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ABSTRACT

Concept-based explanations for convolutional neural networks (CNNs) offer
human-interpretable insights into the decision-making processes of artificial in-
telligence (AI) models. In contrast to attribution-based methods, which primarily
highlight salient pixels, concept-based approaches capture higher-level semantic
features, thereby elucidating not only where the model looked but also what it saw.
Despite their promise, the absence of rigorous axiomatic foundations has impeded
systematic evaluation, comparison, and compliance, limiting their broader adop-
tion. This paper presents a conceptual axiomatic framework, derived from the
principles of explanation logic, for evaluating the faithfulness of concept-based
explanations in CNN-driven image classification. We propose a novel set of ax-
ioms that formalize essential criteria for trustworthy explanations and establish a
quantitative methodology for their evaluation. Extensive experiments conducted
in both ideal and adversarial settings, across diverse model architectures, demon-
strate the necessity and validity of these axioms. Our findings contribute to the
development of reliable, interpretable, and trustworthy explainable artificial in-
telligence (XAI) frameworks, with particular relevance to high-stakes domains
where transparent decision-making is crucial.

1 INTRODUCTION

Convolutional neural networks (CNN) have achieved remarkable success in computer vision Upad-
hyay et al. (2025). However, their black-box nature raises concerns about transparency Lincoln IV
(2025). This requires understanding the CNN logic through post hoc explanation methods Akpudo
et al. (2025b); Upadhyay et al. (2025).

Concept-based explanation for a CNN seeks to address the question: Why did a CNN assign an
input to a class? This aligns with findings from cognitive science Akpudo et al. (2025b); Upadhyay
et al. (2025); Moore et al. (2024), which suggest that among the many potential influences, humans
generally expect explanations to highlight the key concepts behind an outcome. These concepts
(predefined or discovered automatically) represent high-level patterns or abstract ideas within an
image class that contribute to a class prediction Kim et al. (2018) (see Figure 1). However, currently
there is no consensus on how to evaluate XAI Nauta et al. (2023b); Akpudo et al. (2025b).

The prevalent approaches, including concept-based methods ?Zhang et al. (2021); Fel et al. (2023);
Ghorbani et al. (2019), often rely on “cherry-picked” examples that appear intuitive, which many
argue are anecdotal, inadequate, and potentially misleading He et al. (2025). However, unverified
intuition can facilitate misapprehension Akpudo et al. (2025b); Lincoln IV (2025). While qualitative
axioms rely on expert intervention to address inherent biases and are not covered within the scope of
our study, quantitative axioms ensure objective transparency Kim et al. (2023). Unfortunately, the
lack of sufficient quantitative evaluation hinders progress in interpretability research, as anecdotal
inspection fails to verify concept explanations, thus undermining trust Upadhyay et al. (2025); He
et al. (2025).

Concept explanations should address logical questions and satisfy desirable properties, that is, the
axiomatic foundations of their design and evaluation Amgoud & Ben-Naim (2022); Sundararajan
et al. (2017); Chen et al. (2023). For example, How simple are the explanations? Are they co-
herent? How sane is the explainer? etc. However, state-of-the-art concept-based explainers do
not explicitly address these questions, prompting an essential inquiry: What axiomatic foundations
guarantee faithful and trustworthy concept explanations? As illustrated in Figure 1, establishing
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Ear concept
Ear prototypes

Nose concept
Nose prototypes

Cheek concept
Cheek prototypes

Eye concept

Eye prototypes

Background concept

Background prototypes

Figure 1: Establishing Axiomatic Foundations for Concept-Based Explanations. The explana-
tions highlight different concepts (Ear, Eye, Nose, Cheek, and Background) and their accompanying
prototypes for a dog class. However, there is a need to answer questions like: how simple are the
explanations? Are they coherent? how sane is the explainer? is the Background concept relevant
or causal to the dog prediction?, etc. A sufficient set of axiomatic foundations provides answers
and ensures comprehensive and faithful evaluation of concept explanations, fostering trust in the
explainer.

robust axiomatic foundations requires coreness1 and demands considering factors such as cognition,
perception, and the ethical implications related to the design, development and adoption of CNNs in
AI-based systems Akpudo et al. (2025b); Lincoln IV (2025); Upadhyay et al. (2025).

The paper’s contributions are as follows: (1) Our work introduces key axioms that form a unified
axiomatic foundation for concept-based explanations of CNNs. The axioms establish a cohesive set
of quantitative checkpoints to evaluate explainer performance. (2) This study highlights the need for
axioms that reduce uncertainty about label confirmation, serving as diversified and unified bench-
marks to foster user confidence and trust. Our cross-model investigations emphasize blind, fair, and
transparent evaluations within unified frameworks. (3) Comprehensive quantitative analysis con-
firms the importance of axiomatic compliance of concept-based explainers under ideal conditions
and adversarial (Frontdoor2 and Poisoning3) attacks, underscoring their role in building and main-
taining trust. (4) delivers critical insights that enhance transparency in AI systems while maintaining
high levels of performance and resilience in CNN-based classification, where transparency is crucial.

2 PROPOSED METHOD

Instance, x

…

E (·)

Y classesCNN,  f (·)

𝒥 𝒥'

Explainer, f (·)̂

C (·)

A

Concepts

Explanations

Figure 2: Concept-based explanation rationale for a CNN.
The explainer f̂{J ,J ′} exploits A at the penultimate layer
to generate concept explanations.

Figure 2 illustrates the rationale for
the concept-based explanation of a
CNN f(·) composed of convolutional
layers with rectified linear unit activa-
tions (Conv-ReLU) E(·) and a clas-
sifier C(·). For an instance4 x ∈ X
with label y ∈ Y , the CNN executes
a classification task f(·) : X → Y
such that f(·) = C(E(·)). The en-
coder E(·) produces a feature map
A ∈ Rm×c in the penultimate layer,
with m = (h,w) denoting spatial di-
mensions and c the number of channels containing discriminative information. The classifier C(·)
maps A to the label space Y with trainable weights t. A concept-based explainer f̂{J ,J ′} consti-
tutes the encoder J and the decoder J ′.

Figure 3 shows the proposed axiomatic concept-based explanation framework for CNNs. Given x

and f(·), J encodes A to generate concepts S ∈ Rm×c′ and a fixed concept activation vectors

1The extent to which an explanation captures the most informative, non-redundant concept explanations.
2Early-stage image perturbations in the data pipeline.
3Training-time parameter attacks via noise, backdoors, or biased modifications.
4An instance is an image used to assess a concept’s influence on a CNN’s inference.
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Figure 3: Schematic for the proposed axiomatic concept-based explanation framework for CNNs.
The Conv-ReLU E(·) generates the featuremap A from the image instance at the CNN penultimate
layer. The encoder J generates the concepts S ∈ Rm×c′ and CAVs P ∈ Rc×c′ from the featuremap
A ∈ Rm×c (containing literals l ∈ L) produced by the CNN’s Conv-ReLU E(·). The decoder J ′

produces A′ ≈ A. The classifier C(·) quantifies concept importance W for concept explanation
for evaluating faithfulness using the axiomatic foundations Gn. Post-processing methods such as
Flatten, Global Average Pooling, or Attention mechanisms depend on the explainer’s objective.

(CAV) P ∈ Rc×c′ such that J (A) = SP + ϵ, where c′ is a user-defined number of concepts, ϵ is
the decomposition error and c′ ≪ c. Conversely, J ′(S) decodes S → A′(where A′ ≈ A) using the
fixed P . A concept explanation aims to generate discriminative information, i.e., concepts stored in
S, accompanied by their corresponding importance scores W for the class y Zhang et al. (2021).

Our proposal is based on the non-triviality and minimal sufficiency of concept explanations and
requires formal axiomatic principles (see Section 2.2). We hypothesize that {C(A), C(A′)}ni=1
should constitute the axiomatic foundations Gn, providing a principled basis to assess the explainer.

2.1 PROBLEM STATEMENT

We probe with a class question5 Q = ⟨S, R, x⟩, the decision logic of f(·), seeking to evaluate the
reasons6 for f(x), R = ⟨S,x′,W,Y⟩ that defines the mapping f̂R : S → Y if f̂R(s) = y for s ∈ S
using the proposed set of axiomatic foundations. These reasons constitute three key ingredients:

1. literals l ∈ L, formed by pairing feature activations a ∈ A with their concept activations
e ∈ C(a). Given a triple T = ⟨A, f,Y⟩, a literal l ∈ L on T is a couple l = ⟨a, e⟩ such
that a ∈ A, e ∈ C(a). LT is the set of all literals, and L is a subset of LT .

2. concept importance W = P · t estimated as the sensitivity of f(x) to S along P Kim et al.
(2018).

3. prototypes xp, an instance x′ ∈ Xy whose literals L′ align maximally with the literals L
of a given instance x of a class y ∈ Y such that xp = argmaxx∈Xy Ex′∼P (Xy)ϕ(L,L

′),
where Ex′∼P (Xy)ϕ(L,L

′) denotes the expectation over x′ drawn from the probability dis-
tribution P (Xy) and ϕ(L,L′) measures the homogeneity. Reliable homogeneity measures
include Jaccard, Cosine, and Kernel-based similarity metrics Xie et al. (2016); Chen et al.
(2019); Fel et al. (2023); Ma et al. (2023) (See Prototype Selection in Appendix).

5For an instance x ∈ Xy , a class question Q is an abstraction of infinite possible queries that aims to
identify the reasons that influenced the decision f(x) = y. f̂(Q) represents the set of possible explanations
for Q which include contrastive, affirmative, counterfactual, sufficiency, necessity questions, and et cetera.

6The reason for f(x) constitutes concepts stored in S, accompanied by prototypes and their corresponding
weights W for the class y. It can define how literals are structured, such as causal relationships, dependencies,
or semantic groupings Wang et al. (2023a); Liu et al. (2023b).
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2.2 FORMAL PRINCIPLES AND CONCEPTUAL BASIS

A concept explanation for a class can be local, focusing on providing reasons for an individual
instance, global, examining the complete collection of reasons for different instances, or ideally
both, covering a class explanation Holzinger et al. (2022); Ade-Ibijola & Okonkwo (2023). A class
explanation aims to understand the overall logic of CNN by outlining the various reasons it assigned
a particular class, requiring class-specific insights Zheng et al. (2017) and axiomatic foundations.
We begin with the orthogonality of the first principles of CNN behaviour and explanation:

• Principle of Human Alignment: Concept explanations must be interpretable in human-
understandable terms and cannot exist outside the interpretable space. Let ι : S → H be
the interpretability mapping, where H is the space of human-recognizable concepts. Then
∀s ∈ f̂(x), ι(s) ̸= ∅.

• Principle of Causality: Concept explanations must reflect causal factors of the predictions,
not spurious correlations. Let do(·) denote an intervention in Pearl’s do-calculus Correa
& Bareinboim. Then, for an instance x and associating set of concepts S = f̂(x): ∀s ∈
S, P (f(x) | do(s = 0)) ̸= P (f(x)). That is, intervening in the presence of a concept
must alter the output distribution, ensuring causal relevance.

• Principle of Consistency: Concept explanations for similar inputs must be stable and repro-
ducible. Let dX : X×X → R+be a metric on the input space, and dS : S×S → R+ a met-
ric in the concept space. Then: ∀x, x′ ∈ X , dX (x, x′) ≤ ϵ =⇒ dS

(
f̂(x), f̂ (x′)

)
≤ δ,

for small ϵ, δ > 0. This ensures that small perturbations in inputs yield bounded changes
in the explanations.

• Principle of Faithfulness: Concept explanations must preserve CNN decision logic. Pre-
dictions reconstructed via explanation concepts must match the CNN’s predictions. For an
explanation f̂(·) and a prediction function f(·): ∀x ∈ X , f(x) = f ′(x | f̂(x)), where
f ′(·) is the surrogate function reconstructed from the explanations.

• Principle of Representation: Explanations must relate to CNN internal representations. Let
E(·) : X → Rk be the CNN representation function up to a latent layer. Then for any
explanation f̂(x), ∀s ∈ f̂(x),∃gs : Rk → {0, 1} such that gs(E(x)) = 1.

2.3 FORMALIZATION OF AXIOMS

Given f̂(·), x, and f(x), for a class question Q, let f̂(Q) be the set of literals L explaining f(x)
while LT is the set of all reasonable ground-truth laterals and fR(·) is a reasonable concept extrac-
tion function from a given set of literals.

Lemma 1. Q satisfies minimal sufficiency if the minimal set of reasonable literals fR(L) provides
sufficient explanations for all reasonable predictions in the set of ground truths fR(LT ). Formally,
fR(L) ≡ fR(LT ).

Theorem 1. There exists a property exhibited by a concept explanation (in this case, we assume
the concept importance W), ensuring that the total importance of the explanation remains nearly
unchanged such that:

∑
l∈L W(l) ≈

∑
l∈LT W(l), where |L| ≪ |LT |.

The axiomatic foundations of f̂(·) constituting the set of axioms (g1 . . . , gn) ∈ Gn, assert that
the concept explanations are minimal, intuitive, and non-trivial without changing W . We abstract
formal properties that concept explanations must exhibit and define axioms as logical necessities
that explanation methods must satisfy, as direct consequences of the formalized principles:

• Axiom 1 (Interpretability g1 ∈ {True, False}): Derived from Principle of Human Align-
ment, g1 = True if ∀L ∈ f̂(Q), L ̸= ∅.

• Axiom 2 Relevance (g2 ∈ {0, 1}): Derived from the principle of Causality g2 = 1 if
∀L ∈ f̂(Q), ∀l ∈ L, l |= y.

• Axiom 3 Coherence (g3 ∈ {0, 1}): Derived from the principle of Consistency g3 = 1 if
∀L ∈ f̂(Q) explaining f(x), L /∈ f̂(Q′) for x′ ̸= x.
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• Axiom 4 (Fidelity g4 ∈ {0, 1}): Derived from the principle of Faithfulness, g4 = 1 if
∀L ∈ f̂(Q), f̂(x) ≡ f(x), i.e., ∀x ∈ X, f̂(x) must preserve the predictive behaviour of
f(x) under concept perturbations.

• Axiom 5 (Sanity g5 ∈ True, False, ⋆): Derived from the principle of Representation, for
Q = ⟨T , C, y⟩ and Q′ = ⟨T ′, C ′, y′⟩ with T ̸= T ′, C = C ′, and y = y′, ∀L ∈ f̂(Q),
∀L′ ∈ f̂(Q′), L ∩ L′ = ∅ implies f̂(x) ̸= f̂(x′). If Q = Q′, then g5 = ⋆ (indeterminate).

2.4 SIGNIFICANCE OF THE PROPOSED AXIOMS

The axioms defined above and formalized comprehensively in the Preliminaries section of the
appendix provide formal guarantees that class explanations are trustworthy. In the dog example
from Figure 1, a robust and meaningful concept explanation should highlight a few interpretable
concepts, such as Ear, Eye, Nose, and Cheek, which clearly support the dog classification. This
aligns with the principles of Human Alignment on the one hand and Representation on the other
hand, supporting the Simplicity axiom and avoiding excessive or misleading details such as the
Background, and ensuring coreness by focusing on essential elements.

To maintain the principle of Consistency, the explanation must exclude contradictory concepts such
as Round Pupils and Slit Pupils, which are typically associated with a cat. Furthermore, the princi-
ples of Representation and Consistency demand that concepts like Cheek generalize across multiple
dog instances, not just a single example. These concepts should also be reflected in the associated
prototypes. Crucially, the explanation must reflect the principle of Causality, where removing a
causal literal significantly alters the CNN decision. This protects against spurious correlations and
ensures that the explanation is grounded in the actual decision-making process of the model. Lastly,
grounded in the principles of Consistency and Representation, the Sanity axiom requires that mi-
nor changes, such as image rotation, do not drastically affect the explanation, thus preserving its
reliability in real-world scenarios.

3 EXPERIMENTS

3.1 CROSS-MODEL INVESTIGATIONS

We conducted cross-model investigations of two state-of-the-art (SOTA) concept explainers,
CRAFT Fel et al. (2023) and ICE Zhang et al. (2021), each explaining Pytorch’s pre-trained
ResNet He et al. (2016) and Inception Szegedy et al. (2016) models using the ILSVRC2012
dataset Deng et al. (2009). We chose c′ = 32 as recommended by Ramaswamy et al. (2023) and
probed the penultimate CNN layers: layer4 for ResNet50 and Mixed 7c for Inceptionv3. Ex-
periments were conducted on an NVIDIA GeForce RTX 4090. Since the CNNs (ResNet50 and
Inceptionv3) were pre-trained, computational demands were modest. Both models achieved over
96% classification accuracy (Acc) for the target classes.

Figure 4 presents a cross-model analysis of an instance containing two breeds of dogs and a cassette
player, answering class questions Q1−3. Each class explanation comprises 32 concept explanations
grounded in axioms g1– g5, although only the top three local concepts are shown for clarity. These
are identified by unique IDs, prototypes, and W scores, ensuring trust through validation. This setup
enables a detailed understanding of the concepts’ contributions to CNN decisions (see the appendix
for more results).

Although certain class questions are axiom-specific (e.g., Figure 1), the questions in Figure 4 require
the application of all axioms, providing a comprehensive foundation. The figure illustrates how the
axioms collectively assess the faithfulness of the explainer. Specifically, g1 evaluates the alignment
of the concept explanations with human understanding, while g2 examines the causal relevance
of the concept explanations to the CNN decision. The axiom g3 quantifies the consistency of the
concept explanations and g4 measures the degree of faithfulness of the explainer. High scores in
these dimensions serve to validate the quality of the explanations. Finally, g5 evaluates robustness
in terms of consistency and human alignment, returning Boolean outcomes for pairwise instance
comparisons or ⋆ (indeterminate) for single instance evaluations. Figure 4 also highlights a fair7

7The comparison addresses Q1−3 for the specific instance and does not generalize to all class questions.
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Q1−3: What concepts explain CNN decisions for Labrador Retriever, Yorkshire Terrier, and cassette player?

Concept Labrador Retriever prototypes Concept Labrador Retriever prototypes

ID: 03 W : 0.4 ID: 12 W : 39.5

ID: 19 W : 0.38 ID: 10 W : 23.7

ID: 25 W : 0.31 ID: 04 W : 19.8... ...
The concept explanations (c′ = 32)
satisfy: g1:True, g2:0.97, g3:0.98,
g4:0.96, g5 : ⋆

The concept explanations (c′ = 32)
satisfy: g1:True, g2:0.98, g3:0.97,
g4:0.96, g5 : ⋆

Concept Yorkshire Terrier prototypes Concept Yorkshire Terrier prototypes

ID: 06 W : 0.41 ID: 14 W : 25.5

ID: 11 W : 0.38 ID: 06 W : 20.7

ID: 05 W : 0.36 ID: 09 W : 12.8
... ...

The concept explanations (c′ = 32)
satisfy: g1:True, g2:0.96, g3:0.96,
g4:0.94, g5 : ⋆

The concept explanations (c′ = 32)
satisfy: g1:True, g2:0.97, g3:0.99,
g4:0.95, g5 : ⋆

Concept Cassette prototypes Concept Cassette prototypes

ID: 09 W : 0.58 ID: 07 W : 39.5

ID: 13 W : 0.50 ID: 01 W : 24.7

ID: 14 W : 0.41 ID: 02 W : 22.7
... ...

The concept explanations (c′ = 32)
satisfy: g1:True, g2:0.98, g3:0.97,
g4:0.98, g5 : ⋆

The concept explanations ( c′ = 32 )
satisfy: g1:True, g2:0.97, g3:0.99,
g4:0.97, g5 : ⋆

(a) (b)

Figure 4: The three most significant local concept explanations (out of 32 local concept expla-
nations) for an instance featuring a Labrador Retriever, a Yorkshire Terrier, and a cassette player,
evaluated across their axiomatic foundations (g1, . . . , g5) for three class questions, Q1, Q2, and
Q3. (a) CRAFT Fel et al. (2023) on ResNet50 (colour maps represent concepts) and (b) ICE Zhang
et al. (2021) on Inceptionv3 (red-bounded pixels represent concepts). Each explanation includes a
unique ID, five prototypes, and a W score sorted in descending order by W scores. The proposed
axiomatic foundations are shown in rectangular boxes below each class explanation. (Best viewed
in colour).
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Figure 5: Impact of adversarial attacks on Fidelity g4 (a) Frontdoor attacks: ICE Zhang et al. (2021)
on ResNet50, (b) Frontdoor attacks: CRAFT Fel et al. (2023) on Inceptionv3, (c) Poisoning attacks:
ICE Zhang et al. (2021) on ResNet50 (Top) and CRAFT Fel et al. (2023) on Inceptionv3 (Bottom).
Similar trends were observed for other axioms under the adversarial conditions, with True results
for the Boolean axioms: g1 and g5.

cross-model comparison: CRAFT slightly outperforms ICE in Fidelity and Relevance while both
methods maintain high Coherence and consistent adherence to the axiomatic framework.

3.2 ADVERSARIAL PERFORMANCE

Concept Labrador Prototypes

σ : 0.1 ID: 02 Acc: 97.9%, W : 0.41, g5 : True
···

σ : 0.5 ID: 06 Acc: 95.5%, W : 0.34, g5 : True

(a)

Concept Labrador Prototypes

λ : 25 ID: 01 Acc: 96.9%, W : 3.21, g5 : True
···

λ : 150 ID: 02 Acc: 96.1%, W : 2.39, g5 : True

(b)

Concept Labrador Prototypes

τ : 36◦ ID: 04 Acc: 97.1%, W : 3.17, g5 : True···

τ : 108◦ ID: 07 Acc: 97.4%, W : 3.21, g5 : True

(c)

Figure 6: Explainer performance on ResNet50 un-
der adversarial conditions for Labrador Retriever
(a) Gaussian noise on CRAFT Fel et al. (2023),
(b) warping on ICE Zhang et al. (2021), and (c)
rotation on ICE Zhang et al. (2021).

We performed Sanity checks on the explain-
ers under various adversarial conditions, in-
cluding Frontdoor and Poisoning attacks (Fig-
ure 5). The parameters µ, σ, λ, α, and τ repre-
sent mean, standard deviation, smoothness, dis-
placement, and rotation, respectively. For each
condition, we generated concept explanations
and evaluated classification accuracy (Acc) and
axioms gn (see Figure 6 for a visual example).

The axiom g10 was evaluated by comparing the
fidelity g2 between ideal and adversarial set-
tings. As shown in Figure 6 (a, b), similar con-
cepts produce different prototypes with reduced
Acc and W scores. Gaussian noise and warp-
ing significantly impact Acc and Fidelity due
to alterations in the value of the pixels (σ, α),
while rotation (τ ), which only shifts the posi-
tion of the pixels, has a minimal effect (Fig-
ure 6 (c)). Figure 5 confirms that Fidelity is
sensitive to changes in the value of pixels but
resistant to spatial transformations. Our com-
prehensive evaluation of Sanity g5 using other
axioms validates Sanity of explainers in adver-
sarial settings, highlighting the need for robust-
ness checks during explainer development.

4 DISCUSSION

4.1 IMPLICATIONS OF PROPOSED AXIOMS

Faithful concept explanations must success-
fully reflect the CNN classification logic to en-
sure Relevance Holzinger et al. (2022); Am-
goud & Ben-Naim (2022). High Coherence and Relevance scores in Figure 4 indicate logical
consistency and pertinence. Representativity supports generalization in similar instances, while
Agreement links concepts to prototypes. Fidelity reflects the precision of both relevant and irrel-
evant concepts Ghorbani et al. (2019); Fel et al. (2023); Zhang et al. (2021). Lower Causality scores
in Figure 4 suggest a nuanced influence of concepts on CNN decisions, enhancing trustworthiness.
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Adversarial conditions can degrade the quality of the explanation, so a rational explanation must
reflect this sensitivity Fel et al. (2023); Ade-Ibijola & Okonkwo (2023); Bao et al. (2023). Concept
explanations should reveal causal, not simply correlated, Reasons Akpudo & Jang-Wook (2020);
Wang et al. (2023a); Liu et al. (2023b); Ning et al. (2023). Although they are expected to be accurate,
they should be Relevant to the class explanation Garcia & Johnson (2023), consistent with repre-
sentative features of the image class Makridakis (1993); Wang et al. (2023b); Akpudo et al. (2024);
Aronhime et al. (2014). For example, in Figure 1, concepts like Ear, Eye, Nose, and Cheek are rel-
evant for a dog class, while accurate but irrelevant concepts (e.g., Background) may not contribute
meaningfully.

4.2 INTERCONNECTEDNESS OF PROPOSED AXIOMS WITH DESIDERATA

The proposed axiomatic foundations imply and reinforce several other established desiderata, high-
lighting their interdependence. For instance, the Sanity axiom inherently requires Ablation tests to
assess Reliability and Stability, while Coherence depends on analyzing the Sparsity of concept log-
its to ensure focused and interpretable explanations. These relationships suggest that axioms should
be viewed not in isolation but as part of a structured framework, where validating one may support
or necessitate the evaluation of others. This interconnectedness strengthens the overall robustness
and trustworthiness of concept-based explanations in CNNs. Some axioms, like Sanity, may require
inter-class evaluations. For example, the question in Figure 1: How coherent is the Cheek concept
for a dog breed (e.g. Bulldog) compared to those for another breed (e.g., Chihuahua)? may necessi-
tate new axioms. Similarly, in Figure 4, similar prototypes retrieved for different concepts (e.g., ICE
concepts 12 and 10 for Labrador Retriever) suggest minimal plausibility differences. Although in-
dividually valid, merging them may better satisfy the simplicity axiom. Addressing such challenges
may require interdisciplinary approaches beyond this study.

Finally, evaluating Exhaustivity is impractical due to subjectivity and uncertainty. Instead, empha-
sizing Coreness, as we have achieved, ensures faithful, trustworthy, and ethically sound explanations
with broader impact (see the Broader Impact of the Appendix for a detailed discussion).

5 RELATED WORKS

In line with the larger expectation that AI should assist rather than replace humans Marques-Silva &
Ignatiev (2022), human-in-the-loop frameworks have become essential to build trust and account-
ability in AI systems Atienza et al. (2024); Ghosh (2023). CNNs, while not inherently interpretable,
support concept extraction through their layered filtering operations, allowing classification and post
hoc interpretation Kim & Chae (2024); Akpudo et al. (2025b). However, poorly performing CNNs,
particularly under adversarial conditions, can increase interclass similarity, generate meaningless
concepts, and doubt the sanity of the explainer Karimi et al. (2020); Bao et al. (2023).

Traditional attribution-based methods, such as GradCAM, highlight influential input regions, offer-
ing insight into where a model looked, but not what it saw Ribeiro et al. (2016); Liu et al. (2023b);
Amgoud & Ben-Naim (2022); Garcia & Johnson (2023). These methods do not satisfy key ax-
iomatic foundations, such as Causality, require expert judgment, and are vulnerable to adversarial
attacks Salahuddin et al. (2022); Preechakul et al. (2022); Chakraborty et al. (2022). Concept-based
approaches offer a more abstract and cognitively aligned perspective Kim et al. (2018); Zhang et al.
(2021); Ghorbani et al. (2019); Fel et al. (2023). Still, supervised methods relying on predefined
concepts face significant limitations: they often fail to capture nuanced features Kim et al. (2018);
Ramaswamy et al. (2023), are harder to learn than class labels Ramaswamy et al. (2023), and can
introduce bias Fel et al. (2023); Akpudo et al. (2025b). These challenges have catalyzed the devel-
opment of unsupervised concept-based methods centered on automatic concept discovery Ghorbani
et al. (2019); Zhang et al. (2021); Fel et al. (2023); Akpudo et al. (2024); Kim et al. (2018); Ra-
maswamy et al. (2023); Akpudo et al. (2025a).

Recent frameworks integrate dimensionality reduction techniques, that is, reducers in CNNs, to dis-
cover concepts without manual labelling Akpudo et al. (2025a; 2024; 2023); Zhang et al. (2021); Fel
et al. (2023), significantly improving explainability and interpretive diversity Gupta & Narayanan
(2024); Weber et al. (2023). ACE Ghorbani et al. (2019) pioneered this direction, segmenting im-
ages, grouping similar regions, and rejecting outliers to define concepts. However, its outlier rejec-
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tion can lead to information loss, and concept importance may vary across instances. ICE Zhang
et al. (2021) and CRAFT Fel et al. (2023) build on this by using NMF; ICE shows strong per-
formance, while CRAFT introduces recursive decomposition for refined explanations. Generative
approaches Akpudo et al. (2025a); Brocki & Chung (2019); Liu et al. (2023a) offer further flexi-
bility, but require extensive tuning and introduce interpretability challenges Takeishi & Kawahara
(2020), including misalignment between model metrics and human perception Zhang et al. (2016).

Despite their promise, unsupervised explainers lack a formal axiomatic foundation. This makes
cross-method comparisons difficult due to inconsistent assumptions, domain-specific constraints,
and the absence of standardized evaluation criteria Akpudo et al. (2024). The inability to validate
automatically discovered concepts further undermines the stakeholders’ trust Akpudo et al. (2025a);
Zhang et al. (2021); Ghorbani et al. (2019); Fel et al. (2023); Akpudo et al. (2024). Many explain-
ers still rely on cherry-picked examples that appear intuitive but are anecdotal and unsupported by
rigorous evaluation He et al. (2025); Nauta et al. (2023b); Akpudo et al. (2025b), allowing anecdo-
tal inspection to dominate and weakening the credibility of XAI research Upadhyay et al. (2025);
He et al. (2025). To address these gaps, we ask: What axiomatic foundations guarantee faithful
and trustworthy concept explanations? We argue that concept explanations must satisfy key formal
properties to be considered trustworthy Amgoud & Ben-Naim (2022); Sundararajan et al. (2017);
Chen et al. (2023). As illustrated in Figure 1, our work introduces the notion of coreness and em-
phasizes cognitive alignment and ethical considerations Akpudo et al. (2025b); Lincoln IV (2025);
Upadhyay et al. (2025). For the first time, we formally investigate the axiomatic properties of unsu-
pervised concept-based explainers and propose a framework for harmonized evaluation and cross-
model comparison. Rather than debating the superiority of supervised versus unsupervised concepts,
a question already settled in the literature Kim et al. (2018); Zhang et al. (2021); Fel et al. (2023);
Ghorbani et al. (2019); Kori et al. (2023); Nauta et al. (2023a); Kim & Chae (2024), we define a set
of desirable axioms that any concept explanation should satisfy to earn stakeholder trust. Our frame-
work builds on advances in concept discovery, prototypical representation, and abstraction, offering
a principled foundation for evaluating the faithfulness of concept-based explanations Akpudo et al.
(2025a; 2024); Sundararajan et al. (2017).

6 ETHICAL STATEMENT

The paper is foundational and theoretical, and does not present or implement technology with di-
rect societal deployment. While the work does not involve crowdsourcing or research with human
subjects, nor pose immediate risks, it could influence how future systems align with human values,
necessitating the protection of CNNs and explainers from adversarial conditions. The proposed ax-
iomatic foundations safeguard explainers by demanding that faithful and trustworthy explanations
adhere to desired properties, even under adversarial conditions. Poor performance under such condi-
tions can doubt the explainer’s sanity, highlighting a potential flaw detected through axiomatic test-
ing. The paper ensures reproducibility through open datasets, pretrained models, detailed method-
ology, and clear experimental results with supporting visuals and metrics.

7 CONCLUSIONS AND FUTURE WORKS

This study introduces a novel framework for evaluating concept-based explanations of CNNs
through a unified axiomatic foundation, emphasizing trustworthiness. Key contributions include
defining these axioms, conducting quantitative investigations to assess explainer performance under
adversarial conditions, and offering insights for developing more transparent AI systems. Exper-
iments with the ILSVRC2012 dataset highlight the critical role of robust axiomatic foundations,
particularly in adversarial conditions. The findings emphasize the importance of rigorous testing to
ensure the reliability and practical value of explainers. This work provides foundations for deploy-
ing resilient explainers and underscores the need for future research to enhance their robustness and
ensure trust. The axiomatic foundations proposed for CNN explainers are model-agnostic and could
extend to transformers, despite architectural differences. While CNNs extract local features, Vision
Transformers (ViTs) capture global dependencies through self-attention, requiring a redefinition
of concept discovery. However, the proposed axiomatic foundations remain essential for ensuring
trustworthy explanations. Applying these principles to ViTs and multi-modal models presents an
opportunity to advance interpretability across SOTA and custom visual categorization models.
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