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ABSTRACT

Deep reinforcement learning (RL) algorithms have been successfully applied to
train neural network control policies for many sequential decision-making tasks.
However, prior work has shown that neural networks are poor extrapolators and
deep RL algorithms perform poorly with weakly informative cost signals. In this
paper we show that these challenges are particularly problematic in real-world
settings in which the state-space is unbounded and learning must be done without
regular episodic resets. For instance, in stochastic queueing problems, the state
space and cost can be unbounded and the agent may have to learn online without
the system ever being reset to states the agent has seen before. In such settings,
we show that deep RL agents can diverge into unseen states from which they can
never recover, especially in highly stochastic environments. Towards overcoming
this divergence, we introduce a Lyapunov-inspired reward shaping approach that
encourages the agent to first learn to be stable (i.e. to achieve bounded cost) and
then to learn to be optimal. We theoretically show that our reward shaping technique
reduces the rate of divergence of the agent and empirically find that it prevents
it. We further combine our reward shaping approach with a weight annealing
scheme that gradually introduces the pursuit of optimality and a log-transform of
state inputs, and find that these techniques enable deep RL algorithms to learn
performant policies when learning online in unbounded state space domains.

1 INTRODUCTION

Many deep reinforcement learning (RL) algorithms have been designed using environments (Fu
et al., 2020; Brockman et al., 2016) that satisfy two criteria: (i) the state space and cost function are
bounded, i.e., the agent will only experience a bounded range of numeric values; (ii) the environment
is episodic and the agent will periodically be reset to some distribution of initial states. However,
many real-world applications violate these criteria and instead have the following characteristics:

(i) The state space and range of inputs can be unbounded; and the incurred cost is unbounded.
(ii) Resets are difficult if not infeasible, requiring expensive manual or engineering efforts.

For example, in network load-balancing, one aims to minimize the number of jobs waiting in queues,
and this number may grow arbitrarily large; in traffic intersection management, the number of vehicles
may increase without bound.1 In these examples, resetting the system (e.g., removing all vehicles at
a traffic intersection) is costly or even inappropriate, particularly when a good simulator is absent and
learning must be done in the real system (Sharma et al., 2021). Therefore, we need RL algorithms
that are robust to potentially unbounded inputs and can learn quickly without the benefit of periodical
resets. In this paper, we demonstrate that the failure of naı̈vely applying deep RL algorithms to a
single, long episode when the state-space is unbounded. We then identify several key techniques
which when combined, make deep RL algorithms able to solve these challenging problems.

Challenges. The unbounded state space means the agent must make predictions on states that are out
of the range of previously seen states, which is known to be especially challenging for neural networks
(Xu et al., 2021; Haley & Soloway, 1992; Barnard & Wessels, 1992; Chollet, 2017). Moreover, as we
will see, it is common that the unbounded state space implies an unbounded cost function, which

1While the physics of the system may impose a finite limit on the state space (e.g., physical space at a road
intersection), the limit is often so large that the problem is virtually unbounded and still foils existing methods.
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can result in high variance updates and weakly informative learning signals (Arumugam et al., 2021).
Both of these problems can severely hinder credit assignment. Meanwhile, the lack of episode resets
reduces the chances that an RL agent can re-visit previously observed regions of the state-space and
apply what was learned in earlier episodes to improve its estimation of the optimal actions. The
unbounded state space and lack of resets are intricately linked. With poor credit assignment and poor
extrapolation capabilities, the agent inevitably diverges into unvisited regions of the state space, and
removing resets to previously visited states only worsens the divergence.

In this setting, we find that existing deep RL methods, as well as their natural variants, fail and cannot
even keep the system stable with a bounded cost. That is, the agent diverges: it first encounters a state
in which it has poor estimates of the optimal actions, it then makes a mistake, making it even more
likely to encounter a new state in which it also has a poor estimate, and so on. The unboundedness of
the state space means that there will always be regions of unvisited states, to which the agent must
extrapolate. As the agent diverges into unvisited regions, it does not have the opportunity to refine
estimation of the optimal actions in states seen so far. The lack of resets to previously visited states
exacerbates the divergence. Finally, the unbounded cost results in high variance updates during policy
learning, which further hinders credit assignment. Under this vicious cycle, the agent cannot even
achieve a bounded cost, let alone the optimal cost. Towards tackling this divergence, our key insight
is to encourage the agent to re-visit regions of the state space so that it can improve its estimation.

Contributions. Our contributions are three-fold and are summarized as follows:

1. We empirically show that existing deep RL methods diverge in continuing tasks with unbounded
state spaces and high stochasticity. Common heuristics such as clipping, normalization and
mapping the unbounded state space to a bounded range do not eliminate the divergence.

2. We introduce Stability Then OPtimality (STOP), an approach that prevents divergence and
explicitly encourages the agent to re-visit regions of the state space and incur a bounded cost.
The key idea of STOP is to enable the agent to refine its estimation of the optimal actions—even
when the current policy is unstable and diverging—thus serving as a first step towards optimality.
STOP is based on the combination of the following techniques: 1) a Lyapunov-inspired reward
shaping approach that encourages the agent to be stable, i.e., achieve bounded cost (Shah et al.,
2020), 2) a weight annealing scheme that prioritizes first learning stability and then gradually
shifting towards optimality, and 3) state transformations that reduce the rate at which unbounded
features can diverge and hence alleviate the extrapolation burden.

3. We conduct a thorough empirical study and analyze the role of different components of STOP
on challenging real-world-inspired domains and show that STOP enables learning of highly
performant RL policies.

See Section 6 for additional discussion of prior work on continuing RL and unbounded state spaces.

2 PRELIMINARIES

Consider an infinite-horizon Markov decision process (MDP) (Puterman, 2014), M :=
⟨S,A,P, c, d0⟩, where S ⊆ Rd is the state space, A the action space, P : S × A → ∆(S)
the transition dynamics, c : S × A × S → R≥0 the cost function, and d0 ∈ ∆(S) the initial
state distribution. Here we follow the control-theoretic convention and consider costs (the negation
of rewards). Without loss of generality, we assume the cost is non-negative, and often restrict to
cost-functions that are only dependent on the current state, st.

In the continuing task formulation, an agent, acting according to policy π : S → ∆(A), generates
a single infinitely long trajectory: s0, a0, s1, c0, a1, s2, ..., where s0 ∼ d0, at ∼ π(·|st), ct =
c(st, at, st+1), and st+1 ∼ P(·|st, at). Unlike typical settings in RL, there are no resets in this
formulation. Accordingly, we consider the long-run average-cost objective (Naik et al., 2019; 2021):

JO(π) := lim
T→∞

1

T

T∑
t=1

Eπ [c(st, at, st+1)] . (1)

The goal is to find an optimal policy that minimizes JO(π). Note that a necessary condition for
optimality is stability, i.e., JO(π) < ∞. Define the differential action-value function: Qπ(s, a) :=

limT→∞ Eπ[
∑T

t=0(c(st)− JO(π))|s0 = s, a0 = a].
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In this work, we make the following technical assumptions:
Assumption 1 (Communicating MDP). For any pair of states s and s′, there exists a policy that can
transition from s to s′ in a finite number of steps with non-zero probability.
Assumption 2 (Bounded increment). There exists a constant B < ∞ such that Es′∼P(·|s,a)|c(s′)−
c(s)| ≤ B, ∀(s, a) ∈ S ×A.
Assumption 3 (Norm equivalence). The cost function satisfies h(∥s∥) ≤ c(s, a, s′) ≤
h(∥s∥),∀(s, a, s′) for some linear functions h and h, where ∥ · ∥ is an arbitrary norm.

Assumption 1 is standard for average-cost problems (Bertsekas, 2015); it ensures existence of a
π such that JO(π) is independent of the initial state. Assumption 2 is a mild regularity condition.
Assumption 3 implies that stability/divergence in the state is equivalent to stability/divergence in the
cost. These assumptions are satisfied in, e.g., queueing and network control problems where the state
s is the queue length vector, and one aims to minimize the time average of the total queue length
c(s) = ∥s∥1, which is equivalent to minimizing system latency by Little’s Law (Leon-Garcia, 2008).

3 CHALLENGES POSED BY UNBOUNDED STATE SPACES

In this section, we describe two core challenges that arise due to the unbounded state space: 1) poor
credit assignment and 2) extrapolation burden.

(a)

(b)

Figure 1: (a) Infinite gridworld
environment. (b) Performance
measured in Manhattan distance
from origin vs. interaction steps.
Results are over 5 trials and
show the 95% confidence interval.
Lower is better.

Challenge 1: Poor Credit Assignment. A central challenge is that
with an unbounded state space, directly optimizing the resulting
unbounded cost function (Assumption 3) can lead to high variance
updates during policy learning. Furthermore, the cost can be re-
duced only by a bounded amount B per time-step (Assumption 2).
When B is small relative to the growing cost at the current state,
any credit assigned to an action is weakly informative (Arumugam
et al., 2021) and quickly overwhelmed by the diverging cost. Thus
credit-assignment is hard, and this challenge cannot be eliminated by
merely using a diferent state representation. Note that the above as-
sumptions hold true in real-world settings such as queueing systems,
where the cost function (the number of jobs in the system) may grow
large while at most a finite number B of jobs can enter or leave the
system at each time-step. See Appendix C for more details.

Challenge 2: Extrapolation Burden. With an unbounded state
space, there will always be regions of the state space unvisited by the
agent. Note that an unbounded space is different from a continuous
but bounded space: Suppose a neural network is trained on contin-
uous state values from [0, 1]. If this bounded range is the entire state
space, the neural network is typically making predictions for unseen
values inside this region. On the other hand, in the unbounded state
space setting, the neural network makes predictions for unseen val-
ues outside this region. It is well-known that while neural networks
perform well in the former case, they often extrapolate poorly in
the latter case (Xu et al., 2021; Haley & Soloway, 1992; Barnard
& Wessels, 1992; Chollet, 2017), which results in the RL agent to
act poorly. Furthermore, the poor extrapolation is exacerbated in the
reset-free setting. Suppose there is a single initial state and the agent
is reset to it every k steps. Then agent’s state visitation is effectively
limited to a region of radius k from the initial state. With enough
training, the agent will improve its estimation of the optimal actions
within this region and avoid divergence. However, if there are no
resets, the agent will diverge into unvisited regions due to its poor
extrapolation capabilities. One could potentially mitigate this burden by transforming the state space.
However, as we will show, there are trade-offs between transformations.

To illustrate the difficulty of learning in this setting, we consider an infinite gridworld (Figure 1(a),
details in Appendex B) where the axes are unbounded in the positive and negative directions. The
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agent tries to minimize time spent outside the origin, corresponding to a cost function being the
Manhattan distance to the origin. The agent is pushed away from the origin and moves successfully
towards the origin with certain probabilities. In Figure 1(b), we plot Manhattan distance (cost) vs.
interaction time of various well-tuned average-reward PPO agents (Zhang & Ross, 2021) (see Table 1).
In this case, increasing cost implies divergence as the agent is visiting newer states further way from
origin. Despite the domain’s simplicity, we find that commonly-used heuristics result in the agent
to diverge. In particular, clippings (Engstrom et al., 2020), naı̈ve transformations, resets, and state
truncation all fail to stabilize, i.e., achieve a bounded cost, let alone the optimal cost.

PPO Variant Description Reason for Divergence
US-UC Optimize Unbounded Cost in Unbounded State space.

Use state/reward clipping and normalizations.
Challenges 1 and 2

BS-BC Optimize Bounded Cost in Bounded State. tanh applied
to state, cost c is replaced with −1/(c+ 1).

Challenge 1 and represen-
tation collapse by tanh

US-UC-TT Trained with resets, then tested on reset-free setting. Challenges 1 and 2
US-UC-TT-
TRUNC

Trained with resets and truncated state space
[−1000, 1000]2, then tested on unbounded state/cost
and reset-free setting.

Challenges 1 and 2

Table 1: Common techniques to tackle the reset-free unbounded state and cost setting all diverge.

In the next section, we present an approach that tackles Challenges 1 and 2 through stability-based
reward shaping, reverse annealing towards optimality and more sophisticated state transformations.

4 STOP: STABILITY THEN OPTIMALITY

We now introduce our method, Stability Then OPtimality (STOP), which is based on the insight of
first encouraging stability (i.e., re-visiting regions of the state space and keeping the cost bounded)
and then optimality (i.e., minimizing the cost). STOP consists of three algorithm-agnostic ingredients:
1) reward shaping for stability, 2) reverse-annealing the optimality cost, and 3) state transformations.

4.1 TACKLING CHALLENGE 1: STABILITY THROUGH REWARD SHAPING

As we described in Section 3, JO is difficult to minimize directly; even keeping JO bounded is
challenging. To facilitate learning, we propose to use reward shaping to encourage the agent to
be stable i.e., to not diverge and to incur bounded cost. A stable agent will be able to repeatedly
revisit states and improve its estimates of the optimal actions. Once the agent is stable, it can start to
optimize the original optimality objective JO. To encourage stability, we propose using a stability
cost function of the form g(st−1, st) := ℓ(st) − ℓ(st−1), where ℓ : S → R≥0 is a potential or
Lyapunov function satisfying lim inf∥s∥→∞ ℓ(s) = ∞. Minimizing g thus amounts to minimizing
the drift of the Lyapunov function. In the following, we present a novel connection between this
simple formulation and the notion of stability. Below we consider two instantiations of ℓ .

A domain-independent choice for ℓ is to use the original cost function c, in which case g(st−1, st) =
c(st)− c(st−1) is just the difference between consecutive costs. While straightforward, using g has
far-reaching consequences: 1) it induces a well-defined policy gradient even when the current policy
is unstable, and 2) it provides immediate feedback on progress and encourages stability. We provide
theoretical justifications for these properties in Section 4.1.1.

Another choice we consider is the quadratic potential function ℓ(s) = ∥s∥22, where ∥ · ∥2 is the
Euclidean norm. In this case, we have g(st−1, st) = ∥st∥22−∥st−1∥22 ≈ 2∥st−1∥2·(∥st∥2−∥st−1∥2),
which provides a reward signal if ∥st∥2 < ∥st−1∥2, especially when ∥st−1∥2 is large where it is
crucial to prevent the state from further diverging. This choice often has better empirical performance.
It is inspired by the literature on stochastic networks and control (Srikant & Ying, 2014; Neely, 2010),
where a quadratic ℓ and its variants are popular candidates for a Lyapunov function.

Lyapunov functions are a standard tool in the analysis of stochastic systems, and it is known
that a negative (expected) Lyapunov drift is a sufficient condition for stochastic stability (Meyn
& Tweedie, 2012). Here we use it algorithmically. Note that we do not need to know an exact
Lyapunov function—the above choices of ℓ are not exact in general. As shown in our experiments,
an approximate Lyapunov function, even as crude as ℓ = c, could still offer significant benefits.
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4.1.1 THEORETICAL RESULTS

We investigate the theoretical properties of the stability cost function, focusing on the domain-
independent choice g(s, s′) = c(s′)− c(s). Define the corresponding average-cost objective:

JS(π) := lim
T→∞

1

T

T∑
t=1

Eπg(st−1, st) = lim
T→∞

1

T

T∑
t=1

Eπ

[
c (st)− c (st−1)

]
. (2)

Later we will use JS as a regularizer and combine it with the original optimality criterion JO.

Our first lemma shows that JS(π) is always bounded and well-defined, regardless of whether π is
stable. This follows from the fact that Eπc(st) cannot grow faster than linearly under Assumption 2.
Lemma 1. (Boundedness of g and JS) Under Assumptions 1 and 2, we have Eπ[g(st−1, st)] ≤ B, ∀t
and JS(π) ≤ B for all policies π.

We now define a new MDP, denoted by MS, with state xt = (st−1, st) (i.e., a concatenation of two
successive states) and instantaneous cost function g(xt) = c (st) − c (st−1), in which case JS(π)
is the corresponding average-cost objective of MS. Since g and JS are always bounded (Lemma
1), the action-value function, denoted by Qπ

MS , is well defined for all policies π under MS. Using
this connection, the proposition below characterizes the policy gradient of JS, allowing us to employ
policy optimization methods to improve the current policy π even when π is not yet stable.
Proposition 1. (Policy gradient of JS) Consider a policy class {πθ} smoothly parameterized by θ.
Under Assumptions 1 and 2, for any θ, the policy gradient is well-defined and admits the expression

d
dθ

JS(πθ) = Eπ

[
Qπθ

MS ((st−1, st), at)∇θ log πθ(at|st)
]
.

We say that the system is rate-stable in mean under the policy π if limT→∞
1
T Eπ∥sT ∥ = 0, that

is, Eπ∥sT ∥ = o(T ). Rate-stability (a.k.a. pathwise-stability) is a standard criterion in the queueing
and stochastic network literature (Dai & Jennings, 2004; El-Taha & Stidham Jr, 2012). Our last
proposition shows that minimizing JS gives rate-stable policies. There are other formal notions
of stability (Meyn & Tweedie, 2012; Shah et al., 2020); we leave it to future work to study the
relationship between these alternative notions and our reward shaping approach.
Proposition 2. (JS and rate stability) Under Assumptions 1–3, minπ J

S(π) = 0. Moreover, the
system is rate-stable in mean under π̄ if and only if π̄ ∈ argminπ J

S(π).

The proofs are deferred to Appendix A. While the above theoretical results focus on the choice
g(s′, s) = c(s′)− c(s), we find that other choices, such as the quadratic stability cost, also has good
(and sometimes better) empirical performance.

4.2 APPLYING STABILITY + OPTIMALITY WITH REVERSE ANNEALING

While minimizing the shaped cost function g yields a stable policy, we want an optimal policy. Thus,
the agent must also pursue optimality, i.e., minimize the original objective JO. So that the agent first
incurs bounded costs and then pursues optimal costs, we set the agent’s objective at time-step t to be
a linear combination of g(st−1, st) and c(st):

min
π

lim
T→∞

1

T

T∑
t=1

Eπ

[
g(st−1, st)︸ ︷︷ ︸
stability cost

+ λ(t) c(st)︸︷︷︸
optimality cost

]
. (3)

The first part of the above objective is simply the stability objective JS. One may view JS as a
regularizer, which encourages stability throughout the interaction process. The coefficient λ(t) in (3)
is reverse annealed as a function of the time t to increase emphasis on the optimality term over
time. Specifically, we use the annealing schedule: λ(t) = tanh(βmax(t − τwarmup, 0.01)), where
β determines the speed at which λ reaches 1 (its maximum value) and τwarmup determines at what
time-step in the interaction process that λ starts taking effect (MacGlashan et al., 2022).

By solving the optimization in Eq. (3) the agent first learns to be stable and then learns to be optimal.
Since an optimal policy π∗ is by definition stable and satisfies JS(π∗) = 0,2 the minimizer of the
objective (3) will be the same as the optimal policy w.r.t. the original optimality criterion JO.

2The first part of Proposition 2 in fact holds for more general stability costs; see Remark 1 in Appendix A.
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4.3 TACKLING CHALLENGE 2: STATE TRANSFORMATIONS

The above two ingredients reduce the extrapolation burden (Challenge 2) by guiding the agent to
re-visit regions of states with low costs. In domains with high stochasticity, the agent will still
occasionally visit new states. To further mitigate the burden, we turn to different state transformations.
These transformations are applied coordinate-wise to the state features only before inputting them
into the policy and value networks; the cost function is computed based on the original state.

We consider the following transformation functions: 1) sigmoid(x) := 1/(1 + e−x), 2) symmetric
square root: symsqrt(x) := sign(x)(

√
|x|+ 1− 1) (Kapturowski et al., 2019), 3) symmetric natural

log: symloge(x) := sign(x) ln(|x|+1) (Hafner et al., 2023). All these functions 1) reduce divergence
rate of the unbounded quantities and 2) preserve the ordering between them. From the agent’s
perspective, as the transformed states appear closer to one another, the extrapolation burden is further
reduced. Of course, there are trade-offs between transformations. For example, while sigmoid
reduces the extrapolation burden, it may effectively collapse the large states, making it challenging to
differentiate between states/features. On the other hand, with symloge, the agent is still burdened
by extrapolation but collapse is far less severe. For example, sigmoid(100) ≈ sigmoid(300) ≈ 1,
symloge(100) ≈ 4.6, symloge(300) ≈ 5.7. See Appendix B for a visualization of these functions.

5 EMPIRICAL STUDY

We present an empirical study of STOP on real-world-inspired continuing tasks with unbounded state
spaces, unbounded cost functions, and high stochasticity. We seek to answer the questions:

1. Does STOP improve the robustness of RL algorithms in this difficult setting?
2. How critical are the stability reward and state transformation components individually?
3. Is it better to optimize optimality from the beginning or gradually introduce optimality over time?

5.1 SETUP

We first describe the environments, the algorithms we evaluate, and how we evaluate performance.
We refer the reader to Appendix B for more details.

Environments. We conduct our experiments on the following environments.

1. Two-dimensional goal-reaching infinite gridworld: This domain was introduced in Section 3.

2. Single-server allocation queuing: At each time-step the server selects from a set of queues to
serve. High stochasticity is due to job arrivals, failure in successfully serving a queue, and faulty
connections. The optimality criterion is to minimize the average queue lengths. Note that in the faulty
connection setting, finding the optimal policy is challenging even when the transition dynamics are
known (Ganti et al., 2007). As we will see in the experiments, a smaller queuing setting with faulty
connections can be significantly harder than a larger queueing setting with no faulty connections.

3. Traffic control: At each time-step a traffic controller must select a set of non-conflicting lanes to
allow traffic where new cars arrive stochastically. We use the SUMO simulator (Behrisch et al., 2011;
Alegre, 2019) and experiment with varying levels of traffic congestion on a given intersection design.
The optimality criterion is to minimize the total waiting time across all cars. In this domain, SUMO
models a real-life traffic situation by imposing a cap on the number of cars per lane. However, as we
will show, existing deep RL algorithms still fail despite this cap.

Algorithms. Our baseline is average reward PPO (Zhang & Ross, 2021) since it is designed: 1) for the
infinite horizon setting without discounting (Naik et al., 2021), 2) to be stable in the stochastic setting
(Dai & Gluzman, 2022), and 3) to be robust to hyperparameter tuning. For the queueing environments,
we also evaluate MaxWeight (see Appendix B), an algorithm with access to the transition dynamics.

Online Evaluation and Training Procedure. The agent starts from a random start state and
a randomly-initialized policy and is never reset. We plot the true cost incurred by the agent vs.
interaction time-steps. An increasing curve indicates divergence as the agent is visiting new states
with increasing norm; a flat curve indicates that the agent is re-visiting states with bounded norms
(stable); a decreasing curve indicates improvement towards optimality. See Appendix B for specifics.
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5.2 MAIN RESULTS

We now compare vanilla PPO algorithm to PPO equipped with STOP in Figure 2. We hyperparameter
sweep only over τwarmup and β and keep all other hyperparameters for STOP and the baseline the same
(Raffin et al., 2021), and show results for agents that achieved the lowest true optimality cost at the
end of interaction time. We evaluate both stability variations: 1) ℓ(s) = c(s) = ∥s∥1 (linear) and 2)
ℓ(s) = ∥s∥22 (quadratic). All STOP agents use the symloge transform.

In all experiments, the naı̈ve PPO agents, which optimized the optimality criterion directly and used
no state transformations, diverged. On the other hand, STOP agents are able to achieve stability. In
the highly stochastic queueing environments only, we found that using the linear stability cost and
optimality cost is insufficient: the linear stability cost (bounded between [−1, 1]) and optimality
cost have different magnitude scales, which can cause the latter to dilute the former, effectively
eliminating any benefit of the stability cost. In these cases, we replaced the optimality cost c(st) with
−1/(c(st) + 1).

While in some cases the linear stability cost agent performed marginally better than the quadratic
cost agent, the latter has two advantages in the evaluated environments: 1) it is on a similar scale
as the optimality cost c, mitigating any dilution, and 2) it allows us to keep and optimize the true
optimality cost; in comparison, using the linear cost may require taking the reciprocal of c, which is
not equivalent to the true optimality criterion.

While optimizing only the stability criterion led to low true cost, including the optimality criterion
lowered it further. Refer to Figure 6 in Appendix B for these results.

(a) Infinite gridworld (b) 2-queues w/ faulty connections (c) 10-queues w/o faulty connec-
tions

(d) Medium congestion (e) Heavy congestion (f) Very heavy congestion

Figure 2: True optimality criterion vs. interaction time-steps on infinite gridworld, two queue networks variants,
and traffic control environment. Lower is better. Algorithms are PPO (O) vs. STOP + PPO which use all STOP
components, where we evaluate the linear (STOP-L-O) and quadratic (STOP-Q-O) stability cost function. For
the queueing environment, we also report the performance of MaxWeight (MW). Recall that unlike MW, STOP
does not know the transition dyanmics. Performance metrics are computed over 5 trials with 95% confidence
intervals. The vertical axis is log-scaled.

7



Under review as a conference paper at ICLR 2024

5.3 ABLATION STUDIES

We have showed that STOP enables learning in highly stochastic environments with unbounded state
spaces and cost functions. We now analyze the importance of different components of STOP.

(a) Stability reward + annealing and
varying state transformations

(b) Only state transformations, no
stability reward

(c) Reverse annealing

Figure 3: Ablations. True optimality criterion vs. interaction time-steps on (a) 2 queue setup, (b) 10 queue
setup, and (c) infinite gridworld. Lower is better. Performance metrics are computed over 5 trials with 95%
confidence intervals. The vertical axis is log-scaled. id: identity; SIG: sigmoid, SS: symsqrt; SL: symloge.

5.3.1 STABILITY REWARD + ANNEALING WITH VARYING STATE TRANSFORMATIONS

In this experiment, we seek to understand the importance of the state transformation component
of STOP. We evaluate the performance of a STOP PPO agent with g(st−1, st) := c(st) − c(st−1),
different state transformations from Section 4.3, and reverse annealing optimality applied to the
unbounded cost. From Figure 3(a), applying state transformations result in significantly better
performance compared to no application of such a transformation. The significant improvement
over no state transformations (id) suggests that state transformations are indeed critical and that in
very difficult environments the stability cost is insufficient. However, we also observe that balancing
between squashing values too closely to each other (e.g. sigmoid) vs. keeping them reasonably far
apart (e.g. symloge) is important. If values are extremely squashed together, it may be difficult for the
agent to distinguish between states and features of a state. If they are too far apart, the extrapolation
burden may be less mitigated.

5.3.2 STATE TRANSFORMATIONS WITH NO STABILITY REWARD

In Figure 3(b), we remove the stability cost. We observe that applying only state transformations is
insufficient for the agent to stablize and the stability reward component of STOP is critical.

5.3.3 STOP WITH AND WITHOUT REVERSE ANNEALING OPTIMALITY

We study whether it is better to gradually optimize optimality (apply reverse annealing) or to always
optimize optimality (setting λ(t) = 1)). In Figure 3(c), we show the performance of different STOP
agents using the linear (L-O) and quadratic (Q-O) stability cost and symloge state transform when
using reverse annealing vs. not using reverse annealing (-NA). The linear STOP agent with no reverse
annealing performed poorly. We attribute this bad performance to the fact that initially the policy is
unstable, causing the agent to incur an unbounded optimality cost, which in turn dilutes any benefit
of the stability cost, so the agent never learns to be stable. On the other hand, we found the quadratic
STOP agent to be more robust. This robustness is due to the fact that the quadratic stability cost is on
a similar magnitude scale to the optimality cost, thus both criteria have similar influence. Thus, it is
preferable to optimize optimality gradually.

In terms of how to introduce optimality, we found that it was better to introduce optimality later (larger
τwarmup) and slowly (smaller β) during interaction (see Appendix B). That is, it is more important that
the agent first learn to stabilize and then pursue optimality than pursuing optimality from the start.
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6 RELATED WORK

Continuing RL. Our work focuses on continuing RL tasks in which interaction never terminates
and performance is measured online (Sutton & Barto, 2018). This setting has been described with
the autonomous RL (Sharma et al., 2021) or single-life RL (Chen et al., 2022) formalisms. In many
practical set-ups, it is infeasible to reset the agent to a new initial state. Recent work has thus
considered reset-free RL where the agent learns to reset itself (Eysenbach et al., 2018; Zhu et al., 2020;
Gupta et al., 2021; Han et al., 2015). However, these works still require a manual reset (Eysenbach
et al., 2018) or use policies learned on one task as a reset policy in another task (Gupta et al., 2021).
Our work performs no resets and evaluates performance on a single infinitely-long task.

In continuing RL, the natural performance measure of an agent is average-reward (Sutton & Barto,
2018; Naik et al., 2019). Our work is different from prior average-reward RL work (Mahadevan,
1996; Schwartz, 1993; Wan et al., 2021; Wei et al., 2020; Zhang & Ross, 2021; Zhang et al., 2021) in
that we tackle the challenge of unbounded state spaces and cost functions.

To avoid possible confusion, we emphasize that our work focuses on continuing RL and not continual
RL. The latter tends to address non-stationarity in the transition dynamics and reward function, and
much work in continual RL still uses an episodic task formulation. Our setting, on the other hand,
assumes that the agent is solving one task with stationary dynamics in a single episode.

Stability and Unbounded State Spaces in RL. The concept of stability in RL has largely been
overlooked. Stability is related to the notion of safety in RL (Garcıa & Fernández, 2015), but with
crucial differences. Safety is typically defined as hard constraints on individual states and/or actions
(Hans et al., 2008; Dalal et al., 2018; Dean et al., 2019; Koller et al., 2018), or soft constraints on the
expected costs over the trajectory (Achiam et al., 2017; Chow et al., 2018; Yu et al., 2019). In contrast,
stability concerns the long-run asymptotic behavior of the system, which cannot be immediately
written as constraints over the state/action or budget on some cost.

Some work considers control-theoretic notions of stability (Vinogradska et al., 2016; Berkenkamp
et al., 2017). While related, these results mostly consider systems with deterministic and partially
unknown dynamics. For example, Westenbroek et al. (2022) propose a cost-shaping approach with
similarities to ours, but focusing on deterministic dynamics and hence a different notion of stability;
they consider discounted costs, and do not study the continuing setting with unbounded states.

The work of Shah et al. (2020) considered stochastic stability for RL in the unbounded state space set-
ting. However, their work assumed a tabular setting, relied on access to the model of the environment,
and ignored optimality and focused exclusively on stability. Our work makes stability practical for
deep RL without having access to the environment model, and combines stability with optimality. In
the few other works that do consider stability (Dai & Gluzman, 2022; Liu et al., 2022), they assume
that a stable policy is given and use it as a starting point for learning an optimal policy. We make no
such assumption and try to learn a stable policy directly from a random policy.

The combination of unbounded space and continuing setting is scarce in the RL literature. Existing
works acknowledge the challenges from unboundedness, but they either artificially bound the state
space (Liu et al., 2022), or assume the episodic training setting (Dai & Gluzman, 2022). In Section 3,
we showed that these adjustments did not solve the reset-free unbounded state space setting.

7 CONCLUSION

We introduced STOP that prevents divergence of deep RL agents in highly stochastic, reset-free and
unbounded state space and cost settings. STOP guides the agent to re-visit regions of the state space
and achieve stability, and to then pursue optimality. This general principle can be useful for many RL
settings and RL algorithms.

We highlight some limitations and future directions. STOP relies on the true optimality cost to be
dense. It would be interesting to develop stability techniques with sparse rewards. Also, while STOP
substantially improved RL-based baselines, our comparison to a non-RL baseline in the queueing
environments suggests that further improvement is possible. This gap could potentially be closed by
examining the loss of plasticity (Nikishin et al., 2022). Another interesting direction is to combine
STOP with sophisticated off-policy algorithms such as RAINBOW (Hessel et al., 2017).

9
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A THEORETICAL RESULTS

In this section we provide the proofs for our theoretical results, which are restated below for readers’
convenience. The starting point of our proofs is to rewrite the stability objective JS as follows:

JS(π) = lim
T→∞

1

T

T∑
t=1

(Eπℓ (st)− Eπℓ (st−1))

= lim
T→∞

1

T
(Eπℓ (sT )− Eπℓ (s0))

(i)
= lim

T→∞

1

T
Eπℓ (sT ) (4)

= lim
T→∞

1

T
Eπc (sT ) ,

where the equality (i) holds since Eπc(s0) is independent of T .
Lemma 1. (Boundedness of g and JS) Under Assumptions 1 and 2, we have Eπ[g(st−1, st)] ≤ B, ∀t
and JS(π) ≤ B for all policies π.

Proof. To prove boundedness of g, we observe that for all t:

Eπ|g(st, st+1)| = Eπ |c(st+1)− c(st)|
(i)
= E(st,at)∼πEst+1∼P(·|st,at) |c(st+1)− c(st)|
(ii)
≤ E(st,at)∼πB

= B,

where in step (i) we use the law of iterated expectation and denote by Est∼π the expectation w.r.t.
(st, at) generated by following the policy π, and in step (ii) we use Assumption 2.

It follows that

Eπc(sT ) = c(s0) +

T−1∑
t=0

Eπ [c(st+1)− c(st)]

≤ c(s0) +

T−1∑
t=0

Eπ |g(st, st+1)|

≤ c(s0) +BT,

whence

JS(π) = lim
T→∞

1

T
Eπ,s0c (sT )

≤ lim
T→∞

1

T
(c(s0) +BT ) ≤ B.

For the next result, we recall that for the average-cost MDP ⟨S,A,P, c, d0⟩ and a policy π, the
differential action-value function is defined as Qπ(s, a) := limT→∞ Eπ[

∑T
t=0(c(st)−JO(π))|s0 =

s, a0 = a]. Also recall that Qπ
MS is the differential action-value function for the MDP MS associated

with the stability cost g.
Proposition 1. (Policy gradient of JS) Consider a policy class {πθ} smoothly parameterized by θ.
Under Assumptions 1 and 2, for any θ, the policy gradient is well-defined and admits the expression

d
dθ

JS(πθ) = Eπ

[
Qπθ

MS ((st−1, st), at)∇θ log πθ(at|st)
]
.

Proof. The claim follows from applying the average-cost Policy Gradient Theorem (Sutton et al.,
1999, Theorem 1) to the MDP MS with g as the cost function, and using the well-known identity
πθ(a|s) · ∇θ log πθ(a|s) = ∇θπθ(a|s).
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Proposition 2. (JS and rate stability) Under Assumptions 1–3, minπ J
S(π) = 0. Moreover, the

system is rate-stable in mean under π̄ if and only if π̄ ∈ argminπ J
S(π).

Proof. By Assumption 1, there exists a stable policy π0 such that Eπ0
c(st) ≤ C,∀t for some constant

C < ∞. Therefore,

0 ≤ min
π

JS(π) ≤ JS(π0) = lim
T→∞

1

T
Eπ0c (sT ) ≤ lim

T→∞

1

T
· C = 0, (5)

hence minπ J
S(π) = JS(π0) = 0.

Consequently, we have π̄ ∈ argminπ J
S(π) if and only if JS(π̄) = 0. This is in turn equivalent to

0 = JS(π̄) = lim
T→∞

1

T
Eπc (sT ) = lim

T→∞

1

T
Eπc (sT ) ,

which is the definition of rate stability in mean.

Remark 1 (Generalization of Proposition 2). Inspecting equation (5) above, we see that the conclu-
sion JS(π0) = 0 in fact holds for other stability costs g(st, st+1) = ℓ(st+1)− ℓ(st) beyond ℓ = c. In
particular, suppose the stable policy π0 and the Lyapunov function ℓ satisfy Eπ0

ℓ(st) ≤ C < ∞,∀t.
Note that this property holds when, for example, we use a quadratic Lyapunov function ℓ(s) = ∥s∥22
and the Markov chain (st)t≥0 induced by π0 has a limit distribution with a finite second moment.
Many queueing and stochastic control problems have this property, since the limit distribution is
typically sub-exponential (Hajek, 1982). In this case, similarly to equation (5), we have

0 ≤ JS(π0)
(i)
= lim

T→∞

1

T
Eπ0ℓ (sT ) ≤ lim

T→∞

1

T
· C = 0, (6)

where step (i) follows from equation (4). It follows that JS(π0) = 0.

B SUPPORTING CONTENT AND EMPIRICAL RESULTS

In this section, we include additional details and experiments that complement the main results. We
also include the code in the supplementary zip file.

B.1 VISUALIZATIONS OF STATE TRANSFORMATIONS

To provide better intuition of the different state transformations we considered in Section 4.3, we
visualize them in Figure 4.

Figure 4: Visualizations of transformation functions.

B.2 ENVIRONMENTS

In this section, we provide additional details about the server allocation and traffic control environ-
ment.

15



Under review as a conference paper at ICLR 2024

(a) Single-server allocation (b) Traffic control

Figure 5: Left: Server-allocation. Image taken from Liu et al. (2019). Right: An example intersection of the
traffic control environment. Image taken from Alegre (2019).

Gridworld In this domain, an agent is randomly spawned within some region of the grid and must
try to move towards the origin by selecting between two actions: moving vertically or horizontally
towards the goal. The state of the agent is the unbounded 2D coordinate location of the agent. With
probabilities px = 0.2, py = 0.15 the agent is pushed away from the origin along the respective axis.
After an agent selects an axis to move along, its movement along that axis will be successful with
probability sx = 0.3, sy = 0.8 for the respective axis; if it fails to move, it will stay in the same
location unless pushed away. The cost function is the Manhattan distance between the agent and the
origin.

Single-server allocation queueing In this environment, there is a single central server that must
select among a set of queues to serve. In general, there can be up to N queues (Figure 5 show a
sample 2 queue setup). At each time-step, new jobs arrive in each queue following a Bernoulli process
with probability λi for queue i. Note that at each time-step, at most one job enters each queue, which
means more than one job may enter the whole system in total. At each time-step, the server must
select among the N queues to serve. A successfully served queue will mean a job will exit that queue,
so at most one job can exit the system at a given time-step. When a server selects a queue i, the
server succeeds in making a job exit only if: it can connect to queue i (which is dependent on the
connectivity probability, ci) and the job is successfully served (which is dependent on the service
probability, pi). The state of the server is queue length of each queue and 0/1 flag indicating whether
the server can connect to a specific queue, resulting in 2N -dimensional state. The action space is
index of the queue, resulting in N dimensions. The goal is to minimize the average queue length. In
the non-faulty connection setting, all the connectivity flags are 1. The optimal policy in the faulty
connection setting is an open problem (Ganti et al., 2007).

The Bernoulli probability parameters of the tested environments are:

1. 2-queue with faulty connections
• Arrival rates: λ1 = 0.2, λ2 = 0.1

• Service rates: p1 = 0.3, p2 = 0.8

• Connection probabilities: c1 = 0.7, c2 = 0.5

2. 10-queue with non-faulty connections
• Arrival rates: λ1 = 0.05, λ2 = 0.01, λ3 = 0.2, λ4 = 0.4, λ5 = 0.05, λ6 = 0.01, λ7 =
0.02, λ8 = 0.01, λ9 = 0.015, λ10 = 0.01

• Service rates: p1 = 0.9, p2 = 0.85, p3 = 0.95, p4 = 0.75, p5 = 0.9, p6 = 0.9, p7 =
0.85, p8 = 0.9, p9 = 0.9, p10 = 0.85

• Connection probabilities: ci = 1 for all 1 ≤ i ≤ 10

When evaluating the RL algorithms, we compare their performance to MaxWeight (Tassiulas &
Ephremides, 1990; Stolyar, 2004), a well-known algorithm that achieves stability for a certain class
of queueing scenarios, but which relies on the knowledge of the system model (i.e. some parts of the
transition dynamics) and it is generally unknown how far MaxWeight is from optimality. It is a very
strong non-RL baseline from decades of research from the stochastic networking community.
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Traffic control In this environment, a traffic controller must select from a set of phases (shown in
green in Figure 5), a set of non-conflicting lanes, to allow cars to move. At each time-step, new cars
arrive in each lane at different rates, which determines the traffic congestion level. In our experiments,
we considered medium to very high levels of traffic congestion. The state is the number of cars
waiting in each lane along with indicator flags for which lanes have a green and yellow light. The
action space is the number of phases. The state space is 21 dimensions and the action space is 4. The
goal is to minimize the total waiting time of all the cars. To model a real-life traffic situation, the
SUMO simulator places a cap of ≈ 100 on each lane. We use the SUMO simulator implementation
(Behrisch et al., 2011; Alegre, 2019).

For exact traffic demands used in the experiments, see the
sumo/nets/big-intersection/generator.py file in the attached code.

B.3 ADDITIONAL EMPIRICAL SETUP DETAILS

PPO Training We train average-reward PPO (Zhang & Ross, 2021; Dai & Gluzman, 2022) using
the default hyperparameters (network architecture, learning rate, mini batches, epochs over the
dataset etc.) in the stablebaselines code base (Raffin et al., 2021). For all algorithms and variations,
we fix the time interval between policy updates during the interaction to be 512 time-steps. For
STOP, we hyperparameter sweep only over β = {1e−4, 1e−5, 1e−6} and τwarmup = {106, 2 · 106, 3 ·
106}. Whenever we perform a hyperparameter sweep, we select the agent that achieves the lowest
performance metric value at the end of the experiment (Manhattan distance for gridworld, average
queue length for queueing, and total waiting time for traffic control).

B.4 OPTIMIZING ONLY STABILITY

We also find that STOP agents that optimize only the stability criterion was sufficient to stabilize the
agent, but including the optimality criterion led to better performance (Figure 6). Note that these
STOP agents use the symloge state transform.

B.5 VARYING REVERSE ANNEALING SCHEDULE WITH β AND τWARMUP

In Section 5, we showed the impact of gradually introducing optimality vs. optimizing optimality
from the beginning of the interaction process. In these set of experiments, we analyze the impact
of the reverse annealing schedule: varying τwarmup (when optimality starts to get introduced) and β
(how fast it gets introduced). We show results on the infinite gridworld domain for both the linear
and quadratic stability cost in Figure 7. Note on the legend: T# means τwarmup = # · 106 and B#
means β = 10−#.

We find that in general: slowly introducing optimality (smaller β) and introducing optimality later on
in the interaction process (larger τwarmup) is better for achieving lower true cost. This finding aligns
with our conclusion that it is better for the agent to first learn how to be stable before trying to be
optimal.

B.6 HARDWARE FOR EXPERIMENTS

For all experiments, we used the following compute infrastructure:

• Distributed cluster on HTCondor framework

• Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz

• RAM: 5GB

• Disk space: 5GB

C POOR CREDIT ASSIGNMENT WITH UNBOUNDED COSTS

As noted in Section 3, the unbounded cost can make credit assignment challenging. In this section,
we make this intuition more concrete with an example. Due to Assumption 3, the cost function can
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(a) Infinite gridworld (b) 2-queues w/ faulty connections (c) 10-queues w/o faulty connec-
tions

(d) Medium congestion (e) Heavy congestion (f) Very heavy congestion

Figure 6: True optimality criterion vs. interaction time-steps on infinite gridworld, two queue networks variants,
and traffic control environment. Lower is better. Algorithms are STOP with and without optimality introduced,
where we evaluate the linear (L) and quadratic (Q) stability cost function. For the queueing environment, we
also report the performance of MaxWeight (MW). Performance metrics are computed over 5 trials with 95%
confidence intervals. The vertical axis is log-scaled.
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(a) Linear, τwarmup = 1 · 106 (b) Linear, τwarmup = 2 · 106 (c) Linear, τwarmup = 3 · 106

(d) Quadratic, τwarmup = 1 · 106 (e) Quadratic, τwarmup = 2 · 106 (f) Quadratic, τwarmup = 3 · 106

(g) Linear, β = 10−4 (h) Linear, β = 10−5 (i) Linear, β = 10−6

(j) Quadratic, β = 10−4 (k) Quadratic, β = 10−5 (l) Quadratic, β = 10−6

Figure 7: Manhattan distance vs. interaction time-steps on the infinite gridworld for different values of β and
τwarmup for the linear and quadratic stability cost functions. Performance metrics are computed over 5 trials with
95% confidence intervals. Lower is better. T# means τwarmup = # · 106 and B# means β = 10−#
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be unbounded. Furthermore, Assumption 2 implies that the cost can be reduced only by a bounded
amount B per time-step. As mentioned, when B is small relative to the unbounded cost at the current
state, then any credit assigned to an action is weakly informative (Arumugam et al., 2021) and thus
credit-assignment is hard.

To understand this challenge, consider a queueing example where the true cost function is the average
queue length, and we have 2 queues where in each time step, at most 1 job can leave and at most 2 new
jobs can arrive into the system. Say the state is s = (q1, q2) where qi is the length of the ith queue.
Let s = (50, 100) and consider two scenarios: i) the agent chooses q1 and successfully reduces its
length; ii) the agent chooses q2 and fails to reduce its length. In both situations, a new job arrives
into each queue. The differential advantage function of q1 and q2 are A([50, 100], q1) = −75.5 +
V ([50, 101]) − V ([50, 100]) − ρ and A([50, 100], q2) = −76 + V ([51, 101]) − V ([50, 100]) − ρ
respectively, where ρ is the average reward of the policy. We can see that choosing q1 was the better
action but the credit assigned to it is marginally better than credit assigned to the action that chose
q2. To properly assign credit, the agent has to encounter a large number of these samples. However,
as we have discussed, the divergence prevents the agent from refining its estimation of the optimal
actions. In the first scenario, B = 0.5 and in the second, B = 1, which are both much smaller than
the instaneous cost ∥s∥1 ≈ 75.

D STOP ENCOURAGES AGENT TO REVISIT STATES

In this section, we show that STOP does encourage the agent to re-visit states. In Figure 8, we plot a
15 by 15 heatmap of the sub-grid of the infinite gridworld environment where the center of the grid is
the origin. Each box corresponds to the original agent’s state i.e. the native coordinate location of the
agent. In this plot, the color of an individual box denotes the fraction of time that the agent visits
the given state. This fraction is calculated as a probability based on the state-visitation frequencies
from time 0 up till a given time T . White corresponds to low and and dark blue corresponds to high
visitation.

We can see that initially the STOP agent spends almost no time inside this 15 by 15 grid. However,
over time the fraction of time that the agent spends within the sub-grid increases (from 0.09 to 0.72;
see horizontal axis label: fraction of time spent within sub-grid). That is, over time STOP encourages
the agents to visit the states closer to the origin.

E STATE TRANSFORMATIONS ENCOURAGE AGENT TO REVISIT STATES

In this section, we show that state transformations encourage revisiting states from the agent’s
perspective. Similar to Figure 8, we plot a heatmap denoting fraction of time spent in 15 by 15
view around the origin of the infinite gridworld in Figure 9. Importantly, however, the states i.e.
coordinates are not the original coordinate locations of the agent but the transformed states (after
applying symloge to the original coordinates). Thus, some original coordinates that were originally
outside the 15 by 15 in Figure 8 are now within the 15 by 15 grid in Figure 9. Note that to visualize
discrete coordinates, the transformed states were rounded to the nearest integer. In training STOP,
however, there is no rounding and the true output of the state transformations is fed into the STOP
agent.

Recall, that the agent observes these transformed states i.e. the transformed states are fed as input to
the policy and critic. Thus, the heatmap shows the fraction of times the agent observes the transformed
states from time 0 up till a given time-step T . We can see the agent never spends time outside of this
transformed 15 by 15 grid i.e. the all the observed transformed states lie within this 15 by 15 view
(fraction of time spent in sub-grid is 1). Moreover, upon comparing Figure 9 to Figure 8, we can
see that the probability of observing a given transformed state (≈ 0.3) is significantly higher than
observing a native state (≈ 0.08), indicating that from the agent’s perspective, it is visiting a set of
states more often.
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(a) T = 20K

(b) T = 40K

(c) T = 1M

Figure 8: Heatmap showing state visitation (as a probability of time spent in a given state) of infinite gridworld
agent over time within a sub-grid. Shows fraction of time spent in each coordinate location (state) and fraction
of time spent in the sub-grid. White corresponds to low and and dark blue corresponds to high visitation.
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(a) T = 20K

(b) T = 40K

(c) T = 1M

Figure 9: Heatmap showing transformed state visitation (as a probability of time spent in a given state) of
infinite gridworld agent over time within a sub-grid. Shows fraction of time spent in each coordinate location
(transformed state) and fraction of time spent in the sub-grid. White corresponds to low and and dark blue
corresponds to high visitation.
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(a) Other bounded formulations of true cost (b) Alternative optimality+stability weighting
scheme

Figure 10: Average queue length on the 2-queue problem over time by different RL agents optimizing different
cost formulations vs. our STOP agent. All agents diverge except for STOP. Performance metrics are computed
over 5 trials with 95% confidence intervals. Lower is better.

F TYPICAL REWARD FUNCTION FORMULATIONS LEAD TO DIVERGENCE

In addition to those shown in Section 3, in Figure 10(a) we also include the performance of RL
agents optimizing other transformations of the true optimality reward function r(st). We consider the
transformed cost: 1) r′(st, at, st+1) := exp(−||st+at||22) and 2) r′(st, at, st+1) := exp(−||st+1||22).
The former is R1 and latter is R2 in the plot. We show performance when these agents do not use any
state transformation and when they use the symloge transformation (−SL). We find that the agents
still diverge, thus providing further evidence that simply transforming the true reward function in this
class of problems is insufficient to yield good performance.

G OTHER OPTIMALITY + STABILITY COMBINATIONS

In Figure 10(b) we show that optimizing an alternative formulation of the combined optimality and
stability cost: c(st) + λg(st−1, st) where λ is fixed over the interaction time (no annealing) and
the stability cost is treated as the regularization term is insufficient (given by R3 in the plot). We
tune λ = {0.2, 0.5, 1} and plot the average queue length over time of the best-performing agent
(lowest average queue length at the end of interaction time) for the 2-queue setting. We show
performance of the best-performing agent with (-SL) and without the symloge state transformation.
From Figure 10(b), we can see that these agents still diverge. Thus, further supporting our argument
that the primary focus should be stability, and then optimality instead of the typical approach of
focusing on optimality.
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H STOP PSEUDO-CODE

Algorithm 1 STOP+PPO

1: Input: policy parameters θ0, critic net parameters ϕ0, state transformation function σ, rollout
buffer D of length N .

2: for t = 1, 2, ... do do
3: Collect sub-trajectory in rollout buffer {σ(sk), ak, σ(sk+1), lk}Nk=1 from environment us-

ing πθ⌊t/N⌋ {Note that rollout buffer contains the transformed states and the cost lk :=

g(sk−1, sk)︸ ︷︷ ︸
stability cost

+ λ(t) c(sk)︸ ︷︷ ︸
optimality cost

is a function of the non-transformed states and λ updates accord-

ing to the annealing schedule.}
4: if t%N == 0 then
5: {Periodically update policy and critic parameters}
6: Using rollout buffer D update θ and ϕ with average-reward PPO Zhang & Ross (2021).
7: Empty D
8: end if
9: Record performance of agent according to true optimality cost at time-step t as a function of

non-transformed state c(st)
10: end for

I PPO WITH TRAINING WHEELS

In this section, we provide preliminary evidence that equipping PPO with training wheels i.e. a stable
policy may perform worse than STOP.

In this experiment, we evaluate PPO with training wheels (PPO-TW). The PPO-TW setup closely
models that of Mao et al. (2019) where we equip an on-policy policy gradient algorithm (PPO) with a
stable policy. In our case, the stable policy is MAXWEIGHT (Stolyar, 2004; Tassiulas & Ephremides,
1990). MAXWEIGHT is deployed if the maximum queue length of the system exceeds 100, at which
point MAXWEIGHT is used until it drives the system’s maximum queue lengths to less than 50. Once
it has done that, the PPO policy is deployed. Note that 1) MAXWEIGHT relies on knowing information
of the transition dynamics, which can be limiting. STOP, on the other hand, does not assume access
to such knowledge and 2) PPO-TW optimizes the true optimality cost (average queue length).

From Figure11, we find that while STOP performs poorly during initial phases of learning, it is able
to significantly outperform PPO-TW later on. STOP is able to learn the stabilizing and optimal actions
from a destabilizing, random policy. In the case of PPO-TW, however, since the initial RL policy is
poor (random) it causes the agent to diverge, which violates the safety condition often, which results
in frequent deployment of the stable policy. However, this off-policy data cannot be used to update
the PPO policy. Thus, the PPO policy continues to remain poor since it has inadequate data to train on,
which causes the agent to diverge until it violates the safety condition, at which point the stable policy
is deployed again. As noted by Mao et al. (2019), the off-policy data generated by the stable policy
cannot be used to train the PPO policy. As we have noted in our future work as well, an interesting
further direction will be to apply our ideas to off-policy algorithms.
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(a) Training wheels comparison

Figure 11: Average queue length on the 2-queue problem over time by our STOP agent vs. PPO-TW. Performance
metrics are computed over 5 trials with 95% confidence intervals. Lower is better.
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