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ABSTRACT

Recently proposed neural resolution-invariant models, despite their effectiveness
and efficiency, usually require equispaced spatial points of data for solving partial
differential equations. However, sampling in spatial domain is sometimes inevitably
non-equispaced in real-world systems, limiting their applicability. In this paper, we
propose a Non-equispaced Fourier PDE Solver (NFS) with adaptive interpolation
on resampled equispaced points and a variant of Fourier Neural Operators as its
components. Experimental results on complex PDEs demonstrate its advantages
in accuracy and efficiency. Compared with the spatially-equispaced benchmark
methods, it achieves superior performance with 42.85% improvements on MAE,
and is able to handle non-equispaced data with a tiny loss of accuracy. Besides,
NFS as a model with mesh invariant inference ability, can successfully model
turbulent flows in non-equispaced scenarios, with a minor deviation of the error on
unseen spatial points.

1 INTRODUCTION

Solving the partial differential equations (PDEs) holds the key to revealing the underlying mechanisms
and forecasting the future evolution of the systems. Recently, data-driven neural PDE solvers
revolutionize this field by providing fast and accurate solutions for PDEs. Unlike approaches designed
to model one specific instance of PDE (E & Yu, 2017; Bar & Sochen, 2019; Smith et al., 2020; Pan &
Duraisamy, 2020; Raissi et al., 2020), neural operators (Guo et al., 2016; Sirignano & Spiliopoulos,
2018; Bhatnagar et al., 2019; KHOO et al., 2020; Li et al., 2020b;d; Bhattacharya et al., 2021;
Brandstetter et al., 2022; Lin et al., 2022) directly learn the mapping between infinite-dimensional
spaces of functions. They remedy the mesh-dependent nature of the finite-dimensional operators by
producing a single set of network parameters that may be used with different discretizations.

However, a problem still exist – discretization-invariant modeling for non-equispaced data. On one
hand, classical vision models and graph spatio-temporal models are not discretization-invariant, while
the infinite neural operator like FNO (Li et al., 2020c) is. On the other hand, despite computational
efficiency, vision models including FNO are equispace-necessary, and limited to handling images
as 2-d regular grids. Therefore, two properties should be available in neural PDE solvers: (1)
discretization-invariance and (2) equispace-unnecessity, and recently proposed methods can be
classified into four types according to the two properties, as shown in Fig. 1.

As discussed, although the equispace-necessary methods enjoy fast parallel computation and low
prediction error, they lack the ability to handle the spatially non-equispaced data. For these reasons,
we aim to design a mesh-invariant model (defined in Fig. 1) called Non-equispaced Fourier neural
Solver (NFS) with comparably low cost of computation and high accuracy, by lending the powerful
expressivity of FNO and vision models to efficiently solve the complex PDE systems.

2 BACKGROUND AND RELATED WORK

2.1 PROBLEM STATEMENT

Let D ∈ Rd be the bounded and open spatial domain where ns-point discretization of the domain D
written as X = {xi = (x

(1)
i , . . . , x

(d)
i ) : 1 ≤ i ≤ ns} are sampled. The observation of input function

a ∈ A(D;Rda) and output u ∈ U(D;Rdu) on the ns points are denoted by {a(xi), u(xi)}ns
i=1, where
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Figure 1: Four types of methods with or without the two concluded limitations.

A(D;Rda) and U(D;Rdu) are separable Banach spaces of function taking values in Rda and Rdu

respectively. Suppose x ∼ µ is i.i.d. sampled from the probability measure µ supported on D. An
infinite-dimensional neural operator Gθ : A(D;Rda) → U(D;Rdu) parameterized by θ ∈ Θ, aims
to build an approximation so that Gθ(a) ≈ u. To establish a mesh-invariant operator, X can be
non-equispaced, and the learned Gθ should be transferred to an arbitary discretization X ′ ∈ D, where
x ∈ X′ can be not necessarily contained in X . Because we focus on spatially non-equispaced points,
when the PDE system is time-dependent, we assume that timestamps {tj} are uniformly sampled.

2.2 METHOD PRELIMINARIES

Kernel integral operator method (Li et al., 2020a) is a family of infinite-dimensional operators,
in which (Gθ(a))(x) = Q ◦ vT ◦ · · · ◦ v1 ◦ P (a)(x) is formulated as an iterative architecture. A
higher-dimensional representation function is first obtained by v0 = P (a) ∈ U(D;Rdv ), where P is
a shallow fully-connected network. It is updated by

vt+1(x) := σ(Wvt(x) +Kϕ(a)v
t(x)), ∀x ∈ D (1)

where Kϕ : A → L(U) is a kernel integral operator mapping, mapping a to bounded linear operators,
with parameters ϕ. W is a linear transform and σ is a non-linear activation function. After the final
iteration, Q projects vT(x) back to U(D;Rdu).

Fourier Neural Operator (FNO) (Li et al., 2020d) as a member in kernel integral operator methodsLi
et al. (2020a), updates the representation by applying the convolution theorem as:

Kϕ(a)v(x) = F−1(F(κϕ) · F(v))(x) = F−1(Rϕ · F(v))(x), (2)

The discrete Fourier transform of f : D → Rdf is denoted by F(f)(k) ∈ Cdf , with F−1 as its
inverse. Rϕ as the Fourier transform of a periodic kernel function κϕ, is directly learned as the
parameters in the updating process. Because the sampled spatial points are equispaced in FNO, it
can efficiently conduct fast Fourier transform (FFT) and its inverse (IFFT) to get the Fourier series.

Vision Mixers (Dosovitskiy et al., 2020; Tolstikhin et al., 2021; Rao et al., 2021; Guibas et al., 2021)
are a line of models with a stack of (token mixing) - (channel mixing) - (token mixing) as their
network structure for vision tasks. The defined tokens are equivalent to equispaced spatial points in
the former definition. In specific, VIT uses a non-Mercer kernel function (Wright & Gonzalez, 2021)
κϕ to adaptively learn the pattern of message-passing through the iterative updating process

vt+1(x) = σ(ChannelMix ◦ TokenMix(vt(x)));

TokenMix(v(x)) =
∑
i

κϕ(x,xi, v(x), v(xi)) · v(xi); ChannelMix(v(x)) =Wv(x), (3)

where W is a linear transform called channel mixing layer because it transforms the input on the
channel of an image whose dimension is equivalent to function dimension df . We omit the residual
connection in Eq. (1) for simplicity. Note that the FNO can be regarded as a member of the family
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Figure 2: The architecture of NFS: In non-equispaced interpolation (NEI) layers, the kernels are
adaptively learned rather than predefined, and the interpolated equispaced signals are processed
through a stack of FNO layers with the same structure of Vision Mixers.

of Vision Mixers (See Appendix A). However, the powerful fitting ability and efficiency of Vision
Mixers are limited to being applied to non-equispaced spatial points.

Graph spatio-temporal models (Seo et al., 2016; Li et al., 2018; Bai et al., 2020; Lin et al., 2021) as
a solution to model non-equispaced spatial points, model interaction patterns among spatial points
in a graph message-passing way, whose mechanism is similar to the token mixing in Vision Mixers.
However, they suffer from high computational complexity and unsatisfactory accuracy.

3 PROPOSED METHOD

3.1 NON-EQUISPACED FOURIER TRANSFORM

Non-equispaced FFTs usually rely on a mixture of interpolation and the judicious use of FFT, where
the calculations of interpolation are no more than O(ns log ns) operations (Kalamkar et al., 2012;
Cheema et al., 2017). For example, Gaussian-based interpolation (Kestur et al., 2010) is commonly
used. Denote F as equispaced FFT in particular, and H as the interpolation operator, and the proposed
non-equispaced FFT is written as

(F ◦ H(f))(k) ≈
√
π

τ
eτ<k,k>

ms∑
j=1

e−2iπ<k,xj>
ns∑
i=1

f(xi)hτ (xi − xj). (4)

H(f)(xj) =
∑ns

i=1 f(xi)hτ (xi − xj) interpolates values on resampled points via convolution with
the periodic heat kernel hτ (x− y) =

∑
l∈Zd e−(x−y)2/4τ , with τ as a constant.

3.2 NON-EQUISPACED FOURIER NEURAL PDE SOLVER

Non-equispaced interpolation. To harness the effectiveness of FNO, we use non-equispaced
Fourier token mixing instead of the equispaced one. It generalizes the equispaced FFT in Eq. (2) as

F̃(v) = (F ◦ Hη(a))(v). (5)

We denote Hη : A → L(U) as the interpolation operator mapping, which maps parametric function
to a bounded interpolation operator. Hη(a) gets the interpolated values on ms resampled equispaced
points via the convolution with kernel hη as

(Hη(a)v)(xj) =
1

ns

ns∑
i=1

v(xi)hη(xj − xi,xi, a(xi)), (6)

where xj lies on resampled equispaced grids. Another H′
ζ interpolates back on the ns non-equispaced

ones in the same way via the convolution with kernel hζ . To reduce the operations to no more than
O(ns log ns), the summation is restricted in the neighborhood of xi and xj , such that |N (xi)| ≈
|N (xj)| ≤ c log ns with c as a predefined constant determining the neighborhood size of spatial
points. We formulate the kernel with a shallow feed-forward neural network. Thanks to the universal
approximation of neural networks, the following theorem assures that the interpolation operator can
approximate the representation function v arbitrarily well. (For detailed proof, see Appendix. B.)
Empirical observations on the convergence of interpolation operators are given in Appendix C.
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Theorem 3.1 (Approximation Theorem of the Adaptive Interpolation). Assume the setting of Theorem
B.2 in Appendix. B is satisfied. µ is the probability measure supported on D. For v ∈ U , suppose
U = Lp(D;Rdv ), for any 1 < p < ∞. Then, given ϵ > 0, there exist a neural network hη :
Rd × Rd × Rda → Rdv , such that ||v̂ − v||U ≤ ϵ, where v̂(x) =

∫
D
hη(x− y,x, a(y))v(y)dµ(y).

3.3 EXPERIMENTS

Benchmarks and protocols. For finite-dimensional operators, we choose Vision Mixers includ-
ing VIT (Dosovitskiy et al., 2020), GFN (Rao et al., 2021) and MLPMIXER (Tolstikhin et al.,
2021) as equispaced problem solvers, with DEEPONET-V and DEEPONET-U as two variants for
DeepONet(Lu et al., 2021) and graph spatio-temporal models including DCRNN (Li et al., 2018),
AGCRN (Bai et al., 2020) and GCGRU (Seo et al., 2016) as non-equispaced problem solvers. For
infinite-dimensional operators, the state-of-the-art FNO (Li et al., 2020d) for equispaced problems
and MPPDE (Brandstetter et al., 2022) for non-equispaced problems are chosen. A brief introduction
to these models is shown in Appendix. B.1. The widely-used metrics - Mean Absolute Error (MAE)
is deployed to measure the performance. The reported mean and standard deviation of metrics are
obtained through 5 independent trials.

Data. We choose 4 equations in experiments: Korteweg de Vries (KdV) and Burgers’ equation
for 1-d problem and Darcy Flow and Navier-Stokes (NS) equation for a viscous, incompressible
fluid in vorticity form on the unit torus for 2-d PDEs. The total number of instances is 1200, with
percentages of 0.7, 0.1 and 0.2 for training, validating and testing, respectively. When evaluating
their performance in equispaced scenarios of different resolutions, we can downsample the resolution
for training to low-resolution data, e.g. 64 × 64 in NS equation. To evaluate their performance in
non-equispaced scenarios of different meshes, we randomly choose ns spatial points for training.
Details are given in Appendix. B.2.

Table 1: MAE(×10−3) comparison with vision mixer benchmarks.
Burgers’ (nt = 10) Darcy Flow NS (nt = 1) NS (nt = 10)

r 512 512 1024 64 128 256 64 64 128 64 64 128
n′t 10 40 20 1 1 1 10 40 20 10 40 20

VIT 0.5042 2.4269 1.5327 0.5073 0.9865 1.1078 9.3797 22.8565 15.7398 3.9609 12.3433 9.3010
MLPMIXER 0.1973 0.4210 0.3303 0.4970 0.8909 0.9125 7.5246 15.8632 14.9360 3.1530 7.9291 7.7410
GFN 0.2383 0.4187 0.3500 0.4739 0.8659 0.9618 3.5524 10.2250 6.3976 1.7396 5.4464 3.1261
FNO 0.0978 0.1815 0.1430 0.4289 0.7086 0.9075 3.3425 8.9857 4.4627 2.4076 7.6979 3.7001
DEEPONET-U 0.4471 1.9624 0.6541 0.3753 0.9488 0.9692 7.4912 16.0440 14.3476 3.4436 10.2950 7.1394
DEEPONET-V 0.4782 2.1707 1.6131 0.5119 0.9614 1.3216 8.6986 18.5561 16.0587 3.9745 12.3314 9.3471
NFS 0.0958 0.1708 0.1474 0.1497 0.2254 0.4216 1.7425 4.7882 2.6988 0.8636 3.1122 1.8406

Performance comparison. In this part, for time-dependent PDEs, our target is to map the observed
physical quantities from initial condition u(X,T ) ∈ Rns×nt , where T = {ti : ti < T}1≤i≤nt , to
quantities at some later time u(X,T ′) ∈ Rns×n′

t , where T ′ = {ti : T < ti < T ′}1≤i≤n′
t
. We set

the input timestamp number nt as 1 (initial state to future dynamics) and 10 (sequence to sequence),
and prediction horizon n′t as 10, 20 and 40 as short-, mid- and long-term settings. For Darcy Flows,
which are independent of time, we directly build an operator to map a to u. In equispaced scenarios,
the resolution is denoted by rd = ns, where d is the spatial dimension. In non-equispaced scenarios,
the spatial points number is denoted by ns. The comparison of methods are shown in Table. 1,
Table. B3 and Fig. B2, and detailed results are given in Appendix. B.3. It can be concluded that
(1) All of the evaluated Vision Mixers are able to model the dynamical systems effectively, in spite
of FNO as the only discretization-invariant model; (2) In equispaced scenarios, the proposed NFS
obtains the lowest error in most 1-d PDE settings, and in solving 2-d PDEs, its superiority over other
Vision Mixers are significant, with 42.85% improvements on MAE according to the trials of NS
(r = 64, nt = 10, n′t = 40). (3) In non-equispaced scenarios, the evaluated graph spatio-temporal
models’ performance is unsatisfactory, especially in NS equations. In comparison, NFS achieves
comparable high accuracy to the equispaced scenarios, for instance, according to columns of NS
(r = 64, nt = 10, n′t = 40) with (ns = 4096, nt = 10, n′t = 40).

Mesh-invariance evaluation and Architecture Analysis. For the evaluation of mesh-invariance and
further analysis on model architecture with more visualization of results, see Appendix. B in detail.
We can conclude that (1) The errors on unseen meshes are larger than the errors on seen meshes, but
acceptable, since they are even lower than other models’ prediction error on seen meshes. (2) Larger
n′s leads to higher prediction error because a large number of unseen points are likely to disturb the
learned token mixing patterns.

4



Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

ACKNOWLEDEGEMENT

This work was supported by National Key R&D Program of China (No. 2022ZD0115100), National
Natural Science Foundation of China Project (No. U21A20427), and Project (No. WU2022A009)
from the Center of Synthetic Biology and Integrated Bioengineering of Westlake University.

REFERENCES

James Atwood and Don Towsley. Diffusion-convolutional neural networks, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent
network for traffic forecasting, 2020.

Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
problems, 2019.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik.
Prediction of aerodynamic flow fields using convolutional neural networks. Computational
Mechanics, 64(2):525–545, jun 2019. doi: 10.1007/s00466-019-01740-0. URL https:
//doi.org/10.1007%2Fs00466-019-01740-0.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B. Kovachki, and Andrew M. Stuart. Model
reduction and neural networks for parametric pdes, 2021.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers, 2022.
URL https://arxiv.org/abs/2202.03376.

Umer I. Cheema, Gregory Nash, Rashid Ansari, and Ashfaq Khokhar. Memory-optimized re-gridding
architecture for non-uniform fast fourier transform. IEEE Transactions on Circuits and Systems I:
Regular Papers, 64(7):1853–1864, 2017. doi: 10.1109/TCSI.2017.2681723.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions on
Neural Networks, 6(4):911–917, 1995. doi: 10.1109/72.392253.

Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haibing Ren, Xiaolin Wei, Huaxia Xia, and
Chunhua Shen. Twins: Revisiting the design of spatial attention in vision transformers, 2021. URL
https://arxiv.org/abs/2104.13840.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering, 2017.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. Attention is not all you need: Pure
attention loses rank doubly exponentially with depth, 2021. URL https://arxiv.org/abs/
2103.03404.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale,
2020. URL https://arxiv.org/abs/2010.11929.

Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm for solving
variational problems, 2017.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro.
Adaptive fourier neural operators: Efficient token mixers for transformers, 2021. URL https:
//arxiv.org/abs/2111.13587.

5

https://arxiv.org/abs/1607.06450
https://doi.org/10.1007%2Fs00466-019-01740-0
https://doi.org/10.1007%2Fs00466-019-01740-0
https://arxiv.org/abs/2202.03376
https://arxiv.org/abs/2104.13840
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2103.03404
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2111.13587
https://arxiv.org/abs/2111.13587


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, pp. 481–490, New York, NY, USA, 2016. Associa-
tion for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939738. URL
https://doi.org/10.1145/2939672.2939738.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural Networks, 2(5):359–366, 1989. ISSN 0893-6080. doi: https:
//doi.org/10.1016/0893-6080(89)90020-8. URL https://www.sciencedirect.com/
science/article/pii/0893608089900208.

Dhiraj D. Kalamkar, Joshua D. Trzaskoz, Srinivas Sridharan, Mikhail Smelyanskiy, Daehyun Kim,
Armando Manduca, Yunhong Shu, Matt A. Bernstein, Bharat Kaul, and Pradeep Dubey. High
performance non-uniform fft on modern x86-based multi-core systems. In 2012 IEEE 26th
International Parallel and Distributed Processing Symposium, pp. 449–460, 2012. doi: 10.1109/
IPDPS.2012.49.

Srinidhi Kestur, Sungho Park, Kevin M. Irick, and Vijaykrishnan Narayanan. Accelerating the
nonuniform fast fourier transform using fpgas. In 2010 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, pp. 19–26, 2010. doi: 10.1109/FCCM.
2010.13.

YUEHAW KHOO, JIANFENG LU, and LEXING YING. Solving parametric PDE prob-
lems with artificial neural networks. European Journal of Applied Mathematics, 32(3):421–
435, jul 2020. doi: 10.1017/s0956792520000182. URL https://doi.org/10.1017%
2Fs0956792520000182.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces, 2021. URL http://tensorlab.cms.caltech.edu/users/anima/pubs/
GraphPDE_Journal.pdf.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural network:
Data-driven traffic forecasting, 2018.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations, 2020a. URL https://arxiv.org/abs/2003.03485.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial differential
equations, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations, 2020c.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
2020d. URL https://arxiv.org/abs/2010.08895.

Haitao Lin, Zhangyang Gao, Yongjie Xu, Lirong Wu, Ling Li, and Stan. Z. Li. Conditional local
convolution for spatio-temporal meteorological forecasting, 2021.

Haitao Lin, Guojiang Zhao, Lirong Wu, and Stan Z. Li. Stonet: A neural-operator-driven spatio-
temporal network, 2022. URL https://arxiv.org/abs/2204.08414.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining
Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021. URL
https://arxiv.org/abs/2103.14030.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3:218–229, 2021.

6

https://doi.org/10.1145/2939672.2939738
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://www.sciencedirect.com/science/article/pii/0893608089900208
https://doi.org/10.1017%2Fs0956792520000182
https://doi.org/10.1017%2Fs0956792520000182
http://tensorlab.cms.caltech.edu/users/anima/pubs/GraphPDE_Journal.pdf
http://tensorlab.cms.caltech.edu/users/anima/pubs/GraphPDE_Journal.pdf
https://arxiv.org/abs/2003.03485
https://arxiv.org/abs/2010.08895
https://arxiv.org/abs/2204.08414
https://arxiv.org/abs/2103.14030


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

Xiaofeng Mao, Gege Qi, Yuefeng Chen, Xiaodan Li, Ranjie Duan, Shaokai Ye, Yuan He, and Hui Xue.
Towards robust vision transformer, 2021. URL https://arxiv.org/abs/2105.07926.

Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and
Ming-Hsuan Yang. Intriguing properties of vision transformers, 2021. URL https://arxiv.
org/abs/2105.10497.

Shaowu Pan and Karthik Duraisamy. Physics-informed probabilistic learning of linear embeddings
of nonlinear dynamics with guaranteed stability. SIAM Journal on Applied Dynamical Systems, 19
(1):480–509, Jan 2020. ISSN 1536-0040. doi: 10.1137/19m1267246. URL http://dx.doi.
org/10.1137/19M1267246.

Namuk Park and Songkuk Kim. How do vision transformers work?, 2022. URL https://arxiv.
org/abs/2202.06709.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification, 2021. URL https://arxiv.org/abs/2107.00645.

Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson. Structured sequence
modeling with graph convolutional recurrent networks, 2016.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, dec 2018. doi: 10.1016/
j.jcp.2018.08.029. URL https://doi.org/10.1016%2Fj.jcp.2018.08.029.

Jonathan D. Smith, Kamyar Azizzadenesheli, and Zachary E. Ross. Eikonet: Solving the eikonal
equation with deep neural networks, 2020.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.org/abs/2105.01601.

Shikhar Tuli, Ishita Dasgupta, Erin Grant, and Thomas L. Griffiths. Are convolutional neural
networks or transformers more like human vision?, 2021. URL https://arxiv.org/abs/
2105.07197.

Matthew A. Wright and Joseph E. Gonzalez. Transformers are deep infinite-dimensional non-mercer
binary kernel machines, 2021. URL https://arxiv.org/abs/2106.01506.

Baosong Yang, Longyue Wang, Derek Wong, Lidia S. Chao, and Zhaopeng Tu. Convolutional
self-attention networks, 2019. URL https://arxiv.org/abs/1904.03107.

7

https://arxiv.org/abs/2105.07926
https://arxiv.org/abs/2105.10497
https://arxiv.org/abs/2105.10497
http://dx.doi.org/10.1137/19M1267246
http://dx.doi.org/10.1137/19M1267246
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2202.06709
https://arxiv.org/abs/2107.00645
https://doi.org/10.1016%2Fj.jcp.2018.08.029
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.07197
https://arxiv.org/abs/2105.07197
https://arxiv.org/abs/2106.01506
https://arxiv.org/abs/1904.03107


Accepted at the ICLR 2023 Workshop on Physics for Machine Learning

A DISCUSSION OF METHODS

FNO can be regarded as a member of the family of Vision Mixers. The reason is that a
component in an iteration in Eq. (2) can be written as (Rϕ · F(v))(x) = Rϕ ·

∑
i e

−2πi<x,xi>v(xi),
because in the equispaced scenarios, xi can be regarded as lying on the same grids as k after
scaling. The kernel κϕ is parameterized by κϕ(x,xi, v(x), v(xi)) = e−2πi<x,xi> , and the matrix
multiplication of Rϕ also performs mixing on channels. Besides, the inverse Fourier transform can
also be regarded as token mixing layers, or so-called token demixing layers (Guibas et al., 2021).

Applicability of Layer-Norm. As shown in Fig. 2, besides the comparison of the proposed
interpolation operator with the traditional ones, a notable difference between the original FNO and
FNO layers in our Vision Mixer architecture is the applicability of normalization layers (Layer-Norm)
which is usually used in Vision Mixers’ architecture. FNO cannot adapt Layer-Norm layers, because
the change of resolution will make the trained normalization parameters and spatial points disagree
with each other. In comparison, the resampled equispaced points are fixed in our architecture, no
matter how the discretization of the input changes. Therefore, the normalization layers can be added,
in a similar way to Vision Mixers, bringing considerable improvements (See Sec. B.5).

Mesh invariance. In the intermediate layers, which adopt equispaced FNO, the resampled points
are fixed in both training and inference process, invariant to the input meshes. In the interpolation
layers, the operator Hη(a) is discretization-invariant because the kernel can be inductively obtained
by the newly observed signals a(x), its coordinate x and resampled spatial points’ relative coordinates
xj − x. In the same way, H′

ζ(a) is also mesh-invariant. This allows the NFS to achieve zero-shot
mesh-invariant inference ability, which is demonstrated in Sec. ??.

Complexity analysis. The complexity of FNO is O(ns log ns + nskmax). In the interpolation
layers, because the interpolated values of resampled points are determined by their neighbors, we
set the size of each resampled point’s neighborhood in G and observed non-equispaced points’s
neighborhood in G′ as |N (xi)| ≈ |N (xj)| ≤ c log(ns), for 1 ≤ i ≤ ns, 1 ≤ j ≤ ms. And in this
way, the sparsity of the interpolation matrix reduces the complexity of the two interpolation layers to
O(c · ns log ns + c ·ms log ns). If we set the resampled points number as ns, the overall complexity
is O(2c · ns log ns + ns log ns + nskmax) ∼ O(ns log ns + nskmax).

Relation to Vision Mixer. The interpolation can be compared to patchwise embedding in Vision
Mixers. For example, MLPMIXER learns the token mixing patterns adaptively with a feed-forward
network, but the high resolution of input images does not permit the global mixing of tokens due to
the complexity of O(n2s). Therefore, the input images are firstly rearranged into patches, with each
patch containing np pixels. In this way, the complexity is reduced to O(n2s/n

2
p), enabling feasible

token mixing. The patchwise embedding is very similar to interpolating the values on resampled
points, as the former one first chooses patches’ centers as n2s/n

2
p resampled points, and ‘interpolates’

the resampled points by lifting the embedding dimension and the rearranging of their neighbors’
values as the interpolated values, rather than using a kernel.

Relation to multipole graph model. The adaptively learned interpolation layer in NFS has
a similar formulation of multipole graph models (Li et al., 2020b). In multipole graph mod-
els, the high-level nodes aggregate messages from their low-level neighbors as vHigh(xj) =

1
|N (xj)|

∑
xi∈N (xj)

vLow(xi)hη(xj ,xi, a(xj), a(xi)). Compared to multipole graph models, the
values of high-level resampled equispaced nodes are approximated with low-level non-equispaced
nodes’ values in NFS, but nodes’ values of low levels are given in multipole graphs. This causes
differences in multipole graph models’ message-passing and NFS’s interpolation: In the former one,
messages flow circularly among different levels of nodes, while in NFS, messages only exchange
twice between the nodes of two levels – one is from low-level non-equispaced nodes to high-level
resampled equispaced nodes, and the other is the opposite.
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B APPROXIMATION THEOREM

Proof of Theorem 3.1. Our proof is mostly based on Chen & Chen (1995) and Kovachki et al.
(2021). For notation simplicity, in the proof, we directly write Hη(a) as Hη as the linear operator.
Lemma B.1. Let X be a Banach space, and U ⊆ X a compact set, and K ⊂ X a dense set.
Then, for any ϵ > 0, there exists a number n ∈ N, and a series of continuous, linear functionals
G1, G2, . . . , Gn ∈ C(U ;R), and elements φ1, . . . , φn ∈ K, such that

sup
u∈U

||v −
n∑

j=1

Gj(v)φj ||X ≤ ϵ (7)

The proof is given in Lemma 7. in Kovachki et al. (2021), and Theorem 3. and 4. for reference .
Theorem B.2. Let D ⊆ Rd be compact domain. Let U be a separable Banach space of real-valued
functions on D, such that C(D,R) ⊆ U is dense. Suppose U = Lp(D;R) for any 1 < p < ∞.
ν is a probability measure supported on U and assume that, Ev∼ν ||v||U < ∞ for any v ∈ U . µ
is a probabilistic measure supported on D, which defines the inner product of Hilbert space U as
< f, g >U=

∫
D
f(x)g(x)dµ(x). Then, there exists a neural network hη : Rd × Rd → R whose

activation functions are of the Tauber-Wiener class, such that
||v −H(v)||U ≤ ϵ,

where H(v)(x) =
∫
D
hη(x,y)v(y)dµ(y).

Proof. Since U is a Polish space, we can find a compact set K, such that ν(U \ K) ≤ ϵ. Therefore,
Lemma B.1 can be applied, to find a number n ∈ N, a series of continuous linear functionals
Gj ∈ C(U ;R) and functions φj ∈ C(D;R) such that

sup
v∈K

||v −
n∑

j=1

Gj(v)φj ||U ≤ ϵ.

Denote Ĥn(v) =
∑n

j=1Gj(v)φj , and let 1 < q < ∞ be the Hölder conjugate of p. Since
U = Lp(D;R), by Reisz Representation Theorem, there exists functions gj ∈ Lq(D;R), such
that Gj(v) =

∫
D
v(x)gj(x)dµ(x) for j = 1, . . . , n and v ∈ Lp(D;R). By density of C(D;R) in

Lq(D;R), we can find functions ψ1, . . . , ψn ∈ C(D;R), such that
sup

j∈{1,...,n}
||ψj − gj ||Lq(D;R) ≤ ϵ/n.

Then, we define H̃n : Lp(D;R) → C(D;R) by

H̃n(v) =

n∑
j=1

∫
D

ψj(y)v(y)dµ(y)φj(x).

For the universal approximation (density) (Hornik et al., 1989) of neural networks, we can find
a Multi-layer Feedforward network hη : Rd × Rd → R whose activation functions are of the
Tauber-Wiener class, such that

sup
x,y∈D

|hη(x,y)−
n∑

j=1

ψj(y)φj(x)| ≤ ϵ.

Let Hη(x) =
∫
D
hη(x,y)v(y)dµ(y). Then, there exists a constant C1 > 0, such that

||Ĥn(v)−H(v)||Lp(D;R) ≤ C1(||Ĥn(v)− H̃n(v)||Lp(D;R) + ||H̃n(v)−H(v)||Lp(D;R)).

For the first term, there is a constant C2 > 0, such that

||Ĥn(v)− H̃n(v)||Lp(D;R) ≤ C2

n∑
j=1

||
∫
D

v(y)(gj(y)− ψj(y))dµ(y)φj ||Lp(D;R)

≤ C2

n∑
j=1

||v(y)||Lp(D;R)||gj(y)− ψj(y)||Lq(D;R)||φj ||Lp(D;R)

≤ C3ϵ||v(y)||Lp(D;R),

9
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for some C3 > 0. And for the second term,

||H̃n(v)−H(v)||Lp(D;R) = ||
∫
D

v(y)(

n∑
j=1

ψj(y)φj(·)− hη(·,y))dµ(y)||Lp(D;R)

≤ |D|ϵ||v||Lp(D;R),

Therefore, there is a constant C > 0, such that∫
U
||Ĥn(v)− H̃n(v)||Udν(v) ≤ ϵCEv∼ν ||v||U

. Because of the assumption that Ev∼ν ||v||U <∞, and ϵ is arbitrary, then

||v −H(v)||U ≤ ||v − Ĥn(v)||U + ||Ĥn(v)−H(v)||U ,

the proof is complete.

Corollary B.3. Define Hη(v) =
∫
D
hη(x− y,x, a(y))v(y)dµ(y), the interpolation operator can

also approximate v to any precision ϵ.

Proof. We use a one-layer neural network hη : D × D → R as an example, which is defined as
hη(x,y, a(y) = σ(

∑d
i=1 wx,ix

(i) + wy,iy
(i) + b). We can rewrite it as

hη = σ(

d∑
i=1

wx,i(x
(i) − y(i)) + (wy,i + wx,i)y

(i) +

da∑
j=1

wa,ja
(j)(y) + b),

where wa,j = 0.

Corollary B.4. The Theorem B.2 and Corollary B.3 can be extended for v : D → Rdv , where
dv > 1.

Proof. As v = (v(1), v(2), . . . , v(dv)), for each v(j), a single neural network can be used for approxi-
mation. Moreover, in implementation, we make hη fully-connected, to improve the expressivity.

Remark. As
∑

xi∈X v(xi)hη(x−xi,xi, a(xi)) is the unbiased estimation of Ey∼µ(hη(x,y)v(y)),
we use the Equation. (6) for the approximation.

B.1 BENCHMARK METHOD DESCRIPTION

Token
Mixing

Channel
Mixing

Token
Demixing

Channel
Mixing Norm

Residual
Transform

ActivationEquispaced
Input

Equispaced
Output

Figure B1: The architecture of Vision Mixers.

Vision Mixers. We provide a framework for vision mixers as PDE solvers, including VIT, MLP-
MIXER, FNET, GFN, FNO, PFNO and our NFS. The intermediate architecture of mixing layers
is shown in Fig. B1. The code of our framework will be released soon. And the resampling and
back-sampling methods are stacked before ‘Equispaced Input’ and ‘Equispaced Output’. In this
way, the description of the Vision Mixers included in our framework can be described by different
modules, as shown in Table. B1. All the trials on Vision Mixers set embedding size as 32, batch
size as 4, layer number of the intermediate equispaced mixing layers as 2. In FNO and PFNO, the
truncated Kmax is set as 16. The patch size of Vision Mixers with patchwise embedding are set as
[4, 2] in 1-d PDEs and [4, 4, 2] in 2-d PDEs. The interpolation layers in NFS are composed of one
layer of feed-forward network whose perceptron unit is equal to 4× embedding size of the model.
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Table B1: Description of Vison Mixers in the unifying framework module by module.
Modules VIT MLPMIXER FNET GFN FNO PFNO NFS

Resampling Patchwise
Embedding

Patchwise
Embedding

Patchwise
Embedding

Patchwise
Embedding Identity Patchwise

Embedding Interpolation

Token
Mixing Attention MLP Fourier Fourier Fourier Fourier Fourier

Channel
Mixing Linear Linear Linear Elementwise

Product
Low Frequency

MatMultiply
Low Frequency

MatMultiply
Low Frequency

MatMultiply

Token
Demixing Identity Identity Identity Inverse

Fourier
Inverse
Fourier

Inverse
Fourier

Inverse
Fourier

Channel
Mixing Identity Identity Identity Linear Identity Identity Identity

Normalization LayerNorm LayerNorm Complex
LayerNorm LayerNorm Identity LayerNorm LayerNorm

Residual Identity Identity Identity Identity 1x1 Conv 1x1 Conv 1x1 Conv

Activation Gelu Gelu Complex
Gelu Gelu Gelu Gelu Gelu

Back
Sampling

Linear+
Rearrange

Linear+
Rearrange

Linear+
Rearrange

Linear+
Rearrange Identity Linear+

Rearrange Interpolation

DeepONet Variants. Since vanilla DeepONet uses MLP as Branch Net, it cannot be implemented in
such a high-resolution dataset, because for a resolution like the trial (NS ns = 4096, nt = 10, n′t = 10
), DeepONet assigns each data point a weight parameter in a single MLP, leading the MLP’s parameter
number reaches O(n2sn

2
t ) ≈ 409602 in a single Branch Net, which is infeasible in practice. In the

original paper, the spatial point’s number in the experiments is set as 40, far less than in the recent
Neural Operator’s evaluation protocol.

One feasible alternative is to use other architecture to replace the original MLP, thus allowing
DeepONet to handle high-resolution data. For example, CNN and Vit. Therefore, we here conduct
further experiments on the three equations in the context, to evaluate DeepONet-U (using UNet as
the Branch Net) and DeepONet-V (using Vit as the Branch Net) as two variants of vanilla DeepONet
for comparison. Note that the architecture of variants of DeepONet are all limited to equispaced data.

Graph Spatio-Temporal Models. The evaluated graph spatio-temporal neural networks are based
on recurrent neural networks for dynamics modeling, where the spatial dependency is modeled by
graph neural networks. The spatial and temporal modules for AGCRN, DCRNN and GCGRU are
shown in Table. B2. MPPDE used different architecture, with the pushforward trick used for taining,
with rolling equaling 1 and time window equaling to 10 . All the trials on these graph spatio-tempral
models set embedding size as 64, except MPPDE as 128. Batch size is set as 4. When the graph
convolution needs multi-hop message-passing, we set the hop as 2. For MPPDE, the layer number of
GNNs is 6. The embedding dimension in AGCRN is set as 2.

Table B2: Description of different graph spatio-temporal models
Methods Spatial module Temporal module

GCGRU Seo et al. (2016) Cheb Conv Defferrard et al. (2017) GRU
DCRNN Li et al. (2018) Diff Conv Atwood & Towsley (2016) GRU
AGCRN Bai et al. (2020) Node Similarity Bai et al. (2020) GRU

B.2 DATA GENERATION

Burgers’ Equation. The initial condition u0(x) is generated according to u0 ∼ N(0.625(−∆+
25I)−2) with periodic boundary conditions. ν is set as 0.01. x ∈ [0, 1] and t ∈ [0, 1]. The spatial
resolution is 1024, and time resolution is 200. The dataset generation follows FNO’s protocol, which
can be downloaded from its source code on official Github.
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KdV Equation. The equation is written as

∂tu(x, t) + 3∂xu
2(x, t) + ∂3xu(x, t) = 0, (8)

where x ∈ [0, 1]. The initial condition u0(x) is calculated as

u(x, 0) =

K∑
i=1

0.5ci cos(0.5
√
ci + bix− ai)

where ci ∼ N(0, σi), and ai, bi > 0. The spatial resolution is 1024. The dataset is generated by
scipy package, with fftpack.diff used as pesudo-differential method and odeint used as
forward Euler method.

Darcy Flow. The equation is written as

−∇(a(x)∇u(x)) = f(x) x ∈ (0, 1)2

u(x) = 0 x ∈ ∂[0, 1]2
(9)

The original resolution is 256× 256. a(x) is generated by Gaussian random field, and we directly
establish the operator to learn the mapping of a to u.

NS Equation. Our generation of NS Equation is based on FNO’s Appendix. A.3.3, which is

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x),

∇ · u(x, t) = 0, w(x, 0) = w0(x),
(10)

where x ∈ [0, 1]2, t ∈ [0, 1]. u is the velocity field, w = ∇ × u is the vorticity, w0 is the initial
vorticity, ν ∈ R+ is the viscosity coefficient, and f is the forcing function which is kept fixed. The
original spatial resolution is 128× 128, and time resolution is 200.

B.3 COMPLETE RESULTS ON MODEL COMPARISON

Table. B3 and Fig. B2 is a brief demonstration of the model comparison.
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(a) Equispaced comparison
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(b) Non-equispaced comparison
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Figure B2: In (a) and (b), ‘△’ represents Vision Mixers, ‘□’ represents graph spatio-temporal models
and ‘⃝’ is the proposed NFS. In (c), ‘Eq’ and ‘Neq’ mean the methods are trained in equispaced and
non-equispaced scenarios respectively.

Table B3: MAE(×10−3) comparison with graph spatio-temporal benchmarks.
Burgers’ (nt = 10) Darcy Flow NS (nt = 1) NS (nt = 10)

ns 512 512 256 4096 16384 1024 4096 4096 1024 4096 4096 1024
n′t 10 40 20 1 1 1 10 40 20 10 40 20

DCRNN 2.6122 8.5880 4.6126 1.7629 OOM 1.8146 30.6756 88.3382 52.1290 8.7025 59.6602 27.1069
AGCRN 4.6667 15.6143 10.4900 1.7336 OOM 1.6938 OOM OOM 59.9393 OOM OOM 42.4197
GCGRU 1.6643 5.7653 3.1400 1.7403 OOM 1.7633 28.8537 85.9303 49.9352 6.3570 57.2493 21.3537
MPPDE 1.1271 4.1213 2.4554 0.5608 0.6384 0.6673 8.9810 54.2387 20.7453 5.4353 42.3057 17.5902
NFS 0.1085 0.1983 0.1634 0.1430 0.2379 0.1727 2.1992 4.7865 3.9178 0.9335 3.2768 1.8239

Complete results on the four Equations. Table. B4 give the performance comparison on Darcy flow
of both equispaced and non-equispaced scenarios. Table. B5 and B6 gives performance comparison
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in equispaced scenarios on the other three time-dependent problems. Table. B7 and B8 gives
performance comparison in non-equispaced scenarios on the other three time-dependent problems.
In all the tasks except Darcy Flow, the depth of layer is set as 2, and kmax = 16 in both NFS
and FNO. However, we find in Darcy Flow, kmax should be set much larger, or the loss will not
decrease. In the reported results, kmax = 32, 64, 128 in Darcy Flow.

Table B4: Performance comparison on Darcy Flow.
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Darcy Flow
(r = 64)

Darcy Flow
(r = 128)

Darcy Flow
(r = 256)

VIT 0.5073±0.0411 0.8468±0.0432 0.9865±0.0002 1.6195±0.0007 1.1078±0.0021 1.8444±0.0023

MLPMIXER 0.4970±0.0021 0.8228±0.0034 0.8909±0.0099 1.4221±0.0118 0.9125±0.0024 1.6459±0.0032

GFN 0.4739±0.0016 0.8345±0.0019 0.8659±0.0046 1.4237±0.0071 0.9618±0.0124 1.6139±0.0128

FNO 0.4289±0.0051 0.7740±0.0046 0.7086±0.0045 0.1324±0.0019 0.9075±0.0051 1.4940±0.0046

NFS 0.1497±0.0005 0.1962±0.0007 0.2254±0.0007 0.7245±0.0009 0.4216±0.0033 0.8578±0.0041

Darcy Flow
(ns = 1024)

Darcy Flow
(ns = 4096)

Darcy Flow
(ns = 16384)

DCRNN 1.8146±0.0060 2.6352±0.0029 1.7629±0.0003 2.5760±0.0001 OOM OOM
AGCRN 1.6938±0.0001 2.4440±0.0001 1.7336±0.0001 2.4167±0.0001 OOM OOM
GCGRU 1.7633±0.0001 2.5696±0.0001 1.7403±0.0001 2.5363±0.0001 OOM OOM
MPPDE 0.6673±0.0009 0.9290±0.0012 0.5608±0.0053 0.8424±0.0051 0.6384±0.0005 0.8748±0.0005

NFS 0.1727±0.0047 0.2311±0.0066 0.1430±0.0007 0.1914±0.0014 0.2379±0.0007 0.3489±0.0009

Table B5: Performance comparison with Vision Mixer benchmarks on different equations (nt = 1).
Validation loss on Burgers’(nt = 1) of VIT, GFN, and FNO does not converge. The results show
that the early-stopping occurs in the begining of training.

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Vision Mixers Burgers’
(r = 512, n′t = 10)

Burgers’
(r = 512, n′t = 40)

Burgers’
(r = 1024, n′t = 20)

VIT 201.6539±0.5284 231.9138±0.8403 183.6696±0.3015 210.6237±0.6767 195.5858±0.7706 224.4712±1.2472

MLPMIXER 201.6547±0.0671 231.9163±0.0263 183.6535±0.0599 210.6160±0.0305 195.5960±0.0240 224.4791±0.0132

GFN 201.6557±0.9513 231.9122±0.9535 183.6674±0.4893 210.6165±0.4831 195.5918±0.0471 224.4736±0.0681

FNO 201.6527±1.1415 231.9119±1.6747 183.6696±0.3015 210.6299±0.4983 195.5902±0.9304 224.4723±0.9230

NFS 0.1806±0.0005 0.2669±0.0010 0.3570±0.0008 0.5340±0.0009 0.4344±0.0014 0.6092±0.0017

KdV
(r = 512, n′t = 10)

KdV
(r = 512, n′t = 40)

KdV
(r = 1024, n′t = 20)

VIT 0.2808±0.0006 0.3938±0.0009 0.3428±0.0012 0.6832±0.0016 0.3066±0.0003 0.5461±0.0003

MLPMIXER 0.2732±0.0054 0.4259±0.0088 0.3336±0.0045 0.5923±0.0081 0.2872±0.0005 0.5235±0.0006

GFN 0.2587±0.0032 0.3490±0.0056 0.3086±0.0223 0.5952±0.0338 0.2011±0.0074 0.3464±0.0063

FNO 0.2619±0.0069 0.3849±0.0107 0.5608±0.0053 0.8424±0.0051 0.3925±0.0079 0.4623±0.0087

NFS 0.2514±0.0008 0.3776±0.00011 0.4522±0.0013 0.6290±0.0022 0.2254±0.0007 0.0745±0.0010

NS
(r = 64, n′t = 10)

NS
(r = 64, n′t = 40)

NS
(r = 128, n′t = 20)

VIT 9.3797±0.0421 12.9291±0.0703 22.8565±0.0935 29.1130±0.1428 15.7398±0.0757 20.6927±0.0664

MLPMIXER 7.5246±0.0080 10.4762±0.0096 15.8632±0.0375 20.1522±0.0604 14.9360±0.0305 19.3268±0.0635

GFN 3.5524±0.0057 4.7071±0.0088 10.2250±0.0331 13.0451±0.0704 6.3976±0.00345 8.2685±0.297

FNO 3.3425±0.0007 5.2566±0.0008 8.9857±0.0010 14.0171±0.0023 4.4627±0.0004 6.3047±0.0004

NFS 1.7425±0.0017 2.2847±0.0022 4.7882±0.0066 6.1508±0.0042 2.6988±0.0005 3.5121±0.0006

NFS fails to model the non-equispaced Burgers’ Equation when nt is set as 1, in which the perfor-
mance is far from it can achieve in equispaced scenarios. Such problem will be our future work.
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Table B6: Performance comparison with Vision Mixer benchmarks on different equations (nt = 10).
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Vision Mixers Burgers’
(r = 512, n′t = 10)

Burgers’
(r = 512, n′t = 40)

Burgers’
(r = 1024, n′t = 20)

VIT 0.5042±0.0114 0.7667±0.0225 2.4269±0.0288 3.7728±0.0431 1.5327±0.0314 2.4093±0.0408

MLPMIXER 0.1973±0.0070 0.2600±0.0097 0.4210±0.0084 0.5844±0.0101 0.3303±0.0077 0.4473±0.0086

GFN 0.2383±0.0082 0.3066±0.0114 0.4187±0.0079 0.5407±0.0090 0.3500±0.0062 0.4489±0.0081

FNO 0.0978±0.0019 0.1287±0.0023 0.1815±0.0009 0.2410±0.0011 0.1430±0.0009 0.1871±0.0010

NFS 0.0958±0.0015 0.1347±0.0022 0.1708±0.0006 0.2351±0.0009 0.1474±0.0026 0.1957±0.0034

KdV
(r = 512, n′t = 10)

KdV
(r = 512, n′t = 40)

KdV
(r = 1024, n′t = 20)

VIT 0.2066±0.0027 0.3525±0.0049 0.2376±0.0022 0.5521±0.0036 0.1897±0.0003 0.3725±0.0009

MLPMIXER 0.2152±0.0023 0.3686±0.0039 0.2497±0.0017 0.5400±0.0029 0.2062±0.0007 0.4429±0.0012

GFN 0.1530±0.0004 0.2607±0.0006 0.2691±0.0007 0.5451±0.0014 0.1984±0.0002 0.3869±0.0003

FNO 0.3230±0.0035 1.1105±0.0061 0.9605±0.0024 2.7500±0.0055 0.5929±0.0020 1.6473±0.0033

NFS 0.0678±0.0002 0.1214±0.0003 0.2709±0.0009 0.5122±0.0013 0.1576±0.0003 0.3114±0.0005

NS
(r = 64, n′t = 10)

NS
(r = 64, n′t = 40)

NS
(r = 128, n′t = 20)

VIT 3.9609±0.0101 6.0575±0.0250 12.3433±0.0342 16.5238±0.0415 9.3010±0.0234 14.0027±0.0380

MLPMIXER 3.1530±0.0049 4.4339±0.0067 7.9291±0.0038 10.4149±0.0066 7.7410±0.0037 10.1934±0.0082

GFN 1.7396±0.0016 2.3551±0.0028 5.4464±0.0023 7.2130±0.0032 3.1261±0.0026 4.1691±0.0047

FNO 2.4076±0.0017 3.2861±0.0024 7.6979±0.0035 10.6401±0.0056 3.7001±0.0034 5.0047±0.0072

NFS 0.8636±0.0008 1.2264±0.0011 3.1122±0.0020 4.1950±0.0037 1.8406±0.0003 2.5620±0.0005

Table B7: Performance comparison with graph spatio-temporal benchmarks (nt = 1).
Graph Spatio-

Temporal
Models

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, n′t = 10)

Burgers’
(ns = 256, n′t = 20)

Burgers’
(ns = 512, n′t = 40)

DCRNN 277.8393±0.0082 346.1716±0.0088 292.1712±0.0280 368.1883±0.0204 298.4096±0.0137 373.0938±0.0186

AGCRN 289.9780±0.0001 360.9834±0.0001 272.6697±0.3404 340.1351±0.5435 305.4976±0.2120 376.0804±0.2385

GCGRU 288.4507±0.0246 361.1175±0.0512 294.9075±0.0005 367.4703±0.0004 291.0365±0.0265 365.1668±0.0827

MPPDE 24.4997±0.0014 34.5123±0.0017 25.4357±0.0002 31.7015±0.0002 25.3311±0.0004 33.7808±0.0005

NFS 16.1860±0.0016 28.1504±0.0021 21.1634±0.0018 33.8976±0.0018 26.0818±0.0001 44.7962±0.0003

KdV
(ns = 512, n′t = 10)

KdV
(ns = 256, n′t = 20)

KdV
(r = 512, n′t = 40)

DCRNN 1.6855±0.0001 3.0875±0.0001 3.1267±0.0001 4.8662±0.0001 5.7387±0.0001 8.3752±0.0001

AGCRN 4.0753±0.0001 6.8943±0.0001 5.4107±0.0001 9.2333±0.0001 8.4438±0.0001 13.8677±0.0001

GCGRU 1.6554±0.0001 2.6839±0.0001 3.0677±0.0001 4.6557±0.0001 5.8745±0.0001 9.4528±0.0001

MPPDE 1.5452±0.0001 2.6774±0.0001 2.9929±0.0007 5.4582±0.0010 3.0101±0.0001 4.9946±0.0001

NFS 0.0816±0.0012 0.1512±0.0022 0.1576±0.0007 0.3114±0.0018 0.3210±0.0021 0.6873±0.0049

NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

DCRNN 30.6756±0.0001 41.7815±0.0001 52.1290±0.0138 69.7019±0.0032 88.3382±0.0864 119.5021±0.0055

AGCRN OOM OOM 59.9393±0.0001 79.0434±0.0001 OOM OOM
GCGRU 28.8537±0.0019 40.1215±0.0008 49.9352±0.0028 67.5623±0.0014 85.9303±0.0731 117.9925±0.0172

MPPDE 8.9810±0.0014 12.1595±0.0022 20.7453±0.0008 32.1098±0.0018 54.2387±0.0006 90.0190±0.0007

NFS 2.1992±0.0021 2.8280±0.0033 3.9178±0.0054 5.0182±0.0080 4.7865±0.0042 6.1384±0.0069
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Table B8: Performance comparison with graph spatio-temporal benchmarks (nt = 10).
Graph Spatio-

Temporal
Models

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, n′t = 10)

Burgers’
(ns = 256, n′t = 20)

Burgers’
(ns = 512, n′t = 40)

DCRNN 2.6122±0.0014 3.8435±0.0019 4.6126±0.0015 6.8853±0.0033 8.5880±0.0020 12.7394±0.0037

AGCRN 4.6667±0.0001 6.2791±0.0001 10.4900±0.0009 13.9810±0.0022 15.6143±0.0002 21.0937±0.0001

GCGRU 1.6643±0.0002 2.5074±0.0003 3.1400±0.0010 4.8008±0.0019 5.7653±0.0021 8.9335±0.0028

MPPDE 1.1271±0.0004 1.8838±0.0007 2.4554±0.0003 4.4315±0.0006 4.1213±0.0006 6.1980±0.0009

NFS 0.1085±0.0016 0.1504±0.0021 0.1634±0.0018 0.2328±0.0018 0.1983±0.0001 0.2775±0.0003

KdV
(ns = 512, n′t = 10)

KdV
(ns = 256, n′t = 20)

KdV
(r = 512, n′t = 40)

DCRNN 2.3196±0.0001 4.1634±0.0001 3.4503±0.0005 5.7450±0.0003 4.9286±0.0010 8.3912±0.0008

AGCRN 3.9350±0.0001 6.1166±0.0001 5.6631±0.0001 8.1191±0.0001 8.2893±0.0002 11.5684±0.0003

GCGRU 1.6643±0.0001 2.5074±0.0001 3.4205±0.0001 5.6873±0.0001 2.5032±0.0002 5.4515±0.0003

MPPDE 1.4967±0.0003 2.6309±0.0002 2.9708±0.0027 5.3811±0.0050 2.4293±0.0006 4.9310±0.0005

NFS 0.0816±0.0012 0.1512±0.0022 0.1576±0.0007 0.3114±0.0018 0.3210±0.0021 0.6873±0.0049

NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

DCRNN 8.7025±0.0003 12.5238±0.0002 27.1069±0.0024 39.1259±0.0031 59.6602±0.0177 88.2946±0.0146

AGCRN OOM OOM 42.4197±0.0006 60.5375±0.0008 OOM OOM
GCGRU 6.3570±0.0001 9.7306±0.0002 21.3537±0.0026 32.9674±0.0033 57.2493±0.0085 84.1847±0.0106

MPPDE 5.4353±0.0041 7.8838±0.0037 17.5902±0.0013 25.9372±0.0016 42.3057±0.0066 76.3374±0.0069

NFS 0.9335±0.0011 1.3254±0.0012 1.8239±0.0012 2.5291±0.0008 3.2768±0.0026 4.3988±0.0009
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B.4 MESH-INVARIANT EVALUATION AND ARCHITECTURE ANALYSIS

Figure B3: Visualization on non-equispaced NS equation: The training mesh (ns = 4096) differs
from the mesh in inference process (n′s = 8192). Appendix. B.9 gives more visualization.

Table B9: Results on NS equation: MAE(×10−3) of NFS and different variants of NFS on seen
and unseen meshes. ‘Flex + LN’ is the proposed NFS. ‘Flex’ represents the flexible interpolation
layer defined in Eq. (6), ‘LN’ is the Layer-Norm and ‘Gaus’ is the predefined Gaussian interpolation.
Appendix. B.4 gives details and results on other equations.

(ns = 4096, nt = 10, n′t = 10) (ns = 1024, nt = 10, n′t = 20) (ns = 4096, nt = 10, n′t = 40)

n′s Flex + LN Gaus + LN Flex +��LN Flex + LN Gaus + LN Flex +��LN Flex + LN Gaus + LN Flex +��LN

ns 0.9335 1.6341 1.2138 1.8239 2.1976 2.5119 3.2768 3.6422 5.6761
2ns 0.9731 2.8589 1.4882 2.3530 3.7465 7.0203 3.5439 3.9092 5.8975
3ns 1.1071 3.4513 1.6384 2.5179 5.7712 7.9177 3.6584 4.2102 6.6622
4ns 1.1015 3.4357 1.6975 2.5919 5.5990 7.1962 3.6608 4.2628 6.6951

Mesh-invariance evaluation. We use (u(X,T ), u(X,T ′)) as the training set, and evaluate the
model’s performance of mesh-invariant inference ability on X′, where |X′| = n′s. X′ is a different
mesh with X ⊆ X′. The visualization results of NS (ns = 4096, n′t = 40) are shown in Fig. B3.
For a fixed n′s, we randomly sampled different X′ for 100 times, to get the mean errors and standard
deviations (given in Appendix. B.4) of different spatial meshes. We can conclude from Table. B9 that
(1) The errors on unseen meshes are larger than the errors on seen meshes, showing the overfitting
effects. However, the errors on unseen meshes are acceptable, since they are even lower than other
models’ prediction error on seen meshes. (2) Larger n′s leads to higher prediction error because a
large number of unseen points are likely to disturb the learned token mixing patterns. On the other
hand, NS (ns = 1024, n′t = 10) implies that small spatial point numbers of training meshes (ns)
hinder model’s generalizing ability on unseen meshes, due to excessive loss of spatial information.

B.5 ARCHITECTURE ANALYSIS
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Figure B4: Effects of neighborhood sizes on
NS (r = 64, n′t = 10, n′t = 40).

Two modules in NFS differ from FNO. The first is
the interpolation layers at the beginning and the end
of the architecture. The second is the extra Layer-
Norm in the FNO layers, which can be applicable
in NFS thanks to its fixed resampled equispaced
points, but inapplicable to FNO for preserving its
resolution-invariance. We aim to figure out what
makes NFS outperform FNO.

Effects of neighborhood sizes. It is widely be-
lieved that modeling the long-range dependency
among tokens brings improvements (Naseer et al.,
2021; Tuli et al., 2021; Mao et al., 2021). By con-
trast, some local kernel methods demonstrate their
superiority (Yang et al., 2019; Liu et al., 2021; Chu
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et al., 2021; Park & Kim, 2022). For this reason, we first conjecture that the large neighborhood
sizes in the interpolation layer are conducive to predictive performance. Besides, as demonstrated
in Sec. A, the patchwise embedding in Vision Mixers can be an analogy to the resampling and
interpolating, so we further establish a patchwise FNO (PFNO), with patch size equaling to 4 and
[4, 4] in 1-d and 2-d PDE problems, equivalent to each resampled points aggregating 4 and 16 points
in spatial domains in 1-d and 2-d situations respectively. Layer-Norm is stacked in the FNO layers in
PFNO, for a fair comparison. Results of Fig. B4 show that the long-range dependency may even
compromise the performance, as larger mean neighborhood sizes often cause higher errors. However,
no matter how large is the neighbor size, the NFS outperforms PFNO. Therefore, we rule out the
possibility of performance gains brought form large neighborhood sizes and suppose that proposed
kernel interpolation layers are the key, and is superior to the simple patchwise embedding methods.

The effects of mean neighborhood size on the predictive performance on Burgers’ (ns =
512, nt = 10, n′t = 40) and KDV (ns = 512, nt = 10, n′t = 40) are shown in Fig. B5.
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(a) Burgers’ (ns = 512, n′
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Figure B5: The change of MAE and RMSE of NFS with the increase of neighborhood size on
Burgers’ (ns = 512, nt = 10, n′t = 40) and KdV (ns = 512, nt = 10, n′t = 40). PFNO is the
baseline.

Benefits from learned interpolation kernel. Since the kernel interpolation is likely to hold
the key to improvements, we investigate the performance gains brought from adaptively learned
interpolation kernels over the predefined one (See Fig. 2). We use an inflexible Gaussian kernel
h(xj − xi) = β exp(−(xj − xi − µ)T (Γ)−1(xj − xi − µ)) as a predefined one as discussed
in Sec. 3.1, where Γ = diag(γ(1), . . . , γ(d)), and µ ∈ Rd, γ(1), . . . , γ(d), β ∈ R+ are learnable
parameters. By setting all the other modules and the interpolation neighborhood sizes as the same,
we compare performance on different meshes of the two interpolation kernels in Table. B9 (Gaus +
LN), where the adaptively learned kernels achieve better accuracy.

Benefits from normalization layers. Previous works demonstrated the normalization is necessary
for network architecture, for fast convergence and stable training (Dong et al., 2021; Ba et al.,
2016). A notable difference between NFS and FNO is that the Layer-Norm can be implemented
in NFS’s layers without disabling its discretization-invariance. The improvements brought from the
normalization layers are given in Table. B9 (Flex +��LN), where the performance gap is obvious on
unseen meshes.

B.6 NON-EQUISPACED VISION MIXERS

Since NFS can be regarded as a combination of our interpolation layers with the revised FNO, our
interpolation layers can also be implemented in the other Vision Mixers, so that these methods are
equipped with the ability to handle non-equispaced data. Details are given in Appendix. B.7. We find
that (1) From Table. B12 and Table. 1, the degeneration of performance is obvious in other Vision
Mixers. In comparison, FNO as intermediate equispaced layers, truncates the high frequency in its
channel mixing and retains the low frequency shared by both resampled and original signals, so the
loss of accuracy in non-equispaced scenarios is tiny in our NFS; (2) Although the performance on
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unseen meshes is more stable in these non-equispaced Vision Mixers, the performance gap is still
large, according to Table. B12 and Table. B9.

Table B10: Mesh-invariant performance of NFS on Burgers’ and KdV equations (nt = 10).
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Burgers’
(ns = 512, nt = 10, n′t = 40)

KdV
(ns = 512, nt = 10, n′t = 40)

X 0.1983±0.0001 0.2775±0.0002 0.3210±0.0021 0.6873±0.0049

n′s = 1.3ns 0.2371±0.0034 0.3143±0.0041 0.3769±0.0030 0.7805±0.0077

n′s = 1.7ns 0.2898±0.0113 0.3742±0.0102 0.4084±0.0072 0.8419±0.0174

n′s = 2.0ns 0.3052±0.0098 0.4180±0.0100 0.4111±0.0042 0.8471±0.0074

Table B11: Performance of NFS with its variants of NS equations (nt = 10) on unseen meshes.
MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Flex + LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 0.9335±0.0011 1.3254±0.0012 1.8239±0.0012 2.5291±0.0008 3.2768±0.0026 4.3988±0.0009

n′s = 2ns 0.9731±0.0034 1.5042±0.0057 2.3530±0.0051 3.3320±0.0074 3.5439±0.0085 4.7904±0.0168

n′s = 3ns 1.1071±0.0021 1.5716±0.0038 2.5179±0.0089 3.5477±0.0125 3.6584±0.0180 4.8858±0.0246

n′s = 4ns 1.1015±0.0000 1.5627±0.0000 2.5919±0.0064 3.6526±0.0071 3.6608±0.0000 4.9521±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Gaus + LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 1.6341±0.0034 2.1992±0.0042 2.1976 ±0.0065 3.0219±0.0090 3.6422±0.0026 5.0097±0.0039

n′s = 2ns 2.8589±0.0062 4.0562±0.0126 3.7465±0.0041 5.1308±0.0097 3.9092±0.0041 5.2402±0.0075

n′s = 3ns 3.4513±0.0168 4.5199±0.0377 5.7712±0.0123 5.7137±0.0199 4.2102±0.0082 5.5057±0.0138

n′s = 4ns 3.4357±0.0000 4.7382±0.0000 5.5990±0.0066 5.5958±0.0049 4.2628±0.0000 5.7679±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

Flex +��LN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 1.2138±0.0030 1.7293±0.0047 2.5119±0.0036 3.4923±0.0058 4.2083±0.0037 5.6761±0.0092

n′s = 2ns 1.4882±0.0146 2.1681±0.0300 7.0203±0.0203 10.6096±0.0345 5.8975±0.0060 8.7704±0.0189

n′s = 3ns 1.6384±0.0088 2.4130±0.0169 7.9177±0.0059 11.9825±0.0118 6.6622±0.0063 9.5874±0.0131

n′s = 4ns 1.6975±0.0000 2.5008±0.0000 7.1962±0.0101 10.8860±0.0098 6.6951±0.0000 9.6334±0.0000

The mesh-invariant evaluation on Burgers’ and KDV Equations of NFS are given in Table. B10.
In Table. B10, when the spatial resolution is just 512, inference performance on unseen meshes
deteriorates. This result also validates our conclusion (2) in the fourth paragraph in Sec. 3.3.

Besides, we give a full evaluation on mesh-invairance of NFS in NS equation, with its variants as a
detailed results corresponding to Table. B11.

B.7 INTERPOLATION WITH OTHER VISION MIXERS

We conduct experiments on non-equispaced NS equations with the combination of our interpolation
layers and other Vision Mixers to figure out if they can achieve camparable performance.
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Table B12: Performance of different Vision Mixers combined with the interpolation layers in non-
equispaced scenarios on NS equations (nt = 10).

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

VIT NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X OOM OOM OOM OOM OOM OOM

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

MLPMIXER
NS

(ns = 4096, n′t = 10)
NS

(ns = 1024, n′t = 20)
NS

(ns = 4096, n′t = 40)

X 6.1854±0.0012 8.1556±0.0018 9.4593±0.0028 12.1316±0.0022 10.1862±0.0045 13.1548±0.0051

n′s = 2ns 8.1573±0.0126 11.2258±0.0147 12.0706±0.0132 14.9460±0.0159 10.6003±0.0127 13.6872±0.0238

n′s = 3ns 8.1952±0.0088 11.3840±0.0171 14.9910±0.0094 17.8415±0.0110 10.5633±0.0140 13.6394±0.0147

n′s = 4ns 8.7773±0.0000 11.3313±0.0000 14.9517±0.0125 17.7857±0.0199 10.5414±0.0000 13.6106±0.0000

MAE (×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3) MAE(×10−3) RMSE(×10−3)

GFN NS
(ns = 4096, n′t = 10)

NS
(ns = 1024, n′t = 20)

NS
(ns = 4096, n′t = 40)

X 12.2373±0.0091 16.2902±0.0133 10.2768±0.0084 13.7852±0.0078 14.7765±0.0055 19.4872±0.0106

n′s = 2ns 13.7752±0.0164 18.3108±0.0181 17.7216±0.0225 24.1397±0.0371 15.9083±0.0235 21.0041±0.0256

n′s = 3ns 13.7054±0.0122 18.2192±0.0184 17.8238±0.0112 24.2783±0.0196 15.8986±0.0156 20.9943±0.0158

n′s = 4ns 13.7140±0.0000 18.2271±0.0000 17.8207±0.0105 24.2833±0.0141 15.8736±0.0000 20.9772±0.0000

B.8 COMPLEXITY COMPARISON

We here first give Table. B13 to show the complexity of time and memory of all the evaluated methods
on NS (r = 64, nt = 10, n′t = 40).

Table B13: comparison on complexity of the evaluated methods
Type Methods Time/Epoch Peak Memory Parameter Number

Graph Spatio-
Temporal Model

GCGRU 6′18′′ 8660MB 74945
DCRNN 9′38′′ 11120MB 148673
AGCRN OOM OOM OOM
MPPDE 10′54′′ 23333MB 622161

Vision Mixer

VIT 3′14′′ 32166MB 773217
MLPMIXER 1′12′′ 4421MB 79749953
GFN 48′′ 3296MB 1361729
FNO 27′′ 3748MB 6299425
PFNO 43′′ 3380MB 9742145
NFS 2′02′′ 31938MB 37891937

Table B14: Detailed complexity of NFS
Interpolation on Resampled Points

Neighbor Searching Kernel Calculation Weighted Summation
3522MB 3102MB 6884MB

Interpolation back on Original Points

Neighbor Searching Kernel Calculation Weighted Summation
2506MB 2754MB 6884MB

It demonstrates that our method has comparable efficiency to Vision Mixers. For the graph spatial-
temporal models, they suffer from the recurrent network structures and thus are extremely time-
consuming while the parameter number is small, limiting their flexibility.

Time. However, once we compare the used time in PFNO and NFS, we will find that the inter-
polation layers are considerably time-consuming. Another module that cost time complexity is the
normalization layer, as the original FNO does not include Layer-Norm in its architecture, but it is
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stacked in PFNO. Theoretically, PFNO handles down-sampled grids in a low resolution, because
of the patchwise embedding. However, it takes more time than FNO. Therefore, we conclude that
the time complexity brought from Layer-Norm is very significant, but it is affordable because of the
performance improvements.

Memory. Besides, the operation of searching for each spatial point’s neighborhood and calculating
weighted summation in Eq. (9) and Eq. (10) are very memory-consuming. We test it on the same
experiment, and give the memory usage of different models in forward process, as shown in Table. B14.
The memory cost in backward process is 6902MB.

B.9 MORE VISUALIZATION

Here we provide more visualization results on the three equations. See Fig. B6, Fig. B7 and Fig. B8.
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Figure B6: Visualization on equispaced Burgers’ equation.
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Figure B7: Visualization on equispaced KdV equation.
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Figure B8: Visualization on non-equispaced NS equation: The training mesh (ns = 4096 in upper-
left) is different from the meshes in inference process (n′s = 8192 in upper-right, n′s = 12288 in
lower-left and n′s = 16384 in lower-right).

C EMPIRICAL OBSERVATION FOR THEOREM 3.1

In Sec. 3.2, Theorem 3.1 is proved to assure the expressivity of NFS. However, no further evidence
gives the assurance of the convergence of the kernel interpolation. Here we conduct empirical study
to give some clues.

We conduct experiments on NS equation with ns = 4096, nt = 10, n′t = 40. In a single trial, NFS is
trained with fixed meshes. We repeated the trials 10 times with different meshes, and then give the
one-v.s.-all deviations of the representation states calculated by

Diff =
1

90

10∑
i ̸=j,i,j=1

1

ms, n′t
|| |Hi −Hj |
|Hi|+ |Hj |

||1,

where Hi is the representation states of the shape [
√
ms,

√
ms, n

′
t], and | · | is the element-wise

absolute value, and || · ||1 is the 1-norm of the matrix. If the Diff is small in the beginning and end, it
can be inferred that the interpolation kernel function converges to a similar mapping since the final
predictions are close to ground truth in these experiments, and the inputs are sampled from the same
instance of PDEs. We give the Diff before the first FNO and after the final of FNO layers in Table. C1.
The small values indicate that the trained model usually has similar representation states. Figure. C1
and C2 give visualizations of representation states obtained by one instance of NS equation in two
different trials. It indicates that the differences are getting smaller during the training.

Table C1: The defined Diff calculated by different epochs.
Epoch Diffbegin Diffend

0 0.0676 0.0978
500 0.0102 0.0353
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(a) Representation states at the beginning of FNO layers in two trials of Epoch 0

(b) Representation states at the beginning of FNO layers in two trials of Epoch 500

Figure C1: Visualization on different representation states at the beginning of FNO layers.

As a result, we present the one-v.s.-all differences of different epochs in the training process, to
validate the convergence, as shown in Figure. C3.
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(a) Representation states in the end of FNO layers in two trials of Epoch 0

(b) Representation states in the end of FNO layers in two trials of Epoch 500

Figure C2: Visualization on different representation states in the end of FNO layers.
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Figure C3: Convergence of Diff.
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