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ABSTRACT

Procedure planning involves the generation of a sequence of steps that bring a
specific start state to the desired goal state. Both states are given as visual obser-
vations in the case of planning from instructional videos. This is a challenging
task due to ambiguities in the visual representations of states and variations aris-
ing from multiple feasible plans. Existing approaches address these challenges
by adopting strong visual representation learning methods and sophisticated rea-
soning mechanisms. However, the decision process is passive in the sense that
both the visual observations and the reasoning process are fixed during the plan-
ning phase. In this paper, we propose an active procedure planning approach that
takes account of uncertainties arising from imperfect visual observations and task
plan variations. In particular, we develop quantitative metrics to evaluate task un-
certainty and use them to guide the selection of additional visual observations.
Empirical results show that visual observations driven by uncertainty-awareness
lead to significantly higher performance gain compared to opportunistic visual
observations. The findings are useful for developing trusted and explainable AI
models for procedure planning. The code will be released upon paper acceptance.

1 INTRODUCTION

Procedure planning in instructional videos is concerned with the generation of action plans given the
visual observations of a start state (os) and a goal state (og) (Chang et al., 2020; Sun et al., 2021).
This task is of practical relevance because learning and reasoning are grounded on real-world scenes,
often with the presence of human actors interacting with the environment. It is different from and
perhaps more challenging than procedure planning in the natural language domain (Wei et al., 2021),
or in simulated environments (Shridhar et al., 2019). Indeed, it represents a proxy of the anticipated
future scenario where an agent co-exists with a human and provides in situ assistance, e.g., helping
a person prepare a recipe. The ability to observe the world state and make action plans with or for
humans is apparently necessary in such situations.

Current approaches for procedure planning in instructional videos adopt fixed conditions when gen-
erating action plans. By fixed conditions, we mean that the input to the decision module, usually
defined as a tuple (os, og), is kept constant throughout the planning process. In other words, there
is no information exchange between the agent and the external world once planning starts, so that it
maintains a fixed internal representation of the task and world state. Consequently, the agent is not
trained to interact with the environment and gather useful information for decision-making.

We aim to equip the agent with the ability to seek additional information based on an educated judg-
ment of the world states. In the current problem context, uncertainty arises from ambiguities with
respect to the task conditions. In particular, procedure planning is conditioned on visual observa-
tions (video clips) of the start and goal states, where a stack of image frames is arbitrarily extracted
from a video to represent a state. However, the extracted images may not clearly denote the action
steps or the task. Furthermore, there are immense variations in procedure plans. As illustrated in
Fig. 1 (Left), three videos showing the task make meringue share the same start state (pour egg) and
goal state (whisk mixture). However, the intermediate states are different, representing three feasible
trajectories. It is extremely difficult to converge to a single path purely from the semantic meaning
of the start and goal states. A quick remedy to this problem is to make additional observations to
disambiguate the states and constrain the trajectories. As shown in the right pane of Fig. 1, given
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Figure 1: Ambiguity in task planning. Left: Make Meringue: there are multiple feasible trajectories
given similar start state (pour egg) and goal state (whisk mixture). Right: Expert trajectories of a long
horizon task (adapted from (Bi et al., 2021). A darker color indicates nodes/paths that are visited
more frequently. In a conceived planning task, Green stars denote start and goal states. A red star
denotes an observation that results in a recognized intermediate state. It helps to prune alternative
routes (ii)&(iii) that are otherwise plausible.

the start and goal states (denoted as green stars), adding an observation (denoted as red star) can
help the agent effectively remove alternative routes, provided that the perceptual module can cor-
rectly discern the action. Meanwhile, each observation incurs costs related to data acquisition and
increased cycle time. Therefore, it is worthwhile to explore when and how to apply additional visual
observations to achieve anticipated performance gain, while keeping the cost low.

To tackle this issue, this study investigates the conditions under which additional visual observations
result in beneficial outcomes in terms of planning accuracy and cost efficiency. We posit that visual
observations are more useful when higher uncertainty is involved in the prediction outcome. Based
on this assumption, it is crucial to estimate uncertainty in procedure planning for individual task
instances. We design comprehensive uncertainty metrics that combine a calibrated confidence score
and a task sequence variation score. Furthermore, we propose an active planning approach that
selectively adds visual observations based on the estimated uncertainty. We incorporate the active
planning mechanism into the latest diffusion-based procedure planning models (Wang et al., 2023;
Fang et al., 2023), and evaluate the effectiveness of the method on CrossTask (Zhukov et al., 2019)
and COIN (Tang et al., 2019) datasets. It is shown that our method consistently boosts prediction
accuracy on both datasets and for different planning horizons. We find that the calibrated confidence
score captures planning uncertainty more effectively than the task variation score.

Contributions. (1) We propose a new approach of active procedure planning that enables flexible
visual observations to disambiguate the planning task. (2) We analyze the source of uncertainty
and develop comprehensive metrics to evaluate the uncertainty of procedure planning. (3) Through
extensive experiments, we find new empirical evidence regarding the effect of active procedure
planning on the accuracy of generated plans. Our method represents a paradigm shift in procedure
planning from passive reasoning to active/adaptive learning and reasoning. It paves the way toward
equipping AI agents with the ability to interact with the environment in seek of useful information to
solve problems. Importantly, the ability to reason about uncertainty related to the perceptual inputs
and decisions is a critical element of trusted and explainable AI (Kok & Soh, 2020).

2 RELATED WORK

2.1 PROBABILISTIC PROCEDURE PLANNING

A straightforward way to handle uncertainty related to task variations is to build reasoning models
that capture the statistical distribution of the data. Bi et al. (2021) proposed an exterior-model gener-
ative adversarial imitation learning (Ext-GAIL) that implements Bayesian inference to deal with the
uncertainty of the environment. Zhao et al. (2022) built a generative module trained with generative
loss that can produce multiple feasible plans at inference time. Recently, Wang et al. (2023) formu-
lated procedure planning as a conditional sampling process and proposes a projected diffusion model
to account for the probabilistic planning process. Fang et al. (2023) extended the diffusion-based

2



Under review as a conference paper at ICLR 2024

model with a hierarchical reasoning mechanism to further boost the performance. However, all the
above methods consider uncertainty as an inherent characteristic of data distribution and develop
techniques to simulate the distribution. They do not account for the possible information deficiency
due to the ambiguity of inputs and conditions. Therefore, there is no mechanism to update the
internal representation during the reasoning process.

To make the planning decisions grounded on perceptual semantics, early works leverage the con-
jugate relationship between actions and states to provide constraints on the learning and reasoning
process (Chang et al., 2020; Sun et al., 2021; Bi et al., 2021). They generate procedure plans in
an autoregressive manner to harness the inter-dependency of actions and states. However, informa-
tion exchange happens only between sub-modules of the system, which does not help if the initial
internal representation is inaccurate or incomplete. Besides, such a mechanism leads to error prop-
agation, and in turn performance deterioration, especially for long sequences (Zhao et al., 2022).
Recent works resort to external knowledge to enhance the reasoning process. For example, Zhao
et al. (2022) incorporated a learnable global memory module to augment the plan generation; Patel
et al. (2023) leveraged the reasoning power of pre-trained language models to enhance sequence
planning; Lu et al. (2022) built a procedure knowledge graph trained on both text dataset and video
corpus to provide additional supervision to the downstream planning tasks. However, such external
knowledge does not address the information deficiency of situated planning tasks. The issue cannot
be eradicated by stronger visual representation learning models (Lin et al., 2022; Xu et al., 2021;
Zhao et al., 2023) either.

2.2 ACTIVE LEARNING AND UNCERTAINTY EVALUATION

The idea of active learning stems from the need to train machine learning models with fewer labeled
data due to high annotation costs. In the era of deep neural networks (DNNs), many deep active
learning approaches have been proposed that focus on how to choose representative data points
based on knowledge of data distribution (Sener & Savarese, 2017; Gal et al., 2017; Liu et al., 2021;
Ren et al., 2020). It has led to notable development in few-shot learning (Woodward & Finn, 2017;
Vinyals et al., 2016) and meta-learning (Ravi & Larochelle, 2018) for various applications, such as
image recognition (Lee et al., 2019), navigation (Chen et al., 2019), object detection (Yuan et al.,
2021), and action recognition (Roitberg et al., 2021; Subedar et al., 2018). Nevertheless, this notion
is different from active procedure planning, which is concerned with selectively acquiring perceptual
inputs to reduce scene ambiguity/uncertainty.

A closely related field of research is uncertainty evaluation and model calibration. It is observed
that modern DNNs, while being more accurate, are often miscalibrated, i.e., the reported confidence
level of a prediction does not reflect the true correctness likelihood (Guo et al., 2017; Minderer et al.,
2021; Nixon et al., 2019). Many approaches have been proposed to quantify uncertainty, such as
prior networks (Malinin & Gales, 2018), evidential neural networks (Sensoy et al., 2018), stochastic
variational inference (Blundell et al., 2015), ensemble methods (Wen et al., 2020), etc. Interested
readers may refer to (Abdar et al., 2020; Gawlikowski et al., 2021; Mena et al., 2021) for reviews of
uncertainty estimation in modern deep neural networks. This research will evaluate the uncertainty
of procedure planning as a means to guide the data acquisition process. We do not intend to develop
new methodologies to evaluate uncertainty per se.

Embodied AI is another relevant field of research (Lu et al., 2022; Zhang et al., 2022; Zheng et al.,
2022; Inan et al., 2023). However, the interactive process specified in this study is different from
planning tasks in embodied AI, where an agent explores a space and gets feedback signals in a virtual
environment. The steps in individual instructional videos are fixed and the interaction is restricted
to extra observations of the next steps to determine the entire task process. More importantly, visual
learning and reasoning in real-world videos are more challenging than in simulated environments.

3 PROBLEM FORMULATION

Procedure planning in instructional videos is traditionally formulated as a conditioned sequence
generation problem (Chang et al., 2020), namely given the visual observations of a start state (os)
and a goal state (og), a model is tasked to produce a plan in the form of a sequence of actions a1:T
that, when executed, will facilitate the transition from os to og in T steps, where T is called the
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Figure 2: Overview of active procedure planning with uncertainty-awareness. The box shaded in
green denotes the traditional procedure planning process.

planning horizon. With active procedure planning, the agent is allowed to perform intermediate
visual observations during inference time so as to resolve potential ambiguities. The entire set
of intermediate states (based on visual representations) is denoted as V , from which a subset of
additional visual observations S(⊆ V) can be drawn. When S = Φ, i.e., no additional visual
observation is made, the problem is identical to conventional passive procedure planning. Assuming
that every additional visual observation incurs a cost, the problem is reduced to how to select a
subset S that boosts planning accuracy while keeping the cost within a pre-defined budget.

4 APPROACH

Active procedure planning extends legacy procedure planning with uncertainty-based sampling. It
is carried out during the inference phase and does not affect the training of the plan generation
model. As illustrated in Fig. 2, a legacy procedure planning method (box shaded in green) generates
procedure plans using a trained inference model1. To improve the prediction accuracy, we propose
to add new visual observations when needed. The key insight is that additional visual observations
are most useful when the inference model is unable to produce valid procedure plans. However,
there is no external feedback (e.g., human-in-the-loop) on the correctness of the generated plans.
Hence, it is crucial to get a judicious uncertainty estimation based on the model’s self-awareness of
its prediction.

4.1 UNCERTAINTY ESTIMATION

This research considers two aspects of uncertainty, namely (1) uncertainty arising from task se-
quence variation, and (2) uncertainty related to the model’s prediction confidence.

4.1.1 TASK SEQUENCE VARIATION SCORE

As aforementioned, there can be multiple feasible trajectories given the start and goal states. It is
postulated that the more trajectory variants, the higher the uncertainty involved. First, we analyze
the characteristics of task trajectory distribution from training data. Assuming that data in the test set
and training set is independent and identically distributed, we can use the distribution of sequence
variants of the training set as a reference to infer that of the test set. In this sense, task sequence
variation is considered as the prior knowledge of the data distribution. We estimate uncertainty
related to task sequence variation as follows.

During training, given a pair of start and goal states (os, og) extracted from a video clip, the ground-
truth action sequence a1:T is available, where a1 and aT correspond to the action labels of os and
og , respectively. In reality, for each tuple (a1, aT ), there could be multiple video instances that
follow different trajectories, as illustrated in Fig. 3. For each video instance that corresponds to a
trajectory, we register a visit to that path. Based on the number of visits to each path, we calculate the
percentage of visits along individual paths. Let M be the total number of distinctive trajectories, and

1For purpose of conciseness, we use the box “inference model” to denote the entire inference process of
procedure planning, while omitting the technical details of the reasoning process.
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Figure 3: Uncertainty estimation based on task sequence variation.

qm(m = 1, ...,M) be the proportion of visits to path m among all the visits. We use the Shannon
entropy (Borda, 2011) of path visits as an indicator of uncertainty related to task sequence variation.

uv(a1, aT ) = − 1

||uv(T )||

M∑
m=1

qm log qm. (1)

where ||uv(T )|| is the maximum value for all (a1, aT ) tuples with planning horizon T . It serves
to scale the uncertainty score of an individual (a1, aT ) tuple to be in the range of [0, 1]. Eq. 1
reflects the fact that higher uncertainty is involved when there are more trajectories and when data
samples are evenly distributed among multiple trajectories. For example, if there is a single path,
the uncertainty is effectively ‘0’; two paths with a (50%, 50%) distribution of visits involves higher
uncertainty than those with a (10%, 90%) distribution. More details on the characteristics of task
variation score are given in Appendix A.6.

Based on the entire training set, we obtain a learned memory of task variation that encodes the
uncertainty for any valid (a1, aT ) tuple. During inference, the inference model generates the action
plans â1:T ∼ fθ(os, og), where fθ is a mapping function with learnable parameters θ, â1 and âT
correspond to the predicted action labels of os and og , respectively. The model can then retrieve the
uncertainty score from the learned memory of task variation distribution based on the matching of
(â1, âT ) versus (a1, aT ).

4.1.2 CALIBRATED PREDICTION CONFIDENCE SCORE

The action plan â1:T generated by the inference model is always affixed with a predicted confidence
score, which for the case of procedure planning, is the probability value computed from a softmax
function in the last network layer. Although the confidence score can be interpreted as a prediction
of uncertainty, is widely discussed that DNNs tend to be over-confident with the prediction, i.e., the
score is poorly calibrated. To ensure robust prediction of uncertainty, we adopt temperature scaling
(Guo et al., 2017) to calibrate the confidence score. Specifically, for an individual step/action in a
procedure plan, the calibrated confidence score is calculated as

p̄i = max
k

σ(zi/T )(k), (2)

where i ∈ {1, 2, ..., T} is the index of an action in the planning horizon; k is the total number of
action label types; σ denotes the sigmoid function; zi denotes the logit vector produced before the
softmax layer; T is the temperature. An uncertainty score for the entire action sequence is computed
based on the predicted confidence of individual steps:

uc(a1, aT ) = 1−min
i
(p̄i). (3)

The final uncertainty score is computed as the weighted uncertainties related to task variation and
calibrated confidence. Let 0 ≤ w1, w2 ≤ 1 (where w1 + w2 = 1) be the weights assigned to the
task variation score and calibrated confidence score, respectively. The combined uncertainty score
is computed as

u = w1uv + w2uc. (4)
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4.2 UNCERTAINTY-AWARE PROCEDURE PLANNING

Decisions on the selection of additional visual observations are made based on the uncertainty score
(Eq. 4) by applying a threshold τ , i.e., if u ≥ τ , an additional observation is required. For tasks
with planning horizon T = 3, there is only one candidate intermediate visual observation, which is
selected as the input to the inference model. For longer planning horizons (i.e., T ≥ 4), one may
choose to add one or a few additional observations; and for the latter situation, one may add them
all at once or incrementally based on the quality of the generated procedure plan. In this study,
we restrict the number of allowed additional observations to one without iterative observations, so
as to control the cost of data acquisition. As shown in the experimental results, such a strategy is
effective in improving performance. In addition, to choose one additional observation from multiple
candidates, we adopt a simple strategy which is to pick the one near the temporal center of the video
clip. Specifically, when T is an odd number (e.g., 3 and 5), we select the center observation; when
T is an even number (e.g., 4 and 6), we opt for the center-right observation. We leave it as future
work on more comprehensive strategies for selecting additional observations.

4.3 IMPLEMENTATION DETAILS

All experiments are performed using PyTorch (Paszke et al., 2019) on a machine with 4 NVIDIA
RTX A5000 GPUs, and we employ the Adam optimizer (Kingma & Ba, 2015) for training. The
learning rate for Adam is adjusted based on the specific dataset. Detailed hyper-parameter settings
for each dataset are given in Appendix A.5.

5 EXPERIMENTS

5.1 EVALUATION PROTOCOL

Datasets. Our method is evaluated on two datasets: CrossTask (Zhukov et al., 2019) and COIN
(Tang et al., 2019). CrossTask (Zhukov et al., 2019) has 2,750 instructional videos, collected for
18 different tasks with a total of 133 actions and an average of 7.6 actions in each video. In this
dataset, several common actions, such as pour water, pour milk, and stir mixture, are shared across
multiple tasks. COIN (Tang et al., 2019) is a large-scale dataset, with 11,827 instructional videos,
180 different tasks, and 778 actions, with each action exclusively associated with a single task. For
both datasets, visual features are extracted from encoders trained on the HowTo100M dataset (Miech
et al., 2019).

Metrics. Following previous works (Sun et al., 2021; Zhao et al., 2022; Wang et al., 2023), we adopt
three metrics to evaluate the performance of our method. (i) Success Rate (SR) defines a plan as
successful only when every action precisely matches the ground-truth sequence. (ii) Mean Accuracy
(mAcc) computes the average accuracy of actions at each individual time step, where a predicted
action is deemed correct if it matches the corresponding action in the ground truth at that specific
time step. (iii) Mean Intersection over Union (mIoU) considers the predicted and ground-truth action
sequences as sets, and computes the intersection between these sets. Hence, mIoU is indifferent to
the action order and solely signifies whether the model correctly captures the essential set of steps
required to execute the plan. Different from traditional passive procedure planning methods, we
additionally consider the proportion of instances that require intermediate visual observations as an
indicator of cost. Where applicable, we keep the cost identical when comparing the accuracy metrics
of different configurations for fairness.

Baseline. We adopt two baseline models, namely PDPP (Wang et al., 2023) and MDPP (Fang
et al., 2023) to implement our active procedure planning approach. Both models perform passive
planning, which gives the baseline performance. It should be noted that due to access to additional
visual observations, our method enjoys more information than the baselines. As such, a direct
comparison between our method and baselines is unfair. To overcome this issue, we implement
enhanced baselines by re-training the passive learning models with additional visual observations
as in our active planning approach. In particular, we randomly select a set of samples that are
enhanced with additional visual observations, where the numbers of instances enhanced with visual
observations are kept identical to the active planning counterparts.
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Figure 4: Success rate based on different uncertainty metrics (CrossTask, T = 3, MDPP model).

5.2 RESULTS

5.2.1 EFFECT OF UNCERTAINTY-AWARENESS IN DATA SAMPLING

We have proposed two uncertainty metrics, namely task sequence variation score (Eq. 1) and cali-
brated prediction confidence score (Eq. 2). An immediate question is which of them (if any) captures
uncertainty better in terms of active sampling of visual observations. In addition, since the sampling
output is controlled by pre-set thresholds, it is important to know what is the reasonable threshold.

First, we study the effect of uncertainty metrics (Eq. 4) using two configurations: (1) w1 = 1, w2 =
0, which models uncertainty based on task sequence variation, and (2) w1 = 0, w2 = 1, which mod-
els uncertainty based on calibrated confidence score. We use them to sample visual observations and
perform procedure planning based on the masked diffusion for procedure planning (MDPP) model
(Fang et al., 2023). To ensure an equivalent number of instances being augmented with additional
visual observations in both configurations, we adopt different thresholds for each configuration. In
particular, we first set the uncertainty threshold τ for configuration (1) so that τ is in the range
of [0, 1] with an interval of 0.1. We test the performance of the models on these thresholds while
keeping a record of the number of intermediate visual observations being included. Next, we set
thresholds for configuration (2) to keep the proportions of instances being augmented with visual
observations identical to the respective conditions in (1). Note that τ = 0 corresponds to pure
passive procedure planning in the baseline model, and τ = 1 means additional observations are
made for all instances. For benchmarking, we further adopt a random baseline where an equivalent
number of visual observations is added based on random sampling.

Fig. 4 shows the comparison of success rate on the CrossTask dataset with planning horizon T = 3.
Not surprisingly, when more visual observations are added (indicated by the curve in magenta),
performance (SR) increases from about 38.9% (τ = 0) to 50.4%(τ = 1), irrespective of the sam-
pling methods. However, when 0 < τ < 1, the proposed uncertainty-based sampling methods
lead to higher SR increases compared to random sampling. In fact, the performance gain of random
sampling is almost negligible until there are more than 70% instances being augmented. In compar-
ison, both uncertainty-based sampling methods lead to a consistent increase in SR even with a small
number of augmented instances. Moreover, such performance gain is more evident in uncertainty
measured from calibrated confidence score than from task variation score. In fact, starting from
τ = 0.3 (which translates to about 17% instances being augmented), the boosting effect is substan-
tially higher with the calibrated confidence score than with the task variation score. Similar results
can be seen on mAcc and mIoU (refer to Appendix A.1).

Next, to further understand the relative importance of these two uncertainty metrics, we conduct
sensitivity analysis with different combinations of relative weights. Fig. 5 shows the results of
different weight combinations evaluated on CrossTask with T = 3 (refer to Appendix A.2 for a
comprehensive ablation study). It is shown that using only task variation for uncertainty evaluation
leads to the worst performance (orange line). On the other hand, using confidence score alone
as the uncertainty metrics gives competitive outcomes although slightly inferior to other weight
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Figure 5: Performance evaluation based on different relative weights of uncertainty metrics.

assignments for τ < 0.6. Since a smaller threshold is favorable (indicating fewer samples needed
for observation, and hence lower cost), combining task variance and confidence score seems to be a
better choice. The results also show that the outcome is not particularly sensitive to different relative
weights as long as both metrics are included. Therefore, in subsequent experiments, we adopt three
thresholds τ = {0.3, 0.4, 0.5}, which generally maintain a good balance of performance gain and
observation cost. Interestingly, the highest accuracy is typically achieved when τ = {0.5, 0.6, 0.7},
which is counter-intuitive since one may expect that τ = 1 (i.e., all instances receive additional
visual observation) engenders highest accuracy. The reason for this phenomenon is that in some
instances, the start and goal state observations are informative enough to reason about the procedure
plan. Adding an additional intermediate observation may not provide useful information. In fact, if
such information is not consistent with that from initial observations, it may cause the model to mis-
classify the procedure plan, which would otherwise be predicted correctly. With partial observation
guided by uncertainty, our model refrains from full observation, thus reducing the possibility of
disturbing correct predictions. This underscores the importance of judicious uncertainty estimation.

5.2.2 EVALUATION ON DIFFERENT PLANNING HORIZONS

We further study the effect of uncertainty-awareness in different planning horizons, i.e., T =
{3, 4, 5, 6}, evaluated on two base models, i.e., PDPP and MDPP. We assign equal weights to two
uncertainty metrics and adopt sampling thresholds τ = {0, 0.3, 0.4, 0.5, 1} based on the previous
discussion. Again, we adopt the random sampling method to get baseline performance.

Table 1 shows the results with T = {3, 4} on CrossTask. The boosting effect of active sampling
is consistent in both planning horizons and across different evaluation metrics. For example, when
T = 3, there is nearly 5% increase in SR with PDPP 0.3 and MDPP 0.3, compared to PDPP 0
and MDPP 0, respectively. Importantly, uncertainty-aware sampling is advantageous to random
sampling by a large margin in all experiment conditions. Table 2 further shows results of success rate
with T = {3, 4, 5, 6} on the CrossTask dataset and T = {3, 4} on the COIN dataset. The effect of
uncertainty-based active sampling is more obvious on CrossTask, i.e., it achieves larger performance
gain compared to passive planning and random sampling baselines. Such an effect is marginal on the
COIN dataset. This can be explained by the fact that there is less task variation (uncertainty) in the
COIN dataset than in CrossTask (Zhao et al., 2022; Wang et al., 2023). Results on mAcc and mIoU
for long-horizon planning are available in Appendix A.3 (CrossTask) and Appendix A.4 (COIN).

5.2.3 QUALITATIVE RESULTS

To illustrate the effect of active planning using uncertainty estimation, we show an example in Fig. 6.
The task Make Lemonade has a planning horizon of T = 5. There are multiple variant plans for
this task, and the one generated by the passive procedure planning model (middle row) is plausible
but incorrect. Our uncertainty evaluation model predicts an uncertainty score of 0.708, which fairly
reflects the potential of multiple plans in need of scrutiny. Hence, an additional observation is
performed (frame in red box). With the additional observation, the model can predict the correct
sequence of actions, while also resulting in a reduced uncertainty score of 0.385. The example also
demonstrates a reasoning process that is more transparent and understandable by humans, which is
important to foster trust in the model. More visualization examples are available in Appendix A.8.
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Table 1: Performance of benchmarks with planning horizons T∈{3, 4} on CrossTask. PDPP 0.3
means that it adopts PDPP framework (Wang et al., 2023) with the uncertainty threshold set to
0.3. Threshold “0” means no additional observation is made and “1” means all instances have one
additional observation. Numbers in brackets are the performance of random sampling.

Models T=3 T=4
SR mAcc mIoU SR mAcc mIoU

PDPP 0 37.2 64.7 66.6 21.5 57.8 65.1
PDPP 0.3 42.0(39.0) 67.8(66.1) 69.8(68.0) 25.0(22.8) 61.6(60.3) 66.5(55.8)
PDPP 0.4 45.1(40.0) 70.3(66.8) 71.5(68.5) 28.9(24.1) 64.4(61.6) 68.3(66.6)
PDPP 0.5 48.2(40.4) 72.3(67.4) 72.9(68.7) 31.0(25.4) 66.0(62.3) 70.3(67.3)
PDPP 1.0 49.83 74.0 73.4 32.9 62.3 71.6
MDPP 0 38.9 66.5 68.0 23.5 60.2 66.8

MDPP 0.3 43.6(39.7) 70.8(67.2) 70.9(68.5) 26.5(23.8) 63.3(61.2) 68.9(67.0)
MDPP 0.4 47.7(41.0) 72.4(68.2) 72.7(69.2) 30.1(24.5) 65.8(62.0) 70.5(67.3)
MDPP 0.5 49.5(41.4) 73.5(68.7) 73.5(69.5) 32.3(26.0) 67.5(62.9) 71.4(68.0)
MDPP 1.0 50.4 74.5 74.0 34.1 69.3 72.0

Table 2: Performance (SR) comparison for long-horizon planning on two datasets.
CrossTask COIN

T=3 T=4 T=5 T=6 T=3 T=4
PDPP 0 37.2 21.5 13.6 8.5 21.3 14.4

PDPP 0.3 42.0(39.0) 25.0(22.8) 15.7(14.1) 10.9(9.0) 21.6(21.0) 14.5(14.4)
PDPP 0.4 45.1(40.0) 28.9(24.1) 17.6(14.2) 12.4(9.5) 22.0(21.1) 14.7(14.6)
PDPP 0.5 48.2(40.4) 31.0(25.4) 18.7(14.9) 13.7(10.0) 22.0(21.4) 14.7(14.7)
PDPP 1.0 49.83 32.9 19.8 14.3 21.9 14.8
MDPP 0 38.9 23.5 15.3 10.1 29.4 21.4

MDPP 0.3 43.6(39.7) 26.5(23.8) 16.5(14.4) 11.6(9.9) 31.3(30.3) 22.7(22.2)
MDPP 0.4 47.7(41.0) 30.1(24.5) 19.8(15.0) 13.5(10.2) 31.8(30.8) 23.0(22.5)
MDPP 0.5 49.5(41.4) 32.3(26.0) 22.1(16.4) 15.3(11) 32.0(31.3) 23.0(22.8)
MDPP 1.0 50.4 34.1 24.1 15.8 32.1 23.1

Figure 6: Visualization of uncertainty-based visual observation to resolve ambiguity.

6 CONCLUSIONS

We formulate an active procedure planning problem by enabling selective visual observations dur-
ing the inference stage of procedure planning in instructional videos. The purpose is to resolve
ambiguities due to inadequate visual representations and the probabilistic nature of the problem.
We propose an uncertainty-aware active planning methodology based on well-crafted uncertainty
metrics derived from the model’s prediction confidence and task variation characteristics. Experi-
mental results show that the proposed method can substantially improve the accuracy of generated
plans while keeping the observation cost low. The approach is a step towards building trusted and
explainable AI that allows agents to actively explore the world and assist humans. Although the
interactivity in the current problem settings, i.e., instructional videos, is quite limited, the concept
of uncertainty-based active planning and the empirical evidence of its effectiveness are useful for
developing solutions for more complicated problems.
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A ACTIVE PROCEDURE PLANNING WITH UNCERTAIN-AWARENESS IN
INSTRUCTIONAL VIDEOS: APPENDIX

A.1 EFFECT OF UNCERTAINTY METRICS IN TERMS OF MACC AND MIOU

We have shown the effect of different uncertainty metrics, namely task sequence variation and pre-
diction confidence, on the success rate (SR) in the main manuscript. We use the same strategy to
evaluate such effect on the other two evaluation metrics, namely mAcc and mIou. Fig. 7 and Fig. 8
show the performance outcome in relation to uncertainty thresholds and the resulting proportion of
samples with additional observations. We observe similar trends to the SR performance. (1) Both
uncertainty-based methods outperform random sampling baseline. (2) Performance increases with
more observations made. (3) The calibrated confidence score is more effective in capturing uncer-
tainty based on the greater magnitude of performance improvement. The results echo the findings
in the main manuscript.

A.2 ABLATION STUDY ON UNCERTAINTY METRICS WITH DIFFERENT PLANNING HORIZONS

In Section 5.2.1, we show the relative importance of two uncertainty metrics with planning horizon
T = 3. For a more comprehensive ablation study, we evaluate such an effect for longer planning
horizons T = {4, 5, 6}. We adopt three relative weight assignments, namely (1) w1 = 1, w2 = 0,
(2) w1 = 0, w2 = 1, and (3) w1 = w2 = 0.5. Similar to before, (1) and (2) represent uncertainty
evaluated as only task variation score and calibrated prediction confidence score, respectively; (3)
denotes a more balanced weight assignment. We choose thresholds τ = {0.3, 0.4, .05, .06} based
on previous results to avoid tedious computing. Fig. 9 shows the outcome.

The result is consistent with findings reported in the main manuscript. First, the calibrated confi-
dence score seems to capture uncertainty better than the task variation score in terms of boosting
prediction accuracy. Second, combining both uncertainty metrics generally facilitate better outcome
than using one metric alone, indicating the positive contribution of both metrics. However, the ef-
fect of the task variation score diminishes as the planning horizon goes longer, e.g., at T = 6, where
the calibrated confidence score alone can give performance that is equivalent to or even better than
combined metrics under some threshold levels.

A.3 PERFORMANCE OF LONG-HORIZON PLANNING ON THE CROSSTASK DATASET

In Table 3, we show more results for long-horizon planning T = {5, 6} on the CrossTask dataset,
as an extension to Table 1. As expected, the accuracy reduces as the planning horizon becomes
longer. However, the boosting effect of additional observation is consistent across different evalua-
tion metrics, for different baseline frameworks (i.e., PDPP and MDPP) and with different threshold
settings.

A.4 EVALUATION ON THE COIN DATASET

We show the performance on the COIN dataset with planning horizon T = {3, 4}, following con-
ventions in (Zhao et al., 2022; Wang et al., 2023). In Table 4, one can see that there is a slight
performance gain due to additional visual observations guided by the uncertainty metrics. However,
the magnitude of gain is marginal and disparate for the two frameworks. In fact, for the PDPP
framework (Wang et al., 2023), additional observations do not lead to a consistent increase in accu-
racy when samples are randomly selected, as shown by the figures in the random baseline. For our
active planning method, the increase is quite small, e.g., when T = 3, there is about 0.7% increase
in SR with PDPP 0.5 compared to PDPP 0. The boosting effect is more evident for the MDPP
framework, reaching 2.6% increase in SR for MDPP 0.5 compared to MDPP 0. We suspect that
the COIN dataset involves fewer task variations and uncertainty compared to CrossTask as reported
in previous works (Bi et al., 2021; Zhao et al., 2022; Wang et al., 2023). Therefore, the effect of
additional observation is less significant on the COIN dataset.
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Figure 7: Mean accuracy (mAcc) based on different uncertainty metrics (CrossTask, T = 3, MDPP
model).
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Figure 8: Mean intersection over union (mIoU) based on different uncertainty metrics (CrossTask,
T = 3, MDPP model).

Table 3: Performance of benchmarks with planning horizons T ∈ {5, 6} on CrossTask. PDPP 0.3
means to adopt the PDPP model (Wang et al., 2023) with an uncertainty threshold of 0.3. Threshold
“0” means that no additional observation is used, and “1” means that all instances have one additional
observation. Numbers in brackets indicate the performance of random sampling.

Models T=5 T=6
SR mAcc mIoU SR mAcc mIoU

PDPP 0 13.6 54.1 65.3 8.5 50.1 65.4
PDPP 0.3 15.7(14.1) 56.7(55.0) 65.9(65.4) 10.86(9.0) 54.8 (51.4) 67.6(66.0)
PDPP 0.4 17.6(14.2) 59.0(55.3) 66.6(65.3) 12.4(9.5) 57.3(52.4) 68.7(66.3)
PDPP 0.5 18.7(14.9) 60.3(55.9) 67.0(65.2) 13.7(10.0) 59.0(53.0) 69.5(66.5)
PDPP 1.0 19.9 61.9 67.2 14.3 60.5 69.8
MDPP 0 15.3 56.2 66.0 10.1 52.0 66.1

MDPP 0.3 16.7(14.4) 58.9(56.4) 67.8(65.9) 11.6(9.9) 55.6(52.6) 57.5(65.9)
MDPP 0.4 19.8(15.0) 61.6(57.2) 69.1(66.4) 13.5(10.2) 58.1(53.4) 68.7(66.3)
MDPP 0.5 22.2(16.4) 63.5(58.1) 70.2(66.8) 15.3(11.0) 60.2(54.5) 69.9(66.6)
MDPP 1.0 24.1 65.6 70.2 15.8 61.5 70.1
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Figure 9: Ablation study on uncertainty metrics for long-horizon planning (CrossTask, T = 4, 5, 6,
MDPP model).

A.5 HYPER-PARAMETER SETTING FOR EACH DATASET

During the training stage, we implement a linear warm-up scheme for adjusting learning rate settings
to align with the specific characteristics of various datasets. The CrossTask dataset starts with a
linear warm-up for 4,000 steps until it reaches 5e-4. Following this warm-up phase, the learning
rate undergoes decay by a factor of 0.5 at the 10,000th, 16,000th, and 22,000th steps. For the COIN
dataset, given its substantial scale, we progressively ramp up the learning rate to 1e-5 over the course
of 4,000 training steps. Then, 0.5 decay is applied at the 14,000th and 24,000th steps. Following
this initial increase, the learning rate remains constant at 2.5e-6 for the remainder of the training
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Table 4: Performance of benchmarks with planning horizons T ∈ {3, 4} on COIN. PDPP 0.3 means
to adopt the PDPP model (Wang et al., 2023) with an uncertainty threshold of 0.3. Threshold “0”
means that no additional observation is used, and “1” means that all instances have one additional
observation. Numbers in brackets indicate the performance of random sampling.

Models T=3 T=4
SR mAcc mIoU SR mAcc mIoU

PDPP 0 21.3 45.6 51.8 14.4 44.1 51.4
PDPP 0.3 21.6(21.0) 46.6(46.2) 51.8 (51.5) 14.5(14.4) 44.6(44.4) 51.6(51.6)
PDPP 0.4 22.0(21.1) 47.0(46.4) 51.9(51.5) 14.7(14.6) 44.6(44.6) 51.9(51.8)
PDPP 0.5 22.0(21.4) 47.1(46.7) 51.9(51.7) 14.7(14.7) 44.6(44.7) 51.9(51.7)
PDPP 1.0 21.9 47.1 51.9 14.8 44.7 51.9
MDPP 0 29.4 49.5 52.2 21.3 46.8 52.5

MDPP 0.3 31.3(30.3) 53.1(52.4) 59.6(59.3) 22.7(22.2) 50.0(49.8) 59.7(59.6)
MDPP 0.4 31.8(30.8) 53.4(52.8) 59.7(59.4) 23.0(22.5) 50.4(50.1) 59.9(59.7)
MDPP 0.5 32.0(31.3) 53.7(53.2) 59.7(59.5) 23.0(22.8) 50.4(50.3) 59.8(59.8)
MDPP 1.0 32.1 53.8 59.7 23.1 50.5 59.9

iterations. The batch size is set as 256 for both datasets. The training epochs on CrossTask and
COIN datasets are 120 and 800, respectively.

A.6 UNCERTAINTY CHARACTERISTICS OF THE TASK SEQUENCE VARIATION

We show the distribution of the task variation score used as the uncertainty metric on two datasets
with different planning horizons (Fig. 10). On both datasets, there is a significant amount of in-
stances with near “0” scores, indicating the existence of a dominant trajectory and minimal variation
for the respective tasks. The proportion of instances with near “0” score is even higher on the COIN
dataset than on CrossTask, which is consistent with previous evidence that CrossTask involves higher
uncertainty in the procedure plans (Zhao et al., 2022; Wang et al., 2023). Moreover, the task vari-
ation score generally becomes higher with a longer planning horizon as seen from the relatively
higher proportion of instances with larger task variation scores in T = 5, 6 relative to T = 3, 4 on
CrossTask; and similarly for T = 4 vs. T = 3 on COIN.

A.7 EFFECT OF TEMPERATURE SCALING FOR UNCERTAINTY CALIBRATION

We have adopted temperature scaling (Guo et al., 2017) as a mean to calibrate uncertainty based
on the predicted confidence score. In this section, we show how this calibration affects procedure
planning outcomes. Fig. 11 shows the evaluation metrics (SR, mAcc, mIoU) at different uncertainty
threshold levels [0, 1] with an interval of 0.1. The two curves show the change in the proportion of
instances that receive an additional visual observation. We observe that (1) the trend of boosting
effect owing to active sampling is identical with or without calibration; (2) the performance gain is
slightly higher with uncertainty calibration using temperature scaling. This is largely attributed to
the inclusion of more instances with additional visual observation for a specific threshold level. In
that sense, temperature scaling does not directly affect performance. In fact, uncertainty calibration
using temperature scaling does not change the classification output (i.e., the class label). Rather it
only changes the confidence level of the predictions. As such, it modifies the amount of samples
selected at the same threshold levels. We do see a more balanced and progressive increase in the
number of samples selected as the threshold increases at the fixed internal 0.1, which is beneficial to
the robustness of outcomes.

A.8 VISUALIZATION OF PROCEDURE PLANS ENHANCED BY VISUAL OBSERVATIONS

We show examples of how uncertainty-based visual observations affect the procedure planning for
different planning horizons, i.e., 3, 4, 5, and 6. In all the examples (Fig. 12 - Fig. 15), we show
the ground-truth procedure plan in green. Procedure plans generated without intermediate visual
observations are in the boxes shaded in pink color; and those with intermediate visual observations
(images with red borders) are shaded in lime green. The uncertainty threshold is set at 0.5 in all
cases. We show the initial uncertainty scores and updated ones after additional visual observations.
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(a) Histogram of uncertainty based on the task variation score at different planning hori-
zons (T = 3, 4, 5, 6) on the CrossTask dataset
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(b) Histogram of uncertainty based on the task variation score at different planning hori-
zons (T = 3, 4) on the COIN dataset

Figure 10: Distribution of the task variation score when using it as the uncertainty metric.
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Figure 11: Effect of uncertainty calibration with temperature scaling (evaluated with the MDPP
model).
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Task: Make Jello Shots (T=3)

Pour alcohol Pour mixture into cup Pour jello powder

GT:

Pour alcohol Stir mixture Pour jello powder

Uncertainty score: 0.736

Uncertainty score after observation: 0.333

Pour alcohol Pour mixture into cup Pour jello powder

(a) Make Jello Shots

(b) Change a Tier

Figure 12: Visualization of using an uncertainty-based visual observation to resolve the ambiguity
(T = 3).
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(a) Make Meringue

(b) Make Bread and Butter Pickles

Figure 13: Visualization of using an uncertainty-based visual observation to resolve the ambiguity
(T = 4).
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(a) Make Taco Salad

(b) Make Pancakes

Figure 14: Visualization of using an uncertainty-based visual observation to resolve the ambiguity
(T = 5).
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(a) Make French Toast

(b) Add Oil to Your Car

Figure 15: Visualization of using an uncertainty-based visual observation to resolve the ambiguity
(T = 6).
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