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Abstract
Adversarial robustness continues to be a major
challenge for deep learning. A core issue is that
robustness to one type of attack often fails to trans-
fer to other attacks. While prior work establishes
a theoretical trade-off in robustness against dif-
ferent Lp norms, we show that there is potential
for improvement against many commonly used
attacks by adopting a domain generalisation ap-
proach. Concretely, we treat each type of attack
as a domain, and apply the Risk Extrapolation
method (REx), which promotes similar levels of
robustness against all training attacks. Compared
to existing methods, we obtain similar or supe-
rior worst-case adversarial robustness on attacks
seen during training. Moreover, we achieve supe-
rior performance on families or tunings of attacks
only encountered at test time. On ensembles of
attacks, our approach improves the accuracy from
3.4% with the best existing baseline to 25.9% on
MNIST, and from 16.9% to 23.5% on CIFAR10.

1. Introduction
While much work has been done on defending against ad-
versarial attacks, new attacks commonly overcome existing
defenses (Athalye et al., 2018). A defense that has so far
passed the test of time against individual attacks is adversar-
ial training. Goodfellow et al. (2015) originally proposed
training on examples perturbed with the Fast Gradient Sign
Method (FGSM), which performs a step of sign gradient
ascent on a sample x to increase the chances of the model
misclassifying it. Madry et al. (2018) further improved ro-
bustness by training on Projected Gradient Descent (PGD)
(Kurakin et al., 2017) adversaries, which perform multiple
updates of (projected) gradient ascent to try to generate a
maximally confusing perturbation within some Lp ball of
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predetermined radius ϵ centred at the chosen data sample.

Unfortunately, adversarial training can fail to provide high
robustness against several attacks, or tunings of attacks, only
encountered at test time. For instance, simply changing the
norm constraining the search for adversarial examples with
PGD has been shown theoretically and empirically (Khoury
& Hadfield-Menell, 2018; Tramèr & Boneh, 2019; Maini
et al., 2020) to induce significant trade-offs in performance
against PGD of different norms. This issue highlights the
importance of having a well-defined notion of “robustness”:
while using the accuracy against individual attacks has often
been used as a proxy for robustness, a better notion, as
argued by Athalye et al. (2018), is to consider the accuracy
against an ensemble of attacks within a threat model (i.e. a
predefined set of allowed attacks). Indeed, an attacker will
often realistically not be constrained to a single attack, and
may attempt several attacks to find one that succeeds.

In order to be robust against multiple attacks, we draw in-
spiration from domain generalisation. In domain generalisa-
tion, we seek to achieve consistent performance even in case
of unknown distributional shifts in the inputs at test time.
We interpret different attacks as distinct distributional shifts
in the data, and propose to leverage existing techniques from
the out-of-distribution generalisation literature.

We choose variance REx (Krueger et al., 2021), which con-
sists in using as a loss penalty the variance on the different
training domains of the empirical risk minimisation loss.
We choose this method as it is conceptually simple, its iter-
ations are no more costly than existing multi-perturbation
baselines’, it does not constrain the architecture, and it can
be used on models pretrained with existing defenses. We
consider robustness against an adversary having access to
both the model and multiple attacks.

We are interested in the two following research questions:

1. Can REx improve robustness against multiple attacks
seen during training?

2. Can REx improve robustness against unseen attacks,
that is, attacks only seen at test time?

Our results show that the answer to both questions is yes
on the ensembles of attacks used in this work. We show
that REx consistently yields benefits across variations in:



Towards Out-of-Distribution Adversarial Robustness

datasets, architectures, multi-perturbation defenses, hyper-
parameter tuning, attacks seen during training, and attack
types or tunings only encountered at test time.

2. Related Work
2.1. Adversarial attacks and defenses
Since the discovery of adversarial examples against neural
networks (Szegedy et al., 2014), numerous approaches for
finding adversarial perturbations have been proposed (Good-
fellow et al., 2015; Madry et al., 2018; Moosavi-Dezfooli
et al., 2016; Carlini & Wagner, 2017; Croce & Hein, 2020),
with the common goal of finding perturbation vectors with
constrained magnitude that, when added to the network’s
input, lead to (often highly confident) misclassification.

A popular defense that has been effective against such at-
tacks is Adversarial Training (Madry et al., 2018), which
consists in training on adversarial examples, typically using
PGD with L∞ norm. However, Khoury & Hadfield-Menell
(2018) and Tramèr & Boneh (2019) show how training on
PGD with a search region constrained by a p-norm may not
yield robustness against PGD attacks using other p-norms.
One reason is that different radii are typically chosen for
different norms, leading to the search spaces of PGD with
respect to different norms to potentially have some mutually
exclusive regions. Moreover, different attacks, e.g. PGD and
the Carlini and Wagner (Carlini & Wagner, 2017) attacks,
optimise different losses. As an example, Fig. 1 illustrates
how, when training adversarially a model on L2-norm PGD,
the accuracy against one attack may improve while it may
decrease against another attack, even for the same p-norm.

Highlighting the need for methods specific to defending
against multiple of perturbations, Tramèr & Boneh (2019)
select a set of 3 attacks A = {P∞, P2, P1}, where Pp is
PGD with a search region constrained by the Lp norm. They
attempt two strategies: the average (Avg) strategy consists
in training over all attacks in A for each input (x, y) in the
dataset, and the max strategy, which trains on the attack
with the highest loss for each sample:

LAvg(θ,A) = E
1

|A|
∑
A∈A

ℓ(θ,A(x), y) (1)

Lmax(θ,A) = Emax
A∈A

ℓ(θ,A(x), y) (2)

Maini et al. (2020) propose a modification to the max
method: instead of 3 different PGD adversaries that each
iterate over their budget of iterations, they design an attack
consisting in choosing the worst perturbation among one
step of L∞, L2 and L1 PGD every iteration through the
chosen number of iterations. This attack, Multi-Steepest
Descent (MSD), differs from the max approach of Tramèr
& Boneh (2019) where each attack is individually iterated
through the budget of iterations first, and the one leading to

Figure 1: Validation accuracy of a ResNet18 model adver-
sarially trained on PGD L2-perturbed CIFAR10, evaluated
on PGD and Carlini&Wagner (CW) L2 attacks.

the worst loss is chosen at the end. Note that this implies
that technically, unlike (Tramèr & Boneh, 2019)’s Avg ap-
proach, MSD only consists in training on a single attack.
Maini et al. (2020) show that, in their experimental setup,
MSD1 yields superior performance over Avg and Max.

Nevertheless, there is still a large gap between the perfor-
mance of such approaches against data perturbed by ensem-
bles of attacks, and the accuracy on the unperturbed data. In
order to help address this large gap, we will be exploiting a
connection between our goal and domain generalisation.

2.2. Robustness as a domain generalisation problem
Domain generalisation – Out-of-Distribution generalisa-
tion (OoD) is an approach to dealing with (typically non-
adversarial) distributional shifts. In the domain generali-
sation setting, the training data is assumed to come from
several different domains, each with a different data distri-
bution. The goal is to use the variability across training (or
seen) domains to learn a model that can generalise to unseen
domains while performing well on the seen domains. In
other words, the goal is for the model to have consistent
performance by learning to be invariant under distributional
shifts. Typically, we also assume access to domain labels, i.e.
we know which domain each data point belongs to. Many
methods for domain generalisation have been proposed –
see (Wang et al., 2021) for a survey.

We frame adversarial robustness as a domain generalisation
problem, where the domains stem from different adversarial
attacks. Because different attacks use different methods of
searching for adversarial examples, and sometimes differ-
ent search spaces, they may produce different distributions
of adversarial examples2. One might draw an analogy to

1In the rest of the paper, we will use MSD to refer to both the
MSD attack, and training on MSD as a defense.

2Another way to see this, is that if different attacks or tunings
yielded identical distributions, standard results from statistical
learning theory would imply similar performance on the attacks.
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Hendrycks & Dietterich (2019)’s work on natural pertuba-
tions, where both the type and the strength of the perturba-
tions play a similar role as varying the attacks or their tuning,
respectively. There are several reasons why the domains we
consider may be distributionally shifted with one another
(although the distributions may have some overlap). To
non-exhaustively name a few, first, we already evoked how
different p-norms affect the distributions of adversarial ex-
amples yielded by PGD (Khoury & Hadfield-Menell, 2018;
Tramèr & Boneh, 2019). Second, different attacks may op-
timise different losses – for example when comparing P2

and L2 CW – which may yield different solutions. Third,
the same attack tuned differently (e.g. different ϵ or itera-
tion budget) may yield different distributions of adversarial
examples since they do not have the same support. There-
fore, robustness to attacks unseen during training means
robustness against the corresponding distributional shifts at
test time. It is natural to frame adversarial robustness as a
domain generalisation problem, as we seek a model that is
robust to any method to generate adversarially distributional
shifts within a threat model, including novel attacks.

In spite of this intuition, it is not obvious that such meth-
ods would work in the case of adversarial machine learning.
First, recent work demonstrates that domain generalisation
methods often fail to improve upon the standard empiri-
cal risk minimisation (ERM), i.e. minimising loss on the
combined training domains without making use of domain
labels (Gulrajani & Lopez-Paz, 2020). On the other hand,
success may depend on choosing a method appropriate for
the type of shifts at play. Second, a key difference with most
work in domain generalisation, is that when adversarially
training, the training distribution shifts every epoch, as the
attacks are computed from the continuously-updated val-
ues of the weights. In contrast, in domain generalisation,
the training domains are usually fixed. Non-stationarity is
known to cause generalisation failure in many areas of ma-
chine learning, notably reinforcement learning (Igl et al.,
2020), thereby potentially affecting the success of domain
generalisation methods in adversarial machine learning.
Third, MSD does not generate multiple domains, which
domain generalisation approaches would typically require.

We note that interestingly, the Avg approach can be inter-
preted as domain generalisation with ERM over the 3 PGD
adversaries as training domains. Similarly, the max ap-
proach consists in applying a Robust Optimisation approach
on the same set of domains. Furthermore, Song et al. (2018)
and Bashivan et al. (2021) propose to treat the clean and
PGD-perturbed data as training and testing domains from
which some samples are accessible during training, and
adopt domain adaptation approaches. Therefore, it is diffi-
cult to predict in advance how much a domain generalisation
approach can successfully improve adversarial defenses.

In this work, we apply the method of variance-based risk

extrapolation (REx) (Krueger et al., 2021), which sim-
ply adds as a loss penalty the variance of the ERM loss
across different domains. This encourages worst-case ro-
bustness over more extreme versions of the shifts (here,
shifts are between different attacks) observed between the
training domains, in order to counter adversaries shifting
their distribution of attacks to better exploit vulnerabilities
in a model. In that light, REx is particularly appropriate
given our objective of mitigating trade-offs in performance
between different attacks to achieve a more consistent de-
gree of robustness. We note that our implementation of REx
has the same computational complexity per epoch as the
MSD, Avg and max approaches, requiring the computation
of 3 adversarial perturbations per sample.

3. Methodology
Threat model – In this work, we consider white-box attacks,
which are typically the strongest type of attacks as they as-
sume the attacker has access to the model and its parameters.
Additionally, the attacks considered in the evaluations are
gradient-based, with the exception of AutoAttack, which is
composite and includes gradient-free perturbations (Croce
& Hein, 2020). Because we assume that the attacker has ac-
cess to all of these attacks, we emphasise that, as argued by
Athalye et al. (2018), the robustness against the ensemble of
the different attacks is a better metric for how the defenses
perform than the accuracy on each individual attack. Thus,
using ℓ01 as the 0-1 loss, we evaluate the performance on
an ensemble of domains D as:

R = 1− Emax
D∈D

ℓ01(θ,D(x), y) (3)

REx – We propose to regularise the average loss over a set
of training domains D by the variance of the losses on the
different domains:

LREx(θ,D) = LAvg(θ,D) + β Var
D∈D

E ℓ(θ,D(x), y) (4)

where ℓ is the cross-entropy loss. We start penalising by
the variance over the training domains once the baseline’s
accuracies on the seen domains stabilise or peak.

Datasets and architectures – We consider two datasets:
MNIST (LeCun et al., 1998) and CIFAR10 (Krizhevsky
et al., 2009). It is still an open problem to obtain high
robustness against multiple attacks on MNIST (Tramèr &
Boneh, 2019; Maini et al., 2020), even at standard tunings of
some commonly used attacks. On MNIST, we use a 3-layer
perceptron of size [512, 512, 10]. On CIFAR10, we use
the ResNet18 architecture (He et al., 2016). We choose two
significantly different architectures to illustrate that our ap-
proach may work agnostically to the choice of architecture.
We always use batch sizes of 128 when training.

Optimiser – We use Stochastic Gradient Descent (SGD)
with momentum 0.9. In subsections 4.2 and B.3 we do not
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perform hyperparameter optimisation, to isolate the effect of
REx from interactions with hyperparameter tuning, which
would differ for each defense. We use a fixed learning rate
of 0.01 and no weight decay. We fix the coefficient β in the
REx loss. In subsection 4.3, we optimise hyperparameters.
Based on (Rice et al., 2020) and (Pang et al., 2020), we use
in all cases a weight decay of 5 ·10−4 and a piecewise learn-
ing rate decay. For every defense, we search for an optimal
epoch to decay the learning rate, with a particular attention
to MSD and MSD+REx due to observing a high sensitivity
to the choice of learning rate decay milestone. Note that
in the case of REx defenses, we always use checkpoints of
corresponding baselines before the learning rate is decayed,
as we observed this to lead to better performance.

Domains – We consider several domains: unperturbed data,
L1, L2 and L∞ PGD (denoted P1, P2, P∞), L2 Carlini &
Wagner (CW2) (Carlini & Wagner, 2017), L∞ DeepFool
(DF∞) (Moosavi-Dezfooli et al., 2016) and AutoAttack
(AA) (Croce & Hein, 2020). We use the Advertorch im-
plementation of these attacks (Ding et al., 2019). For L∞
PGD, CW and DF, we use two sets of tunings, see appendix
A for details. The attacks with a • superscript indicate a
harder tuning of these attacks that no model was trained
on. Those tunings are intentionally chosen to make the at-
tacks stronger. The set of domains unseen by all models
is defined as {P •

∞, DF •
∞, CW •

2 ,AutoAttack∞}, with addi-
tionally AutoAttack2 in subsection 4.3. The set of domains
unseen by a specific model is the set of all domains except
those seen by the model during training, and therefore varies
between baselines. We perform 10 attack restarts per sample
to reduce randomness in the test set evaluations.

Defenses – Aside from the adversarial training baselines
on PGD of L1, L2 and L∞ norms, we define 3 sets of
seen domains: D = {∅, P∞, DF∞, CW2}, DPGDs =
{∅, P1, P2, P∞} and DMSD = {MSD} where ∅ represents
the unperturbed data. We train two Avg baselines: one on
D and one on DPGDs. We train the MSD baseline on DMSD.
We use REx on the Avg baselines on the corresponding set
of seen domains. However, when REx is used on the model
trained with the MSD baseline, we revert to using the set
of seen domains DPGDs. While the MSD baseline does not
exactly train over P1, P2 and P∞ but rather a composition
of these three attacks, we use these attacks when applying
REx to the MSD baseline as MSD would only generate one
domain, which would not allow us to compute a variance
over domains. Note that we chose different sets of seen do-
mains, and different baselines (Avg and MSD), in order to
show that REx yields benefits on several multi-perturbation
baselines, or within a same baseline with different choices
of seen domains. We use cross-entropy for all defenses.

See Appendix A for more details about the methodology,
such as attack tunings.

4. Results
In this section, we first illustrate the differences in distribu-
tions stemming from different families or tunings of attacks
by training an attack classifier in subsection 4.1. We then
present our results on MNIST and CIFAR10 in subsections
4.2 and 4.3. Additionally, more results on the interaction be-
tween the advantage in using REx and hyperparameter tun-
ing, the relative performance of REx models on CIFAR10-C
and for transfer learning, and more, can be found in Apdx B.
More implementation details, observations and results can
generally be found in the appendix (see Table of Content).

Figure 2: Confusion matrix of a discriminator between
attacks (normalised by row).
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4.1. Attacks as different domains
To illustrate how various types or tunings of attacks may cor-
respond to different distributions, we finetune an ImageNet-
pretrained vision transformer (ViT) (Dosovitskiy et al.,
2021) to predict which attack was used on the training set
of CIFAR10, and test it on the perturbed CIFAR10 test set.
Fig. 2 illustrates how without much engineering effort, the
ViT is able to tell apart the distribution of perturbations in-
duced by the various attacks with 45.1% accuracy, relative
to a random chance of 1/9 ≃ 0.11. To claim unequivocally
that all attacks induce different distributions, we require
p(Atrue) > p(A ̸= Atrue) where Atrue is the true attack used
to generate the sample and p(A) is the probability predicted
by the model that a perturbation corresponds to attack A.
This is true for all attacks, except two: CW2 and DF•

∞.

The cases of CW2 and DF•
∞ (the latter sharing ϵ = 8/255

with P∞ and AA∞) warrant an additional discussion. The
former is due to unsuccessful CW2 iterations stopping early,
i.e. x̃ ≃ x. This problem disappears when such unsuccess-
ful CW2 perturbations are no longer involved. This is why
the stronger CW•

2 is classified more easily. As for DF•
∞

confused with P∞, we direct the reader to Apdx B.1 for
more details, where we show how this problem vanishes
when training a binary DF•

∞ vs P∞ discriminator.
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Table 1: Accuracy on MNIST for different domains. Highlighted cells indicate that the domain (row) was used during
training by the defense (column). Bold numbers indicate an improvement of at least 1% accuracy over the baseline used to
pretrain REx. Ensembles omit P •

∞ due to it being overtuned (i.e. tuned to be too strong.).

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 98.1 98.5 98.3 84.4 99.0 90.0 98.8 87.3 88.4 90.2
P1 95.5 96.8 96.8 44.0 90.3 72.6 95.6 82.5 82.2 86.8
P2 1.8 17.7 63.5 10.0 53.6 44.0 68.3 72.8 61.1 71.8
P∞ 0.0 0.0 2.2 59.2 67.7 70.1 58.0 70.8 19.3 67.4
DF∞ 3.3 5.7 85.9 78.1 92.9 84.6 92.3 80.9 56.7 82.4
CW2 4.4 6.9 56.5 62.3 68.8 68.3 59.9 41.4 77.1 47.3
DF •

∞ 0.0 0.0 0.0 19.4 7.1 64.8 3.7 58.4 15.8 19.9
CW •

2 2.3 2.8 16.0 30.2 23.2 42.1 16.4 12.1 40.2 12.9
AutoAttack∞ 0.0 0.0 0.1 55.0 42.3 58.8 34.9 40.6 1.5 31.2
Ensemble (seen) - - - - 63.2 63.4 55.5 64.5 19.3 60.1
Ensemble (unseen
by all models)

0.0 0.0 0.0 9.3 3.4 34.6 1.2 8.1 0.6 3.9

Ensemble (unseen
by this model)

0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9

Ensemble (all) 0.0 0.0 0.0 2.7 3.4 25.9 1.2 8.1 0.6 3.9
P •
∞ 0.0 0.0 0.0 5.1 0.6 4.0 0.9 0.7 0.2 1.0

Key observation 1: Different types or tunings of
attacks induce different distributional shifts that a
discriminator can identify to some extent, even for
the same choice of p-norm and ϵ.

4.2. MNIST
We report our multiperturbation robustness results on
MNIST with a multilayer perceptron in Table 1. REx signifi-
cantly improves robustness against the ensembles of attacks,
whether seen or unseen, and in particular on P∞ and Au-
toAttack. REx also yields notable improvements against all
ensembles, seen or unseen, when used on the Avg baselines.
Note however that as in domain generalisation, when used
on all baselines except MSD, REx sacrifices performance
on the best performing seen domains in order to improve the
performance on the strongest attacks. We believe that this
trade-off may be worth it for applications where robustness
is critical, as for example the 9% of clean accuracy lost by
using REx on one Avg baseline translates in an increase
of robustness from 3.4% to 25.9% on the ensemble of all
attacks excluding the overtuned (i.e. tuned too strongly,
leading to negligible accuracy) P •

∞ adversary.

Our test with tuning the P •
∞ adversary with ϵ = 0.4 instead

of the common tuning of 0.3 on MNIST suggests that REx
does not rely on gradient masking(Athalye et al., 2018) com-
pared to the baselines, as the accuracy drops to near 0 values
for all models, showing that attacks are successfully com-
puted. This is reinforced by the REx models’ AutoAttack
performance. A second observation is that the MSD baseline

performs surprisingly poorly against AutoAttack and P∞.
We note that experiments with a learning rate schedule (not
reported here) did not significantly improve performance of
MSD, ruling out the absence of schedule as a cause. While
we use the original code of Maini et al. (2020), this could
be because we did not use the same architecture as them on
MNIST. Furthermore, Maini et al. (2020) did not evaluate
on AutoAttack as their work predates the publication of
Croce & Hein (2020). In any case, the MSD model did not
achieve substantial robustness against P∞ and AutoAttack
in our experiments. This leads to poor performance against
all ensembles of attacks, whether seen or unseen, as those in-
clude either P∞ or AutoAttack adversaries. Finally, a third
observation is that P∞ training performs remarkably well
in this experiment on the ensemble of attacks, compared to
the multi-perturbation baselines.

Key observation 2 (MLP on MNIST): REx im-
proves performance of all baselines on MNIST with
a multilayer perceptron, from 3.4% with the best
baseline to 25.9% accuracy against an ensemble of
Lp attacks, sacrificing a little robustness against the
weakest attacks.

4.3. CIFAR10 with hyperparameter optimisation
On CIFAR10 with the ResNet18, we use weight decay and
search for an optimal learning rate schedule individually for
each defense. The results are summarised in Table 2. We
chose not to use the AvgPGDs baseline here, due to perform-
ing worse compared to the other baselines on CIFAR10 with
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a ResNet18 (which we confirm to be especially true when
tuning hyperparameters in preliminary experiments). We
direct the reader to Apdx B.3 for CIFAR10 results with an
ablation on custom hyperparameter optimisation for each
model, which leads to even greater advantages in using REx,
and which includes the AvgPGDs baseline.

Table 2: Accuracy on CIFAR10, with hyperparameter tun-
ing. Ensembles omit CW•

2 due to overtuning.

Defenses
P∞ Avg Avg+REx MSD MSD+REx

No attack 80.8 80.0 76.8 78.6 77.4
P1 78.2 78.3 74.9 76.6 75.2
P2 70.0 67.9 68.7 69.8 68.7
P∞ 47.3 34.4 48.1 45.8 48.3
DF∞ 69.0 64.4 67.1 67.1 67.3
CW2 17.4 14.5 29.6 17.9 20.9
P •
∞ 28.9 16.9 28.2 27.4 30.7

DF •
∞ 46.3 35.2 45.3 44.9 46.2

AutoAttack∞ 44.8 33.5 43.1 42.8 44.8
AutoAttack2 57.7 59.2 58.4 61.1 56.6
Ensemble (seen) - 14.5 29.2 45.8 48.2
Ensemble (unseen
by all models)

28.9 16.9 27.9 27.4 30.3

Ensemble (unseen
by this model)

16.9 16.9 27.9 16.5 19.6

Ensemble (all) 16.9 14.2 23.5 16.5 19.6
CW •

2 2.5 4.8 5.3 1.9 3.7

Once again, we observe that REx improves significantly the
seen and unseen ensemble accuracies over the baselines. We
also note that P∞ adversarial training performs better than
the baselines on the ensemble of attacks used in this paper,
even with the addition of AutoAttack2 to the ensembles
containing unseen attacks. Moreover, only REx performs
better than P∞ adversarial training on P∞ attacks. In other
words, multi-perturbation defenses only perform better than
P∞ against ensembles of attacks when used with REx.

While MSD performs significantly better with a ResNet18
on CIFAR10 than with the MLP on MNIST (likely due
to using the same architecture as them on CIFAR10), as
suspected when discussing our optimiser methodology in
Sec. 3, there are interaction effects between hyperparameter
tuning and the performance of REx relative to a baseline.
Improvements of MSD+REx over MSD are sensitive to hy-
perparameter tuning, specifically at which epoch to start
using REx, and when to decay the learning rate. This sensi-
tivity, and the lower advantage of MSD+REx over MSD, is
likely due to the fact that the MSD baseline does not train
over multiple domains. REx was originally designed to be
used with a baseline using ERM on multiple domains as
loss function. Therefore, when it is used in tandem with
MSD, REx uses the loss indicated in eq. 4. However, be-
cause as mentioned before, the AvgPGDs baseline performs
significantly worse than the MSD baseline, it is likely that
the advantage in using REx is impacted negatively by the

suboptimality of the first (ERM) term in the REx loss. Never-
theless, the variance penalty is beneficial enough to achieve
higher robustness with MSD+REx than MSD.

Table 3: Accuracy on two non-Lp attacks on CIFAR10.

Defenses
P∞ Avg Avg+REx MSD MSD+REx

RecolorAdv 50.5 24.5 63.5 56.0 58.2
StAdv 12.1 4.0 31.8 17.6 22.7

While our results have focused on Lp attacks, we evaluate
the tuned CIFAR10 models on two additional non-Lp at-
tacks: RecolorAdv (Laidlaw & Feizi, 2019), and Spatial
Transformations (Xiao et al., 2018). We observe in Table
3 that REx provides significantly better robustness against
these perturbations than any other baseline.

Table 4: Average accuracy on CIFAR10-C corruptions.

Defenses
None P∞ Avg Avg+REx MSD MSD+REx

Average 21.8 52.3 26.5 48.2 42.1 51.2

Additionally, we also report results on CIFAR10-C
(Hendrycks & Dietterich, 2019) in Table 4. The dataset
consists in mimicking several natural corruptions on CI-
FAR10 images at various strength, which as argued before,
can be seen as a non-adversarial analogue of trying both dif-
ferent types, and tunings of adversarial attacks. While this
is not an adversarial robustness benchmark, it shows that
REx significantly improves robustness of multiperturbation
defenses to non-adversarial shifts it is used on, in spite of
what REx models’ lower in-distribution clean accuracy on
CIFAR10 may have suggested in Table 2.

For more results or details, please consult Apdx B.

Key observations 3 (ResNet18 on CIFAR10):

• REx improves the performance of all base-
lines on CIFAR10 with a ResNet18, from
16.9% with the best baseline to 23.5% accu-
racy against an ensemble of Lp attacks, by
sacrificing a little robustness against the weak-
est individual attacks.

• Multi-perturbation defenses only achieve
higher P∞ and worst-case performance than
P∞ adversarial training when they are used in
conjunction with REx.

• REx also provides better robustness on some
common non-Lp attacks, and significantly im-
proves robustness of baselines it is used on
against CIFAR-C’s non-adversarial shifts.
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5. Conclusion
An attacker seeking to exploit a machine learning model
is liable to use the most successful attack(s) available to
them. Thus, defenses against adversarial examples should
ideally provide robustness against any reasonable attack, in-
cluding novel attacks. In particular, worst-case performance
against the set of available attacks is most reflective of the
robustness against a dedicated and sophisticated adversary.

We achieve state-of-the-art worst-case robustness by apply-
ing the domain generalisation technique of V-REx (Krueger
et al., 2021), which seeks to equalise performance across
attacks used at training time. Our approach is simple, prac-
tical, and effective. It leads to consistent performance im-
provements over baselines across different datasets, archi-
tectures, training attacks, test attack types and tunings. A
limitation, as often in adversarial machine learning, is that
our results make no guarantees about attacks that were
not used in the evaluation. Another limitation lies in the
slight loss of accuracy on the unperturbed data, albeit we
believe the improvements in adversarial and non-adversarial
robustness and promising research directions are significant
enough to be of interest to the community. Indeed, our
work demonstrates the potential of applying domain gener-
alisation approaches to adversarial robustness. Future work
could investigate other OoD generalisation methods such as
Distributionally Robust Optimisation (DRO) (Sagawa et al.,
2019) or Invariant Risk Minimisation (IRM) (Arjovsky et al.,
2019).
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The code can be found at https://github.com/AIproj/Towards-Out-of-Distribution-Adversarial-Robustness.

A. More on methodology
A.1. Motivation

Benchmark design: we use a similar benchmark as (Tramèr & Boneh, 2019) and (Maini et al., 2020), with the addition
of AutoAttack. Furthermore, to empirically support our claims that REx improves worst case robustness, we additionally
consider ensembles of seen, unseen, and all attacks. We consider worst-case ensembles because for real-world robustness,
an attacker may try several attacks until they succeed. The evaluation against an ensemble of seen attacks is to support our
first claim, i.e. that REx improves multi-perturbation robustness, and the consideration of unseen attacks supports the second
claim: that REx generalises to attacks that were not seen during training.

Why weak attacks: weak attacks capture a signal that would be missed otherwise. Indeed, as argued in the discussion of
our results, REx does improve significantly robustness against strong attacks and even unbounded attacks (which can’t be
ignored in the general context of robustness until out-of-distribution detectors are perfectly able to capture shifts beyond the
typical balls); however, REx often lowers the accuracy slightly on the weakest attacks. In other words, weak attacks allow us
to capture a trade-off in using REx, which is important information for readers. Not having those evaluations would suggest
that REx is an improvement in every setting.

Unbounded attacks: most work in the literature focuses on bounded attacks. This is because bounded attacks constrain the
strength of attacks, and have long been needed to obtain non-trivial robustness results. In this work, we consider several of
the most commonly used bounded attacks, and show the improvement yielded by REx on the ones affecting the accuracy
of the model the most. However, at deployment, an attacker might use some unbounded attacks, especially if they are not
perceptible. We encourage the reader to decide from Fig. 10 and 11 whether they consider the corruption to be perceptible
by a human, in spite of being out of the ϵ = 0.5 L2 ball. In the absence of algorithms able to detect perturbations larger than
the usual choices of ϵ, we argue that non-visually perceptible adversarial attacks, regardless of being bounded or not, are of
particular concern. Therefore, we additionally consider an unbounded attack (CW) to show that REx provides benefits even
in that less-studied case. Note that we find that REx also improves robustness when bounding CW by rejecting examples out
of the L2 ball of radius ϵ = 0.5 on CIFAR10.

Keeping “overtuned” attacks: in our tables of results, we refer to some attacks are “overtuned”. What is meant is that after
choosing an alternative tuning of those attacks, all models mostly failed against them. For example, for P •

∞ on MNIST, this
is done by choosing an ϵ = 0.4 instead of the commonly used value of 0.3. Since we already provide a significant number of
evaluations throughout this work, we decided to report those overtuned attacks to highlight two points. First, the models still
have weakness, and as seen in Fig. 10 and 11, adversarial examples produced by the overtuned attacks are not necessarily
perceptible, so a truly robust model should defend against them. Second, as argued in the discussion, these attacks, along
with the AutoAttack evaluation, highlight that REx does not rely on gradient obfuscation (Athalye et al., 2018).

Ablation on hyperparameter optimisation: we perform an ablation on hyperparameter optimisation on CIFAR10 in Sec.
B.3. This is done in order to highlight several points. First, that without hyperparameter optimisation, REx-based defenses
may outperform hyperparameter-optimised baselines. Second, as argued in the discussion of Sec. 4.3, in the specific case
of the MSD baseline, while the use of REx on that baseline still yields improvements over the baseline, it is slightly less
pronounced than without hyperparameter optimisation.

Max baseline: we choose not to include the Max baseline from (Tramèr & Boneh, 2019) since Tables 3 and 4 of (Maini
et al., 2020) have evaluations on a very similar benchmark. Note that Maini et al. (2020) find on CIFAR10 that Avg performs
significantly better than Max. Moreover, on both MNIST and CIFAR10, Maini et al. (2020) find that MSD performs better
than both Avg and Max anyway, so improving on MSD with REx implies that MSD+REx would outperform Max on both
datasets.

https://github.com/AIproj/Towards-Out-of-Distribution-Adversarial-Robustness
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A.2. Attack tunings

Using Advertorch’s and Croce’s implementation of AutoAttack’s3 parameter names, we report the attacks’ tuning here.

A.2.1. MNIST (SUBSECTION 4.2)

1. P1: ϵ = 10, niter = 40, ϵiter = 0.5

2. P2: ϵ = 2, niter = 40, ϵiter = 0.1

3. P∞: ϵ = 0.3, niter = 40, ϵiter = 0.01

4. DF∞: ϵ = 0.11, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.1, binary_search_steps = 5

6. P •
∞: ϵ = 0.4, niter = 40, ϵiter = 0.033

7. DF•
∞: ϵ = 0.4, niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.12, binary_search_steps = 7

9. AutoAttack∞: ϵ = 0.3, norm = “Linf”

The MSD attack uses the same tuning as the individual Pp attacks.

A.2.2. CIFAR10 WITHOUT HYPERPARAMETER OPTIMISATION (SUBSECTION B.3)

1. P1: ϵ = 10, niter = 40, ϵiter =
2

255

2. P2: ϵ = 0.5, niter = 40, ϵiter =
2

255

3. P∞: ϵ = 8
255 , niter = 40, ϵiter =

2
255

4. DF∞: ϵ = 0.011, niter = 30

5. CW2: max_iterations = 20, learning_rate = 0.01, binary_search_steps = 5

6. P •
∞: ϵ = 12

255 , niter = 70, ϵiter =
2

255

7. DF•
∞: ϵ = 8

255 , niter = 50

8. CW•
2: max_iterations = 30, learning_rate = 0.012, binary_search_steps = 7

9. AutoAttack∞: ϵ = 8
255 , norm = “Linf”

MSD uses the same tuning as the individual Pp attacks.

A.2.3. CIFAR10 WITH HYPERPARAMETER OPTIMISATION (SUBSECTION 4.3)

We use the same tuning as above for testing, with the addition of an AutoAttack2 adversary with ϵ = 0.5 and norm =“L2”.
However, for training, based on (Rice et al., 2020), we set

1. P1: ϵ = 10, niter = 10, ϵiter =
20
255

2. P2: ϵ = 0.5, niter = 10, ϵiter =
15
255

3. P∞: ϵ = 8
255 , niter = 10, ϵiter =

2
255

and do the same for MSD.
3https://github.com/fra31/auto-attack
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A.3. More on how the attack discriminator is trained

In order to train the attack discriminator of subsections 4.1 and B.1, we load the “IMAGENET1K_SWAG_LINEAR_V1”
weights (Singh et al., 2022) of a ViT b16 available on Torchvision with

torchvision.models.vit_b_16(weights="IMAGENET1K_SWAG_LINEAR_V1")

We freeze all but the last (linear) layer of the ImageNet-pretrained ViT, which we reset and adapt to the proper number
of output classes, and which is therefore the only layer that we train. We use a ViT because it has significantly higher
performance than a ResNet18, which we tried initially and found to have much difficulty converging to good classifiers both
on the validation and test sets, even after 150 epochs. In contrast, the ViT almost reaches its final values in 2 epochs.

We proceed by using the attacks with their tuning from subsubsection A.2.3 on CIFAR10, using the hyperparameter-
optimised model adversarially trained against P∞. Since the task is to show that a discriminator can classify different
attacks, we do not need to perturb all CIFAR10 classes and limit ourselves to a single at a time. The confusion matrices
provided in this work are based on perturbing all CIFAR10 samples of class "0" (airplanes). After saving all the images of
airplanes perturbed with every attack, we load them as a dataset for attack classification with the pretrained ViT. Our code
allows one generate or use this dataset, selecting the classes and attacks used.

As preprocessing, we transform the images into perturbations by subtracting the unperturbed original image from the
adversarial images, i.e. A(x0)− x0 where x0 is the original unperturbed image and A is an attack. Furthermore, we opt to
standardise at an instance level (i.e. per image) instead of using batch or dataset statistics. A seed of 0 is used in every case.

We use Adam (Kingma & Ba, 2014) as an optimiser with its default Pytorch settings in torch1.134 (lr=0.001, betas=(0.9,
0.999), eps=1e-08, weight_decay=0).

We also report the epoch at which we early stopped training for the analyses:

1. Fig. 2 (discriminating between all Lp attacks considered in this work): epoch 40.

2. Fig. 3 (discriminating between P∞ and DF•
∞): epoch 16.

3. Fig. 4 (discriminating between P1, P2, P∞,DF∞,CW2): epoch 56.

As a reminder, the same base dataset is used for all 3 models, retaining only the samples corresponding to attacks selected
for the analysis.

Disclaimer: we made no particular attempt to improve further the attack discriminator. It is probable that more engineering,
e.g. transfer learning or preprocessing heuristics, might lead to even better results. However, we believe our current models
achieve the intended goal of showing that all these attacks induce different distributions even for the same p-norm and
epsilon, as evidenced by the fact that for any attack, we can show on the test set that p(Atrue) > p(A ̸= Atrue) where
Atrue is the true attack used to generate the sample and p(A) is the probability predicted by the model that a perturbation
corresponds to attack A. See 4.1 and B.1.

A.4. More on how the models are trained

Note that when activating REx, we always reset the optimiser to avoid using accumulated momentum from the baseline.
When tuning hyperparameters, we find that activating the REx penalty after learning rate decays generally is a worse strategy
than activating it before when the baseline’s accuracy decreases after a decay. All models are trained using a single NVIDIA
A100 for MNIST and 2 NVIDIA A100s for CIFAR10.

A.4.1. NO HYPERPARAMETER OPTIMISATION

First, we pretrain the architecture on the clean dataset. Then, the baseline is trained on the appropriate seen domains. On
MNIST, convergence does not happen in many baselines’ case until thousands of epochs. Therefore, we choose to stop
training when progress on the seen domains slows, as in Fig. 5 where we stopped training for example at epoch 1125 for

4Every other experiment uses torch1.8.1, the ViT analysis being a late addition to this work and ViT requiring more recent Pytorch
versions.
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both the Avg and the Avg+REx models. For CIFAR10, as Fig. 6 indicate, the accuracies peak in significantly less epochs, so
we early stop when the Ensemble (seen) accuracy on the seen domains peaks. Note that we do this manually by looking at
the seen domains’ validation curves (see Sec. C for more details on early stopping). REx is triggered on a baseline before
the baseline’s early stopping epoch, when progress on the seen domains slows.

An important precision about Fig. 5, 6 is that unseen attack performance is only evaluated every 5 epochs, hence the jagged
aspect of the curves. We do this because of the huge computational cost of running all 9 attacks on each sample every epoch.

For a full description of early stopping and when we activated the REx penalty on baselines:

MNIST

• P1 model: early stopped at epoch 95

• P2 model: early stopped at epoch 75

• P∞ model: early stopped at epoch 1125

• Avg model: early stopped at epoch 1125

• Avg+REx model: REx penalty activated at epoch 726, early stopped at epoch 1125

• AvgPGDs model: early stopped at epoch 1105

• Avg+RExPGDs model: REx penalty activated at epoch 551, early stopped at epoch 1105

• MSD model: early stopped at epoch 655

• MSD+REx model: REx penalty activated at epoch 101, early stopped at epoch 655

CIFAR10

• P1 model: early stopped at epoch 69

• P2 model: early stopped at epoch 59

• P∞ model: early stopped at epoch 45

• Avg model: early stopped at epoch 50

• Avg+REx model: REx penalty activated at epoch 301, early stopped at epoch 330

• AvgPGDs model: early stopped at epoch 95

• Avg+RExPGDs model: REx penalty activated at epoch 301, early stopped at epoch 370

• MSD model: early stopped at epoch 40

• MSD+REx model: REx penalty activated at epoch 26, early stopped at epoch 70

A.4.2. WITH HYPERPARAMETER OPTIMISATION

The experiments are run with a ResNet18 architecture on CIFAR10. We follow the results of Rice et al. (2020) and Pang
et al. (2020), using a piecewise learning rate schedule decay and a weight decay value of 5 · 10−4. In all cases we start with
a learning rate of 0.1, decayed to 0.01 at the corresponding milestone. In preliminary tuning experiments, we observe the
AvgPGDs to perform very poorly relative to other baselines, and chose to drop that baseline.

• P∞ model: milestone at epoch 100, early stopped at epoch 103

• Avg model: milestone at epoch 100, early stopped at epoch 140
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• Avg+REx model: REx penalty activated at epoch 50 (before lr decay), milestone at epoch 100, early stopped at epoch
110

• MSD model: milestone at epoch 50, early stopped at epoch 51

• MSD+REx model: REx penalty activated at epoch 50 (before lr decay), milestone at epoch 97, early stopped at epoch
99

We attempt several learning rate schedule milestones for both MSD and MSD+REx, which has a higher impact than for
other models. This process can be automated since the worst-case seen accuracy always peaks within a few epochs of a
milestone.

A.5. Other implementation details

We use the implementation of https://github.com/kuangliu/pytorch-cifar/blob/master/models/
resnet.py for ResNet18. For StAdv and RecolorAdv, we use the code of Laidlaw & Feizi (2019), available at
https://github.com/cassidylaidlaw/ReColorAdv.

REx’s β parameter is generally set to 10, except for MSD+REx on MNIST in subsection 4.2 where it is set to 4. These
numbers initially come from setting β to a value of the same order of magnitude as LAvg

Var ’s value at the epoch REx is activated,
in the early iterations of our experiments. This is done to encourage the optimisation dynamics to neglect neither term of the
REx loss. We found that β = 10 worked generally well, even in many settings where empirically LAvg

Var ≃ 30. See Sec. D for
a discussion of how the choice of β affects performance.

https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py
https://github.com/cassidylaidlaw/ReColorAdv
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B. Additional results
B.1. More about the attack discriminator

Figure 3: Confusion matrix of ViT predict-
ing whether perturbations stem from P∞ or
DF•

∞ (normalised by row).
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We invite the reader to consult Apdx A.3 for details about the methodology
of the results presented here and in subsection 4.1.

Here, we give more results about the attack discriminator. To claim unequiv-
ocally that all attacks considered are distributionally shifted with respect
to one another, we require p(Atrue) > p(A ̸= Atrue) where Atrue is the true
attack used to generate the sample and p(A) is the probability predicted by
the model that a perturbation corresponds to attack A. 5 This is true for all
attacks as seen in Fig. 2, except DF•

∞ being confused for P∞, and CW2

being confused for CW•
2 or AutoAttack∞.

DF•
∞ and P∞ share the same ϵ = 8/255 and the model on which the

attacks were generated (the P∞ adversarially trained model from Table 2)
performs roughly equally on both (46.3% accuracy on DF•

∞ vs 47.3% on
P∞). Therefore, it would be particularly important for our claim to be able
to measure some difference between those distributions, even if there may
be some overlap. Note that despite sharing a similar performance and ϵ, AutoAttack∞ does not induce the same confusion.

In order to tackle this, we train a binary ViT classifier to tell apart DF•
∞ and P∞. We can see in Fig. 3 that the model is now

able to properly predict each class with higher probability than the other, with average probability 63%. The confusion
(off-diagonal entries) are indicative that as we might suspect, there is some overlap between the distributions of perturbations
generated by the two attacks.
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Figure 4: Confusion matrix of ViT predicting whether perturbations stem from 5 different types of attacks (normalised by
row). Test accuracy is 66.3%.

Concerning the CW2 confusion results, this is an artefact of the implementation of CW2 that we use. Indeed, the implemen-

5While this is out of the scope of this work, it is possible to relate the divergence between the distributions to the performance of the
discriminator, as done by Bashivan et al. (2021) using Kifer et al. (2004)’s H∆H divergence theory.
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tation of the attack from advertorch early stops by default if the iterations get stuck in a local minimum. This leads to some
samples having near 0 perturbation and not being adversarial. As argued in the main text, this is no longer an issue as soon
as CW2 is tuned so that this does not happen, e.g. with the CW•

2 tuning.

(a) MNIST seen attacks (b) MNIST unseen attacks

Figure 5: Validation accuracy of Avg on MNIST with and without REx (dashed line), against seen attacks (left) and unseen
attacks (right) (AA=AutoAttack).

B.2. Early stopping and REx with MNIST

In Figure 5, we observe how regularising by the variance over the domains leads to better peak performance when using
REx, over different baselines. Like the baselines, we early stop REx models. For all defenses, we use the validation set
to choose when to early stop, by selecting the epoch when the performance peaks on the ensemble of seen domains. As
shown on the curves, even though we stop training before REx reaches higher performance on the seen attacks, we still get
significant improvements on the individual unseen attacks and against the ensembles, as reported in Table 1. See Appendix
A for more details on how REx is used, and Appendices B.3 and C for more details on how, in contrast with MNIST with
the MLP, early stopping is required much earlier and the validation curves no longer behave monotonically on a different
dataset and architecture.

B.3. CIFAR10 - no hyperparameter optimisation

The results on CIFAR10 without performing hyperparameter optimisation on each model are summarised in Table 5. We
observe again that REx is an improvement over the ensemble of seen attacks compared to the baselines it was used on. As on
MNIST, this happens by improving the performance on the strongest of the seen attacks and sacrificing a little performance
on the top performing attack(s). Moreover, REx consistently yields a significant improvement in robustness when evaluated
against the ensemble of unseen attacks, too. The only individual domains where REx never yields significant improvements
are the clean (unperturbed) data, P1 and P2, whether they were seen during training or not. Given the relatively good
performance of the baselines and REx on those domains, this is in line with REx’s tendency to sacrifice a little accuracy on
the best performing domains to improve significantly the performance on the worst performing domains.

While adversarial training on either P1 or P2 fails to yield robustness to unseen attacks, we observe that these two defenses
are the only ones for which the clean accuracy does not decrease significantly. We note that unlike on MNIST, MSD is
significantly more competitive with the other baselines, and its performance is relatively similar to the one reported by Maini
et al. (2020) (likely due to using the same architecture on CIFAR10).

As with tuned models (subsec. 4.3), the model trained on P∞ performs better than the Avg, AvgPGDs and MSD models
on the set of attacks unseen by all models. Conversely, training on ensembles of attacks also hurts performance on P∞,
unless we apply REx. In other words, only REx is able to improve both P∞ and worst-case performance over an ensemble
of attacks. Moreover, without hyperparameter tuning, REx appears to lose more performance on the best performing
domains. This is particularly notable in the case of P2 attacks, where for example REx improves the P2 accuracy by
+0.8% with hyperparameter tuning, vs −4.5% without with the Avg model training on {P∞,DF∞,CW2}. In contrast, the
gap in performance in performance between MSD and MSD+REx is even larger than without individual hyperparameter
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Table 5: Accuracy on CIFAR10 for different domains. Ensembles omit CW•
2 due to overtuning.

Defenses
None Adversarial training Avg Avg+REx AvgPGDs Avg+RExPGDs MSD MSD+REx

No attack 87.6 92.1 87.1 77.4 80.9 75.1 82.8 79.0 76.3 75.1
P1 80.3 87.6 85.0 75.7 78.7 72.0 80.4 77.0 74.4 72.7
P2 19.9 47.8 70.9 66.6 69.8 65.3 71.1 68.0 65.7 65.9
P∞ 0.0 0.0 9.7 39.5 34.4 44.2 32.3 41.2 37.9 41.9
DF∞ 4.1 19.2 60.2 64.6 64.9 62.2 66.8 64.5 62.7 63.6
CW2 0.0 0.0 1.3 11.2 9.8 21.6 8.7 16.5 10.7 17.5
P •
∞ 0.0 0.0 1.0 20.1 16.3 24.1 13.2 22.1 19.3 23.8

DF •
∞ 0.0 0.0 9.5 38.5 35.6 40.5 33.0 39.1 36.6 40.4

AutoAttack∞ 0.0 0.0 8.1 37.2 33.7 38.8 31.2 37.6 36.0 39.0
Ensemble (seen) - - - - 9.8 21.2 32.3 41.2 37.9 41.8
Ensemble (unseen
by all models)

0.0 0.0 1.0 20.1 16.3 24.0 13.2 22.0 19.3 23.6

Ensemble (unseen
by this model)

0.0 0.0 0.9 10.7 16.3 24.0 7.7 14.2 10.3 16.1

Ensemble (all) 0.0 0.0 0.9 10.7 9.4 17.9 7.7 14.2 10.3 16.1
CW •

2 0.0 0.0 0.1 1.1 1.6 2.6 1.1 2.7 1.0 2.7

optimisation, showing that REx helps bridge gaps in performance due to suboptimal tuning.

(a) CIFAR10 seen attacks (b) CIFAR10 unseen attacks

Figure 6: Validation accuracy of MSD on CIFAR10 (bottom) with and without REx (dashed line), against seen attacks (left)
and unseen attacks (right) (AA=AutoAttack).

As with MNIST and the CIFAR10 hyperparameter-optimised models, early stopping is important, and moreso than with
MNIST, the performance of REx performance quickly peaks, as seen in Fig. 6.

Key observations 4 (no hyperparameter tuning):

• REx improves the performance of all baselines on CIFAR10 with a ResNet18, from 10.7% with the best
baseline to 17.9% accuracy against an ensemble of attacks, by sacrificing a little robustness against the weakest
individual attacks.

• Multi-perturbation defenses only achieve higher P∞ and worst-case performance than P∞ adversarial training
when using REx.

• REx helps bridge gaps in performance due to suboptimal hyperparameter tunings.
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B.4. Perceptual Adversarial Training and additional experiments

Perceptual Adversarial Training: due to the similarity of our motivation with that of Perceptual Adversarial Training
(PAT) (Laidlaw et al., 2021) (i.e. be robust against imperceptible attacks), we evaluate their model on our benchmark. We
simply run the code made publicly available by the authors in order to train with PAT a model, and load it in our evaluation
pipeline. With a ResNet18 on CIFAR10, we find that they achieve considerably worse robustness, with Ensemble (all)
worst-case robustness of 3.8%. The model is noticeably weak against L∞ attacks, achieving 6.9% accuracy on AutoAttack
and 10.0% on P∞. While this may be surprising, this can be explained by noting that Laidlaw et al. (2021) use a ResNet50
on CIFAR10, while we used their code with the "–arch resnet18" argument to train a model immediately comparable to the
main results of our work.

Robustness against different tunings of AutoAttack: we consider an additional tuning of AutoAttack L∞ on CIFAR10
with the hyperparameter-optimised ResNet18, this time with ϵ = 12/255. We find that the MSD model achieves 25.0%
accuracy while MSD+REx achieves 26.8%. The Avg model from Table 2 achieves 15.6% accuracy while its REx counterpart
reaches 24.2% in 30 less epochs of training (see Sec. A.4.2 for number of epochs for each model). The P∞ model yields
25.9%, which is higher than the other baselines, but still worse than MSD+REx. This further supports the claim that REx
improves robustness against unseen attacks and tunings of attacks.

B.5. Additional results on CIFAR10-C

Table 6: Accuracies of tuned CIFAR10 models on CIFAR10-C corruptions.

Defenses
None P∞ Avg Avg+REx MSD MSD+REx

brightness 31.7 61.5 29.1 54.5 51.7 60.2
contrast 35.4 43.7 33.4 40.6 39.8 42.7
defocus blur 22.9 52.6 25.8 49.1 44.9 52.8
elastic transform 21.6 50.1 24.5 46.4 42.1 50.3
fog 32.5 45.8 32.7 44.2 41.7 45.8
frost 28.4 63.1 33.6 56.8 54.5 61.0
gaussian blur 22.2 51.4 25.7 48.1 44.5 52.0
gaussian noise 13.4 53.3 25.1 48.7 35.4 50.9
glass blur 18.0 49.7 24.2 46.1 39.8 48.3
impulse noise 14.7 47.7 24.8 45.6 33.0 46.0
jpeg compression 18.6 54.7 25.4 50.5 44.8 53.7
motion blur 23.2 49.6 24.9 46.3 42.9 50.4
pixelate 20.9 54.8 25.3 50.2 44.6 53.2
saturate 20.8 49.1 20.8 43.6 37.6 47.6
shot noise 13.6 52.3 24.8 48.4 34.5 50.3
snow 22.3 57.9 27.6 52.4 47.9 55.8
spatter 18.4 52.6 24.6 48.4 42.4 50.5
speckle noise 13.2 50.9 24.5 47.5 32.3 49.0
zoom blur 22.3 52.3 26.1 48.1 45.2 52.7
average 21.8 52.3 26.5 48.2 42.1 51.2

In order to test the investigate the robustness of the different tuned baselines against non-adversarial perturbations, we
evaluate them on the corruptions of CIFAR10-C (Hendrycks & Dietterich, 2019). Table 6 shows how P∞ is the overall
best performing model. The Avg and MSD baselines perform surprisingly poorly on CIFAR10-C, and REx leads to very
sigificant improvements on both baselines that bring the performance closer to that of the model trained on P∞. In particular,
MSD+REx comes very close (within 2% accuracy) to the P∞ baseline’s performance, only outperforming P∞ marginally
on defocus blurs, elastic transforms, gaussian blurs, motion blurs, and zoom blurs, and having equal performance on fog.
This is in contrast with the intuition that because REx had lower (in-distribution) clean accuracy than most other baselines
on CIFAR10, this would also be true for out-of-distribution non-adversarial data.
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B.6. Transferability of REx models

Several works have highlighted how adversarial robustness can be of interest for transfer learning (Salman et al., 2020; Utrera
et al., 2021). We freeze the parameters of the hyperparameter-optimised CIFAR10 models, only resetting the last linear
layer (and adapting it to the appropriate number of output classes) and allowing it to train on the CIFAR100 (Krizhevsky
et al., 2009) and SVHN (Netzer et al., 2011) training datasets, then evaluating them on their test sets. We train for 30 epochs
with a learning rate of 0.1, decaying by factors 0.1 at epochs 10 and 20. We repeat this 3 times per model, using a different
seed ("0", "1" and "2") to report average accuracies on the test set and standard deviations.

Disclaimer: we did not attempt any particular optimisation of these results with state of the art techniques, and merely
provide these results for completeness. We also highlight that work on transfer learning with robust models often focuses on
larger models (e.g. ResNet50 for Utrera et al. (2021)), which can significantly affect the results. Finally, we realise that
transferring from CIFAR10 to CIFAR100 (instead of the other way around) may be overly ambitious, with works such as
(Utrera et al., 2021) focusing instead on CIFAR100 to CIFAR10.

Table 7: Accuracies of tuned CIFAR10 models finetuned on CIFAR100, averaged over 3 finetunings with different seeds per
defense.

Defenses
None P∞ Avg Avg+REx MSD MSD+REx

Accuracy 28.9±0.1 29.3±0.1 25.9±0.2 27.7±0.2 28.4±0.1 27.7±0.1

On CIFAR100, we can see on Table 7 that the P∞ model transfers best, marginally better than the non-robust model. All
other baseline perform worse than the non-robust model, and REx only appear to improve the Avg baseline, while decreasing
by 0.7% the accuracy when used on the MSD baseline before the finetuning. The performance of the non-robust model is
perhaps not surprising, given the similarity between the CIFAR10 and CIFAR100 classes, which may explain the relative
performances of the baselines being correlated with those observed on CIFAR10 on unperturbed data.

Table 8: Accuracies of tuned CIFAR10 models finetuned on SVHN, averaged over 3 finetunings with different seeds per
defense.

Defenses
None P∞ Avg Avg+REx MSD MSD+REx

Accuracy 42.4±0.2 49.2±0.3 44.8±0.1 47.1±0.1 49.1±0.2 48.0±0.1

In order to investigate this hypothesis, we also attempt a similar finetuning on the SVHN dataset. The (cropped) SVHN
dataset consists in pictures of house numbers, where the task is to read the digit at the center of the image. Therefore, this
task corresponds to a shift substantially different than CIFAR100. As suspected, we observe in Table 8 than all of the robust
models now have significantly better performance than the non-robust model. The P∞ and MSD models both transfer
the best, with the MSD+REx model losing again roughly 1% of performance compared to MSD, but still ahead of the
non-robust model or the Avg and Avg+REx models.
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C. When to early stop, and how learning rate milestones affect performance
This section shows results about learning rate schedule milestones and early stopping for the CIFAR10 models with
hyperparameter optimisation.

C.1. MSD model
In this subsection, we illustrate two points using Fig. 7: how early stopping is performed on the MSD and MSD+REx
models, and how the choice of learning rate decay milestone affects performance. Regarding the former, we early stop based
on the peak of the validation Ensemble (seen) accuracy. We motivated that worst-case performance is a more appropriate
notion of robustness, and unseen attacks should not be used to make model-selection decisions as they are used to simulate
“future”, novel attacks that were not known when designing the defenses. Concerning early stopping, we note that the peak
performance on Ensemble (seen) accuracy is reached:

• At epoch 101 for the MSD model with milestone at epoch 100

• At epoch 51 for the MSD model with milestone at epoch 50

• At epoch 105 for the MSD+REx model with milestone at epoch 100

• At epoch 99 for the MSD+REx model with milestone at epoch 97

• At epoch 54 or 56 for the MSD+REx model with milestone at epoch 50.

Regarding how milestone choice affects performance, this illustrates how we searched for hyperparameters. We attempt
learning rate decays milestones at various epochs, which we then evaluate only for a few epochs, as the performance
decays fast anyway as predicted by Rice et al. (2020). The curves in Fig. 7 represent the best learning rate scheduler
milestones found for MSD and MSD+REx. We retain the model with best validation Ensemble (seen) accuracy for our final
results presented in Sec. 4. As performance of the best checkpoints of MSD with milestones 50 and 100, and respectively
MSD+REx with milestones 97 and 100, are very close, in both cases we evaluated the final models on the test set and kept
the best in each case (MSD with milestone 50 and MSD+REx with milestone 97), observing only minor differences between
each defense’s pair of choices.

C.2. Avg model

As argued in our introduction, it is somewhat surprising that REx successfully improved MSD due to MSD being a
single-domain baseline. REx was originally designed to be used with baselines where multiple domains appear in the loss,
and in particular ERM over multiple domains. Fig. 8 illustrates how REx clearly benefits the Avg baseline more, with very
little tuning effort required to achieve results above all baselines as reported in subsection 4.3.
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(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 7: Validation accuracy of MSD and MSD+REx on CIFAR10 on various attacks with different milestones for the
learning rate decay. Early stopping is performed for each model at the peak of the ensemble (seen) accuracy. The MSD
model with a milestone at epoch 50 and the MSD+REx model with a milestone at epoch 97 are the final models retained in
subsection 4.3.
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(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 8: Validation accuracy of Avg and Avg+REx on CIFAR10 on various attacks with learning rate decay milestone at
epoch 100. This illustrates how much easier it is to get improvements with REx on baselines based on ERM over multiple
domains.
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D. Effect of varying REx’s β coefficient
In Fig. 9 we investigate the effect of varying β in REx+MSD. Note that the hyperparameters of both MSD and MSD+REx
are suboptimally tuned in this figure, which only aims to illustrate the effect of varying β. To generate those figures, both
baselines use weight decay, MSD’s learning rate milestone is set at epoch 100. MSD+REx loads an MSD checkpoint at
epoch 105 with a learning rate set to 0.1 which is decayed at epoch 155.

We observe that while there is some robustness to the choice of β for some domains, the difference is especially large on
CW2 and P •

∞, where a larger value benefits the model. β also has a fairly large impact on the clean, P1 and P2 accuracies.
This is explained by the fact that low values of β imply that the variance term will have lower impact and the model will
value high performing seen domains (clean, P1, P2) more when updating weights than if larger values of β were used. In
contrast, large values of β emphasise the variance regularisation which benefits accuracy against stronger attacks more.
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E. Miscellaneous results
• In preliminary experiments without hyperparameter tuning, REx did not benefit a model pretrained solely on P∞.

• In preliminary experiments without hyperparameter tuning, REx (and the Avg baselines) incurred significant losses in
robustness when attempting to train on only one type of perturbation per sample in the batch (in the sense that each
sample from a minibatch would only contribute to a single random domain among the seen domains, instead of all seen
domains for each sample).

• We attempted to just add the variance penalty term to the MSD baseline while still training on the MSD attack.
More explicitly, the ERM term consisted in the loss on the MSD attack, and the variance term separately computed
P1, P2, P∞ perturbations. This leads to iterations that are twice as expensive, for no observed benefit. Therefore, we
instead prefered to define MSD+REx as performing REx+AvgPGDs on a model pretrained with MSD.

• On CIFAR10, training on {P∞, DF∞,CW2} is about 8 times more computationally expensive than training on PGDs
or MSD with 10 iterations per Pp attack (factoring in that in all cases, we validate on all domains every 5 epochs).
Since the former leads to a significant advantage in robustness over the ensembles of attacks evaluated here, there is a
strong trade-off between computational cost and adversarial robustness when training on those attacks.

In figures 10 and 11, we show the domains generated for the Avg and Avg+REx models from different attacks, along with
the unperturbed data. Above each image is the class predicted by the model, and in parentheses the true class. The classes
match the following numbers:

• airplane : 0

• automobile : 1

• bird : 2

• cat : 3

• deer : 4

• dog : 5

• frog : 6

• horse : 7

• ship : 8

• truck : 9

This highlights how in general, these adversarial examples are not difficult to classify for humans. This however also
illustrates how CW2 perturbations, in spite of being unbounded, tend to be much less perceptible than those stemming
from most commonly used bounded attacks, such as P∞ or AA∞, at tunings where they have the highest attack
success rate by far among attacks considered.
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(a) P1 accuracy (b) P2 accuracy

(c) P∞ accuracy (d) AutoAttack∞ accuracy

(e) CW2 accuracy (f) Ensemble (seen) accuracy

(g) No attack (clean) accuracy (h) P •
∞ accuracy

Figure 9: Validation accuracy of MSD and MSD+REx on CIFAR10 on various attacks with different values of β. Note that
MSD has a learning rate decay at epoch 100, and MSD+REx at epoch 155.
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(a) P1 adversarial examples

(b) P2 adversarial examples

(c) P∞ adversarial examples

(d) AutoAttack∞ adversarial examples

(e) CW2 adversarial examples

(f) CW•
2 examples

(g) No attack (clean) adversarial examples

(h) P •
∞ adversarial examples

Figure 10: Adversarial examples generated from the hyperparameter-optimised Avg model, for each attack. The predicted
class and in parentheses, the true class, are displayed above each image.



Towards Out-of-Distribution Adversarial Robustness

(a) P1 adversarial examples

(b) P2 adversarial examples

(c) P∞ adversarial examples

(d) AutoAttack∞ adversarial examples

(e) CW2 adversarial examples

(f) CW•
2 adversarial examples

(g) No attack (clean) adversarial examples

(h) P •
∞ adversarial examples

Figure 11: Adversarial examples generated from the hyperparameter-optimised Avg+REx model, for each attack. The
predicted class and in parentheses, the true class, are displayed above each image.
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