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ABSTRACT

Although large-scale pre-trained models hold great potential for adapting to down-
stream tasks through fine-tuning, the performance of such fine-tuned models is
often limited by the difficulty of collecting sufficient high-quality, task-specific
data. Federated Learning (FL) offers a promising solution by enabling fine-tuning
across large-scale clients with a variety of task data, but it is bottlenecked by sig-
nificant communication overhead due to the pre-trained models’ extensive size.
This paper addresses the high communication cost for fine-tuning large pre-trained
models within FL frameworks through low-rank fine-tuning. Specifically, we
train a low-rank adapter for each individual task on the client side, followed by
server-side clustering for similar group of adapters to achieve task-specific ag-
gregation. Extensive experiments on various language and vision tasks, such as
GLUE and CIFAR-10/100, reveal the evolution of task-specific adapters through-
out the FL training process and verify the effectiveness of the proposed low-rank
task-specific adapter clustering (TAC) method.

1 INTRODUCTION

Large-scale pre-trained models, such as Large Language Models (LLMs) trained on extensive data,
demonstrate superior performance in natural language processing and remarkable adaptability to
various downstream tasks (Brown et al., 2020; Ouyang et al., 2022; Touvron et al., 2023; Zhang et al.,
2022; Dosovitskiy et al., 2020; Brohan et al., 2023). However, fine-tuning these models for specific
tasks necessitates high-quality, task-relevant data, posing challenges for edge users with diverse,
yet limited, private datasets (Zhang et al., 2023). In this context, Federated Learning (FL) offers
a solution by enabling collaborative model training across devices with distributed data, achieving
comparable results to centralized training with abundant data (McMahan et al., 2017).

Despite its advantages, FL faces significant communication overhead due to frequent exchanges of
models or gradients between distributed clients and central servers (Lim et al., 2020; Zhao et al.,
2023). This issue becomes particularly critical when fine-tuning LLMs that have a vast number
of parameters (Yi et al., 2023). Consequently, Parameter-Efficient Fine-Tuning (PEFT) methods,
such as Low-Rank Adaptation (LoRA), are essential in FL environments to reduce communication
costs (Houlsby et al., 2019; Lester et al., 2021; Li & Liang, 2021; Zaken et al., 2022; Fu et al.,
2023; Hu et al., 2021). For example, LoRA leverages the inherent low-dimensional structure of
over-parameterized models by training only a low-rank adapter with fewer parameters during fine-
tuning (Hu et al., 2021). Nevertheless, existing research has indicated a trade-off: A lower number
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of trainable parameters can lead to increased approximation errors and reduced model performance
for downstream tasks, particularly when the training target is complex, for instance, when there is
a significant optimization error between the target model and the model before fine-tuning (Zeng &
Lee, 2023).

Addressing the challenges of low-rank fine-tuning in FL environments catering to diverse tasks, this
paper investigates:

How to save communication costs through low-rank fine-tuning
while still enabling effective task adaptation for each client?

A natural solution to this problem is to customize the low-rank adapter for each task on the client
side and aggregate the adapters for the same task on the server side. To this aim, this paper examines
the evolution and interrelationships of low-rank adapters from distributed clients for different tasks.
The findings are employed to enhance FL aggregation for multi-task objectives. Specifically, the
proposed FL process with low-rank task-specific adapter clustering (FL-TAC) allows each client
to train and upload a unique, extremely low-rank adapter for each task. The server subsequently
performs a clustering step to differentiate adapters for different tasks and aggregates the adapters
with the same task target.

The contributions of this paper are threefold: 1) The proposed FL-TAC algorithm enables an efficient
and effective FL framework, which is capable of accommodating various target tasks from image
to text classification and generation, and outperforms single-adapter baselines in both performance
and communication efficiency. 2) The successful clustering of task-specific adapters provides in-
sights into the evolution of trainable parameters during the FL training process, demonstrating how
this property can be utilized for effective generalization across multiple downstream tasks in a dis-
tributed setting. 3) Extensive experiments on text datasets such as the GLUE benchmark and image
datasets like CIFAR-10/100 demonstrate high clustering accuracy of FL-TAC algorithm and its gen-
eral applicability to a broad range of downstream tasks within a unified framework.

The rest of this paper is organized as follows: Section 2 briefly outlines previous work related to
this paper. In Section 3, the proposed algorithm is described in detail. The experimental results are
provided in Section 4, and the concluding remarks are summarized in Section 5.

(a) Server-Client adapter exchange. (b) Server clustering and aggregation.

Figure 1: FL-TAC framework.

2 RELATED WORK

2.1 FL FOR FINE-TUNING LARGE-SCALE PRE-TRAINED MODELS

The fine-tuning of large-scale pre-trained models in FL scenarios has been recently studied, leading
to several significant contributions particularly relevant to this work. A line of research, represented
by Federated Instruction Tuning (FedIT), has made substantial progress in fine-tuning LLMs in FL
scenarios (Zhang et al., 2023). FedIT offers a generalizable experimental framework that utilizes
distributed instruction data sources to enhance the final fine-tuned model’s performance. This work
has laid essential groundwork in the field, demonstrating the potential of FL in the context of fine-
tuning LLMs. Following this, the FedLoRA approach has enabled efficient FL fine-tuning and com-

2



Published as a conference paper at ICLR 2024

munication through the PEFT methods (Yi et al., 2023). PEFT methods finetune pre-trained models
with reduced trainable parameters, and can be broadly categorized into addition-based methods,
specification-based methods, and reparameterization-based methods as follows (Zhou et al., 2023):

Addition-based Method. The core idea of addition-based methods is to integrate extra trainable
modules into the pre-trained model. Two representatives of addition-based methods are adapter-
based tuning (Houlsby et al., 2019) and prompt-based tuning (Lester et al., 2021; Li & Liang, 2021).
The former introduces small, task-specific neural networks as adapters between the layers of the
pre-trained model, while the latter incorporates additional context by wrapping the original input.
In this way, the number of trainable parameters during fine-tuning is limited to the size of the added
adapters or input context.

Specification-based Method. This type of PEFT methods freezes most of the pre-trained model
parameters and updates only a selected subset of parameters during fine-tuning. For instance, Bit-
Fit (Zaken et al., 2022), a sparse finetuning method, only adjusts the bias terms in neural networks,
and the Second-order Approximation Method (SAM) identifies the subset of parameters to be ad-
justed by solving an optimization problem (Fu et al., 2023).

Reparameterization-based Method. This significant line of research is inspired by previous ob-
servations that the performance yielded by a low-dimensional matrix can match that of a fine-tuned
deep layer in large-scale pre-trained models (Aghajanyan et al., 2021; Karimi Mahabadi et al., 2021).
In this context, LoRA is a widely-used reparameterization-based algorithm that takes advantage of
the existence of a low intrinsic rank to reduce trainable parameters (Hu et al., 2021).

In this paper, we adopt the well-recognized LoRA method, similar to FedLoRA, for its wide empir-
ical success and robust theoretical guarantee (Zeng & Lee, 2023). It should be noted that the current
analysis and experimental results can be easily extended to other PEFT methods by substituting the
LoRA adapters with the training outcomes derived from other PEFT techniques.

While previous works mark significant advances in the field of efficient fine-tuning through FL, the
challenges arising from task diversity remain underexplored and inadequately addressed. Consid-
ering the motivation of FL, which is to utilize distributed data sources, it is natural for each unique
data source, such as an edge device or user, to have diverse local tasks to handle. Consequently,
there remains a need for an FL framework that enables parameter-efficient training and aggregation
among clients with different optimization targets to approximate.

2.2 FL FOR MULTI-TASK LEARNING

Multi-task learning involves the simultaneous training on multiple related tasks to leverage their
commonalities or differences for improved performance over all tasks. Methods to achieve multi-
task learning in FL scenarios include federated transfer learning (Liu et al., 2020; Gao et al., 2019)
and clustered FL (Ghosh et al., 2020; Sattler et al., 2020; Briggs et al., 2020). Among these ap-
proaches, federated transfer learning aims to transfer information learned from one task to another,
while clustered FL focuses on classifying distributed clients into multiple clusters based on cer-
tain task representations prior to the aggregation step. This pre-aggregation clustering improves
multi-task performance by enhancing the information sharing within clients handling the same task.
Existing studies in clustered FL have explored various forms of task representation, including mod-
els, gradients, logits, and latent representations (Kulkarni et al., 2020; Mansour et al., 2020; Mao
et al., 2023; Zhu et al., 2021).

Given its ability to classify clients according to the underlying tasks, clustered FL aligns more
closely with the objective of this study, which is to customize multiple task-specific low-rank lo-
cal adapters for each client within the FL framework and to perform aggregation within the same
task. Therefore, clustered FL is employed in this paper to enhance performance for each down-
stream task involved in an FL training process. Moreover, the recent emergence of PEFT methods
driven by LLMs fine-tuning has yet to be incorporated in previous clustered FL studies, leaving a
gap in the current literature for a clustered FL framework for multi-task learning that accommodates
task representations provided by PEFT methods.

Based on the above analysis, this study aims to address, to some extent, the limitations and gaps
identified in the aforementioned works. The algorithm introduced in Section 3 offers a novel ap-
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proach to managing multiple tasks per client during the efficient fine-tuning of large pre-trained
models within FL frameworks.

3 METHOD

3.1 OVERVIEW OF FINE-TUNING THROUGH FL

Consider an FL scenario involving a central server and m clients, collectively addressing a total of
N downstream tasks. Each client i in the client set M = {1, 2, . . . ,m} is responsible for a subset
of these tasks, with a total of ni ≤ N local tasks to handle. Thus, the local dataset for client i can
be denoted as Di = {Dj

i |j ∈ Ni}, where each Dj
i represents a downstream task dataset of client i,

and Ni denotes the indices of client i’s local tasks within the global set of tasks.

In centralized learning scenarios, each client i fine-tunes a pre-trained model using its local dataset
Di. However, FL leverages the collective dataset DM =

⋃m
i=1 Di as a comprehensive, global dataset

to provide richer information. This is achieved by optimizing the global function defined as:

min
θ

F (θ) =

m∑
i=1

|Di|
|DM|

Fi (θ) ,

Fi(θ) := E(x,y)∼Di
[L(θ; (x, y))] . (1)

Here, (x, y) ∼ Di denotes data-label pairs sampled from client i’s local dataset Di. |Di| and
|DM| :=

∑
i∈M |Di| represent the sizes of the local and global datasets, respectively. The function

Fi(·) represents the expected local objective concerning client i’s dataset, a specific loss function
L(·), and the global model parameters θ. The global objective F(·) is a weighted average of these
local objectives, with weights proportional to the size of each client’s dataset. The optimal global
model θ∗ that minimizes this function is expected to perform well on the global dataset D.

In practice, during the t-th communication round, the server first selects a subset of clients Mt with
total number of mt clients, either randomly or based on specific criteria, and broadcasts the current
global model, denoted as θt−1, to these clients. Each chosen client i in Mt then updates this model
θt−1 through τ local training steps to obtain its local model θt

i . This is typically done using the
update rule θt

i,k = θt
i,k−1 − η∇θt

i,k−1Fi(θ
t
i,k−1) for k = 1, . . . , τ , where η is the learning rate

and θt
i,0 = θt−1. Post local training, clients send their updated local models θt

i = θt
i,τ back to

the server, which then aggregates them into the updated global model θt =
∑

i∈Mt

|Di|
|DMt |

θt
i . This

cycle repeats until T rounds are completed, resulting in the final model θT that approximates the
optimal θ∗.

However, for initial global models like LLMs that have a significant scale, fine-tuning through the FL
process becomes infeasible due to the heavy communication overhead from transmitting large-scale
models. As a solution, the LoRA technique can be incorporated to reduce the number of transmitted
parameters (Hu et al., 2021). Specifically, for an original weight matrix W ∈ Rd×k in a pre-trained
model and its corresponding target weight matrix W ′ ∈ Rd×k after fine-tuning, LoRA approximates
the fine-tuned output W ′z for an input z using a low-rank decomposition: W ′z = Wz +BAz,
where B ∈ Rd×r, A ∈ Rr×k, and the rank r ≪ min(d; k). This allows the original weight matrix
W to remain unchanged during fine-tuning, with only the smaller matrices (also termed as adapters)
A and B being adjustable.

By incorporating the LoRA technique, the large-scale pre-trained model, denoted as θ, only
needs to be transmitted from the central server to the clients at the beginning of the first com-
munication round. In subsequent rounds (i.e., the t-th round), the server first sends a global
adapter vt−1, and each client i updates vt−1 through efficient local fine-tuning to obtain the lo-
cal adapter vt

i = [A0
i ,B

0
i , . . . ,A

L
i ,B

L
i ] for a total of L weight matrices in the pre-trained model

θ = [W 0, . . . ,WL]. Global aggregation is subsequently performed using the local adapters pro-
vided by the clients, resulting in vt =

∑
i∈Mt

|Di|
|DMt |

vt
i , and the new global model can be approxi-

mated as θt = θt−1 + vt.
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(a) Proportion of task data among clients. (b) Scores for each task in Databricks-Dolly-15k.

Figure 2: Visualization of data distribution across clients and performance evaluation on Databricks-
Dolly-15k multitask dataset.

3.2 CORE CONCEPTS AND APPROACH

In the general process of fine-tuning large pre-trained models through FL, each client i typically
leverages a single LoRA adapter for downstream task adaptation, despite having multiple local tasks.
Achieving empirical success is feasible due to the exceptional emergent abilities provided by recent
pre-trained models like GPT and Llama (Brown et al., 2020; Touvron et al., 2023). However, recent
theoretical research indicates that the expressive power of fine-tuned models can be significantly
restricted by the aggressive reduction of LoRA rank, such as 16 or even 8, as often seen in litera-
ture (Zeng & Lee, 2023). This presents an additional challenge to fine-tuning via FL, where such
aggressive use of the LoRA method is considered necessary.

In the context of fine-tuning large models through FL, the key of this work lies in training a low-
rank task-specific adapter for each individual task at the client side. The motivation arises from the
observation that when the LoRA rank falls below a certain threshold, the approximation error begins
to significantly increase. For tasks with higher complexity (measured by the approximation error
before fine-tuning), reducing the LoRA rank below this threshold results in a more rapid increase in
the approximation error, as shown in previous study (Zeng & Lee, 2023).

Intuitively, using a single adapter for multiple tasks results in a higher approximation error before
fine-tuning and thus a more rapid and significant increase in the approximation error caused by
LoRA rank reduction. Conversely, using a unique adapter for each individual task leads to a slower

Figure 3: Approximation error (measured by
MSE) versus LoRA-rank.

and more gradual increase in the approximation
error. To validate this intuition, a toy simulation
is conducted in this study. In this simulation,
data points in simulated task 1 are randomly
initialized scalars with labels created by apply-
ing a noisy sinusoidal transformation to the data
points and adding Gaussian noise. Data points
in simulated task 2 are generated similarly, ex-
cept for using a noisy sinusoidal transformation
with a phase shift of 0.5 and Gaussian noise
of higher variance. A Fully Connected Neu-
ral Network (FNN) with an adaptable hidden
layer size is employed to simulate the LoRA
adapter, train the model, and compute the gen-
eralization error (measured by Mean Squared
Error (MSE), also referred to as approximation error to maintain consistency with previous work)
after 1000 epochs. Figure 3 shows preliminary results indicating that training an FNN for each sim-
ulated task consistently yields a lower average approximation error compared to training an FNN
for both simulated tasks, particularly when the LoRA rank (simulated by the hidden layer size of
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the FNN) is low (e.g., below 16). This observation is particularly relevant when considering the
fine-tuning/communication costs closely associated with the LoRA rank. For instance, when the
LoRA rank r is below 8, training two adapters with rank lower than r/2 yields a lower average
approximation error compared to training one adapter with rank r for both tasks.

Based on this finding, we propose training task-specific adapters for each client, aiming for an
overall strategy that reduces the total number of trainable parameters while maintaining or reducing
the average approximation error across all tasks. With this revised approach to fine-tuning via FL,
each client i must transmit multiple adapters to the central server in each communication round.
To facilitate aggregation over adapters without explicit task labels from clients, a clustering step is
introduced on the server side to group adapters corresponding to the same task. This clustering step
is essential to facilitate knowledge exchange and aggregation among clients handling the same task
in the proposed FL fine-tuning process, thereby enhancing overall performance for that task.

3.3 THE FL-TAC ALGORITHM

Building upon the introduced concepts and approaches, the proposed FL-TAC method enables each
client i to fine-tune ni distinct local adapters for its ni local tasks. The final goal is to acquire
N distinct global adapters for the total N downstream tasks in the system through FL iterations
between local fine-tuning and global aggregation. In this way, the global objective is rewritten as:

min
{v1,...,vN}

F̂(v1, . . . ,vN ) =

m∑
i=1

|Di|
|DM|

F̂i (v1, . . . ,vN ) ,

F̂i (v1, . . . ,vN ) :=
∑
j∈Ni

F̂i,j(vj , D
j
i )

:=
∑
j∈Ni

E(x,y)∼Dj
i

[
L̂(θ;vj ; (x, y))

]
, (2)

where F̂i(·) denotes client i’s local objective, constructed by the task-specific objective F̂i,j(·) for
each task j ∈ Ni, and L̂ refers to specific loss functions. It’s important to note that F̂i,j(·) is
influenced only by the task-specific trainable adapter vj and the underlying task data distribution
Dj

i , as the pre-trained model θ remains frozen during fine-tuning.

Algorithm 1 FL-TAC

Inputs: Pre-trained model θ; Client set M; Local datasets Dj
i for i ∈ M, j ∈ Ni.

Parameters: Number of communication rounds T ; Number of local steps τ ; Number of downstream
tasks N .

1: Server randomly initializes a global adapter v0.
2: Server broadcasts the initial global adapter v0 to M.
3: for client i in M in parallel do
4: Initializes local task-specific adapters v0

i,j = v0 for each local task j ∈ Ni.
5: end for
6: for t = 1 to T do
7: Server selects subset of clients Mt for round t.
8: for client i in Mt in parallel do
9: Performs FL-TAC Local Fine-tuning(θ, τ, {vt−1

i,j |j ∈ Ni}).
10: Sends updated local task-specific adapters vt

i,jfor each local task j ∈ Ni to the server.
11: end for
12: Server performs FL-TAC Global Clustering and Aggregation({vt

i,j |i ∈ Mt, j ∈ Ni}).
13: for each client i in Mt do
14: Server sends back updated local task-specific adapters {vt

i,j |j ∈ Ni}.
15: end for
16: end for
17: return Global task-specific adapters vT

j for each task j ∈ {1, . . . , N}.

The FL-TAC algorithm (Algorithm 1) begins with the server initializing a global adapter v0 and
broadcasting it to all clients in the set M. Each client i initializes local task-specific adapters v0

i,j
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Algorithm 2 FL-TAC Local Fine-tuning

Inputs:Pre-trained model θ; Number of local steps τ ; Local task-specific adapters {vt−1
i,j |j ∈ Ni}.

Parameters: Local dataset Dj
i for j ∈ Ni; Learning rate η.

1: for each task j ∈ Ni do
2: Initiates vt

i,j,0 = vt−1
i,j .

3: for k = 1 to τ do
4: Updates task-specific adapter: vt

i,j,k = vt
i,j,k−1 − η∇vt

i,j,k−1F̂i,j(v
t
i,j,k−1, D

j
i ).

5: end for
6: Updates task-specific adapter: vt

i,j = vt
i,j,τ .

7: end for
8: return Updated local task-specific adapters vt

i,j for each task j ∈ Ni.

Algorithm 3 FL-TAC Global Clustering and Aggregation
Inputs: The received clients’ task-specific adapters {vt

i,j |i ∈ Mt, j ∈ Ni}.
Parameters: Number of downstream tasks N .

1: Initializes V = {vt
i,j |i ∈ Mt, j ∈ Ni}

2: Performs K-means algorithm to split V into N clusters V1,V2, . . . ,VN .
3: for n = 1 to N do
4: for all vt

i,j ∈ Vn do
5: vt

j =
∑

vt
i,j∈Vn

vt
i,j/|Vn|.

6: vt
i,j = vt

j .

7: end for
8: end for
9: return Global task-specific adapters vt

j for each task j ∈ {1, . . . , N},
10: Aggregated local task-specific adapters {vt

i,j |j ∈ Ni} for each client i ∈ Mt.

for their tasks j ∈ Ni. In each communication round t, a subset of clients Mt is selected to perform
local fine-tuning as described in Algorithm 2. More specifically, each selected client i executes τ
local training steps with the pre-trained model θ and local task-specific adapters vt−1

i,j for j ∈ Ni.
Each adapter vt−1

i,j is updated iteratively using the local dataset Dj
i and a learning rate η, resulting

in updated local task-specific adapters vt
i,j for each local task j.

After the local fine-tuning, each client i ∈ Mt sends its local adapters to the server, which performs
global clustering and aggregation as presented in Algorithm 3. This process involves the server
initializing a collection V of the received adapters vt

i,j for each client i ∈ Mt and their local tasks
j ∈ Ni. The K-means algorithm is then applied to cluster V into N clusters V1,V2, . . . ,VN .
Adapters within the same cluster n are aggregated to form vt

n as a new global task-specific adapter
for the n-th task involved in the system, and each local adapter in the cluster is updated to this
new aggregated global adapter. Therefore, at the end of the t-th communication round, the server
obtains the global task-specific adapters vt

n for each task n and returns the updated local task-
specific adapters corresponding to local tasks j ∈ Ni to each client i ∈ Mt. This process is iterative
over T communication rounds, ultimately yielding global task-specific adapters vT

n as approximated
optimal v∗

n for each of the N tasks within the system. Figure 1 shows the process of FL-TAC
algorithm with three example clients, each of which tackles two local tasks.

4 EXPERIMENT

In this section, experiment settings and results for evaluating the performance of the proposed FL-
TAC algorithm are presented in details.
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4.1 EXPERIMENT SETUP

Datasets. The evaluation is conducted across various datasets, including Databricks-Dolly-15k
for text generation, several GLUE datasets for text classification, and CIFAR-10 and CIFAR-100
for image classification (Wang et al., 2019). Databricks-Dolly-15k encompasses eight tasks, in-
cluding Brainstorming, Summarization, Classification, Creative Writing, Information Extraction,
Closed Question Answering (QA), Open QA, and General QA. The GLUE datasets considered
in this study are Stanford Sentiment Treebank Binary Classification (SST2), Microsoft Research
Paraphrase Corpus (MRPC), Quora Question Pairs (QQP), Question-answering Natural Language
Inference (QNLI), and Recognizing Textual Entailment (RTE).

Base Models. The tasks of text generation, text classification, and image classification are handled
by distinct pretrained models. Specifically, the Llama-7B model (Touvron et al., 2023) is utilized
for text generation, the Bert model (Devlin et al., 2018) for text classification, and the Vision Trans-
former (ViT) pretrained on the ImageNet-21k dataset (Dosovitskiy et al., 2020) is employed for
image classification.

Data Distribution. For simulating the real-world scenario where each client possesses unique data
distribution, Dirichlet Partition, following the work of Hsu et al. (2020), is taken into consideration.
For each downstream task, the training data is allocated to clients according to the Dirichlet distribu-
tion Dir(α). Note that if a client’s value from the Dirichlet distribution is below the 0.01 threshold,
the task’s data will not be allocated to that client. The total number of local clients is 10 and α is set
to 0.5 for all downstream tasks. Detailed data distribution can be found in Figure 2(a).

Baselines. For fair and comprehensive evaluation, a range of standard baselines from centralized
learning (CL) and FL are selected for comparison. Specifically, Llama-7B and Llama-7B-LoRA
are CL models, with Llama-7B representing a well-recognized open-source LLM and Llama-7B-
LoRA is its variant fine-tuned with LoRA rank 1 on the same dataset as our method. In terms of
the FL method, the baseline FedIT (Zhang et al., 2023) is considered, which involves fine-tuning
Llama-7B with LoRA rank 16 through the FL system.

Table 1: Evaluation on Databricks-Dolly-15k dataset

Training
Setting Method Brain-

storming
Classi-
fication

Closed
QA

Creative
Writing

General
QA

Information
Extraction Open QA Summari-

zation Average Trainable
Parameters

CL
LLama-7B 0.830 0.640 0.725 0.860 0.930 0.550 0.963 0.661 0.770 6,607,884,288

Llama-7B-LoRA 0.890 0.799 0.978 0.930 0.910 0.880 0.970 0.880 0.905 4,259,840

FL
FedIT 0.340 0.691 0.768 0.590 0.740 0.880 0.770 0.592 0.671 8,519,680

FL-TAC 0.600 0.731 0.855 0.700 0.710 0.770 0.610 0.661 0.705 4,259,840

4.2 EXPERIMENT RESULTS

This subsection presents and analyzes the experiment results obtained under the above experiment
settings.

4.2.1 PERFORMANCE ANALYSIS FOR DOWNSTREAM TASKS

Table 1 demonstrates the performance of various methods on the Databricks-Dolly-15k dataset
across multiple tasks. The evaluation follows previous works by having the GPT-4 model score
the answers provided by different methods (Zhang et al., 2023). The proposed FL-TAC algorithm
surpasses the FedIT baseline in most tasks, except for information extraction, general QA, and open
QA. In the information extraction task, it is noteworthy that the performance of the Llama-7B model,
centralized fine-tuned with LoRA, is comparatively lower than in other tasks. This observation sug-
gests a potential need for incorporating task-specific adapters and knowledge exchange across tasks
for certain cases. For the other two QA tasks, such performance could be attributed to the excep-
tional language generation ability of the base Llama model, which exhibits good responses to these
two types of tasks even without fine-tuning. Figure 2(b) provides a clear visualization of the perfor-
mance of these methods on the Databricks-Dolly-15k dataset, presenting a radar chart that highlights
their respective capabilities.
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Table 2: Evaluation on GLUE & Image datasets

Training
Setting Method

GLUE Image Trainable
Parameters (Bert)

Trainable
Parameters (ViT)QNLI QQP SST-2 RTE MRPC CIFAR10 CIFAR100

CL

Bert 0.901 0.875 0.923 0.657 0.840 - - 108,311,810 -
Bert-LoRA 0.792 0.813 0.884 0.552 0.685 - - 192,010 -

ViT - - - - - 0.987 0.920 - 86,862,568
ViT-LoRA - - - - - 0.950 0.899 - 36,864

FL
FedIT 0.670 0.510 0.652 0.524 0.520 0.935 0.854 614,432 294,912

FL-TAC 0.787 0.807 0.874 0.532 0.673 0.946 0.884 192,010 36,864

Furthermore, Table 2 displays the accuracy achieved by the aforementioned methods on the GLUE
dataset and image datasets. The proposed FL-TAC algorithm also demonstrates superior perfor-
mance against the FedIT baseline in terms of both accuracy and communication efficiency.

4.2.2 PERFORMANCE OF CLUSTERING AT THE CENTRAL SERVER

The visualization of clustering results using UMAP (McInnes et al., 2018) dimension reduction after
the K-means clustering step is presented in Figure 4. As the training epochs advance, the catego-
rization becomes more distinct and the distances between each cluster increase. This progression
indicates the successful clustering of task-specific adapters through the training process of FL-TAC.

Figure 4: Visualization of clustering results from epoch 1 to epoch 9.

4.2.3 ANALYSIS OF COMMUNICATION COST AND LOCAL TRAINING COST

The trainable parameters, as shown in Table 1 and Table 2, display a comparison of the quantity of
training parameters required by each method. Notably, the LoRA technique drastically decreases
the number of training parameters required for fine-tuning. Also, when compared with FedIT, the
training parameter transmitted by FL-TAC is lower, which is a result of our strategic approach of
training task-specific adapters with a lower LoRA rank.

5 CONCLUSION

In conclusion, this work enhances fine-tuning large pre-trained models within FL by reducing com-
munication cost and improving task adaptation performance with the presence of various down-
stream tasks. The introduced FL-TAC method employs low-rank task-specific adapters for each
client and performs clustering and aggregation of similar adapters on the server. The extensive
experiments of fine-tuning via the proposed FL-TAC method demonstrate improved communica-
tion efficiency and enhanced task adaptation performance compared to the single-adapter baseline,
contributing to a unified, scalable FL framework for pre-trained model fine-tuning with both ef-
ficient communication and effective multi-task generalization. Future research directions involve
investigating unresolved issues, such as the correlation between the required LoRA rank and the
capabilities of base models.
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