
Under review as a conference paper at ICLR 2023

EFFICIENT DISCOVERY OF DYNAMICAL LAWS
IN SYMBOLIC FORM

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose a transformer-based sequence-to-sequence model that recovers scalar
ordinary differential equations (ODEs) in symbolic form from time-series data of a
single observed solution trajectory of the ODE. Our method is efficiently scalable:
after one-time pretraining on a large set of ODEs, we can infer the governing laws
of a new observed solution in a few forward passes of the model. First, we generate
and make available a large dataset of more than 3M ODEs together with more than
63M numerical solutions for different initial conditions that may serve as a useful
benchmark for future work on machine learning for dynamical systems. Then we
show that our model performs better or on par with existing methods in various
test cases in terms of accurate symbolic recovery of the ODE, especially for more
complex expressions. Reliably recovering the symbolic form of dynamical laws is
important as it allows for further dissemination of the inferred dynamics as well as
meaningful modifications for predictions under interventions.

1 INTRODUCTION

Science is commonly described as the “discovery of natural laws through experimentation and
observation”. Researchers in the natural sciences increasingly turn to machine learning (ML) to aid the
discovery of natural laws from observational data alone, which is often abundantly available, hoping
to bypass expensive and cumbersome targeted experimentation. While there may be fundamental
limitations to what can be extracted from observations alone, recent successes of ML in the entire
range of natural sciences provide ample reason for excitement. In this work, we focus on ordinary
differential equations, a ubiquitous description of dynamical natural laws in physics, chemistry, and
systems biology. For a first order ODE ẏ := ∂y/∂t = f(y, t), we call f (which uniquely defines the
ODE) the underlying dynamical law. Informally, our goal is then to infer f in symbolic form given
discrete time-series observations of a single solution {yi := y(ti)}ni=1 of the underlying ODE.

Contrary to “black-box-techniques” such as Neural Ordinary Differential Equations (NODE) (Chen
et al., 2018) that aim at inferring a possible f as an arguably opaque neural network, we focus
specifically on symbolic regression. From the perspective of the sciences, a law of nature is useful
insofar as it is more broadly applicable than to merely describe a single observation. In particular,
the reason to learn a dynamical law in the first place is to dissect and understand it as well as
to make predictions about situations that differ from the observed one. From this perspective, a
symbolic representation of the law (in our case the function f) has several advantages over block-box
representations: they are compact and directly interpretable, they are amenable to analytic analysis,
they allow for meaningful changes and thus enable assessment of interventions and counterfactuals.

In this work, we develop Neural Symbolic Ordinary Differential Equation (NSODE), a sequence-to-
sequence transformer to efficiently infer governing ODEs in symbolic form from a single observed
solution trajectory that makes use of massive pretraining. We first (randomly) generate a total of >3M
scalar, autonomous, non-linear, first-order ODEs, together with a total of >63M numerical solutions
from various (random) initial conditions. All solutions are carefully checked for convergence of the
numerical integration. This dataset is unprecedented in both its scale and diversity and will be made
publicly available alongside the code that was used to generate it.

We then devise NSODE, a sequence-to-sequence transformer that maps observed trajectories,
i.e., numeric sequences of the form {(ti, yi)}ni=1, directly to symbolic equations as strings, e.g.,
"y**2+1.64*cos(y)", which is the prediction for f . This example directly highlights the benefit

1

Under review as a conference paper at ICLR 2023

Prior over ODEs

O
pe

ra
to

rs
Sy

m
bo

ls

ex
p

+
lo

g
co

s
si

n

y y

× ÷ po
w +

×

y

y 2.3

exp

cos

fix
ed

 n
um

be
r o

f o
pe

ra
to

rs

bi
na

riz
e

(IE
EE

-7
54

)

ODE solver

y*2.3+exp(cos(y))

scipy.integrate.odeint

sample initial values

sample

f(y)

ẏ = f(y)

y0 ~

0
1

1

0
1

0

1
1

1

1
0

1

0
0

0

1
0

0

0
0

1

1
1

1

0
1

0

1
1

0
<const>

Model inputs

Model target

y

t

t

y

n

0
1

1

0
1

0

1
1

1

1
0

1

0
0

0

1
0

0

0
0

1

1
1

1

0
1

0

1
1

0

t

y

64

n

64

Transformer

y*2.3+exp(cos(y))

y * 2.3 + exp Target

Outputs (shifted right)

y
×
+

exp
cos

...

...
...

...

4
5

3
2
 1

...

Two-hot encoding
for numerical values

Cross-entropy loss
Next token prediction

Encoder + Decoder

Data generation
Training

bi
na

ry
un

ar
y

Figure 1: An overview illustration of the data generation (top) and training pipeline (bottom). Our
dataset stores solutions in numerical (non-binarized) form on the entire regular solution time grid.

of symbolic representations in that the y2 and cos(y) terms tell us something about the fundamental
dynamics of the observed system; the constant 1.64 will have semantic meaning in a given context
and we can, for example, make predictions about settings in which this constant takes a different
value. NSODE combines and innovates on technical advances regarding input representations and an
efficiently optimizable loss formulation. Our model outperforms scalable existing methods in terms
of skeleton recovery, especially on more complex expressions. While other methods still perform
better on simple expressions found in (adjusted) existing benchmark datasets (which these methods
have been tuned to) as well as a novel set of simple ODEs that we manually collected from different
domains, they are typically orders of magnitude slower than NSODE.

2 BACKGROUND AND RELATED WORK

Modeling dynamics and forecasting their behavior has a long history in machine learning. While
NODEs (Chen et al., 2018) (with a large body of follow up work) are perhaps the most prominent
approach, their inherent black-box character complicates scientific understanding of the observed
phenomena. Recent alternatives such as tractable dendritic RNNs (Brenner et al., 2022) and Neural
Operators (Kovachki et al., 2021; Li et al., 2021) set out to facilitate scientific discovery by combining
accurate predictions with improved interpretability. A considerable advantage of these and similar
approaches is their scalability to high dimensional systems as well as their relative robustness to
noise, missing or irregularly sampled data (Iakovlev et al., 2021) and challenging properties such as
multiscale dynamics (Vlachas et al., 2022) or chaos (Park et al., 2022; Patel & Ott, 2022).

Despite these advantages, we turn the focus to a different class of models in this paper and look at
approaches that explicitly predict a mathematical expression in symbolic form that describes the
observed dynamics. Such models are in a sense situated on the other side of the spectrum: while less
scalable, the predicted symbolic expression is compact and readily interpretable so that dynamical
properties can be analytically deduced and investigated. A recent benchmark study and great overview
including deep learning-based as well as symbolic models can be found in Gilpin (2021).

Evolutionary algorithms. Classically, symbolic regression is approached through evolutionary
algorithms such as genetic programming (Koza, 1993). Genetic programming randomly evolves a
population of prospective mathematical expressions over many iterations and mimics natural selection
by keeping only the best contenders across iterations, where superiority is measured by user-defined
fitness functions (Schmidt & Lipson, 2009). Process-based modeling follows a similar approach but
includes domain knowledge-informed constraints on particular components of the system in order
to reduce the search space to reasonable candidates (Todorovski & Dzeroski, 1997; Bridewell et al.,
2008; Simidjievski et al., 2020).

2

Under review as a conference paper at ICLR 2023

Gradient-based search. More recently, symbolic regression has been approached with machine
learning methods which exploit gradient information to optimize within the space of (finite) com-
positions of pre-defined basis functions. Brunton et al. (2016) builds on sparse linear regression to
identify a linear combination of basis functions that yields the best fit for the observed data. This
approach has inspired a large body of follow-up work that generalize the idea to partial observations
(Bakarji et al., 2022), parameterized functions (Lejarza & Baldea, 2022), simultaneous discovery of
coordinates (Champion et al., 2019), coordinate transformations that linearize the dynamics (Lusch
et al., 2018) and partial differential equations (Rudy et al., 2017). These techniques often deploy
sparsity-promoting regularizers and train one model for each set of observations. Once trained,
the model itself represents the predicted symbolic expression, which can be read off the non-zero
coefficients. This modeling principle is also employed by many other approaches that replace linear
regression by neural networks with diverse sets of activation functions, both for differential equations
(Long et al., 2019; Liu et al., 2020) and non-differential algebraic equations (Sahoo et al., 2018).

Hybrid models. Alternatively, one can train a model to directly output the symbolic expressions
(for example as a string). Supervised learning with gradient-based optimization for this approach
is challenged by the formulation of a differentiable loss that measures the fit between the predicted
symbolic expression and the observed data. Thus, prior work, mostly in the context of non-differential
equation prediction, resorted to reinforcement learning (Petersen et al., 2021) or combinations of
neural networks and evolutionary algorithms (Atkinson et al., 2019; Costa et al., 2021). A hybrid
approach combining gradient-free, human intuition-guided heuristic search via genetic programming
with neural network-based optimization has been presented for non-differential equations by Udrescu
et al. (2020) and extended to dynamical systems by Weilbach et al. (2021).

Sequence-to-sequence models. The closest works to ours use pre-trained, attention-based sequence-
to-sequence models for symbolic regression of functional relationships (Biggio et al., 2021; Valipour
et al., 2021; Kamienny et al., 2022; Vastl et al., 2022) or (discrete) recurrence relations (D’Ascoli
et al., 2022). They exploit the fact that symbolic expressions for (multi-variate) scalar functions can
be both generated and evaluated on random inputs cheaply, resulting in essentially unlimited training
data. Large data including ground-truth expressions in symbolic form allow for a differentiable
cross-entropy loss based directly on the symbols of the expression, instead of the numerical proximity
between evaluations of the predicted and true expression. While the cross-entropy loss works well for
operators and symbols (e.g. +,exp,sin,x,y), a naive implementation is inefficient for numerical
constants, e.g. 1.452. As a workaround previous works resort to one of two strategies: 1) represent
all constants with a special <const> token when training the sequence-to-sequence model and
predict only the presence of a constant. Actual values are then inferred in a second, subsequent
optimization step that minimizes

∑n
i=1 ∥yi − ŷc1,c2,...(xi)∥2. This second optimization procedure

comes with substantial computational cost as constants have to be fit per inferred expression. In
particular, we highlight that it does not transfer to inferring ODEs as it would require to first solve
the predicted ODE ẏ = f̂(y) to obtain predicted {ŷi}ni=1 values that can be compared to the set
of observations {yi}ni=1. While differentiable ODE solvers exist, optimizing constants this way
is prohibitively expensive and typically highly unstable. 2) A second popular strategy consists in
rounding constants within the range of interest so that they can be represented with a finite number
of tokens. This second strategy avoids a subsequent optimization step and enjoys clever encoding
schemes with improved token efficiency yet represents values with an inherent loss in precision. As
an alternative, we develop a representation based on a “two-hot” encoding which avoids subsequent
optimization steps as well as rounding.

We note that many previous symbolic regression methods have been described as “discovering natural
laws”. However, most of them learn fixed functional relationships from input-output pairs, whereas
we seek to actually infer the underlying dynamic law that governed the behavior of the observed
solution trajectory. A common obstacle to inferring dynamical laws is the lack of temporal derivatives
in empirical measurements, which can hence not serve as regression targets. While derivatives can
be estimated numerically, for example via finite differences, this requires dense, regularly sampled
observations with a high signal-to-noise ratio to prevent fatal propagation of approximation errors.
Alternative loss formulations that bypass unobserved time derivatives have been identified as an open
challenge in symbolic regression for dynamical systems recently (Qian et al., 2022). With NSODE,
we propose a solution that does not rely on temporal derivatives and thus avoids these complications.

3

Under review as a conference paper at ICLR 2023

3 METHOD

Problem setting. Given observations {(ti, yi)}ni=1 of a trajectory y : [t1, tn] → R that is a solution
of the ODE ẏ = f(y), we aim to recover the function f in symbolic form—in our case as a string. In
this work, we focus on time-invariant (or autonomous) ODEs (i.e., f(y, t) = f(y)). Such settings
are a good starting point for investigation as they are commonly studied and can be thought of as
“evolving on their own” without external driving forces or controls, i.e., once an initial condition
is fixed the absolute time does not directly influence the evolution. We explicitly assume that the
observed system actually evolves according to an ODE in canonical form ẏ = f(y) such that f can
be expressed in closed form using the mathematical operators seen during training (see Section 3.1).
To sum up, in this work we study the rich class of non-linear, scalar, first-order, autonomous ODEs,
even though our approach is not fundamentally limited to this setting. In Appendix A, we discuss
extensions of NSODE to higher-order systems of coupled non-autonomous ODEs.

3.1 DATA GENERATION

Sampling symbolic expressions. To exploit large-scale supervised pretraining we randomly
generate a dataset of ∼63M ODEs in symbolic form along with their numerical solutions for randomly
sampled initial values. Since we assume ODEs to be in canonical form ẏ = f(y), generating an ODE
is equivalent to generating a symbolic expression f(y). We follow Lample & Charton (2019), who
sample such an expression f(y) as a unary-binary tree, where each internal node corresponds to an
operator and each leaf node corresponds to a constant or variable. The algorithm consists of two
phases: (1) A unary-binary tree is sampled uniformly from the distribution of unary-binary trees
with up to k ∈ N internal nodes, which crucially does not overrepresent small trees corresponding
to short expressions. Here the maximum number of internal nodes K is a hyperparameter of the
algorithm. (2) The sampled tree is “decorated”, that is, each binary internal node is assigned a binary
operator, each unary internal node is assigned a unary operator, and each leaf is assigned a variable or
constant. Hence, we have to specify a distribution over the Nbin binary operators, one over the Nuna

unary operators, a probability psym ∈ (0, 1) to decide between symbols and constants, as well as a
distribution pc over constants. For constants we distinguish explicitly between sampling an integer or
a real value. Together with K, these choices uniquely determine a distribution over equations f and
are described in detail in Appendix B. Figure 1 depicts an overview of the data generation procedure.

The pre-order traversal of a sampled tree results in the symbolic expression for f in prefix notation.
After conversion to the more common mathematical infix notation, we simplify each expression using
the computer algebra system SymPy (Meurer et al., 2017), and filter out constant equations f(y) = c
as well as expressions that contain operators or symbols that were not part of the original distribution1.
We call the structure modulo the value of the constants of such an expression a skeleton. Any skeleton
containing at least one binary operator or constant can be represented by different unary-binary trees.
Vice versa many of the generated trees will be simplified to the same skeleton. To ensure diversity
and to mitigate potential dataset bias towards particular expressions, we discard duplicates on the
skeleton level. To further cheaply increase the variability of ODEs we sample Nconst unique sets of
constants per skeleton. When sampling constants we take care not to modify the canonical expression
by adhering to the rules listed in Appendix B.1. Our final dataset contains linear and non-linear
as well as homogeneous and inhomogeneous ODEs and we provide summary statistics about the
distribution over equations in Appendix D. Besides the number of internal nodes, we also report a
simple yet common measure of complexity for each symbolic equation, which is the overall count of
symbols (e.g., y, or constants) as well as operators in an expression.

Computing numerical solutions. We obtain numerical solutions for all ODEs via SciPy’s interface
(Virtanen et al., 2020) to the LSODA software package (Hindmarsh & Laboratory, 1982) with both
relative and absolute tolerances set to 10−9. LSODA consists of a collection of ODE solvers and
implements a strategy to automatically choose an appropriate solver for the problem at hand (e.g.,
recognizing stiff problems). We solve each equation on a fixed time interval t ∈ [0, T] and store
solutions on a regular grid of Ngrid points. For each ODE, we sample up to Niv initial values
y(0) = y0 uniformly from (ymin

0 , ymax
0).2 While LSODA attempts to select an appropriate solver,

numerical solutions still cannot be trusted in all cases. Therefore, we check the validity of solutions

1With the exception of a unary −, which we do not discard.
2Due to a timeout per ODE, fewer solutions may remain if the solver fails for repeated initial value samples.

4

Under review as a conference paper at ICLR 2023

Table 1: Overview of our model architecture.

Encoder Decoder

architecture BigBird† BigBird
layers 6 6
heads 16 16
embed. dim. 512 512
forward dim. 2048 2048
activation gelu gelu
vocab. size - 43
position enc. learned learned
parameters 23.3M 23.3M
†We use full attention and chose BigBird (Zaheer et al., 2020) for its fast Huggingface implementation.

via the following quality control check: we use 9th order central finite differences to approximate the
temporal derivative of the solution trajectory (on the same temporal grid as the proposed solution),
denoted by ẏfd, and filter out any solution for which ∥ẏfd − ẏ∥∞ > ϵ, where we use ϵ = 1.

3.2 MODEL DESIGN CHOICES

NSODE consists of an encoder-decoder transformer with architecture choices listed in Table 1. We
provide a visual overview in Figure 1.

Representing input trajectories. A key difficulty in feeding numerical solutions {yi}ni=1 as input
is that their range may differ greatly both within a single solution as well as across ODEs. For
example, the linear ODE ẏ = c · y for a constant c is solved by an exponential y(t) = y0 exp(ct)
for initial value y(0) = y0, which may span many orders of magnitude on a fixed time interval. To
prevent numerical errors and vanishing or exploding gradients caused by the large range of values,
we assume each representable 64-bit float value is a token and use its IEEE-754 encoding as the
token representation (Biggio et al., 2021). We thus convert all pairs (ti, yi) to their IEEE-754 64 bit
representations, channel them through a linear embedding layer, and then feed them to the encoder.

Representing symbolic expressions. The target sequence (i.e., the string for the symbolic expression
of f) is tokenized on the symbol-level. We distinguish two cases: (1) Operators and variables: for
each operator and variable we include a unique token in the vocabulary. These tokens are one-hot
encoded and passed through a learnable embedding layer before their embedded representations are
fed to the decoder.(2) Numerical constants: constants may come from both discrete (integers) as
well as continuous distributions, as for example in y**2+1.64*cos(y). Hence, it is unfeasible to
include individual tokens “for each constant”. Naively tokenizing on the digit level, i.e., representing
real values literally as the sequence of characters (e.g., "1.64"), not only significantly expands the
length of target sequences and thus the computational cost, but also requires a variable number of
prediction steps for every single constant.

Instead, we take inspiration from Schrittwieser et al. (2020) and encode constants in a two-hot fashion.
We fix a finite homogeneous grid on the real numbers x1 < x2 < . . . < xm for some m ∈ N,
which we add as tokens to the vocabulary. The grid range (x1, xm) and number of grid points m
can be tuned for performance. Our choices are described in Appendix B.3. For any constant c in
the target sequence we then find i ∈ {1, . . . ,m − 1} such that xi ≤ c < xi+1 and encode c as a
distribution supported on xi, xi+1 with weights α, β such that αxi + βxi+1 = c. That is, the target
in the cross-entropy loss for a constant token is not a strict one-hot encoding, but a distribution
supported on two (neighboring) vocabulary tokens resulting in a lossless encoding of continuous
values in [x1, xm]. While this two-hot representation can be used directly in the cross-entropy loss
function and thus greatly facilitates training, it can not be passed directly through an embedding layer.
For a generic constant in the target sequence represented as αxi + βxi+1, we thus instead provide
the linear combination of the two embeddings α embed(xi)+ β embed(xi+1) as decoder input.

Decoding constants. When decoding a predicted sequence, we check at each prediction step whether
the argmax of the logits corresponds to one of the m constant tokens {x1, . . . , xm}. If not, we
proceed by conventional 1-hot decoding to obtain predicted operators and variables. If instead the
argmax corresponds to, for example, xi, we also pick its largest-logit neighbor (xi−1 or xi+1; suppose
xi+1), renormalize their probabilities by applying a softmax to all logits and use the resulting two
probability estimates as weights α, β. Constants are then ultimately decoded as αxi + βxi+1.

5

Under review as a conference paper at ICLR 2023

3.3 EVALUATION AND METRICS

Sampling solutions. To infer a symbolic expression for the governing ODE of a new observed
solution trajectory {(ti, yi)}ni=1, all the typical policies such as greedy, sampling, or beam search are
available. In our evaluation, we leverage computationally cheap forward passes to perform beam
search with 1536 beams and report top-k results with k ranging from 1 to 1536. To pick from the
candidate expressions provided by the beam search, one could for example only provide a fraction
of the trajectory as input to the model (say the first half) and then pick the candidate ODE whose
numerical solution best predicts the trajectory on the remaining observation.

Metrics. We evaluate model performance both numerically and symbolically. For numerical
evaluation we follow Biggio et al. (2020): suppose the ground truth ODE is given by ẏ = f(y)

with (numerical) solution y(t) and the predicted ODE is given by ˆ̇y = f̂(y). To compute numerical
accuracy we first evaluate f and f̂ on Neval points in the interval [min(y(t)),max(y(t))] (i.e., the
interval traced out by the observed solution), which yields function evaluations gt = {ẏi}Neval

i=1

and pred = {ˆ̇yi}Neval
i=1 . We then assess whether numpy.allclose3 returns True as well as

whether the coefficient of determination R2 ≥ 0.999.4 Numerical evaluations capture how closely the
predicted function approximates the ground truth function within the interval [min(y(t)),max(y(t))].

However, a key motivation for symbolic regression is to uncover a symbolic mathematical expression
that governs the observations. Perhaps surprisingly, previous works on symbolic regression have paid
little attention to directly testing for symbolic equivalence, which need not be implied by numerical fit.
Testing for symbolic equivalence between ground truth expression f(y) and a predicted expression
f̂(y) is unsuitable in the presence of real-valued constants as even minor deviations between true
and predicted constants render the equivalence false. Instead, we regard the predicted expression
f̂(y) to be symbolically correct if f(y) and f̂(y) can be made equivalent by modifying only the
values of constants in the predicted expression f̂(y). This is implemented using SymPy’s match
function. In order not to alter the structure of the predicted expression, we constrain modifications of
constants such that all constants remain non-zero and retain their original sign. This definition is thus
primarily concerned with the structure of an expression, rather than precise numerical agreement.
Once the structure is known, the inference problem becomes conventional parameter estimation. We
report percentages of samples in a given test set that satisfies any individual metric (numerical and
symbolic), as well as percentages satisfying symbolic and numerical metrics simultaneously.

4 EXPERIMENTS

4.1 BENCHMARK DATASETS

We construct several test sets to evaluate model performance and generalization in different settings.

• testset-iv: Our first test set assesses generalization within initial values not seen during training.
It consists of 5793 ODEs picked uniformly at random from our generated dataset but re-sampled
initial values. We also employ the following constraints via rejection sampling: (a) All skeletons in
testset-iv are unique. (b) As the number of unique skeletons increases with the number of operators,
we allow at most 2000 examples per number of operators (with substantially fewer unique skeletons
existing for few operators).

• testset-constants: Our second test set assesses generalization within unseen initial values and
constants. It consists of 2720 ODEs picked uniformly at random from our dataset (ensuring unique
skeletons and at most 1000 examples per number of operators as above), but re-sampled intial
values and constants.

• testset-skeletons: In principle, we can train NSODE on all possible expressions (using only the
specified operators and number ranges) up to a specified number of operators. However, even with
the millions examples in our dataset, we have by far not exhausted the huge space of possible

3numpy.allclose returns True if abs(a - b) <= (atol + rtol * abs(b)) holds element-
wise for elements a and b from the two input arrays. We use atol=1e-10 and rtol=0.05; a corresponds to
predictions, b corresponds to ground truth.

4For observations yi and predictions ŷi we have R2 = 1− (
∑

i(yi − ŷi)
2)/(

∑
i(yi − y)2).

6

Under review as a conference paper at ICLR 2023

testset-iv testset-constants testset-skeletons

20 22 24 26 28 210

topk

0
20
40
60

%

(a) allclose

20 22 24 26 28 210

topk

0
20
40
60

%

(b) R2 ≥ 0.999

20 22 24 26 28 210

topk

0
20
40
60

%

(c) skeleton recovery

20 22 24 26 28 210

topk

0
20
40
60

%

(d) skel. recov. & allclose

Figure 2: We evaluate numerical (allclose, R2) and symbolic (skeleton recovery) metrics as well
as combined skeleton recovery & allclose on testset-iv, testset-constants, and testset-skeletons as k
increases .

skeletons (especially for larger numbers of operators). Hence, our third test set contains 100 novel
random ODEs with skeletons that were never seen during training.

• testset-iv-163: This is a subset of testset-iv motivated by the fact that most symbolic regression
models we want to compare to require a separate optimization for every individual example, which
was computationally infeasible for our testset-iv. For a fair comparison, we therefore subsampled
up to 10 ODEs per complexity uniformly at random, yielding 163 examples.

• testset-textbook: To assess how NSODE performs on “real problems”, we manually curated 12
scalar, non-linear ODEs from Wikipedia pages, physics textbooks, and lecture note from university
courses on ODEs. These equations are listed in Table 7 in Appendix C. We note that they are all
extremely simple compared to the expressions in our generated dataset in that they are ultimately
mostly low order polynomials, some of which with one fractional exponent.

• testset-classic: To validate our approach on existing datasets we turn to benchmarks in the classic
symbolic regression literature (inferring just the functional relationship between input-ouput pairs)
and simply interpret functions as ODEs. In particular we include all scalar function listed in the
overview in McDermott et al. (2012) which includes equations from many different benchmarks
Keijzer (2003); Koza (1993; 1994); Uy et al. (2011); Vladislavleva et al. (2008). For example,
we interpret the function f(y) = y3 + y2 + y from Uy et al. (2011) as an autonomous ODE
ẏ(t) = f(y(t)) = y(t)3 + y(t)2 + y, which we solve numerically for a randomly sampled initial
value as described before.

4.2 BASELINES

We compare our method to recent popular baselines from the literature (see Section 2). We briefly
describe them including some limitations here and defer all details to Appendix E. All baselines
work by explicitly fitting a separate regression function per individual ODE to map the observed
samples of the solution trajectory to their temporal derivatives y(t) 7→ ˆ̇y(t), using the coefficient of
determination R2 as optimization objective. Since derivatives ˆ̇y(t) are typically not observed, we
approximate them via finite differences using the implementation available in PySindy (de Silva et al.,
2020). Hence, all these methods crucially rely on regularly sampled and noise-free observations,
whereas our approach can easily be extended to take those into account (see Appendix A).

• Sindy (Brunton et al., 2016): Sindy builds a (sparse) linear combination of a fixed set of (non-linear)
basis functions. The resulting Lasso regression is efficient however complex expressions such as
nested or parameterized functions can only be approximated but not easily be represented in their
precise symbolic form as all non-linear expressions have to be explicitly added to the set of basis
functions. We cross-validate Sindy over a fairly extensive hyperparameter grid of 800 different
combinations for each individual trajectory.

• GPL5 (genetic programming): GPL(earn) maintains a population of programs each representing
a mathematical expression. The programs are mutated for several generations to heuristically
optimize a user defined fitness function. While not originally developed for ODEs, we can apply
GPLearn on our datasets by leveraging the finite difference approximation. We use a population

5gplearn.readthedocs.io/

7

gplearn.readthedocs.io/

Under review as a conference paper at ICLR 2023

Table 2: Comparing NSODE to the baselines on various benchmark datasets.

Dataset Metric NSODE Sindy GPLearn AIFeynman

skel-recov 37.4 3.7 2.5 14.1
R2 ≥ 0.999 24.5 31.9 3.7 49.7

iv-163 allclose 42.3 25.8 14.7 55.8
skel-recov & R2 ≥ 0.999 15.3 3.1 1.8 13.5
skel-recov & allclose 15.3 3.1 1.8 13.5
runtime [s] 5.4 0.4 29 +22 1203.6

skel-recov 11.5 0 3.8 46.2
R2 ≥ 0.999 57.7 57.7 23.1 88.5

classic allclose 80.8 57.7 30.8 88.5
skel-recov & R2 ≥ 0.999 0 0 7.7 46.2
skel-recov & allclose 0 0 7.7 46.2
runtime [s] 5.2 0.6 23 +22 1291.6

skel-recov 41.7 33.3 8.3 91.7
R2 ≥ 0.999 16.7 50 0.0 75

textbook allclose 25 58.3 8.3 75
skel-recov & R2 ≥ 0.999 33.3 41.7 0 66.7
skel-recov & allclose 8.3 33.3 1.8 66.7
runtime [s] 6 1 23 +22 1267.1

size of 1000 and report the best performance across all final programs. Compared to sindy, GPLearn
is more expressive yet much slower to fit.

• AIFeynman (Udrescu & Tegmark, 2020; Udrescu et al., 2020): AIFeynman is a physics-inspired
approach to symbolic regression that exploits the insight that many famous equations in natural
sciences exhibit well-understood functional properties such as symmetries, compositionality, or
smoothness. AIFeynman implements a neural network based heuristic search that tests for such
properties in order to identify a symbolic expression that fits the data. For every test sample
AIFeynman computes a pareto front of solutions that trade off complexity versus accuracy. We
report the best performance across all functions on the pareto front. Notably, AIFeynman performs
quite an exhaustive search procedure such that running it even on a single equation took on the
order of tens of minutes.

4.3 RESULTS

Model Performance. Figure 2 shows NSODE’s performance on our testset-iv, testset-constants,
and testset-skeletons according to our numerical and symbolic metrics as well as combined skeleton
recovery and allclose as we vary k in the top-k considered candidates of the beam search. Investing
sufficient test-time-compute (i.e., considering many candidates) continuously improves performance.
While we capped k at 1536 due to memory limitations, we did not observe a stagnation of the roughly
logarithmic scaling of all performance metrics with k. This cannot be attributed to “exhaustion
effects”, where one may assume that all possible ODEs will eventually be among the candidates,
because (a) the space of possible skeletons grows much faster than exponentially, and (b) the numerical
metrics are extremely sensitive also to the predicted constant values in continuous domains. We
verified this in an ablation experiment in Appendix F.

As one may expect, performance decreases as we move from only new initial conditions, to also
sampling new constants, to finally sampling entirely unseen skeletons. On testset-iv with k = 1536
we achieve about 50% skeleton recovery and still successfully recover more than a third skeletons of
testset-skeletons with similar numbers for allclose. The fact that the combined metric (symbolic +
numerical) is only about half of that indicates that numerical and symbolic fit are indeed two separate
measures, none of which need to imply the other. Hence, a thorough evaluation of both is crucial to
understand model performance in symbolic regression tasks.

Comparison to baselines. In Table 2 we compare NSODE to all baselines (see Section 4.2) on all
our metrics (see Section 3.3) on all test sets (see Section 4.1) using k = 1536 in our beam search. We
also include the average wallclock runtime per expression for each of the datasets. Since GPLearn

8

Under review as a conference paper at ICLR 2023

total correct

0 20
complexity

0

5

10
co

un
t

(a) NSODE

0 20
complexity

0

5

10

co
un

t

(b) AIFeynman

0 20
complexity

0

5

10

co
un

t

(c) Sindy

0 20
complexity

0

5

10

co
un

t

(d) GPLearn

Figure 3: Correctly recovered skeletons by each method on testset-iv-163 per complexity. AIFeynman
and Sindy are mostly able to recover some of the low complexity skeletons, while NSODE performs
much better also on higher complexities. GPLearn fails to recover most skeletons.

often generates extremely long string expressions, it often takes SymPy up to half a minute to parse
these expressions. We denote this extra time in gray and provide a more detailed version in Table 9.

First, we note that on our subsampled testset-iv-163, NSODE outperforms competing approaches in
terms of skeleton recovery by a wide margin and also performs best in terms of joint skeleton recovery
and numerical measures, which is a strong indication of actually having recovered the governing
ODE accurately. By spending over 200x more time on its exhaustive heuristic search, AIFeynman
manages to outperform NSODE in terms of numerical accuracy (R2 and allclose), which again does
not necessarily correspond to correct identification of the ODE structure. Figure 3 shows the number
of skeletons recovered by each method given the complexity of equations, results for dataset-classic
and dataset-textbook can be found in Appendix G. 6 While AIFeynman and Sindy recover some
of the low complexity expressions, NSODE is the only method to also recover some of the more
complex skeletons.

This also explains the strong performance on AIFeynman on the overwhelmingly simple expressions
in the testset-classic and testset-textbook. The heuristics deployed by AIFeynman are tuned to
incorporate properties of known equations in the sciences. In particular, the algorithm explicitly
attempts to fit a polynomial to the data which immediately corresponds to the correct ground truth
expression in 8/12 ≈ 66.6% equations in testset-textbook and 12/26 ≈ 46.2% equations in testset-
textbook. Together with the fact that it is solving a somewhat simpler task (identifying functional
relationships with manually provided derivatives from noise-free regularly sampled time-series), its
strong performance on these particular test cases is to be expected. However, even on these simple
examples AIFeynman takes over 200x longer than our method, which in turn clearly outperforms
Sindy and GPLearn in terms of skeleton recovery.

5 CONCLUSION

We have developed a flexible and scalable method to infer ordinary differential equations ẏ = f(y)
from a single observed solution trajectory. Our method follows the successful paradigm of large-scale
pretraining of attention-based sequence-to-sequence models on essentially unlimited amounts of
simulated data, where the inputs are the observed solution {(ti, yi)}ni=1 and the output is a symbolic
expression for f as a string. Once trained, our method is orders of magnitude more efficient than
similarly expressive existing symbolic regression techniques that require a separate optimization for
each instance and achieves strong performance in terms of skeleton recovery especially for complex
expressions on various benchmarks. Current limitations of our method mostly concern extensions
to systems of high-order non-autonomous equations f , which we discuss in detail in Appendix A.
While these extensions are possible in principle with few to no modifications of NSODE, it is an
interesting direction for future to assess empirically how far this approach can be pushed. Besides
the potential usefulness of our model in real-world scientific discovery and hypothesis generation,
we also hope that our released dataset, code, and checkpoints will serve as a useful starting point for
further research in this direction.

6We note that the maximum complexity is not determined by K, maximum number of internal nodes in the
tree alone, since we also simplify all expressions using SymPy sometimes leading to higher complexities.

9

Under review as a conference paper at ICLR 2023

6 ETHICS STATEMENT

This paper addresses fundamental research and as such its implications are difficult to forsee. However,
all of our experiments are based on non-personalized data so that we believe that datasets and model
checkpoints can be publicly released without compromising private information.

7 REPRODUCIBILITY STATEMENT

To facilitate reproducibility we will release all datasets, source code to our model and baseline
implementations as well as our final model checkpoint. We also report all hyperparameter choices
for our model in Section 3.2 and Appendix B.3 as well as for the baseline methods Appendix E.
Hyper-parameters for data generation are described in Section 3.1 and concrete choices are listed in
Appendix B.2.

REFERENCES

Steven Atkinson, Waad Subber, Liping Wang, Genghis Khan, Philippe Hawi, and Roger
Ghanem. Data-driven discovery of free-form governing differential equations. arXiv preprint
arXiv:1910.05117, 2019.

Joseph Bakarji, Kathleen Champion, J Nathan Kutz, and Steven L Brunton. Discovering gov-
erning equations from partial measurements with deep delay autoencoders. arXiv preprint
arXiv:2201.05136, 2022.

Luca Biggio, Tommaso Bendinelli, Aurelien Lucchi, and Giambattista Parascandolo. A seq2seq
approach to symbolic regression. In Learning Meets Combinatorial Algorithms at NeurIPS2020,
2020.

Luca Biggio, Tommaso Bendinelli, Alexander Neitz, Aurelien Lucchi, and Giambattista Parascandolo.
Neural symbolic regression that scales. In Marina Meila and Tong Zhang (eds.), Proceedings of
the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pp. 936–945. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.press/
v139/biggio21a.html.

Manuel Brenner, Florian Hess, Jonas M Mikhaeil, Leonard F Bereska, Zahra Monfared, Po-Chen
Kuo, and Daniel Durstewitz. Tractable dendritic rnns for reconstructing nonlinear dynamical
systems. In International Conference on Machine Learning, pp. 2292–2320. PMLR, 2022.

Will Bridewell, Pat Langley, Ljupčo Todorovski, and Sašo Džeroski. Inductive process modeling.
Machine learning, 71(1):1–32, 2008.

Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Discovering governing equations from data
by sparse identification of nonlinear dynamical systems. Proceedings of the National Academy
of Sciences, 113(15):3932–3937, 2016. ISSN 0027-8424. doi: 10.1073/pnas.1517384113. URL
https://www.pnas.org/content/113/15/3932.

Kathleen Champion, Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Data-driven discovery of
coordinates and governing equations. Proceedings of the National Academy of Sciences, 116(45):
22445–22451, 2019.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential
equations. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, pp. 6572–6583, 2018.

Allan Costa, Rumen Dangovski, Owen Dugan, Samuel Kim, Pawan Goyal, Marin Soljačić, and
Joseph Jacobson. Fast neural models for symbolic regression at scale, 2021.

Stéphane D’Ascoli, Pierre-Alexandre Kamienny, Guillaume Lample, and Francois Charton. Deep
symbolic regression for recurrence prediction. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International
Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp.
4520–4536. PMLR, 17–23 Jul 2022.

10

https://proceedings.mlr.press/v139/biggio21a.html
https://proceedings.mlr.press/v139/biggio21a.html
https://www.pnas.org/content/113/15/3932

Under review as a conference paper at ICLR 2023

Brian de Silva, Kathleen Champion, Markus Quade, Jean-Christophe Loiseau, J Nathan Kutz, and
Steven Brunton. Pysindy: A python package for the sparse identification of nonlinear dynamical
systems from data. Journal of Open Source Software, 5(49):1–4, 2020.

William Gilpin. Chaos as an interpretable benchmark for forecasting and data-driven modelling. In
Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track
(Round 2), 2021. URL https://openreview.net/forum?id=enYjtbjYJrf.

A.C. Hindmarsh and Lawrence Livermore Laboratory. ODEPACK, a Systematized Collection of ODE
Solvers. Lawrence Livermore National Laboratory, 1982. URL https://books.google.de/books?id=
9XWPmwEACAAJ.

Valerii Iakovlev, Markus Heinonen, and Harri Lähdesmäki. Learning continuous-time {pde}s from
sparse data with graph neural networks. In International Conference on Learning Representations,
2021. URL https://openreview.net/forum?id=aUX5Plaq7Oy.

Pierre-Alexandre Kamienny, Stéphane d’Ascoli, Guillaume Lample, and François Charton. End-to-
end symbolic regression with transformers. arXiv preprint arXiv:2204.10532, 2022.

Maarten Keijzer. Improving symbolic regression with interval arithmetic and linear scaling. In
European Conference on Genetic Programming, pp. 70–82. Springer, 2003.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021. doi: 10.48550/ARXIV.2106.06898.

John R. Koza. Genetic programming - on the programming of computers by means of natural
selection. Complex adaptive systems. MIT Press, 1993. ISBN 978-0-262-11170-6.

John R Koza. Genetic programming II: automatic discovery of reusable programs. MIT press, 1994.

Guillaume Lample and François Charton. Deep learning for symbolic mathematics. In International
Conference on Learning Representations, 2019.

Fernando Lejarza and Michael Baldea. Data-driven discovery of the governing equations of dynamical
systems via moving horizon optimization. Scientific Reports, 12(1):1–15, 2022.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli, Kaushik
Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynamics in chaotic
systems, 2021.

Junyu Liu, Zichao Long, Ranran Wang, Jie Sun, and Bin Dong. Rode-net: learning ordinary
differential equations with randomness from data. arXiv preprint arXiv:2006.02377, 2020.

Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-
symbolic hybrid deep network. Journal of Computational Physics, 399:108925, 2019.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):1–10, 2018.

James McDermott, David R White, Sean Luke, Luca Manzoni, Mauro Castelli, Leonardo Vanneschi,
Wojciech Jaskowski, Krzysztof Krawiec, Robin Harper, Kenneth De Jong, et al. Genetic program-
ming needs better benchmarks. In Proceedings of the 14th annual conference on Genetic and
evolutionary computation, pp. 791–798, 2012.

Aaron Meurer, Christopher P. Smith, Mateusz Paprocki, Ondřej Čertı́k, Sergey B. Kirpichev, Matthew
Rocklin, AMiT Kumar, Sergiu Ivanov, Jason K. Moore, Sartaj Singh, Thilina Rathnayake, Sean
Vig, Brian E. Granger, Richard P. Muller, Francesco Bonazzi, Harsh Gupta, Shivam Vats, Fredrik
Johansson, Fabian Pedregosa, Matthew J. Curry, Andy R. Terrel, Štěpán Roučka, Ashutosh
Saboo, Isuru Fernando, Sumith Kulal, Robert Cimrman, and Anthony Scopatz. Sympy: symbolic
computing in python. PeerJ Computer Science, 3:e103, January 2017. ISSN 2376-5992. doi:
10.7717/peerj-cs.103. URL https://doi.org/10.7717/peerj-cs.103.

11

https://openreview.net/forum?id=enYjtbjYJrf
https://books.google.de/books?id=9XWPmwEACAAJ
https://books.google.de/books?id=9XWPmwEACAAJ
https://openreview.net/forum?id=aUX5Plaq7Oy
https://doi.org/10.7717/peerj-cs.103

Under review as a conference paper at ICLR 2023

Yonggi Park, Kelum Gajamannage, Dilhani I Jayathilake, and Erik M Bollt. Recurrent neural
networks for dynamical systems: Applications to ordinary differential equations, collective motion,
and hydrological modeling. arXiv preprint arXiv:2202.07022, 2022.

Dhruvit Patel and Edward Ott. Using machine learning to anticipate tipping points and extrapolate to
post-tipping dynamics of non-stationary dynamical systems. arXiv preprint arXiv:2207.00521,
2022.

Brenden K Petersen, Mikel Landajuela, T Nathan Mundhenk, Claudio P Santiago, Soo K Kim, and
Joanne T Kim. Deep symbolic regression: Recovering mathematical expressions from data via risk-
seeking policy gradients. In Proc. of the International Conference on Learning Representations,
2021.

Zhaozhi Qian, Krzysztof Kacprzyk, and Mihaela van der Schaar. D-code: Discovering closed-form
odes from observed trajectories. In International Conference on Learning Representations, 2022.

Samuel H Rudy, Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Data-driven discovery of
partial differential equations. Science advances, 3(4):e1602614, 2017.

Subham Sahoo, Christoph Lampert, and Georg Martius. Learning equations for extrapolation and
control. In International Conference on Machine Learning, pp. 4442–4450. PMLR, 2018.

Michael Schmidt and Hod Lipson. Distilling free-form natural laws from experimental data. science,
324(5923):81–85, 2009.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
go, chess and shogi by planning with a learned model. Nature, 588(7839):604–609, 2020.

Nikola Simidjievski, Ljupčo Todorovski, Juš Kocijan, and Sašo Džeroski. Equation discovery for
nonlinear system identification. IEEE Access, 8:29930–29943, 2020.

Steven H Strogatz. Nonlinear dynamics and chaos with student solutions manual: With applications
to physics, biology, chemistry, and engineering. CRC press, 2018.

Ljupco Todorovski and Saso Dzeroski. Declarative bias in equation discovery. In Proceedings of the
Fourteenth International Conference on Machine Learning, pp. 376–384, 1997.

Silviu-Marian Udrescu and Max Tegmark. Ai feynman: A physics-inspired method for symbolic
regression. Science Advances, 6(16):eaay2631, 2020.

Silviu-Marian Udrescu, Andrew Tan, Jiahai Feng, Orisvaldo Neto, Tailin Wu, and Max Tegmark.
Ai feynman 2.0: Pareto-optimal symbolic regression exploiting graph modularity. arXiv preprint
arXiv:2006.10782, 2020.

Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, Robert I McKay, and Edgar Galván-
López. Semantically-based crossover in genetic programming: application to real-valued symbolic
regression. Genetic Programming and Evolvable Machines, 12(2):91–119, 2011.

Mojtaba Valipour, Maysum Panju, Bowen You, and Ali Ghodsi. SymbolicGPT: A Generative
Transformer Model for Symbolic Regression. In Preprint Arxiv, 2021. URL https://arxiv.org/abs/
2106.14131.

Martin Vastl, Jonáš Kulhánek, Jiřı́ Kubalı́k, Erik Derner, and Robert Babuška. Symformer: End-to-
end symbolic regression using transformer-based architecture. arXiv preprint arXiv:2205.15764,
2022.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

12

https://arxiv.org/abs/2106.14131
https://arxiv.org/abs/2106.14131

Under review as a conference paper at ICLR 2023

Pantelis R Vlachas, Georgios Arampatzis, Caroline Uhler, and Petros Koumoutsakos. Multiscale
simulations of complex systems by learning their effective dynamics. Nature Machine Intelligence,
4(4):359–366, 2022.

Ekaterina J Vladislavleva, Guido F Smits, and Dick Den Hertog. Order of nonlinearity as a complexity
measure for models generated by symbolic regression via pareto genetic programming. IEEE
Transactions on Evolutionary Computation, 13(2):333–349, 2008.

Juliane Weilbach, Sebastian Gerwinn, Christian Weilbach, and Melih Kandemir. Inferring the
structure of ordinary differential equations. arXiv preprint arXiv:2107.07345, 2021.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontanon, Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, et al. Big bird: Transformers for
longer sequences. Advances in Neural Information Processing Systems, 33:17283–17297, 2020.

A POSSIBLE EXTENSIONS

While we have focused exclusively on the huge class of explicit scalar, autonomous, first-order ODEs,
we believe that our approach can scale also to non-autonomous, implicit, higher-order systems of
ODEs.

Non-autonomous equations. Since our model is provided with time t as inputs, it is capable
of learning functions f(y, t) depending on y and t explicitly. Hence, extending our approach to
non-autonomous ODEs is simply a matter of adding a symbol for t in our data generation.

Implicit equations. A generalization from purely explicit ODEs to all ODEs of the form f(ẏ, y) = 0
are possible but rely on the availability of appropriate ODE solvers for implicit equations. Sampling
f of this general form using the sampling algorithm described in Section 3.1 is straightforward as
we only need to include the additional variable ẏ in the set of candidate symbols and its associated
distribution psym. If we have an appropriate implicit numerical solver at hand, we can supply the
numerical solution trajectory to NSODE as before and use f for teacher forcing during training.

Irregular samples and noise. Due to the separate data generation and training phase, it is straight
forward to train NSODE on corrupted input sequences, where we could for example add observation
noise (need not be additive) to the {yi}ni=1 or randomly drop some of the observations on the regular
observation grid to simulate irregularly sampled observations. We expect these models to still perform
well and in particular much better than the baselines, since their targets are approximated derivatives,
which are highly sensitive to noise and irregular samples.

Systems of equations. For a system of K first-order ODEs, the data generation requires two updates:
first, we have to generate K equations (fk)k∈{1,...,K}, one for each component. In addition, each
of those functions can depend not only on y (and t in the non-autonomous case), but K different
components {y(k)}k∈{1,...,K}. This is easily achieved by allowing for K tokens y(k) in the data
generation. We can then simply augment the input sequence to the transformer to contain not only
(t, y) as for the scalar case, but (t, y(1), y(2), . . . , y(K)) for a system of K variables. Finally, we have
decide on a way to set the target for the transformer, i.e., how to represent the system of equations
in symbolic form as a single sequence. A straight forward way to achieve this is to introduce a
special delimitation character, e.g., "|" to separate the different components. Note that the order
in which to predict the K equations is dictated by the order in which they are stacked for the input
sequence, hence this information is in principle available to the model. For example, in the case
of a two-dimensional system, where y = (y(1), y(2)) ∈ R2, we could have the model perform the
following mapping

{(ti, y(1)i , y
(2)
i)}ni=1 → "-1.4*y

(1)
*y

(2)+cos(t) | sin(y(1)+y(2))" ,

where the separator | delimits the two components of f(y, t) corresponding to ẏ(1) and ẏ(2).

Although the extension to systems is conceptually straightforward, we remark that the performance of
the approach needs to be carefully evaluated in future work as systems of ODEs show a much larger
variety of qualitative behaviors - including chaos. One of the defining characteristics of chaos is the
sensitivity of solution trajectories to initial values (Strogatz, 2018), that is, even similar initial values

13

Under review as a conference paper at ICLR 2023

result in drastically different trajectories. Chaotic behavior may pose a fundamental limitation for
NSODE, which relies on supervised optimization on a representative training dataset, a challenging
requirement in case of chaotic systems.

Higher-order equations. Finally, it is well known that any higher order (system of) ODEs can be
reduced to a first-order system of ODEs. Specifically, a d-th order system of K variables can be
reduced to an equivalent first-order system of d ·K variables. Hence, one can handle higher-order
systems analogously as before with multiple separator tokens. One obstacle in this case is that
when only observations of y(t) are given, one first needs to obtain observed derivatives to reduce
a higher-order system to a first-order system. These would in turn have to be estimated from data,
which suffers from the same challenges we have mentioned previously (instability under noise and
irregular samples).

Finally, when we want to have a single model deal with higher-order equations of unknown order,
or systems with differing numbers of variables, it remains on open question how to have the model
automatically adjust to the potentially vastly differing input dimensions or how to automatically
detect the order of an ODE.

B IMPLEMENTATION DETAILS

B.1 RULES TO RESAMPLE CONSTANTS

As described in Section 3.1, we generate ODEs as unary-binary trees, convert them into infix notation
and parse them into a canonical form using sympy. From each skeleton we then create up to 25
ODEs by sampling different values for the constants. When resampling constants we want to ensure
that we do not accidentally modify the skeleton as this would additionally burden our model with
resolving potential ambiguities in the grammar of ODE expressions. Furthermore, we do not want to
reintroduce duplicate samples on the skeleton level after carefully filtering them out previously. We
therefore introduce the following sampling rules for constants:

1. Do not sample constants of value 0.

2. When the original constant in the skeleton is negative, sample a negative constant, otherwise
sample a positive constant.

3. Avoid base of 1 in power operations as 1x = 1.

4. Avoid exponent of 1 and -1 in power operations as x1 = x and x−1 = 1/x.

5. Avoid coefficients of value 1 and -1 as 1 · x = x and −1 · x = −x

6. Avoid divisions by 1 and -1 as x/1 = x and x/− 1 = −x

B.2 DATA GENERATION

As discussed in the main text, the choices of the maximum number of internal nodes per tree K,
the choice and distribution over Nbin binary operators, the choice and distribution over Nuna unary
operators, the probability with which to decorate a leaf with a symbol psym (versus a constant with
1− psym), and the distribution pc over constants uniquely determine the training distribution over
ODEs f . These choices can be viewed as flexible and semantically interpretable tuning knobs to
choose a prior over ODEs. For example, it may be known in a given context, that the system follows
a “simple” law (small K) and does not contain exponential rates of change (do not include exp in
the unary operators), and so on. The choice of the maximum number of operators per tree, how to
sample the operators, and how to fill in the leaf nodes define the training distribution, providing us
with flexible and semantically meaningful tuning knobs to choose a prior over ODE systems for
our model. We summarize our choices in Tables 3 to 5, where U denotes the uniform distribution.
Whenever a leaf node is decorated with a constant, the distribution over constants is determined by
first determining whether to use an integer or a real value with equal probablity. In case of an integer,
we sample it from pint, and in case of a real-valued constant we sample it from preal shown in Table 3.
Finally, when it comes to the numerical solutions of the sampled ODEs, we fixed the parameters in
Table 6 for our experiments.

14

Under review as a conference paper at ICLR 2023

We highlight that there is no such thing as “a natural distribution over equations” when it comes to
ODEs. Hence, ad-hoc choices have to be made in one way or another. However, it is important to
note that neither our chosen range of integers nor the range of real values for constants are in any way
restrictive as they can be achieved by appropriate rescaling. In particular, the model itself represents
these constant values merely be non-numeric tokens and interpolates between those anchor tokens
(our two-hot encoding) to represent continuous values. Hence, the model is entirely agnostic to the
actual numerical range spanned by these fixed grid tokens, but the relative accuracy in recovering
interpolated values will be constant and thus scale with the absolute chosen range. Therefore, scaling
pint and preal by essentially any power of 10 does not affect our findings. Similarly, the chosen range
of initial values (ymin

0 , ymax
0) is non-restrictive as one could simply scale each observed trajectory to

have its starting value lie within this range.

B.3 MODEL

For our Transformer model we choose the implementation of BigBird (Zaheer et al., 2020) available
in HuggingFace. The model is trained on 4 Nvidia A100 GPUs for 18 epochs after which we
evaluate the best model based on the validation loss. We choose a batchsize of 600 samples and use
a linear learning rate warm-up over 10,000 optimization step after which we keep the learning rate
constant at 10−4. For the fixed tokens that are used to decode constants, we choose an equidistant
grid −10 = x1 < x2 < . . . < xm = 10 with m = 21. This worked well empirically and using
fewer or more tokens did not seem to improve model performance substantially. Finally, we use
Neval = 100 for the evaluation of our numerical metrics. We did not optimize architectural choices
or hyperparameters for maximum performance and use the same choices in all experiments.

While not relevant for our dataset as we check for convergence of the ODE solvers, we remark that
the input-encoding via IEEE-754 binary representations also graciously represents special values
such as nan or inf without causing errors. Those are thus valid inputs that may still provide useful
training signal, e.g., “the solution of the ODE of interest goes to inf quickly”.

C TEXTBOOK EQUATIONS DATASET

Table 7 list the equations we collected from wikipedia, textbooks and lecture notes together with the
initial values that we solved them for. We can also see that almost all of these equations simplify to
low-order polynomials.

D DATASET STATISTICS

We provide an overview over the complexity distribution and the absolute frequency of all operators
(after simplification) for all datasets in Figure 4. We can see that our self-generated dataset covers
by far the larges complexity whereas both complexities and operator diversity are much lower for
equations in the classic and textbook ODEs.

E BASELINES

We here describe more detail on the optimization of the baseline comparison models.

Sindy. We use the implementation available in PySindy (de Silva et al., 2020) and instantiate the
basis functions with polynomials up to degree 10 as well as all unary operators listed in Table 5.
When fitting sindy to data we often encountered numerical issues especially when using high-degree
polynomial or the exponential function. To attenuate such issues we set the highest degree of the

Table 3: Parameter settings for the data generation.

parameter K Nbin Nuna psym pint preal

value 5 5 5 0.5 U({−10, . . . , 10} \ {0}) U((−10, 10))

15

Under review as a conference paper at ICLR 2023

Table 4: Binary operators with their relative sampling frequencies

operator + − · ÷ pow

probability 0.2 0.2 0.2 0.2 0.2

Table 5: Unary operators with their relative sampling frequencies.

operator sin cos exp
√

log

probability 0.2 0.2 0.2 0.2 0.2

Table 6: Parameters for numerical solutions of sampled ODEs.

parameter Nconst Niv T Ngrid (ymin
0 , ymax

0)

value 25 25 4 1024 (−5, 5)

Table 7: Equations of the textbook dataset.

Name Equation f(x) simplified y0

autonomous Riccati 0.6 · y2 + 2 · y + 0.1 0.6 · y2 + 2 · y + 0.1 −0.2
autonomous Stuart-Landau −2.2/2 · y3 + 1.31 · y −1.1 · y3 + 1.31 · y 0.1
autonomous Bernoulli −1.3 · y + 2.1 · y2.2 −1.3 · y + 2.1 · y2.2 0.6
compound interest 0.1 · y 0.1 · y 9
Newton’s law of cooling −0.1 · (y − 3) 0.3− 0.1 · y 9
Logistic equation 0.23 · y · (1− y) 0.23 · (y − y2) 9
Logistic equation
with harvesting 0.23 ·y · (1−0.33 ·y)−0.5 0.23 · y − 0.76 · y2 − 0.5 9

Logistic equation
with harvesting 2 2 · y · (1− y/3)− 0.5 2 · y − 0.66 · y2 − 0.5 0.7

Solow-Swan y0.5 · (0.9 · 8− (3 + 2.5)·
y1−0.5)

7.2 · y0.5 − 5.5 · y 0.1

Tank draining −
√
2 · 9.81 · (2/9)2 · √y −0.21 · y0.5 1

Draining water
through a funnel

−(0.52/4) ·
√
2 · 9.81·

(sin 1/ cos 1)2 · y−1.5 −0.67/y1.5 3

velocity of a body
thrown vertically upwards −9.81− 0.9 · y/8.2 −0.10 · y − 9.81 0.1

polynomials per sample to the highest degree present in the ground truth. Secondly, when numerical
issues are caused by a particular basis function, we discard this basis function for the current sample
and restart the fitting process. We run a separate full grid search for every ODE over the following
hyper-parameters and respective values (these all include the default values):

• optimizer-threshold (np.logspace(-5, 0, 10)): Minimum magnitude for a coefficient in
the weight vector to not be zeroed out.

• optimizer-alpha ([0.001, 0.0025, 0.005, 0.01, 0.025, 0.05, 0.1, 0.2]): L2 regularizer on parameters.
• finite differences order ([2, 3, 5, 7, 9]): Order of finite difference approximation.
• maximum number of optimization iterations ([20, 100]): Maximum number of optimization steps.

For every ODE, sindy is fit using solution trajectory in the initial interval [0, 2] and validated on the
interval (2, 4]. The grid search thus results in a ranking of models with different hyper-parameter
configurations. Instead of evaluating only the performance of the best model, we report top-k
performance across the ranked hyper parameter configurations. Sindy is computationally highly
efficient yet complex expressions such as nested or parameterized functions can only be approximated
(e.g. by a polynomial basis) but not represented in their exact symbolic form.

16

Under review as a conference paper at ICLR 2023

training data

0 5 10 15 20 25 30
complexity

101

106
co

un
t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

106

107

108

109

co
un

t

testset-iv

0 5 10 15 20 25 30
complexity

10 1

102

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

102

104

co
un

t

testset-const

0 5 10 15 20 25 30
complexity

10 1
100
101
102
103

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

102

103

104

co
un

t

testset-skeleton

0 5 10 15 20 25 30
complexity

10 1

100

101

102

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

100

101

102

103

co
un

t

testset-iv-163

0 5 10 15 20 25 30
complexity

0
2
4
6
8

10

co
un

t

C
ad

d
co

s
di

v
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

0

250

500

co
un

t

testset-classic

0 5 10 15 20 25 30
complexity

0

5

10

co
un

t

C
ad

d
co

s
ex

p
lo

g
m

ul
ne

g
po

w si
n

sq
rt

su
b y

0

50

100

co
un

t

testset-textbook

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

co
un

t

C

ad
d

di
v

m
ul

po
w

su
b y

0

20

40

co
un

t

Figure 4: Distribution of complexity and operators for all datasets.

GPLearn. We instantiate GPLearn with a constant range of (−10, 10) and all binary operators listed
in Table 4 and all unary operators listed Table 5 except for the exponential function which caused
numerical issues. We keep the default hyper-parameters but run a grid search across the parsimony

17

Under review as a conference paper at ICLR 2023

coefficient ({0.0005, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5, ”auto”}) which trades of fitness versus program
length. We choose R2 as fitness function.

AIFeynman. We use the AIFeynman implementation from https://github.com/SJ001/AI-Feynman
and run the algorithm with the following (default) hyper-parameters:

• Brute force try time: 60 seconds
• Number of epochs for the training : 500
• Operator set: 14
• Maximum degree of polynomial tried by the polynomial fit routine: 4

F ABLATION

The experimental results presented in Section 4.3 show that the performance measured by all metrics
improves with increases in hyperparameter k of the top-k sampling algorithm. While this result
is intuitive, it also raises the question whether the model simply generates a diverse set of random
guesses that cover the full diversity of the testset. We investigated this question via the following
ablation experiment: If we assume that the model only generates a diverse set of random guesses,
then we should be able to permute predictions across samples without loss in performance, e.g.

(f1, {f̂1,1, ..., f̂1,K}) permute−−−−→ (f1, {f̂3,1, ..., f̂3,K})

(f2, {f̂2,1, ..., f̂2,K}) −−−−→ (f2, {f̂4,1, ..., f̂4,K})
...

...

(f5793, {f̂5793,1, ..., f̂5793,K}) −−−−→ (f5793, {f̂2,1, ..., f̂2,K})

where fn is the ground truth symbolic expression for sample n and {f̂n,1, ..., f̂n,K} correspond to
the generated predictions for sample n with top-k=K.

We implemented this experiment using the results obtained on testset-iv for k = 1536. Contrary to
our assumption Table 8 shows that the resulting performance drops substantially in comparison to
the original performance on all metrics. We can therefore conclude that our model is not simply
generating diverse random guesses but actually learned a systematic mapping from input observations
to symbolic expressions. Similarly, we can conclude that samples in the dataset are sufficiently
distinct from each other, i.e. that the data generation process presented in Section 3.1 resulted a
diverse dataset.

Table 8: Comparison between original performance and performance after permuting predictions
across samples on testset-iv with k = 1536. Results are given as percentages.

Metric Original Permuted
skel-recov 52.0 0.8
R2 ≥ 0.999 28.6 0.4
allclose 50.6 6.5
skel-recov & R2 ≥ 0.999 17.0 0
skel-recov & allclose 22.6 0.1

G DETAILED RESULTS

We provide a comprehensive summary of performances of all models on all datasets in Table 9.
Figures 5 and 6 further show again the number of correctly recovered skeletons by each method per
complexity.

18

https://github.com/SJ001/AI-Feynman

Under review as a conference paper at ICLR 2023

total correct

NSODE AIFeynman

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

7.5

co
un

t

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

7.5

co
un

t

Sindy GPLearn

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

7.5

co
un

t

0 5 10 15 20 25 30
complexity

0.0

2.5

5.0

7.5

co
un

t

Figure 5: Correctly recovered skeletons by each method on the classic benchmark dataset per
complexity.

total correct

NSODE AIFeynman

0 5 10 15 20 25 30
complexity

0

2

4

co
un

t

0 5 10 15 20 25 30
complexity

0

2

4

co
un

t

Sindy GPLearn

0 5 10 15 20 25 30
complexity

0

2

4

co
un

t

0 5 10 15 20 25 30
complexity

0

2

4

co
un

t

Figure 6: Correctly recovered skeletons by each method on the textbook equation dataset per
complexity.

19

Under review as a conference paper at ICLR 2023

Table 9: Detailed performance results for all methods on all (applicable) datasets.

Dataset Metric NSODE Sindy GPLearn AIFeynman
skel-recov 52.0 - - -
R2 ≥ 0.999 28.6 - - -

testset-iv allclose 50.6 - - -
skel-recov & R2 ≥ 0.999 17 - - -
skel-recov & allclose 22.6 - - -
runtime [s] 5.3 - - -
skel-recov 45.6 - - -
R2 ≥ 0.999 21.7 - - -

testset-constant allclose 44.7 - - -
skel-recov & R2 ≥ 0.999 9.8 - - -
skel-recov & allclose 16.1 - - -
runtime [s] 5.3 - - -
skel-recov 19 - - -
R2 ≥ 0.999 12 - - -

testset-skel allclose 33 - - -
skel-recov & R2 ≥ 0.999 1 - - -
skel-recov & allclose 2 - - -
runtime [s] 5.3 - - -
skel-recov 37.4 3.7 2.5 14.1
R2 ≥ 0.999 24.5 31.9 3.7 49.7

testset-iv-163 allclose 42.3 25.8 14.7 55.8
skel-recov & R2 ≥ 0.999 15.3 3.1 1.8 13.5
skel-recov & allclose 15.3 3.1 1.8 13.5
runtime [s] 5.4 0.4 29 +22 1203.6
skel-recov 11.5 0 3.8 46.2
R2 ≥ 0.999 57.7 57.7 23.1 88.5

classic allclose 80.8 57.7 30.8 88.5
skel-recov & R2 ≥ 0.999 0 0 7.7 46.2
skel-recov & allclose 0 0 7.7 46.2
runtime [s] 5.2 0.6 23 +22 1291.6
skel-recov 41.7 33.3 8.3 91.7
R2 ≥ 0.999 16.7 50 0.0 75

textbook allclose 25 58.3 8.3 75
skel-recov & R2 ≥ 0.999 33.3 41.7 0 66.7
skel-recov & allclose 8.3 33.3 1.8 66.7
runtime [s] 6 1 23 +22 1267.1

20

