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ABSTRACT

Contrastive Language-Image Pretraining (CLIP) models exhibit good perfor-
mance on a range of vision tasks. To improve the performance of this class of
models even further, several works have proposed to modify the CLIP training
procedure. In this work, we show that it is possible to achieve substantial gains
using a much simpler strategy. Specifically, existing CLIP models—especially
those trained on smaller datasets—tend to be undertrained. Indeed, we show that
extending the training procedure according to a simple heuristic can significantly
improve the performance of CLIP models.

1 INTRODUCTION

In recent years, zero-shot inference has become a popular paradigm in the natural language process-
ing (NLP) and computer vision communities. In this paradigm, one trains a model on vast amounts
of data in order to learn generalizable features that then can be leveraged—without fine-tuning or
weight updates—to perform inference on downstream tasks (Brown et al., 2020; Radford et al.,
2021). Within the computer vision community, one popular approach to zero-shot image classifica-
tion involves Contrastive Language-Image Pre-Training (CLIP) Radford et al. (2021), which gave
rise to CLIP models with remarkable performance on a range of vision tasks, including ImageNet
and several of its variants corresponding to various distribution shifts (Recht et al., 2019; Hendrycks
et al., 2019; Barbu et al., 2019; Wang et al., 2019; Hendrycks et al., 2020). This successes let to a
whole line of works that aim to further improve the performance of CLIP models (Yu et al., 2022;
Mu et al., 2021; Li et al., 2022b; Wortsman et al., 2021).

Our contributions. In this paper, we propose a simple modification to the CLIP training
procedure—specifically, restarting the learning rate schedule and training for a few extra epochs—
and show that this significantly boosts the performance of CLIP models on several downstream
tasks. In particular, we demonstrate that our approach alone leads to results that are competitive
with previously proposed CLIP model performance improvements. This also suggests that existing
CLIP models, especially the ones trained on smaller datasets such as Conceptual Captions 3M and
12M (Sharma et al., 2018; Changpinyo et al., 2021), might have been undertrained.

2 BACKGROUND

CLIP is a recent model with impressive performance on a variety of tasks (Radford et al., 2021).
Previous work has argued that a key driver of CLIP’s performance is its ability to leverage image-
caption pairs during training (Santurkar et al., 2022). This ability, in turn, enables large-scale training
on a vast amount of image-caption pairs scraped from the Internet, alleviating the need for (expensive
and time-consuming) dataset annotation.

Model architecture and zero-shot capability. A CLIP model is composed of two networks: an
image encoder EI (vision backbone, typically a ResNet (He et al., 2015) or a ViT (Dosovitskiy et al.,
2021)) and a transformer-based text encoder ET (text backbone). Given an image-caption pair (x, t),
where x is an image and t is the corresponding textual caption, CLIP models encode the image x
and the caption t using the relevant encoders into an image embedding I and a caption embedding
T , respectively, that belong to the same space. This design is well-suited for zero-shot inference,
i.e., inference on new tasks without weight update. For example, by leveraging CLIP’s ability to
process textual prompts, one can map unobserved labels from new classification tasks into captions,
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Figure 1: CLIP models trained on smaller datasets are undertrained. The blue curve on the left
corresponds to the zero-shot accuracy of a CLIP model trained on CC12M for 75 epochs. This model
was trained using the learning rate schedule represented by the blue curve on the right, and achieves
a zero-shot ImageNet accuracy of 31%. After resetting the scheduler and training for 10 additional
epochs (orange curve on the right), the zero-shot accuracy of the CLIP model on ImageNet increases
by 10% (orange curve on the left).

then perform classification by matching each image embedding to its closest class embedding in the
shared space.

Performance. CLIP models demonstrated impressive zero-shot performance on several image
classification tasks, such as ImageNet classification (Deng et al., 2009), with recent large CLIP
models (trained on LAION (Schuhmann et al., 2021)) surpassing 90% accuracy on ImageNet (Fang
et al., 2023). Furthermore, unlike standard supervised classification models, CLIP models tends to
be much more robust to distribution shift, including achieving high accuracy on the corresponding
ImageNet variations benchmarks (Recht et al., 2019; Hendrycks et al., 2019; Barbu et al., 2019;
Wang et al., 2019; Hendrycks et al., 2020).

3 IMPROVING CLIP TRAINING

Given the impressive performance of CLIP models, there was a number of works interested in further
improving them. For example, several approaches proposed modifying the training objective (Mu
et al., 2021; Li et al., 2022b), imposing additional supervision during training (Li et al., 2022a),
leveraging additional data augmentations (Fini et al., 2023), or imposing a particular structure on
the learned representations (Fürst et al., 2022; Goel et al., 2022). Sharing this goal, in this section
we first investigate the performance of CLIP models trained on smaller datasets and show that these
models might be undertrained. We then propose a simple modification to the training procedure that
significantly boosts the performance of CLIP models. We finally investigate the effectiveness of the
training procedure when applied at a larger scale.

3.1 CLIP MODELS TRAINED ON SMALLER DATASETS ARE UNDERTRAINED

Given the significant cost of training CLIP models on large datasets such as LAION (Schuhmann
et al., 2021), many researchers opt instead to train their CLIP models on smaller datasets such as
Conceptual Captions 3M (CC3M) (Sharma et al., 2018) or Conceptual Captions 12M (CC12M)
(Changpinyo et al., 2021). During training, the performance of these CLIP models saturates after
few epochs, and simply training for longer does not significantly affect accuracy. For example, when
training a CLIP model for 75 epochs on CC12M, the accuracy of the model has little improvement
after the 40th epoch (see Figure 1).

However, we show that applying a very simple fine-tuning strategy after training can quickly boost
accuracy. Specifically, when we “reset” the learning rate scheduler to its initial state (before training)
and train for a small number of additional epochs, the performance of CLIP models improves signif-
icantly. For example, the zero-shot accuracy of a ResNet-50 CLIP model trained for 75 epochs on
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Figure 3: Applying the additional training procedure for few extra epochs is enough to im-
prove performance. The ImageNet zero-shot accuracy of several CLIP models (y-axis) increases as
we apply the additional training procedure for more epochs (x-axis). Note that the performance im-
provement saturates after applying the procedure for only three additional epochs. See Appendix B
for additional results.

CC12M saturates around 31% on ImageNet. However, after applying our strategy for 10 additional
epochs, the zero-shot accuracy of the resulting model jumps to 41% (see Figure 1).

We validate the effectiveness of our strategy by applying it to more CLIP architectures and measur-
ing the performance improvement on several downstream tasks. We observe a consistent, significant
improvement in several settings (see Table 2). This improvement suggests that the original CLIP
models might have been undertrained.

Model ImageNet ImageNet-V2 ImageNet-A ImageNet-O ImageNet-R ImageNet-Sketch ObjectNet
ResNet-50 41.7 (+11.3%) 35.6 (+9.84%) 9.44 (+4.39%) 47.5 (+8.15%) 53.5 (+11.3%) 31.1 (+8.55%) 28.2 (+8.24%)
ViT-B-32 38.6 (+7.83%) 33.1 (+7.14%) 7.76 (+2.75%) 43.9 (+7.70%) 52.8 (+10.2%) 31.6 (+7.95%) 22.1 (+6.63%)
ViT-B-16 44.9 (+8.40%) 38.0 (+7.09%) 12.0 (+3.59%) 45.5 (+5.60%) 60.5 (+9.77%) 35.1 (+8.17%) 30.3 (+7.73%)

Table 2: Our simple training procedure consistently improves the performance of CLIP mod-
els trained on CC12M. This table shows the zero-shot accuracy of several CLIP models on different
downstream tasks after applying our simple strategy. The numbers in parentheses represent the abso-
lute change in zero-shot accuracy on the corresponding downstream classification task. Note that the
performance of several CLIP models improves significantly on each downstream task. For example,
applying our simple strategy on a ResNet-50 CLIP model leads to a zero-shot accuracy of 41.7% on
ImageNet—an improvement of 11.3% compared to the performance reported by the literature. See
Appendix B for additional results.

3.2 HOW MANY EXTRA EPOCHS SHOULD WE TRAIN FOR?

As we have seen, resetting the learning rate scheduler and training for a fixed number of additional
epochs improves CLIP performance. We now want to study how the zero-shot performance of
several CLIP models changes as we vary the number of additional training epochs K.

To this end, we train three CLIP models (ResNet-50, ViT-B-32 and ViT-B-16), and then apply the
extended training procedure to them, each time with a different number of additional training epochs.
We observe that for models trained on CC12M, performance improvement saturates after applying
three extra epochs (see Figure 3). This suggests that the extra overhead needed to achieve peak
performance can be fairly minor.

3.3 AT WHICH EPOCH SHOULD WE APPLY THE EXTENDED TRAINING?

So far, we have been applying the extended training after the original model training was completed.
However, would it be beneficial to apply it earlier in the training?
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Figure 4: Applying our strategy to improve performance. The blue curve corresponds to the
accuracy of the original CLIP model. Each other curve represents the zero-shot accuracy of the
CLIP model after applying our strategy with different starting points. For example, the orange curve
corresponds to applying our strategy on the CLIP model after it has been trained for 10 epochs (out
of 75 epochs in total). Note that applying our strategy earlier during training leads to a performance
improvement beyond the final accuracy reached by the model trained for 75 epochs. See Appendix B
for additional results.

It turns out that such an earlier application can improve the model performance beyond what can
be achieved with the full training cycle. To fully examine this phenomenon, we explore stopping
the original training procedure at different epochs, and in each case we restart the training (and the
learning rate scheduler) for 10 additional epochs. We observe that applying this extended training
as early as 10 epochs into the original training cycle already improves performance beyond what
is achieved after a complete training of the original model (see Figure 4). For example, our model
reaches an accuracy of 37% after a total of only 20 epochs1, higher than the original model’s final
accuracy of 31% that was trained on 75 epochs.

3.4 USING A CYCLIC LEARNING RATE CAN IMPROVE CLIP TRAINING

As mentioned in Section 3.1, CLIP models typically employ a single-cycle cosine learning rate
scheduler (Loshchilov & Hutter, 2017) (see Figure 1). We showed, however, that 1) applying this
schedule for a single cycle leads to suboptimal performance, and 2) employing an additional short
cycle boosts accuracy. This additional cycle is reminiscent of cyclic learning rate schedulers. To
investigate whether the use of such schedulers improves performance, we train a CLIP model using
a multicycle cosine learning rate scheduler. Using this strategy, we obtain CLIP models that—with
much fewer training epochs—outperform the CLIP models trained with the standard cosine learning
rate schedule (see Figure 5).

3.5 ARE MODELS TRAINED ON LARGE-SCALE DATASETS UNDERTRAINED?

Our investigation thus far has revealed that CLIP models trained on smaller datasets might be un-
dertrained. In this section, we investigate whether CLIP models trained on large-scale datasets,
such as LAION-400M (Schuhmann et al., 2021), might be undetrained. To this end, we consider a
CLIP model (with ViT backbone) pretrained on LAION-400M(Ilharco et al., 2021) and we apply
the additional training procedure for 15 extra epochs (on the same dataset). Comparing the zero-shot
performance of the new model to that of the original model, we observe that both models achieve
similar performance on a range of datasets (see Table 6), suggesting that undertraining is less of an
issue at scale.

3.6 COMPARING WITH EXISTING APPROACHES

In the previous sections, we argued that CLIP models trained on smaller datasets might be under-
trained. We also demonstrated that applying a simple additional training procedure can substantially

1The first 10 epochs correspond to the original training cycle, while the second 10 epochs correspond to our
strategy.
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Figure 5: Applying a cyclic learning rate schedule improves performance. Each curve represents
the ImageNet zero-shot accuracy of a ResNet-50 CLIP model as a function of the number of training
epochs. The orange curve corresponds to the standard training strategy using a cosine LR scheduler,
while the blue curve corresponds to training the CLIP model with a cyclic LR Scheduler. Note that
applying a cyclic LR improves performance. See Appendix B for additional results.

ImageNet ImageNet-A ImageNet-O ImageNet-R ImageNet-Sketch ImageNet-V2 ObjectNet
OpenCLIP 62.94 21.69 53.45 73.40 49.39 55.11 43.91
Ours 63.29 19.80 56.05 75.51 52.82 54.84 43.09

Table 6: CLIP models trained on large datasets are less likely to be undertrained. Comparison
of the performance of two ViT-B-32 CLIP models on several downstream tasks. The first row
corresponds to a public CLIP model trained on LAION 400M (Ilharco et al., 2021), while the second
row corresponds to applying our strategy to the public model. Note that training for an extra cycle
leads to similar performance, which suggests that CLIP models trained on large datasets are less
likely to be undertrained.

improve the performance of these models. In this section, we compare this strategy with other
approaches employed to improve the performance of CLIP models.

Specifically, we consider several previously proposed methods for refining the basic CLIP training
procedure (Chen et al., 2022; Goel et al., 2022; Fürst et al., 2022; Li et al., 2022a; Fini et al.,
2023). These approaches either modify the training objective, or impose additional structure on
the learned representations. The CLIP models trained from scratch on the smaller datasets using
the proposed approaches show an accuracy improvement compared to baseline CLIP models. Our
results demonstrate that simply applying the additional training procedure can provide competitive
results (see Table 7).

Method Pretraining
CC3M CC12M

CLIP (baseline) (Radford et al., 2021) 20.6 36.5
ProtoCLIP (Chen et al., 2022) 21.5 –
CyCLIP (Goel et al., 2022) 22.1 –
CLOOB (Fürst et al., 2022) 24.0 –
DeCLIP (Li et al., 2022a) 27.2 41.0
CLIP (Improved) (Fini et al., 2023) 27.4 44.4

CLIP (Ours) 24.2 41.7

Table 7: Comparison of different CLIP training strategy. The first row displays ImageNet zero-
shot accuracy of ResNet-50 CLIP model trained using the canonical training scheme. Subsequent
rows display the performance of CLIP models trained according to different strategies in the litera-
ture. Last row presents the performance obtained by applying our additional training strategy. Note
that the various approaches in the literature improve the performance of the original model.
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4 RELATED WORK

Zero-shot inference is an increasingly popular paradigm where the goal is to solve a specific task
that is unseen during training Radford et al. (2021). One notable example of zero-shot models is
the CLIP model (Radford et al., 2021) that achieved state-of-the-art results on a range of zero-shot
classification tasks, most notably ImageNet and its variants (Recht et al., 2019; Hendrycks et al.,
2019; Barbu et al., 2019; Wang et al., 2019; Hendrycks et al., 2020).

Given the remarkable performance of CLIP models, several works have proposed approaches to
improve their performance. Some of these works modify the underlying training procedure. For
example, FLIP masks at random a subset of the ViT input tokens and drops them (Li et al., 2022b).
Other works have proposed using strong and weak data augmentations (for both vision and text
backbones) when computing the similarity between an image and a caption (Fini et al., 2023).

Another line of work modifies the objective function used for training the CLIP model. For instance,
SLIP (Mu et al., 2021) combines an image contrastive loss (SimCLR (Chen et al., 2020)) with the
CLIP objective function (Radford et al., 2021). Other approaches propose clustering similar images
and captions ((Chen et al., 2022)), imposing geometrical consistency between an image-caption
pair embeddings ((Goel et al., 2022)), imposing additional supervision ((Li et al., 2022a)) or using
Hopfield networks to control the covariance of the learned representations (Fürst et al., 2022).

Finally, additional works proposed pretraining the vision backbone prior to training the CLIP model
(Fang et al., 2022; 2023; Sun et al., 2023), or ensembling several trained CLIP models (Ilharco et al.,
2021).

5 CONCLUSION

In this paper, we have demonstrated that CLIP models trained on smaller datasets might be under-
trained. To improve the performance of such CLIP models, we propose a simple additional training
procedure, and demonstrate its effectiveness and competitiveness with existing approaches. This
suggests that the methods proposed to improve CLIP performance should be tested at a larger scale
in order to accurately reflect their potential benefits.
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