Previous Action} This is the action you just performed. It may be helpful
to track your progress.

The actions you can perform fall into several categories:

Page Operation Actions:
- click [id]: This action clicks on an element with a specific id on the webpage.
- type [id] [content]: Use this to type the content into the field with id. By default,

the Enter key is pressed after typing unless press enter after is set to 0, i.e., type [id]
[content] [0].

- hover [id]: Hover over an element with id.
- press [key comb]: Simulates the pressing of a key combination on the keyboard (e.g., Ctrl+V)
- scroll [down] or scroll [up]: Scroll the page up or down.

Tab Management Actions:
- new tab: Open a new, empty browser tab.
- tab focus [tab index]: Switch the browser’s focus to a specific tab using its index.
- close tab: Close the currently active tab.

URL Navigation Actions:
- goto [url]: Navigate to a specific URL.
- go back: Navigate to the previously viewed page.
- go forward: Navigate to the next page (if a previous go back action was performed).

Completion Action:
- stop [answer]: Issue this action when you believe the task is complete. If the objective is to

find a text-based answer, provide the answer in the bracket.

Homepage:
If you want to visit other websites, check out the homepage at http://homepage.com. It has a list of
websites you can visit. http://homepage.com/password.html lists all the account name and password
for the websites. You can use them to log in to the websites.

To be successful, it is very important to follow the following rules:
1. You should only issue an action that is valid given the current observation
2. You should only issue one action at a time.
3. You should follow the examples to reason step by step and then issue the next action.
4. Generate the action in the correct format. Start with a “In summary, the next action I will perform

is” phrase, followed by action. For example, In summary, the next action I will perform is click
[1234].

5. Issue stop action when you think you have achieved the objective. Don’t generate anything after
stop.
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A.2 SELF-REFINEMENT

Self-Refinement

You are assiting a web navigation agent to help a human user navigate a website to complete a task.
Given the user’s intent, the action history, and the current state of the webpage, the agent has proposed
a set of candidate actions to take at the current step.

Your role is not to determine a best action for the agent at this step, but to filter out the actions that are
very likely not relevant or helpful for the agent to accomplish the task.

Please select all actions that you think that could possibly lead the agent to accomplish the task. It’s
important to note that to accomplish a task, the agent will execute a sequence of actions. So the action
to take at this step does not have to immediately lead to the completion of the task. You should select
any action that could be relevant for the agent to take in the current state of the webpage. Try to be as
thoughtful and comprehensive as you can! Don’t miss any possible action. If there is one action that
is clearly the best, and all other actions are clearly not very relevant, you can only select one action.
Please do this sparely, since some actions may be helpful in a longer horizon.

A action should be included as long as it could be relevant to the task, even if it may not be the most
direct action to take at this step!! Some relevant actions might seem indirect at the first glance, but
could be helpful in a longer horizon. Please also include those actions.

Please at least select one action.

*IMPORTANT*
Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>. You must explicitly evaluate each
action one by one and imagine whether it could be relevant to the task following the format:
action:... rationale:...

Selected actions: id0;id1;aid2;... (please return the index of the action in the candidate actions
list, starting from 0. Don’t output the action description itself. Separate the indices with semicolons.
Do not add spaces or any other characters between after the semicolons.)

Action History: {last actions str}

Current URL: {current url}

The images corresponding to the user intent are shown in the FIRST {len(intent images)}
images (before the User Intent).

The last {len(screenshots)} snapshots of the agent’s trajectory are shown in the LAST
{len(screenshots)} images. The LAST IMAGE represents the current state of the webpage.

Proposed Action: {action descriptions}

A.3 WORLD MODEL

World Model

You are an agent that predicts the effect of an action on a webpage. You will be given a screenshot of a
webpage, a sequence of actions and state changes applied to the initial screenshot, and an operation to
perform on the webpage. You are required to predict the new changes that will occur on the webpage
after the operation is performed, such as the appearance of new elements, the disappearance of existing
elements, or changes in the content of existing elements. The operation type and the element to operate
will be provided in the prompt. Directly output State changes:... and don’t output anything
else. Try to be as comprehensive and detailed as possible.

Based on the initial screenshot and the changes to the webpage, please predict the changes after action:
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A.4 REWARD MODEL

Reward Model

You are an expert in evaluating the performance of a web navigation agent. The agent is designed to
help a human user navigate a website to complete a task. Given the user’s intent, the agent’s action
history, the current state of the webpage, your goal is to decide **whether the simulated steps by
the agent indicate a successful execution of the user intent**. In particular, if the predicted state
(i.e., the current state represented by the last image plus all the predicted changes so far) corresponds
to a successful final state. If it is a failure but it looks like the simulated steps are on the right track
towards success, you should also output as such. Note that, in the simulated steps, all the state changes
are predicted by the agent’s world model, and they may not actually be faithful to the real website
interactions (e.g., some proposed actions may not be avaiable in a realistic website). You should also
account for this in your evaluation (e.g., if the predicted state changes are not reasonable then it’s
probably a failure).

*IMPORTANT*

Format your response into two lines as shown below:

Thoughts: <your thoughts and reasoning process>

Status: "success" or "failure"
On the right track to success: "yes" or "no"
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