AXIOMATIZATION OF CONCEPT CNN EXPLANATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Concept-based explanations for convolutional neural networks (CNNs) offer human-interpretable insights into the decision-making processes of artificial intelligence (AI) models. In contrast to attribution-based methods, which primarily highlight salient pixels, concept-based approaches capture higher-level semantic features, thereby elucidating not only where the model looked but also what it saw. Despite their promise, the absence of rigorous axiomatic foundations has impeded systematic evaluation, comparison, and compliance, limiting their broader adoption. This paper presents a conceptual axiomatic framework, derived from the principles of explanation logic, for evaluating the faithfulness of concept-based explanations in CNN-driven image classification. We propose a novel set of axioms that formalize essential criteria for trustworthy explanations and establish a quantitative methodology for their evaluation. Extensive experiments conducted in both ideal and adversarial settings, across diverse model architectures, demonstrate the necessity and validity of these axioms. Our findings contribute to the development of reliable, interpretable, and trustworthy explainable artificial intelligence (XAI) frameworks, with particular relevance to high-stakes domains where transparent decision-making is crucial.

1 Introduction

Convolutional neural networks (CNN) have achieved remarkable success in computer vision Upadhyay et al. (2025). However, their black-box nature raises concerns about transparency Lincoln IV (2025). This requires understanding the CNN logic through post hoc explanation methods Akpudo et al. (2025b); Upadhyay et al. (2025).

Concept-based explanation for a CNN seeks to address the question: Why did a CNN assign an input to a class? This aligns with findings from cognitive science Akpudo et al. (2025b); Upadhyay et al. (2025); Moore et al. (2024), which suggest that among the many potential influences, humans generally expect explanations to highlight the key concepts behind an outcome. These concepts (predefined or discovered automatically) represent high-level patterns or abstract ideas within an image class that contribute to a class prediction Kim et al. (2018) (see Figure 1). However, currently there is no consensus on how to evaluate XAI Nauta et al. (2023b); Akpudo et al. (2025b).

The prevalent approaches, including concept-based methods ?Zhang et al. (2021); Fel et al. (2023); Ghorbani et al. (2019), often rely on "cherry-picked" examples that appear intuitive, which many argue are anecdotal, inadequate, and potentially misleading He et al. (2025). However, unverified intuition can facilitate misapprehension Akpudo et al. (2025b); Lincoln IV (2025). While qualitative axioms rely on expert intervention to address inherent biases and are not covered within the scope of our study, quantitative axioms ensure objective transparency Kim et al. (2023). Unfortunately, the lack of sufficient quantitative evaluation hinders progress in interpretability research, as anecdotal inspection fails to verify concept explanations, thus undermining trust Upadhyay et al. (2025); He et al. (2025).

Concept explanations should address logical questions and satisfy desirable properties, that is, the axiomatic foundations of their design and evaluation Amgoud & Ben-Naim (2022); Sundararajan et al. (2017); Chen et al. (2023). For example, How simple are the explanations? Are they coherent? How sane is the explainer? etc. However, state-of-the-art concept-based explainers do not explicitly address these questions, prompting an essential inquiry: What axiomatic foundations guarantee faithful and trustworthy concept explanations? As illustrated in Figure 1, establishing

Figure 1: **Establishing Axiomatic Foundations for Concept-Based Explanations**. The explanations highlight different concepts (*Ear*, *Eye*, *Nose*, *Cheek*, and *Background*) and their accompanying *prototypes* for a dog class. However, there is a need to answer questions like: how *simple* are the explanations? Are they *coherent*? how *sane* is the explainer? is the *Background* concept *relevant* or *causal* to the dog prediction?, etc. A sufficient set of axiomatic foundations provides answers and ensures comprehensive and faithful evaluation of *concept explanations*, fostering trust in the explainer.

robust axiomatic foundations requires *coreness*¹ and demands considering factors such as cognition, perception, and the ethical implications related to the design, development and adoption of CNNs in AI-based systems Akpudo et al. (2025b); Lincoln IV (2025); Upadhyay et al. (2025).

The paper's contributions are as follows: (1) Our work introduces key axioms that form a unified axiomatic foundation for concept-based explanations of CNNs. The axioms establish a cohesive set of quantitative checkpoints to evaluate explainer performance. (2) This study highlights the need for axioms that reduce uncertainty about label confirmation, serving as diversified and unified benchmarks to foster user confidence and trust. Our cross-model investigations emphasize blind, fair, and transparent evaluations within unified frameworks. (3) Comprehensive quantitative analysis confirms the importance of axiomatic compliance of concept-based explainers under ideal conditions and adversarial (Frontdoor² and Poisoning³) attacks, underscoring their role in building and maintaining trust. (4) delivers critical insights that enhance transparency in AI systems while maintaining high levels of performance and resilience in CNN-based classification, where transparency is crucial.

2 Proposed Method

Figure 2 illustrates the rationale for the concept-based explanation of a CNN $f(\cdot)$ composed of convolutional layers with rectified linear unit activations (Conv-ReLU) $E(\cdot)$ and a classifier $C(\cdot)$. For an $instance^4 \ x \in \mathcal{X}$ with label $y \in \mathcal{Y}$, the CNN executes a classification task $f(\cdot): \mathcal{X} \to \mathcal{Y}$ such that $f(\cdot) = C(E(\cdot))$. The encoder $E(\cdot)$ produces a feature map $\mathcal{A} \in \mathbb{R}^{m \times c}$ in the penultimate layer, with m = (h, w) denoting spatial di-

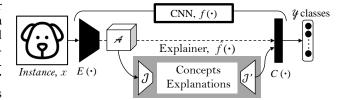


Figure 2: Concept-based explanation rationale for a CNN. The explainer $\hat{f}\{\mathcal{J},\mathcal{J}'\}$ exploits \mathcal{A} at the penultimate layer to generate *concept explanations*.

mensions and c the number of channels containing discriminative information. The classifier $C(\cdot)$ maps \mathcal{A} to the label space \mathcal{Y} with trainable weights t. A concept-based explainer $\hat{f}\{\mathcal{J},\mathcal{J}'\}$ constitutes the encoder \mathcal{J} and the decoder \mathcal{J}' .

Figure 3 shows the proposed axiomatic concept-based explanation framework for CNNs. Given x and $f(\cdot)$, \mathcal{J} encodes \mathcal{A} to generate concepts $\mathcal{S} \in \mathbb{R}^{m \times c'}$ and a fixed concept activation vectors

¹The extent to which an explanation captures the most informative, non-redundant *concept explanations*.

²Early-stage image perturbations in the data pipeline.

³Training-time parameter attacks via noise, backdoors, or biased modifications.

⁴An *instance* is an image used to assess a concept's influence on a CNN's inference.

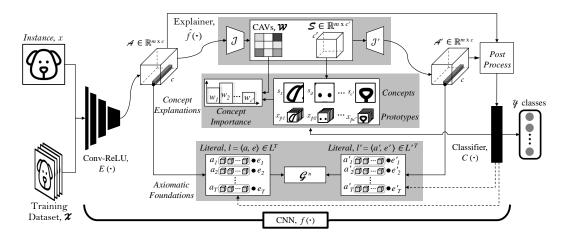


Figure 3: Schematic for the proposed axiomatic concept-based explanation framework for CNNs. The Conv-ReLU $E(\cdot)$ generates the featuremap \mathcal{A} from the image *instance* at the CNN penultimate layer. The encoder \mathcal{J} generates the concepts $\mathcal{S} \in \mathbb{R}^{m \times c'}$ and CAVs $\mathcal{P} \in \mathbb{R}^{c \times c'}$ from the featuremap $\mathcal{A} \in \mathbb{R}^{m \times c}$ (containing *literals* $l \in L$) produced by the CNN's Conv-ReLU $E(\cdot)$. The decoder \mathcal{J}' produces $\mathcal{A}' \approx \mathcal{A}$. The classifier $C(\cdot)$ quantifies *concept importance* \mathcal{W} for *concept explanation* for evaluating faithfulness using the axiomatic foundations \mathcal{G}^n . Post-processing methods such as *Flatten, Global Average Pooling, or Attention mechanisms* depend on the explainer's objective.

(CAV) $\mathcal{P} \in \mathbb{R}^{c \times c'}$ such that $\mathcal{J}(\mathcal{A}) = \mathcal{SP} + \epsilon$, where c' is a user-defined number of concepts, ϵ is the decomposition error and $c' \ll c$. Conversely, $\mathcal{J}'(\mathcal{S})$ decodes $\mathcal{S} \to \mathcal{A}'$ (where $\mathcal{A}' \approx \mathcal{A}$) using the fixed \mathcal{P} . A *concept explanation* aims to generate discriminative information, i.e., concepts stored in \mathcal{S} , accompanied by their corresponding importance scores \mathcal{W} for the class y Zhang et al. (2021).

Our proposal is based on the non-triviality and minimal sufficiency of *concept explanations* and requires formal axiomatic principles (see Section 2.2). We hypothesize that $\{C(A), C(A')\}_{i=1}^n$ should constitute the axiomatic foundations \mathcal{G}^n , providing a principled basis to assess the explainer.

2.1 PROBLEM STATEMENT

We probe with a class question⁵ $Q = \langle \mathcal{S}, R, x \rangle$, the decision logic of $f(\cdot)$, seeking to evaluate the reasons⁶ for f(x), $R = \langle \mathcal{S}, x', \mathcal{W}, \mathcal{Y} \rangle$ that defines the mapping $\hat{f}_R : \mathcal{S} \to \mathcal{Y}$ if $\hat{f}_R(s) = y$ for $s \in \mathcal{S}$ using the proposed set of axiomatic foundations. These reasons constitute three key ingredients:

- 1. *literals* $l \in L$, formed by pairing feature activations $a \in A$ with their concept activations $e \in C(a)$. Given a triple $T = \langle A, f, \mathcal{Y} \rangle$, a *literal* $l \in L$ on T is a couple $l = \langle a, e \rangle$ such that $a \in A$, $e \in C(a)$. L^T is the set of all literals, and L is a subset of L^T .
- 2. concept importance $W = \mathcal{P} \cdot t$ estimated as the sensitivity of f(x) to \mathcal{S} along \mathcal{P} Kim et al. (2018).
- 3. prototypes x_p , an instance $x' \in \mathcal{X}_y$ whose literals L' align maximally with the literals L of a given instance x of a class $y \in \mathcal{Y}$ such that $x_p = \arg\max_{x \in \mathcal{X}_y} \mathbb{E}_{x' \sim P(\mathcal{X}_y)} \phi(L, L')$, where $\mathbb{E}_{x' \sim P(\mathcal{X}_y)} \phi(L, L')$ denotes the expectation over x' drawn from the probability distribution $P(\mathcal{X}_y)$ and $\phi(L, L')$ measures the homogeneity. Reliable homogeneity measures include Jaccard, Cosine, and Kernel-based similarity metrics Xie et al. (2016); Chen et al. (2019); Fel et al. (2023); Ma et al. (2023) (See **Prototype Selection** in Appendix).

⁵For an *instance* $x \in \mathcal{X}_y$, a *class question* \mathbf{Q} is an abstraction of *infinite* possible queries that aims to identify the *reasons* that influenced the decision f(x) = y. $\hat{f}(\mathbf{Q})$ represents the set of possible explanations for \mathbf{Q} which include contrastive, affirmative, counterfactual, sufficiency, necessity questions, and *et cetera*.

⁶The *reason* for f(x) constitutes concepts stored in S, accompanied by prototypes and their corresponding weights W for the class y. It can define how *literals* are structured, such as causal relationships, dependencies, or semantic groupings Wang et al. (2023a); Liu et al. (2023b).

2.2 FORMAL PRINCIPLES AND CONCEPTUAL BASIS

A concept explanation for a class can be local, focusing on providing reasons for an individual instance, global, examining the complete collection of reasons for different instances, or ideally both, covering a class explanation Holzinger et al. (2022); Ade-Ibijola & Okonkwo (2023). A class explanation aims to understand the overall logic of CNN by outlining the various reasons it assigned a particular class, requiring class-specific insights Zheng et al. (2017) and axiomatic foundations. We begin with the orthogonality of the first principles of CNN behaviour and explanation:

- Principle of Human Alignment: *Concept explanations* must be interpretable in humanunderstandable terms and cannot exist outside the interpretable space. Let $\iota: \mathcal{S} \to \mathcal{H}$ be the interpretability mapping, where \mathcal{H} is the space of human-recognizable concepts. Then $\forall s \in \hat{f}(x), \iota(s) \neq \emptyset$.
- Principle of Causality: Concept explanations must reflect causal factors of the predictions, not spurious correlations. Let do(·) denote an intervention in Pearl's do-calculus Correa & Bareinboim. Then, for an instance x and associating set of concepts S = f̂(x): ∀s ∈ S, P(f(x) | do(s = 0)) ≠ P(f(x)). That is, intervening in the presence of a concept must alter the output distribution, ensuring causal relevance.
- Principle of Consistency: Concept explanations for similar inputs must be stable and reproducible. Let $d_{\mathcal{X}}: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^+$ be a metric on the input space, and $d_{\mathcal{S}}: \mathcal{S} \times \mathcal{S} \to \mathbb{R}^+$ a metric in the concept space. Then: $\forall x, x' \in \mathcal{X}, \quad d_{\mathcal{X}}(x, x') \leq \epsilon \Longrightarrow d_{\mathcal{S}}\left(\hat{f}(x), \hat{f}(x')\right) \leq \delta$, for small $\epsilon, \delta > 0$. This ensures that small perturbations in inputs yield bounded changes in the explanations.
- Principle of Faithfulness: Concept explanations must preserve CNN decision logic. Predictions reconstructed via explanation concepts must match the CNN's predictions. For an explanation f̂(·) and a prediction function f(·): ∀x ∈ X, f(x) = f'(x | f̂(x)), where f'(·) is the surrogate function reconstructed from the explanations.
- Principle of Representation: Explanations must relate to CNN internal representations. Let $E(\cdot): \mathcal{X} \to \mathbb{R}^k$ be the CNN representation function up to a latent layer. Then for any explanation $\hat{f}(x), \forall s \in \hat{f}(x), \exists g_s : \mathbb{R}^k \to \{0,1\}$ such that $g_s(E(x)) = 1$.

2.3 FORMALIZATION OF AXIOMS

Given $f(\cdot)$, x, and f(x), for a class question Q, let f(Q) be the set of literals L explaining f(x) while L^T is the set of all reasonable ground-truth laterals and $f_R(\cdot)$ is a reasonable concept extraction function from a given set of literals.

Lemma 1. Q satisfies minimal sufficiency if the minimal set of reasonable literals $f_{\mathbf{R}}(L)$ provides sufficient explanations for all reasonable predictions in the set of ground truths $f_{\mathbf{R}}(L^T)$. Formally, $f_{\mathbf{R}}(L) \equiv f_{\mathbf{R}}(L^T)$.

Theorem 1. There exists a property exhibited by a concept explanation (in this case, we assume the concept importance W), ensuring that the total importance of the explanation remains nearly unchanged such that: $\sum_{l \in L} W(l) \approx \sum_{l \in L^T} W(l)$, where $|L| \ll |L^T|$.

The axiomatic foundations of $\hat{f}(\cdot)$ constituting the set of axioms $(g_1, \dots, g_n) \in \mathcal{G}^n$, assert that the concept explanations are minimal, intuitive, and non-trivial without changing \mathcal{W} . We abstract formal properties that concept explanations must exhibit and define axioms as logical necessities that explanation methods must satisfy, as direct consequences of the formalized principles:

- Axiom 1 (*Interpretability* $g_1 \in \{True, False\}$): Derived from Principle of Human Alignment, $g_1 = True$ if $\forall L \in \hat{f}(Q), L \neq \emptyset$.
- Axiom 2 Relevance $(g_2 \in \{0,1\})$: Derived from the principle of Causality $g_2 = 1$ if $\forall L \in \hat{f}(Q), \forall l \in L, l \models y$.
- Axiom 3 Coherence $(g_3 \in \{0,1\})$: Derived from the principle of Consistency $g_3 = 1$ if $\forall L \in \hat{f}(Q)$ explaining $f(x), L \notin \hat{f}(Q')$ for $x' \neq x$.

- Axiom 4 (Fidelity $g_4 \in \{0,1\}$): Derived from the principle of Faithfulness, $g_4 = 1$ if $\forall L \in \hat{f}(Q), \ \hat{f}(x) \equiv f(x)$, i.e., $\forall x \in X, \hat{f}(x)$ must preserve the predictive behaviour of f(x) under concept perturbations.
- Axiom 5 (Sanity $g_5 \in \text{True}$, False, \star): Derived from the principle of Representation, for $Q = \langle T, C, y \rangle$ and $Q' = \langle T', C', y' \rangle$ with $T \neq T'$, C = C', and y = y', $\forall L \in \hat{f}(Q)$, $\forall L' \in \hat{f}(Q')$, $L \cap L' = \emptyset$ implies $\hat{f}(x) \neq \hat{f}(x')$. If Q = Q', then $g_5 = \star$ (indeterminate).

2.4 SIGNIFICANCE OF THE PROPOSED AXIOMS

The axioms defined above and formalized comprehensively in the **Preliminaries** section of the appendix provide formal guarantees that *class explanations* are trustworthy. In the *dog* example from Figure 1, a robust and meaningful *concept explanation* should highlight a few *interpretable* concepts, such as *Ear*, *Eye*, *Nose*, and *Cheek*, which clearly support the *dog* classification. This aligns with the principles of Human Alignment on the one hand and Representation on the other hand, supporting the *Simplicity* axiom and avoiding excessive or misleading details such as the *Background*, and ensuring *coreness* by focusing on essential elements.

To maintain the principle of Consistency, the explanation must exclude contradictory concepts such as **Round Pupils** and **Slit Pupils**, which are typically associated with a **cat**. Furthermore, the principles of Representation and Consistency demand that concepts like **Cheek** generalize across multiple **dog** instances, not just a single example. These concepts should also be reflected in the associated **prototypes**. Crucially, the explanation must reflect the principle of Causality, where removing a causal **literal** significantly alters the CNN decision. This protects against spurious correlations and ensures that the explanation is grounded in the actual decision-making process of the model. Lastly, grounded in the principles of Consistency and Representation, the **Sanity** axiom requires that minor changes, such as image rotation, do not drastically affect the explanation, thus preserving its reliability in real-world scenarios.

3 EXPERIMENTS

3.1 Cross-Model Investigations

We conducted cross-model investigations of two state-of-the-art (SOTA) concept explainers, CRAFT Fel et al. (2023) and ICE Zhang et al. (2021), each explaining Pytorch's pre-trained ResNet He et al. (2016) and Inception Szegedy et al. (2016) models using the ILSVRC2012 dataset Deng et al. (2009). We chose c'=32 as recommended by Ramaswamy et al. (2023) and probed the penultimate CNN layers: layer4 for ResNet50 and $Mixed_7c$ for Inceptionv3. Experiments were conducted on an NVIDIA GeForce RTX 4090. Since the CNNs (ResNet50 and Inceptionv3) were pre-trained, computational demands were modest. Both models achieved over 96% classification accuracy (Acc) for the target classes.

Figure 4 presents a cross-model analysis of an instance containing two breeds of dogs and a cassette player, answering class questions Q_{1-3} . Each *class explanation* comprises 32 *concept explanations* grounded in axioms $g_1 - g_5$, although only the top three local concepts are shown for clarity. These are identified by unique $\mathbf{ID}s$, *prototypes*, and \mathcal{W} scores, ensuring trust through validation. This setup enables a detailed understanding of the concepts' contributions to CNN decisions (see the appendix for more results).

Although certain class questions are axiom-specific (e.g., Figure 1), the questions in Figure 4 require the application of all axioms, providing a comprehensive foundation. The figure illustrates how the axioms collectively assess the faithfulness of the explainer. Specifically, g_1 evaluates the alignment of the *concept explanations* with human understanding, while g_2 examines the causal relevance of the *concept explanations* to the CNN decision. The axiom g_3 quantifies the consistency of the *concept explanations* and g_4 measures the degree of faithfulness of the explainer. High scores in these dimensions serve to validate the quality of the explanations. Finally, g_5 evaluates robustness in terms of consistency and human alignment, returning Boolean outcomes for pairwise instance comparisons or \star (indeterminate) for single instance evaluations. Figure 4 also highlights a fair⁷

⁷The comparison addresses Q_{1-3} for the specific instance and does not generalize to all class questions.

Figure 4: The three most significant local concept explanations (out of 32 local concept explanations) for an instance featuring a Labrador Retriever, a Yorkshire Terrier, and a cassette player, evaluated across their axiomatic foundations (g_1, \ldots, g_5) for three class questions, Q_1 , Q_2 , and Q_3 . (a) CRAFT Fel et al. (2023) on ResNet50 (colour maps represent concepts) and (b) ICE Zhang et al. (2021) on Inceptionv3 (red-bounded pixels represent concepts). Each explanation includes a unique ID, five prototypes, and a \mathcal{W} score sorted in descending order by \mathcal{W} scores. The proposed axiomatic foundations are shown in rectangular boxes below each class explanation. (Best viewed in colour).

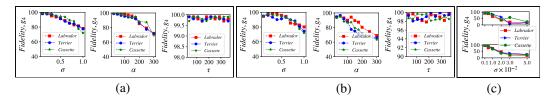


Figure 5: Impact of adversarial attacks on *Fidelity* g_4 (a) Frontdoor attacks: ICE Zhang et al. (2021) on ResNet50, (b) Frontdoor attacks: CRAFT Fel et al. (2023) on Inceptionv3, (c) Poisoning attacks: ICE Zhang et al. (2021) on ResNet50 (**Top**) and CRAFT Fel et al. (2023) on Inceptionv3 (**Bottom**). Similar trends were observed for other axioms under the adversarial conditions, with True results for the Boolean axioms: g_1 and g_5 .

cross-model comparison: CRAFT slightly outperforms ICE in *Fidelity* and *Relevance* while both methods maintain high *Coherence* and consistent adherence to the axiomatic framework.

3.2 ADVERSARIAL PERFORMANCE

We performed *Sanity* checks on the explainers under various adversarial conditions, including Frontdoor and Poisoning attacks (Figure 5). The parameters μ , σ , λ , α , and τ represent mean, standard deviation, smoothness, displacement, and rotation, respectively. For each condition, we generated concept explanations and evaluated classification accuracy (Acc) and axioms g_n (see Figure 6 for a visual example).

The axiom g_{10} was evaluated by comparing the fidelity g_2 between ideal and adversarial settings. As shown in Figure 6 (a, b), similar concepts produce different prototypes with reduced Acc and W scores. Gaussian noise and warping significantly impact Acc and Fidelity due to alterations in the value of the pixels (σ, α) , while rotation (τ) , which only shifts the position of the pixels, has a minimal effect (Figure 6 (c)). Figure 5 confirms that Fidelity is sensitive to changes in the value of pixels but resistant to spatial transformations. Our comprehensive evaluation of Sanity q_5 using other axioms validates Sanity of explainers in adversarial settings, highlighting the need for robustness checks during explainer development.

4 DISCUSSION

4.1 IMPLICATIONS OF PROPOSED AXIOMS

Faithful *concept explanations* must successfully reflect the CNN classification logic to ensure *Relevance* Holzinger et al. (2022); Am-

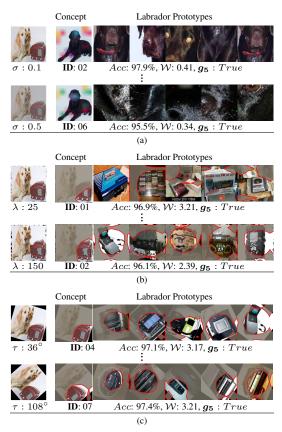


Figure 6: Explainer performance on ResNet50 under adversarial conditions for Labrador Retriever (a) Gaussian noise on CRAFT Fel et al. (2023), (b) warping on ICE Zhang et al. (2021), and (c) rotation on ICE Zhang et al. (2021).

goud & Ben-Naim (2022). High *Coherence* and *Relevance* scores in Figure 4 indicate logical consistency and pertinence. *Representativity* supports generalization in similar instances, while *Agreement* links concepts to *prototypes*. *Fidelity* reflects the precision of both relevant and irrelevant concepts Ghorbani et al. (2019); Fel et al. (2023); Zhang et al. (2021). Lower Causality scores in Figure 4 suggest a nuanced influence of concepts on CNN decisions, enhancing trustworthiness.

Adversarial conditions can degrade the quality of the explanation, so a rational explanation must reflect this sensitivity Fel et al. (2023); Ade-Ibijola & Okonkwo (2023); Bao et al. (2023). *Concept explanations* should reveal causal, not simply correlated, *Reasons* Akpudo & Jang-Wook (2020); Wang et al. (2023a); Liu et al. (2023b); Ning et al. (2023). Although they are expected to be accurate, they should be *Relevant* to the *class explanation* Garcia & Johnson (2023), consistent with representative features of the image class Makridakis (1993); Wang et al. (2023b); Akpudo et al. (2024); Aronhime et al. (2014). For example, in Figure 1, concepts like *Ear*, *Eye*, *Nose*, and *Cheek* are relevant for a dog class, while accurate but irrelevant concepts (e.g., *Background*) may not contribute meaningfully.

4.2 Interconnectedness of Proposed Axioms with Desiderata

The proposed axiomatic foundations imply and reinforce several other established desiderata, highlighting their interdependence. For instance, the Sanity axiom inherently requires Ablation tests to assess Reliability and Stability, while Coherence depends on analyzing the Sparsity of concept logits to ensure focused and interpretable explanations. These relationships suggest that axioms should be viewed not in isolation but as part of a structured framework, where validating one may support or necessitate the evaluation of others. This interconnectedness strengthens the overall robustness and trustworthiness of concept-based explanations in CNNs. Some axioms, like Sanity, may require inter-class evaluations. For example, the question in Figure 1: How coherent is the Cheek concept for a dog breed (e.g. Bulldog) compared to those for another breed (e.g., Chihuahua)? may necessitate new axioms. Similarly, in Figure 4, similar prototypes retrieved for different concepts (e.g., ICE concepts 12 and 10 for Labrador Retriever) suggest minimal plausibility differences. Although individually valid, merging them may better satisfy the simplicity axiom. Addressing such challenges may require interdisciplinary approaches beyond this study.

Finally, evaluating *Exhaustivity* is impractical due to subjectivity and uncertainty. Instead, emphasizing *Coreness*, as we have achieved, ensures faithful, trustworthy, and ethically sound explanations with broader impact (see the **Broader Impact** of the Appendix for a detailed discussion).

5 RELATED WORKS

In line with the larger expectation that AI should assist rather than replace humans Marques-Silva & Ignatiev (2022), human-in-the-loop frameworks have become essential to build trust and accountability in AI systems Atienza et al. (2024); Ghosh (2023). CNNs, while not inherently interpretable, support concept extraction through their layered filtering operations, allowing classification and post hoc interpretation Kim & Chae (2024); Akpudo et al. (2025b). However, poorly performing CNNs, particularly under adversarial conditions, can increase interclass similarity, generate meaningless concepts, and doubt the sanity of the explainer Karimi et al. (2020); Bao et al. (2023).

Traditional attribution-based methods, such as GradCAM, highlight influential input regions, offering insight into where a model looked, but not what it saw Ribeiro et al. (2016); Liu et al. (2023b); Amgoud & Ben-Naim (2022); Garcia & Johnson (2023). These methods do not satisfy key axiomatic foundations, such as *Causality*, require expert judgment, and are vulnerable to adversarial attacks Salahuddin et al. (2022); Preechakul et al. (2022); Chakraborty et al. (2022). Concept-based approaches offer a more abstract and cognitively aligned perspective Kim et al. (2018); Zhang et al. (2021); Ghorbani et al. (2019); Fel et al. (2023). Still, supervised methods relying on predefined concepts face significant limitations: they often fail to capture nuanced features Kim et al. (2018); Ramaswamy et al. (2023), are harder to learn than class labels Ramaswamy et al. (2023), and can introduce bias Fel et al. (2023); Akpudo et al. (2025b). These challenges have catalyzed the development of unsupervised concept-based methods centered on automatic concept discovery Ghorbani et al. (2019); Zhang et al. (2021); Fel et al. (2023); Akpudo et al. (2024); Kim et al. (2018); Ramaswamy et al. (2023); Akpudo et al. (2025a).

Recent frameworks integrate dimensionality reduction techniques, that is, reducers in CNNs, to discover concepts without manual labelling Akpudo et al. (2025a; 2024; 2023); Zhang et al. (2021); Fel et al. (2023), significantly improving explainability and interpretive diversity Gupta & Narayanan (2024); Weber et al. (2023). ACE Ghorbani et al. (2019) pioneered this direction, segmenting images, grouping similar regions, and rejecting outliers to define concepts. However, its outlier rejections

tion can lead to information loss, and concept importance may vary across instances. ICE Zhang et al. (2021) and CRAFT Fel et al. (2023) build on this by using NMF; ICE shows strong performance, while CRAFT introduces recursive decomposition for refined explanations. Generative approaches Akpudo et al. (2025a); Brocki & Chung (2019); Liu et al. (2023a) offer further flexibility, but require extensive tuning and introduce interpretability challenges Takeishi & Kawahara (2020), including misalignment between model metrics and human perception Zhang et al. (2016).

Despite their promise, unsupervised explainers lack a formal axiomatic foundation. This makes cross-method comparisons difficult due to inconsistent assumptions, domain-specific constraints, and the absence of standardized evaluation criteria Akpudo et al. (2024). The inability to validate automatically discovered concepts further undermines the stakeholders' trust Akpudo et al. (2025a); Zhang et al. (2021); Ghorbani et al. (2019); Fel et al. (2023); Akpudo et al. (2024). Many explainers still rely on cherry-picked examples that appear intuitive but are anecdotal and unsupported by rigorous evaluation He et al. (2025); Nauta et al. (2023b); Akpudo et al. (2025b), allowing anecdotal inspection to dominate and weakening the credibility of XAI research Upadhyay et al. (2025); He et al. (2025). To address these gaps, we ask: What axiomatic foundations guarantee faithful and trustworthy concept explanations? We argue that concept explanations must satisfy key formal properties to be considered trustworthy Amgoud & Ben-Naim (2022); Sundararajan et al. (2017); Chen et al. (2023). As illustrated in Figure 1, our work introduces the notion of coreness and emphasizes cognitive alignment and ethical considerations Akpudo et al. (2025b); Lincoln IV (2025); Upadhyay et al. (2025). For the first time, we formally investigate the axiomatic properties of unsupervised concept-based explainers and propose a framework for harmonized evaluation and crossmodel comparison. Rather than debating the superiority of supervised versus unsupervised concepts, a question already settled in the literature Kim et al. (2018); Zhang et al. (2021); Fel et al. (2023); Ghorbani et al. (2019); Kori et al. (2023); Nauta et al. (2023a); Kim & Chae (2024), we define a set of desirable axioms that any concept explanation should satisfy to earn stakeholder trust. Our framework builds on advances in concept discovery, prototypical representation, and abstraction, offering a principled foundation for evaluating the faithfulness of concept-based explanations Akpudo et al. (2025a; 2024); Sundararajan et al. (2017).

6 ETHICAL STATEMENT

The paper is foundational and theoretical, and does not present or implement technology with direct societal deployment. While the work does not involve crowdsourcing or research with human subjects, nor pose immediate risks, it could influence how future systems align with human values, necessitating the protection of CNNs and explainers from adversarial conditions. The proposed axiomatic foundations safeguard explainers by demanding that faithful and trustworthy explanations adhere to desired properties, even under adversarial conditions. Poor performance under such conditions can doubt the explainer's sanity, highlighting a potential flaw detected through axiomatic testing. The paper ensures reproducibility through open datasets, pretrained models, detailed methodology, and clear experimental results with supporting visuals and metrics.

7 CONCLUSIONS AND FUTURE WORKS

This study introduces a novel framework for evaluating concept-based explanations of CNNs through a unified axiomatic foundation, emphasizing trustworthiness. Key contributions include defining these axioms, conducting quantitative investigations to assess explainer performance under adversarial conditions, and offering insights for developing more transparent AI systems. Experiments with the ILSVRC2012 dataset highlight the critical role of robust axiomatic foundations, particularly in adversarial conditions. The findings emphasize the importance of rigorous testing to ensure the reliability and practical value of explainers. This work provides foundations for deploying resilient explainers and underscores the need for future research to enhance their robustness and ensure trust. The axiomatic foundations proposed for CNN explainers are model-agnostic and could extend to transformers, despite architectural differences. While CNNs extract local features, Vision Transformers (ViTs) capture global dependencies through self-attention, requiring a redefinition of concept discovery. However, the proposed axiomatic foundations remain essential for ensuring trustworthy explanations. Applying these principles to ViTs and multi-modal models presents an opportunity to advance interpretability across SOTA and custom visual categorization models.

REFERENCES

- Abejide Ade-Ibijola and Chinedu Okonkwo. Artificial intelligence in africa: Emerging challenges. In *Responsible AI in Africa: Challenges and Opportunities*, pp. 101–117. Springer International Publishing Cham, 2023.
- Ugochukwu Ejike Akpudo and Hur Jang-Wook. A multi-domain diagnostics approach for solenoid pumps based on discriminative features. *IEEE Access*, 8:175020–175034, 2020.
- Ugochukwu Ejike Akpudo, Xiaohan Yu, Jun Zhou, and Yongsheng Gao. NCAF: Ntd-based concept activation factorisation framework for cnn explainability. In 2023 38th International Conference on Image and Vision Computing New Zealand (IVCNZ), pp. 1–6. IEEE, 2023.
- Ugochukwu Ejike Akpudo, Yongsheng Gao, Jun Zhou, and Andrew Lewis. CoherentICE: Invertible concept-based explainability framework for cnns beyond fidelity. In 2024 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6, 2024.
- Ugochukwu Ejike Akpudo, Yongsheng Gao, Jun Zhou, and Andrew Lewis. TraNCE: Transformative nonlinear concept explainer for cnns. *IEEE Transactions on Neural Networks and Learning Systems*, 36(6):10156–10170, 2025a.
- Ugochukwu Ejike Akpudo, Yongsheng Gao, Jun Zhou, and Andrew Lewis. Copisan: Contrastive perceptual inference and sanity checks for concept-based cnn explanations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 47(9):8193–8212, 2025b.
- Leila Amgoud and Jonathan Ben-Naim. Axiomatic foundations of explainability. In 31st International Joint Conference on Artificial Intelligence (IJCAI 2022), pp. 636–641. IJCAI; International Joint Conferences on Artificial Intelligence Organization, 2022.
- Shimon Aronhime, Claudia Calcagno, Guido H. Jajamovich, Hadrien Arezki Dyvorne, Philip Robson, Douglas Dieterich, M. Isabel Fiel, Valérie Martel-Laferriere, Manjil Chatterji, Henry Rusinek, and Bachir Taouli. Dce-mri of the liver: effect of linear and nonlinear conversions on hepatic perfusion quantification and reproducibility. *Journal of Magnetic Resonance Imaging*, 40 (1):90–98, 2014.
- Nicolas Atienza, Roman Bresson, Cyriaque Rousselot, Philippe Caillou, Johanne Cohen, Christophe Labreuche, and Michèle Sebag. Cutting the Black Box: Conceptual Interpretation of a Deep Neural Net with Multi-Modal Embeddings and Multi-Criteria Decision Aid. In *IJCAI-24 Thirty-Third International Joint Conference on Artificial Intelligence*, pp. 3669–3678, Jeju, South Korea, August 2024. International Joint Conferences on Artificial Intelligence Organization.
- Olivier Bachem, Mario Lucic, and Andreas Krause. Practical coreset constructions for machine learning. *arXiv preprint arXiv:1703.06476*, 2017.
- Yanqi Bao, Yuxin Li, Jing Huo, Tianyu Ding, Xinyue Liang, Wenbin Li, and Yang Gao. Where and how: Mitigating confusion in neural radiance fields from sparse inputs. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 2180–2188, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085.
- Lennart Brocki and Neo Christopher Chung. Concept saliency maps to visualize relevant features in deep generative models. In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), pp. 1771–1778, 2019.
- Tanmay Chakraborty, Utkarsh Trehan, Khawla Mallat, and Jean-Luc Dugelay. Generalizing adversarial explanations with grad-cam. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops*, pp. 187–193, June 2022.
- Chaofan Chen, Oscar Li, Daniel Tao, Alina Barnett, Cynthia Rudin, and Jonathan K Su. This looks like that: deep learning for interpretable image recognition. *Advances in neural information processing systems*, 32, 2019.
- Jiali Chen, Zhenjun Guo, Jiayuan Xie, Yi Cai, and Qing Li. Deconfounded visual question generation with causal inference. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 5132–5142, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085.

- Juan D Correa and Elias Bareinboim. Counterfactual graphical models: Constraints and inference.
 In Forty-second International Conference on Machine Learning.
 - Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image database. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 248–255, 2009.
 - Thomas Fel, Agustin Picard, Louis Bethune, Thibaut Boissin, David Vigouroux, Julien Colin, Rémi Cadène, and Thomas Serre. Craft: Concept recursive activation factorization for explainability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2711–2721, 2023.
 - Maria Garcia and Peter Johnson. Interpretable machine learning through rule extraction. In *Proceedings of the International Conference on Machine Learning (ICML)*, pp. 1112–1121, 2023.
 - Amirata Ghorbani, James Wexler, James Zou, and Been Kim. Towards automatic concept-based explanations. pp. 9277–9286, 2019.
 - Bishwamittra Ghosh. Interpretability and fairness in machine learning: A formal methods approach. In *IJCAI*, pp. 7083–7084, 2023.
 - Avani Gupta and PJ Narayanan. A survey on concept-based approaches for model improvement. *arXiv preprint arXiv:2403.14566*, 2024.
 - Hangzhou He, Lei Zhu, Xinliang Zhang, Shuang Zeng, Qian Chen, and Yanye Lu. V2c-cbm: Building concept bottlenecks with vision-to-concept tokenizer. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(3):3401–3409, Apr. 2025.
 - Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image Recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, June 2016.
 - Andreas Holzinger, Anna Saranti, Christoph Molnar, Przemyslaw Biecek, and Wojciech Samek. *Explainable AI Methods A Brief Overview*, pp. 13–38. Springer International Publishing, Cham, 2022. ISBN 978-3-031-04083-2.
 - Davood Karimi, Haoran Dou, Simon K. Warfield, and Ali Gholipour. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis. *Medical Image Analysis*, 65:101759, 2020. ISSN 1361-8415.
 - Been Kim, Rajiv Khanna, and Oluwasanmi O Koyejo. Examples are not enough, learn to criticize! criticism for interpretability. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016.
 - Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In *International Conference on Machine Learning*, pp. 2668–2677. PMLR, 2018.
 - Seonggyeom Kim and Dong-Kyu Chae. What does a model really look at?: Extracting model-oriented concepts for explaining deep neural networks. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(7):4612–4624, 2024.
 - Siwon Kim, Jinoh Oh, Sungjin Lee, Seunghak Yu, Jaeyoung Do, and Tara Taghavi. Grounding counterfactual explanation of image classifiers to textual concept space. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10942–10950, 2023.
 - Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In *International conference on machine learning*, pp. 1885–1894. PMLR, 2017.
 - Avinash Kori, Ben Glocker, and Francesca Toni. GLANCE: Global to local architecture-neutral concept-based explanations. In XAI in Action: Past, Present, and Future Applications, 2023.

- Charles Edward Andrew Lincoln IV. Axiomatic shifting paradigms: Wittgenstein's language-games, axiomatic shifting paradigms: Wittgenstein's language-games, gödel's incompleteness theorem, language, law, and the limits gödel's incompleteness theorem, language, law, and the limits of formalism. *University of Arkansas Little Rock Law Review*, 47(2):133–188, 2025.
 - Nan Liu, Yilun Du, Shuang Li, Joshua B Tenenbaum, and Antonio Torralba. Unsupervised compositional concepts discovery with text-to-image generative models. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 2085–2095, 2023a.
 - Yang Liu, Zhaoyang Xia, Mengyang Zhao, Donglai Wei, Yuzheng Wang, Siao Liu, Bobo Ju, Gaoyun Fang, Jing Liu, and Liang Song. Learning causality-inspired representation consistency for video anomaly detection. MM '23, pp. 203–212, New York, NY, USA, 2023b. Association for Computing Machinery. ISBN 9798400701085.
 - Chiyu Ma, Brandon Zhao, Chaofan Chen, and Cynthia Rudin. This looks like those: Illuminating prototypical concepts using multiple visualizations. *Advances in Neural Information Processing Systems*, 36:39212–39235, 2023.
 - Spyros Makridakis. Accuracy measures: theoretical and practical concerns. *International Journal of Forecasting*, 9(4):527–529, 1993. ISSN 0169-2070.
 - Joao Marques-Silva and Alexey Ignatiev. Delivering trustworthy AI through formal XAI. *Proceedings of the AAAI Conference on Artificial Intelligence*, 36(11):12342–12350, Jun. 2022.
 - Margaret Jane Moore, Amanda K Robinson, and Jason B Mattingley. Expectation modifies the representational fidelity of complex visual objects. *Imaging Neuroscience*, 2:1–14, 2024.
 - Meike Nauta, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. Pip-net: Patch-based intuitive prototypes for interpretable image classification. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 2744–2753, 2023a.
 - Meike Nauta, Jan Trienes, Shreyasi Pathak, Elisa Nguyen, Michelle Peters, Yasmin Schmitt, Jörg Schlötterer, Maurice van Keulen, and Christin Seifert. From anecdotal evidence to quantitative evaluation methods: A systematic review on evaluating explainable ai. *ACM Comput. Surv.*, 55 (13s), July 2023b. ISSN 0360-0300.
 - Qian Ning, Fangfang Wu, Weisheng Dong, Xin Li, and Guangming Shi. Exploring correlations in degraded spatial identity features for blind face restoration. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 37–45, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9798400701085.
 - Julius S Bendat; Allan G Piersol. *Random data: analysis and measurement procedures.* Wiley series in probability and statistics. Wiley, 4th ed edition, 2010. ISBN 9780470248775,0470248777.
 - Claudio S Pinhanez, Paulo R Cavalin, Marisa Vasconcelos, and Julio Nogima. Balancing social impact, opportunities, and ethical constraints of using ai in the documentation and vitalization of indigenous languages. In *IJCAI*, pp. 6174–6182, 2023.
 - Konpat Preechakul, Sira Sriswasdi, Boonserm Kijsirikul, and Ekapol Chuangsuwanich. Improved image classification explainability with high-accuracy heatmaps. *iScience*, 25(3):103933, 2022. ISSN 2589-0042.
 - Vikram V Ramaswamy, Sunnie SY Kim, Ruth Fong, and Olga Russakovsky. Overlooked factors in concept-based explanations: Dataset choice, concept learnability, and human capability. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 10932–10941, 2023.
 - Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should I trust you?" explaining the predictions of any classifier. In *Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining*, pp. 1135–1144, 2016.
 - Zohaib Salahuddin, Henry C. Woodruff, Avishek Chatterjee, and Philippe Lambin. Transparency of deep neural networks for medical image analysis: A review of interpretability methods. *Computers in Biology and Medicine*, 140:105111, 2022. ISSN 0010-4825.

- Gurmail Singh and Kin-Choong Yow. These do not look like those: An interpretable deep learning model for image recognition. *IEEE Access*, 9:41482–41493, 2021.
 - Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. *Advances in neural information processing systems*, 30, 2017.
 - Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In *International conference on machine learning*, pp. 3319–3328. PMLR, 2017.
 - Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception architecture for computer vision. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 2818–2826, 2016.
 - Naoya Takeishi and Yoshinobu Kawahara. Knowledge-based regularization in generative modeling. In *Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20*, pp. 2390–2396, 7 2020.
 - Neha Upadhyay, Vijay Marupudi, Kamala Varma, and Sashank Varma. Alignment of cnn and human judgments of geometric and topological concepts. *Proceedings of the AAAI Conference on Artificial Intelligence*, 39(2):1556–1564, Apr. 2025.
 - Jilong Wang, Saihui Hou, Yan Huang, Chunshui Cao, Xu Liu, Yongzhen Huang, and Liang Wang. Causal intervention for sparse-view gait recognition. MM '23, pp. 77–85, New York, NY, USA, 2023a. Association for Computing Machinery. ISBN 9798400701085.
 - Rui Wang, Cong Zou, Weizhong Zhang, Zixuan Zhu, and Lihua Jing. Consistency-aware feature learning for hierarchical fine-grained visual classification. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 2326–2334, New York, NY, USA, 2023b. Association for Computing Machinery. ISBN 9798400701085.
 - Xiaohan Wang, Yuehu Liu, Xinhang Song, Beibei Wang, and Shuqiang Jiang. Generating explanations for embodied action decision from visual observation. In *Proceedings of the 31st ACM International Conference on Multimedia*, MM '23, pp. 2838–2846, New York, NY, USA, 2023c. Association for Computing Machinery. ISBN 9798400701085.
 - Leander Weber, Sebastian Lapuschkin, Alexander Binder, and Wojciech Samek. Beyond explaining: Opportunities and challenges of xai-based model improvement. *Information Fusion*, 92:154–176, 2023. ISSN 1566-2535.
 - Liang Xie, Jianwen Xie, and Alan Yuille. Doubly convolutional neural networks. In *Advances in Neural Information Processing Systems (NeurIPS)*, pp. 5039–5047, 2016.
 - Baobao Zhang, Markus Anderljung, Lauren Kahn, Noemi Dreksler, Michael C Horowitz, and Allan Dafoe. Ethics and governance of artificial intelligence: A survey of machine learning researchers. In 31st International Joint Conference on Artificial Intelligence, 2022, pp. 5787–5791, 2022.
 - Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In *Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III 14*, pp. 649–666. Springer, 2016.
 - Ruihan Zhang, Prashan Madumal, Tim Miller, Krista A Ehinger, and Benjamin IP Rubinstein. Invertible concept-based explanations for cnn models with non-negative concept activation vectors. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp. 11682–11690, 2021.
 - Nan-ning Zheng, Zi-yi Liu, Peng-ju Ren, Yong-qiang Ma, Shi-tao Chen, Si-yu Yu, Jian-ru Xue, Ba-dong Chen, and Fei-yue Wang. Hybrid-augmented intelligence: collaboration and cognition. *Frontiers of Information Technology & Electronic Engineering*, 18(2):153–179, 2017.