
SIREN: Semantic, Initialization-Free Registration of
Multi-Robot Gaussian Splatting Maps

Ola Shorinwa1, Jiankai Sun2, Mac Schwager2, Anirudha Majumdar1
1Princeton University 2Stanford University

siren-robot.github.io

Submap 𝑅!

View 1 View 2

Submap 𝑅$

View 1 View 2

𝑅! 𝑅$

RegistrationRobust

SI
R
EN

Initialization-Free

Semantics-Grounded

𝑅! 𝑅$

BoxEgg

Multi-Robot Gaussian 
Splatting Mapping

Figure 1: SIREN enables robust registration (i.e., fusion) of multi-robot Gaussian Splatting maps,
with no access to camera poses, images, and inter-map relative poses, via semantics-grounded
optimization centered on feature-rich regions of each map.

Abstract: Despite remarkable advances in Gaussian Splatting (GSplat), GSplat
mapping remains primarily limited to single-robot, single-deployment use-cases.
Existing methods generally require a good initialization or global information on
inter-map transforms, limiting their effectiveness in practice. To address these
fundamental challenges, we present SIREN for registration with zero access to
camera poses, images, and inter-map transforms for initialization or fusion of
local submaps. SIREN introduces three key innovations: (i) semantic feature
extraction and matching to identify feature-rich regions, eliminating the need for
any initialization; (ii) robust geometric optimization for Gaussian-to-Gaussian
matching, even in noisy maps; and (iii) photometric refinement with novel-view
synthesis for high-fidelity fusion. We demonstrate the superior performance of
SIREN compared to competing baselines across a range of real-world datasets, and
in particular, across the most widely-used robot hardware platforms, including a
manipulator, drone, and quadruped. In our experiments, SIREN achieves about
90x smaller rotation errors, 300x smaller translation errors, and 44x smaller scale
errors in the most challenging scenes, where competing methods struggle.
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1 Introduction

In robotics, traditional map representations such as point-cloud and voxel maps constitute a critical
component of the robotics stack, enabling downstream behavior prediction, planning, and control
across many problem domains, e.g., navigation and manipulation. However, these map representations
often lack the expressiveness required to capture high-fidelity visual details and semantics [1], limiting
their applications in fine-grained robotics tasks, e.g., in dexterous open-vocabulary manipulation
[2]. To address these fundamental limitations, recent robotics research has adopted radiance fields
as flexible, high-fidelity 3D scene representations, e.g., in robot navigation [3, 4] and manipulation
[5, 6]. Radiance fields, e.g., neural radiance fields (NeRFs) [7] and Gaussian Splatting (GSplat)
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[1], are trained entirely from monocular images, typically collected by a single robot on a single
deployment.

However, practical real-world robot mapping requires multiple deployments and multiple robot
platforms, especially when mapping large-scale areas. For example, mobile robots have a limited
battery life, while fixed-base robotic manipulators have a limited workspace, making map registration
a necessity for covering large-scale areas. Fusing map information across multiple robot platforms
and deployments remains a key challenge, particularly with radiance field maps. Prior work has
explored fusing multiple radiance field maps [8, 9]; however, these methods either require a good
initialization of inter-map correspondences or access to the camera poses and images, which is
often unavailable. Moreover, these methods often fail in unstructured real-world environments, an
important operational domain for robots. Specifically, the core challenge in map registration can
be largely attributed to the difficulty in identifying accurate correspondences between points [10].
In fact, given accurate correspondences, the map registration problem can be solved efficiently in
closed-form.

To address these challenges, we introduce SIREN, a semantic, initialization-free registration algorithm
for multi-robot Gaussian Splatting maps. Although often unexploited, many real-world scenes contain
rich semantic information, e.g., associated with objects such as vehicles, people, and vegetation.
SIREN leverages this key insight to derive a robust map registration algorithm, consisting of three
central components, illustrated in Figure 1—centered on feature-rich areas of the local submaps. First,
SIREN trains a semantic GSplat to directly embed semantic features in GSplat maps and subsequently
uses the inherent semantics in the local maps for semantic feature extraction and matching centered
on feature-rich regions. Second, SIREN formulates a geometric optimization problem for a coarse
Gaussian-to-Gaussian registration, which is solved efficiently in closed-form. Third, SIREN leverages
novel-view synthesis for photorealistic map fusion via photometric refinement, using a semantics-
based image filter for outlier rejection.

We demonstrate the superior effectiveness of SIREN compared to both existing GSplat registration
methods and classical point-cloud registration methods across different real-world datasets, including
standard benchmarks for radiance fields and data collected across three different robot hardware
platforms: a quadruped, drone, and fixed-base manipulator. In almost all settings, SIREN achieves
lower rotation, translation, and scale errors compared to all baselines, especially in the quadruped
mapping task, where SIREN achieves about 90x lower rotation error, 300x lower translation error,
and 44x lower scale errors.

2 Related Work

Semantic Radiance Fields. Large vision-language models, e.g., CLIP [11] and DINO [12, 13]
have demonstrated the effectiveness of large-scale pretraining in learning robust visual and language
features, enabling object detection [14, 15], object segmentation [16, 17], and image captioning
[18, 19]. Prior work has examined grounding the 2D image-language features from vision-language
foundation models in 3D radiance fields. CLIP-NeRF [20], DFF [21], and LERF [22] train NeRFs
with CLIP image-language features, enabling open-vocabulary object segmentation and scene-editing.
Similarly, subsequent work has enabled distillation of semantic features into GSplats [23, 24], with
similar open-vocabulary object segmentation quality, albeit at much faster rendering rates [25].
Moreover, prior work has leveraged semantic radiance fields to enable GSplat-based world models
[26] and open-vocabulary robotic manipulation in NeRFs [2, 5] and GSplat environments [6, 27].
In this work, we leverage semantic radiance fields for registration of 3D maps, which has not been
explored in prior work, to the best of our knowledge.

Registration of Radiance Fields. Training large-scale radiance fields is often infeasible, due
to computational resource constraints. Consequently, Nerf2nerf [28] aligns individually-trained
NeRFs with different frames into a shared reference frame, by extracting the geometry of the scene
from the NeRF as a surface field. Nerf2nerf requires human annotation of keypoints within each
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NeRF for registration, posing a practical challenge. Similarly, the NeRF registration methods in
[29, 30] computes spatial features of NeRFs using learned feature descriptors 3D primitives and
subsequently estimates the transformation between the source and target NeRFs using the Kabsch-
Umeyama algorithm [31] or RANSAC. More recent work has explored the registration of GSplats.
LoopSplat [32] and PhotoReg [9] compute the optimal transformation between GSplat maps by
minimizing the rendering loss but require access to the set of camera poses (keyframes) of each
GSplat. In contrast, GaussReg [8] computes a coarse transformation between two GS-maps using a
geometric transformer [33], which is refined with a 2D convolutional neural network augmented with
a geometric transformer, without access to the camera poses. In contrast to these existing methods,
SIREN leverages the semantics inherent to GSplat maps to identify regions of overlap and to coarsely
align GSplat maps, eliminating the need for access to camera poses or images. Moreover, unlike
GaussReg, SIREN does not require a separate training procedure for the learned CNN and geometric
transformer models. We povide additional related work in Appendix A.

3 Robust Multi-Robot GSplat Map Registration

At its core, SIREN leverages open-vocabulary semantics within a principled optimization-based
framework to enable the robust registration of multi-robot GSplat maps, via: (i) semantic feature
extraction and matching, (ii) coarse Gaussian-to-Gaussian geometric registration, and (iii) Fine
photometric registration, illustrated in Figure 2. Here, for simplicity, we discuss the registration
pipeline in the problem setting with two multi-robot maps, where we seek to register a source GSplat
map to a target GSplat map. However, the discussion applies to the registration of multiple local
multi-robot maps.

First, SIREN identifies corresponding pairs of Gaussians in a pair of GSplat maps by examining the
similarity between the semantic features of the ellipsoids. Subsequently, given the set of corresponding
Gaussians, SIREN solves a Gaussian-to-Gaussian optimization problem to compute the optimal
transformation aligning the pair of multi-robot maps with a robust objective function, which leverages
the semantic similarity between each pair of ellipsoids to guard against the impacts of outliers. Lastly,
SIREN harnesses the novel-view synthesis capabilities of Gaussian Splatting to render candidate
images for image-to-image registration, enabling fine registration of both maps via a structure-from-
motion-based approach. In this stage, SIREN utilizes image-level semantic features to identify pairs
of corresponding images, critical to the robust matching of local features such as corners, edges, and
blobs between the images.

Semantics Extraction and Matching
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Figure 2: SIREN consists of three steps: (i) semantic feature extraction and matching of Gaussians
across the local maps, (ii) coarse Gaussian-to-Gaussian registration for coarsely aligning the local
maps, (iii) fine photometric registration for high-accuracy fusion of the local maps, through image-to-
image registration and bundle adjustment. Here, SIREN identifies a microwave in a kitchen scene
in both maps, extracts the Gaussians corresponding to the microwave, aligns these Gaussians, and
subsequently refines the transformation.
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3.1 Semantic Feature Extraction and Matching

Noting that semantics underpin SIREN, we begin with a discussion of the semantic distillation
procedure utilized by SIREN in grounding 2D semantic information from the vision-language model
in GSplat maps, where we associate semantic embeddings with each ellipsoid in the GSplat map.

Semantic Gaussian Splatting. Existing methods for training semantic GSplats generally train
auxiliary models, e.g., autoencoders or CNNs, for dimensionality reduction of the semantic features
from vision-language models to compute lower-dimensional semantic features, which are distilled into
the GSplat [23, 24]. These methods require relatively significant computation time and GPU memory,
which we seek to avoid in SIREN (see [25] for a discussion of these limitation). Consequently, we
take a different approach to semantic distillation. In SIREN, alongside the GSplat, we simultaneously
train a semantic field ψ : R3 7→ Rd, which maps 3D points to d-dimensional semantic features,
where d is determined by the vision-language foundation model, e.g., d = 512 or 1024 in CLIP. We
parameterize ψ with a multi-resolution neural hashgrid, using the loss function:

L = Lgs + γ
∑
I∈D

∥∥∥If − Îf∥∥∥2
F
− β

∑
I∈D

ϕ(If , Îf ), (1)

where If ∈ RW×H×d and Îf ∈ RW×H×d represent the ground-truth and predicted semantic feature
maps associated with each image in the training dataset D, γ and β represent relative weight terms,
and ϕ represents the cosine-similarity function between each semantic feature in If and Îf . We
provide additional details on the SIREN’s semantic Gaussian Splatting in Appendix C.

Feature Extraction. In the feature extraction and matching step, SIREN identifies feature-rich areas
of the scene via semantic localization, to improve the robustness of the subsequent optimization-based
registration steps, as the feasibility and convergence of the optimization problems significantly depend
on the presence of informative features. Given a trained semantic GSplat, we augment each Gaussian
with a semantic attribute, computed by querying the semantic field ψ at the mean µ of each Gaussian.
Subsequently, from a set of open-vocabulary queries (e.g., generated by an image-tagging model
[34]), we compute the semantic relevancy score between each Gaussian and the natural-language
query by taking the pairwise softmax over the cosine-similarity between the semantic feature of
each Gaussian and the semantic embedding associated with the text query and the cosine-similarity
between the semantic feature of each Gaussian and the semantic embedding associated with a generic
or null text query (i.e., a text query for a generic object or an object a user does not want to localize)
[22]. Depending on the quality of the local multi-robot maps, SIREN post-processes the resulting
set of Gaussians to either inflate the set by incorporating neighboring Gaussians geometrically or
semantically, or deflate the set by removing (statistical) outliers.

Feature Matching. Given the set of extracted Gaussians for each map, we match Gaussians from
the source GSplat map to the target GSplat map, resulting in a set of correspondences E where
(i, j) ∈ E indicates that Gaussian i in the source GSplat map corresponds to Gaussian j in target
GSplat map. To identify the candidate matches in E , we compute the cosine-similarity between the
semantic embeddings of the Gaussians in both maps, matching the Gaussians in the submaps to a
random set of M Gaussians in the other map, with uniform sampling or informed sampling with
probability proportional to the cosine-similarity values. For computational reasons, this operation can
be performed using efficient data structures such as KD-trees. Moreover, the matching process can be
augmented with geometric information, by selecting candidate matches using geometric descriptors,
such as the Fast Point Feature Histograms (FPFH) descriptors [35]. We denote the set of Gaussians
in the source map present in E by P and the set of Gaussians in the target map present in E by Q.

3.2 Coarse Gaussian-to-Gaussian Registration

From the matched Gaussians, SIREN computes an initial non-rigid transformation, consisting of a
scale sc ∈ R, a rotation matrix R ∈ SO(3), and a translation vector t ∈ R3, aligning the Gaussians
in the source and target GSplat maps. Since computing this transformation using all the Gaussians is
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intractable in general, we solve for this transformation using the Gaussians in P and Q, a feature-
dense, much smaller set of Gaussians, a design choice that not only reduces the computational cost,
but also improves the feasibility and convergence properties of the resulting optimization problem.
Specifically, we formulate the coarse Gaussian-to-Gaussian registration problem as an optimization
problem over the transformation parameters, given by:

minimize
sc∈R++,R∈SO(3),t∈R3

1

2

∑
(i,j)∈E

wij

(
∥scRpi + t− qj∥22 +

∥∥s2cRΣpiR
T − Σqj

∥∥2
F

)
, (2)

where pi ∈ R3 denotes the mean of Gaussian i in the source map, qj ∈ R3 denotes the mean of
Gaussian j in the target map, and Σpi and Σqj denote the covariance of Gaussian i in the source map
and Gaussian j in the target map, respectively. We solve this problem in closed-form (described in
Appendix D), with:

R⋆
c = UcΘcV

⊤
c , s

⋆
c =

trace(ΘcΣ)

trace
(
WP̌⊤P̌ +

∑
(i,j)∈E wijȞ⊤

pi
Ȟpi

) , t⋆c = µ̃Q − s⋆cR⋆µ̃P . (3)

Although the resulting solution is optimal for the problem in (4), the solution of (4) might not
be optimal for the registration of the two sets of Gaussians, i.e., P and Q, given that C might
contain spurious correspondences. To improve the robustness of SIREN to spurious correspondences,
we utilize RANSAC [36] when solving the optimization problem in (4). With RANSAC, we
iteratively update the correspondences in C to remove false correspondences and compute an optimal
transformation associated with the resulting set of correspondences.

3.3 Fine Photometric Registration

Coarse registration fails to leverage the highly-informative visual features inherent in the GSplat
maps, effectively limiting the accuracy of the estimated transformation. To overcome this limitation,
SIREN generates photorealistic images from each submap and optimizes over the resulting set of
rendered images to compute a transformation consistent with the rendered images from both submaps.
The fine photometric registration procedure employs a lightweight structure-from-motion framework
to improve registration fidelity without expensive computation costs. This procedure consists of the
following steps: (i) image generation, where we exploit novel-view synthesis in Gaussian Splatting
to render images and compute corresponding poses in both maps with semantic image filtering; (ii)
image registration and triangulation, using learned feature extractors; and (iii) bundle adjustment,
which we solve approximately in closed-form. We describe this procedure further in Appendix E.

4 Experiments

We examine the performance of SIREN in comparison to existing registration methods for Gaussian
Splatting and point clouds. Specifically, we compare two variants of SIREN—i.e., SIREN-NR, which
solves the optimization problem (4) in closed-form without RANSAC, and SIREN-R, which utilizes
RANSAC for coarse registration—to state-of-the-art GSplat registration methods GaussReg [8] and
PhotoReg [9], in addition to RANSAC-based global registration (RANSAC-GR) [36, 37], Fast Global
Registration (FGR) [38], and variants of the Iterative Closest Point (ICP) [39, 40]. We do not compare
against Nerf2Nerf [28] because it requires a volumetric density field, which is unavailable in GSplats,
and further requires human annotation of keypoints, violating the assumptions of our work. Likewise,
LoopSplat [32] solves the full SLAM problem which is outside the scope of our paper. We evaluate
each method not only on standard benchmark datasets for radiance fields, but also on real-world data
collected by heterogeneous robot platforms, including a quadruped, drone, and manipulator (in the
case of SIREN). In all our experiments, we only require the trained GSplat models as input; however,
some of the baselines require access to the set of camera poses, which we provide when evaluating
these methods. We ablate the different components of SIREN, quantifying the relative improvements
in performance, and examine the gains in visual fidelity afforded by finetuning the fused model.
Further, we demonstrate SIREN in collaborative multi-robot mapping, where the mapping task cannot
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be accomplished by a single robot, necessitating mapping with multiple robots for task success. We
provide additional results and discussion in Appendix F.

4.1 Mip-NeRF360 Dataset

We utilize the Playroom, Truck, and Room scenes in the Mip-NeRF360 Dataset, which were all
collected in realistic settings with natural lighting effects. While the Playroom and Room scenes were
captured indoors, the Truck scene was captured outdoors. We split the datasets into two subsets with
varying overlap. Specifically, the first subset of the Truck scene captures the left side of the truck,
while the second subset captures the right side of the truck. The only overlap between both subsets
occurs at the front and rear of the truck. We split the Room scene into two subsets following the
same procedure. In the Playroom scene, we allow for greater overlap, with the density of images per
subregion of the scene varying between both subsets. We train independent GSplat maps for each
scene-subset pair.

Geometric Evaluation. In Table 1, we report the geometric errors of each registration method across
the three scenes. SIREN-R, our method, achieves the lowest rotation and translation errors in two of
the three scenes (Playroom and Truck): with about 1.14x to 8.89x lower rotation errors and about 6x
to 46x lower translation errors compared to the baseline methods. Meanwhile, in the Room scene,
SIREN-NR achieves the lowest translation and scale error, with SIREN-R achieving the second-best
performance on these metrics. In contrast to the baselines, SIREN leverages the semantic features
in the submaps to identify accurate matches and optimize the relative transformation between the
submaps, even in feature-sparse scenes. For example, whereas the baselines suffer a significant
degradation in performance of the baselines in the Truck scene, which contains the smallest number of
informative features, SIREN still computes a high-fidelity fused map. Moreover, estimating accurate
scale and translation transformation parameters is particularly challenging in the presence of outliers.
SIREN mitigates this challenge by identifying and removing outliers.

Table 1: Geometric performance of the registration algorithms on the Mip-NeRF360 dataset (see
Section F for a description of the metrics).

Playroom Truck Room
Methods RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓
PhotoReg [9] 6.036 18806 841.3 2177 177.3 2856 444.0 1814 0.161 4983 452.7 1409
GaussReg [8] 0.766 55.50 0.364 15.06 21.10 316.3 16.76 5.174 7.464 628.3 91.97 6.932
RANSAC-GR [36, 37] 4.835 56.22 17.85 0.996 46.72 2642 13.64 2.569 8.139 194.7 152.5 0.517
FGR [38] 2.988 18.83 14.37 0.887 3.778 2231 79.45 3.480 4.869 265.6 219.6 0.511
ICP [39] 2.362 19.11 14.37 2.127 3.672 2232 79.45 3.805 5.154 266.1 219.6 1.579
Colored-ICP [40] 0.194 12.28 14.37 3.951 4.043 2250 79.45 6.392 2.256 232.7 219.6 3.815
SIREN-NR [Ours] 0.348 4.860 0.282 41.16 0.511 8.07 9.581 53.42 0.381 2.648 1.016 40.24
SIREN-R [Ours] 0.170 1.933 0.170 39.73 0.413 6.845 2.548 52.47 0.237 3.289 2.673 39.71

Photometric Evaluation. Now, we examine the photometric performance of the GSplat registration
methods reported in Table 2. SIREN-R achieves the best photometric performance in the Playroom
scene. Similarly, in the Room scene, SIREN-NR achieves the best photometric performance across
all metrics, followed by SIREN-R. These findings are consistent with the results in Table 1. Note that
the coarse and fine registration procedures enable SIREN to construct highly-accurate fused maps
that capture photorealistic details. In Figure 3, we show the rendered images from the fused GSplat
maps generated by the registration methods from different viewpoints compared to the ground-truth
images. We visualize a pair of images from the Playroom, Truck, and Room scenes, restricting our
visualizations to PhotoReg, GaussReg, Colored-ICP, and SIREN-R due to space considerations. In
the Playroom scene, PhotoReg fails to sufficiently register the individual maps to obtain photorealistic
renderings, while other methods generate high-fidelity renderings. However, unlike SIREN, the fused
maps in GaussReg and Colored-ICP are not accurately aligned, highlighted by the inset images.
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Table 2: Photometric performance of registration algorithms for GSplat maps from the Mip-NeRF360
dataset.

Playroom Truck Room
Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhotoReg [9] 11.5 ± 2.3 0.68 ± 0.11 0.67 ± 0.12 10.6 ± 0.9 0.39 ± 0.07 0.72 ± 0.08 10.2 ± 1.2 0.46 ± 0.07 0.78 ± 0.04
GaussReg [8] 23.7 ± 3.3 0.86 ± 0.06 0.22 ± 0.08 13.4 ± 1.9 0.54 ± 0.12 0.53 ± 0.13 13.4 ± 3.6 0.61 ± 0.11 0.55 ± 0.15
RANSAC-GR [36, 37] 17.9 ± 3.2 0.77 ± 0.09 0.37 ± 0.09 18.9 ± 7.0 0.66 ± 0.24 0.32 ± 0.22 14.2 ± 2.4 0.66 ± 0.09 0.46 ± 0.11
FGR [38] 22.2 ± 3.2 0.85 ± 0.06 0.24 ± 0.08 13.0 ± 2.6 0.57 ± 0.19 0.43 ± 0.20 17.2 ± 2.3 0.77 ± 0.08 0.33 ± 0.11
ICP [39] 22.7 ± 3.3 0.85 ± 0.06 0.24 ± 0.08 12.9 ± 2.6 0.57 ± 0.19 0.43 ± 0.20 16.8 ± 2.2 0.76 ± 0.09 0.35 ± 0.11
Colored-ICP [40] 26.2 ± 3.1 0.89 ± 0.04 0.17 ± 0.06 13.4 ± 2.4 0.58 ± 0.19 0.40 ± 0.18 15.4 ± 2.1 0.71 ± 0.10 0.41 ± 0.13
SIREN-NR [Ours] 26.3 ± 3.1 0.87 ± 0.05 0.17 ± 0.06 15.4 ± 1.7 0.52 ± 0.12 0.35 ± 0.05 24.8 ± 3.3 0.83 ± 0.04 0.22 ± 0.06
SIREN-R [Ours] 28.3 ± 2.9 0.90 ± 0.04 0.15 ± 0.06 16.4 ± 2.4 0.57 ± 0.13 0.31 ± 0.07 24.1 ± 3.1 0.82 ± 0.05 0.23 ± 0.06
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Figure 3: Rendered images from the fused GSplat maps of the Playroom, Truck, and Room scenes.
Unlike the baselines, SIREN generates high-fidelity fused GSplat maps, evidenced by the precise
geometric detail in the images, visible in the regions indicated by the green squares. Inaccurate
registration of GSplat maps generally result in artifacts in the rendered images.

4.2 Mobile-Robot Mapping

Here, we utilize a quadruped and a drone to map three environments, depicted in Figure 4. The
quadruped maps the Kitchen and Workshop environments, while the drone maps an Apartment
scene, with multiple partitioned room-like areas. The robots create submaps in each environment
individually, containing different regions of the scene. The submaps in the Kitchen and Workshop
scenes have minimal overlap, while the submaps in the Apartment scene have greater overlap. Since
each submap is trained independently in different reference frames, fusing the submaps requires
registration of the maps. Here, we examine the performance of GaussReg, PhotoReg, and two variants
of SIREN: SIREN-NR and SIREN-R, in registering the submaps in each scene to obtain a composite
map of the entire scene.
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Kitchen Workshop Apartment

Figure 4: Stillshots of a quadruped mapping different areas of a kitchen and workshop and a drone
mapping an apartment-like scene. Each robot trains independent GSplat submaps of the areas it
mapped. The submaps of each scene are registered to obtain a composite map covering the entirety
of the scene.

Geometric Performance. Table 3 summarizes the geometric errors of each algorithm, showing
that SIREN achieves the best geometric performance across all scenes, with the top-two-performing
methods being the variants of SIREN. Specifically, in the Kitchen scene, SIREN-NR achieves the
lowest rotation, translation, and scale errors by a factor of about 160x, 465x, and 488x, respectively,
compared to the best-performing baseline. The performance of SIREN-R closely follows that of
SIREN-NR. Moreover, in the Workshop and Apartment scenes, SIREN achieves the lowest rotation,
translation, and scale errors. These results demonstrate the superior performance of SIREN in real-
world robot mapping applications. Further, GaussReg requires the least computation time across all
scenes, while PhotoReg requires the greatest computation time. Although slower than GaussReg,
SIREN requires much lower computation times compared to PhotoReg.

Table 3: Geometric performance of GSplat registration algorithms in mobile-robot mapping.

Kitchen Workshop Apartment
Methods RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓
PhotoReg [9] 40.49 2350 413.37 1042 140.5 10052 4310 934.2 24.09 4433 260.2 801.0
GaussReg [8] 40.89 1477 171.8 11.33 55.66 9531 4305 5.491 3.114 102.6 13.59 5.4983
SIREN-NR [Ours] 0.253 3.173 0.352 59.22 0.518 11.77 1.453 67.98 0.148 1.758 0.605 35.91
SIREN-R [Ours] 0.430 4.795 3.849 56.14 0.134 7.400 10.88 55.16 0.119 1.495 0.102 34.22

Photometric Performance. In line with the geometric results, SIREN outperforms all the baseline
methods, as reported in Table 4. While SIREN-R achieves the best photometric scores in the Workshop
scene, SIREN-NR attains the best performance in the Kitchen scene, followed by SIREN-R. In the
Apartment scene, SIREN-R and SIREN-NR achieve the best photometric results. Further, GaussReg
outperforms PhotoReg in all scenes.

Table 4: Photometric performance of GSplat registration algorithms for mobile-robot mapping.

Kitchen Workshop Apartment
Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
PhotoReg [9] 0.75 ± 0.05 11.6 ± 1.3 0.53 ± 0.06 0.78 ± 0.08 11.3 ± 1.3 0.48 ± 0.05 13.4 ± 1.5 0.61 ± 0.05 0.75 ± 0.04
GaussReg [8] 14.1 ± 1.9 0.62 ± 0.06 0.60 ± 0.11 17.0 ± 2.8 0.61 ± 0.05 0.53 ± 0.11 14.3 ± 1.6 0.62 ± 0.05 0.62 ± 0.04
SIREN-NR [Ours] 19.3 ± 3.2 0.63 ± 0.05 0.40 ± 0.09 19.9 ± 2.5 0.60 ± 0.04 0.40 ± 0.08 15.3 ± 1.5 0.64 ± 0.04 0.55 ± 0.03
SIREN-R [Ours] 18.8 ± 2.8 0.62 ± 0.05 0.41 ± 0.08 20.3 ± 2.7 0.62 ± 0.04 0.38 ± 0.09 15.3 ± 1.4 0.63 ± 0.04 0.55 ± 0.03

5 Conclusion

We present SIREN, a semantics-grounded registration algorithm for multi-robot GSplat maps that
neither requires access to camera poses/images nor initialization of inter-map relative transforms.
SIREN harnesses the robustness of semantics to: (i) identify candidate matches between Gaussians
across the input maps robustly, (ii) compute a coarse transformation between the submaps from a
Gaussian-to-Gaussian registration problem with outlier rejection, and (iii) refine the coarse registration
result for high-accuracy fusion of local submaps into a high-fidelity global map. We demonstrate
the versatility of SIREN across maps constructed by robots of different embodiments, including a
quadruped, drone, and manipulator, highlighting the superior performance of SIREN compared to
GSplat registration algorithms and classical point-cloud registration methods.

8



6 Limitations and Future Work

Semantic GSplats. Our registration algorithm relies on semantics for robust, initialization-free
registration, and thus requires that the input maps have embedded semantic codes. A GSplat map
may lack semantic information if the map was not trained with semantics or if the scene lacks any
semantically-relevant features, which would be a tail event in practical situations. We can post-train
GSplats to embed semantics in 3D into the map or leverage 2D vision foundation models to directly
extract semantic information from RGB images rendered from the GSplat by back-projecting 2D
pixels into the 3D world.

Symmetric or Feature-sparse Scenes. Moreover, the feature extraction step might fail in areas of
the map with particularly few semantic features for the matching process, e.g., a featureless wall.
Likewise, in scenarios where each map contains many similar features, e.g., many copies of the same
object, the feature matching procedure might generate many spurious (false) matches. Although
the coarse and fine registration procedures are robust to outliers, these components would fail with
too many outliers. The exact number of outliers depends on the application and the influence of the
outliers on the estimated transformation. We emphasize that these limitations are also faced by other
existing map-registration methods. To minimize these risks, our method utilizes both semantic and
geometric features in the feature extraction and matching procedures, when applicable.

Floaters. Radiance fields are prone to generate floaters in areas of the scene with little to no
supervision, which can degrade the fidelity of the map. The resulting floaters are retained in the fused
map, which could ultimately reduce the accuracy of the map. However, by finetuning the fused map
with synthetic data, i.e., images rendered from the map as opposed to real-world images, floaters in
the map can be removed for high-fidelity mapping.
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Appendix A Additional Related Work

Radiance Fields. Neural radiance fields (NeRFs) [7] significantly outperform traditional 3D scene
reconstruction methods, such as those based on point clouds and voxels, generating photorealistic
renderings, which capture intricate levels of geometric and visual details. NeRFs represent a scene
using volumetric density and color fields over a 5D input space, comprising a 3D location and a
2D viewing direction. NeRFs parameterize each field using multi-layer perceptrons (MLPs) trained
through gradient descent. Although NeRFs achieve remarkable high-fidelity reconstructions, NeRFs
are limited by significant training time and slow rendering speeds [41, 42, 43]. Gaussian Splatting [1]
was introduced to address these limitations. GSplats represent the scene using ellipsoidal primitives,
each with a mean and covariance (spatial and geometric parameters) and opacity and spherical
harmonic parameters (visual-related parameters). GSplats generate high-fidelity scene renderings at
real-time speeds with generally faster training times compared to NeRFs. Recent work has improved
the geometric accuracy of GSplats [44, 45], in addition to eliminating high-frequency artifacts
[46, 47].

Point Cloud Registration. The Iterative Closest Point (ICP) algorithm [48] has proven to be notably
effective for point cloud registration, despite its simplicity. However, ICP generally requires a good
initial solution, which is often computed using global registration techniques, e.g., RANSAC [36, 37]
and FGR [38]. Many variants of ICP have been introduced to improve its robustness [49, 39, 50, 40],
leveraging the local color and geometry of the constituent points for faster convergence. More
recently, learning-based methods [51, 52, 33] have emerged for point cloud registration, utilizing
convolutional neural networks (CNNs) and transformers for feature extraction and feature matching
to compute the correspondences between points.

Appendix B Background

We provide a brief introduction to Gaussian Splatting. Gaussian Splatting represents non-empty space
in a scene using a set of ellipsoidal primitives, each parameterized by a mean µ ∈ R3, a covariance
Σ ∈ R3×3 defined by a rotation matrix H ∈ SO(3) and a diagonal scaling matrix Λ ∈ R3×3, an
opacity parameter α ∈ [0, 1], and spherical harmonic parameters. These attributes are optimized
via gradient descent on the loss function: Lgs = (1− λ)

∑
I∈D

∥∥∥I − Î∥∥∥
1
+ λLD−SSIM, over the

training dataset D, where λ ∈ (0, 1) represents the relative weight term and LD−SSIM represents
the differentiable structural similarity loss index measure. The first term in the rendering loss
represents the photometric loss between the ground-truth image and the rendered image, generated
via a tile-based rasterization procedure, given a camera pose.

Appendix C Semantic Gaussian Splatting

As demonstrated by prior work [25], existing semantic Splatting methods [23, 24] are inefficient
to train, requiring significant training time and memory. To address this challenge, we design a
neural-based semantic distillation procedure, described in the main paper. To predict the semantic
feature map associated with each training image, we leverage a key insight of Gaussian Splatting:
Gaussian Splatting provides highly-accurate depth estimates, even without any depth supervision
[45]. This key insight enables us to avoid training proposal networks (as required in NeRFs) that
generate samples of the termination points of rays associated with each pixel in the rendered image of
a camera, ultimately enabling SIREN to avoid significant compute and memory overhead associated
with training proposal networks. As such, given a camera pose, we back-project points from the
image plane to the 3D world and pass these points into ψ to predict the semantic feature associated
with these points. We augment each pixel in the image plane with its semantic features to obtain the
semantic feature map. Training the GSplat with the semantic component does not adversely impact
the photometric performance of the GSplat, enabling us to utilize the same hyperparameters and
adaptive densification procedure used in the original GSplat work [1].
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Appendix D Coarse Gaussian-to-Gaussian Registration

The coarse Gaussian-to-Gaussian registration problem is given by:

minimize
sc∈R++,R∈SO(3),t∈R3

1

2

∑
(i,j)∈E

wij

(
∥scRpi + t− qj∥22

+
∥∥scRHpiΛpi −HqjΛqj

∥∥2
F

)
,

(4)

which can be solved efficiently in closed-form, which we show in Appendix D, with:

R⋆
c = UcΘcV

⊤
c , (5)

s⋆c =
trace(ΘcΣ)

trace
(
WP̌⊤P̌ +

∑
(i,j)∈E wijȞ⊤

pi
Ȟpi

) , (6)

t⋆c = µ̃Q − s⋆cR⋆µ̃P , (7)

where UcΣcV
⊤
c = Q̌WP̌⊤ +

∑
(i,j)∈E wijȞqj Ȟ

⊤
pi

, computed via the singular value decomposition
(SVD), and Θc = diag(1, 1,det(UcV

⊤
c )). We define µ̃P and µ̃Q as the weighted average of the

means of the Gaussians in P and Q, with weights wij for Gaussian i in P and Gaussian j in Q.
Further, P̌ ∈ R3×N and Q̌ ∈ R3×N represent the zero-centered Gaussians in P and Q, respectively,
with the ith column of P̌ given by P̌i = pi − µ̃P and similarly for the jth column of Q̌. We
introduce the terms Ȟpi

∈ R3×3 and Ȟqj ∈ R3×3 to simplify notation, with: Ȟpi
= Hpi

Λpi
and

Ȟqj = HqjΛqj . In addition, W ∈ RN×N denotes the diagonal weight matrix, Wkk = wk, with
wk = wij , ∀k = (i, j) ∈ E . We discuss the derivation of the closed-form solution to (4). Let the
objective function of (4) be denoted by J . From the first-order optimality conditions:

∇tJ =
∑

(i,j)∈E

(wijscRpi + t− qj) = 0, (8)

yielding the optimal translation:
t⋆c = µ̃Q − s⋆cR⋆µ̃P , (9)

where µ̃P and µ̃Q denote the weighted average of the means of the Gaussians in P and Q, with
weights wij for Gaussian i in P and Gaussian j in Q. By substituting the optimal value of t (9) in
(4), we obtain the following optimization problem over sc and R:

minimize
sc∈R++,R∈SO(3)

1

2

∥∥∥(scRP̌ − Q̌)W
1
2

∥∥∥2
F
+

1

2

∑
(i,j)∈E

wij

∥∥scRȞpi − Ȟqj

∥∥2
F
, (10)

where P̌ ∈ R3×N and Q̌ ∈ R3×N represent the zero-centered Gaussians in P and Q, respec-
tively, with the ith column of P̌ given by P̌i = pi − µ̃P and similarly for the jth column of Q̌,
and Ȟpi

= Hpi
Λpi

and Ȟqj = HqjΛqj . Lastly, W ∈ RN×N denotes the diagonal weight matrix,
Wkk = wk, with wk = wij , ∀k = (i, j) ∈ E . Now, we can reformulate (10) as a trace-minimization
problem, by leveraging the relation: ∥A∥2F = trace(A⊤A) for any real-valued matrix A ∈ Rm×n.
Reformulating the problem as a trace-minimization problem enables us to decompose the norm-
minimization problem (10) into a nested pair of subproblems: an outer subproblem over sc and an
inner subproblem over R. We can simplify the inner subproblem into the form:

minimize
R∈SO(3)

− trace

R⊤

Q̌WP̌⊤ +
∑

(i,j)∈E

wijȞqj Ȟ
⊤
pi

 , (11)

which affords a closed-form optimal solution, with

R⋆
c = UcΘcV

⊤
c , (12)

where UcΣcV
⊤
c = Q̌WP̌⊤ +

∑
(i,j)∈E wijȞqj Ȟ

⊤
pi

, computed via the singular value decomposi-
tion (SVD), and Θc = diag(1, 1,det(UcV

⊤
c )). Using the first-order optimality condition, we can
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compute the optimal scale after computing the optimal rotation from the outer subproblem given by:

minimize
sc∈R++

1

2
s2ctrace

WP̌⊤P̌ +
∑

(i,j)∈E

wijȞ
⊤
pi
Ȟpi


− sctrace

R⊤

Q̌WP̌⊤ +
∑

(i,j)∈E

wijȞqj Ȟ
⊤
pi

 ,

(13)

yielding the optimal solution:

s⋆c =
trace(ΘcΣ)

trace
(
WP̌⊤P̌ +

∑
(i,j)∈E wijȞ⊤

pi
Ȟpi

) . (14)

For brevity, we omit further analysis of the optimality of the solution and refer interested readers to
[31] for the proof of a related problem, which applies to the problem considered in this work.

Appendix E Fine Photometric Registration

Image Generation and Matching. The fine registration procedure begins with the identification
of a set of images with common features across the source and target maps, constituting arguably
the most important step of the fine registration procedure. In particular, the feasibility of the fine
registration procedure hinges on matching corresponding features across all images in the set. In
general, identifying good candidate images for the matching process is challenging, especially without
any prior knowledge of the region of overlap between the source and target maps. To address this
challenge, we leverage the semantic submap extracted in the first stage of SIREN to identify a region
of overlap between the source and target maps. Subsequently, we exploit novel-view synthesis in
Gaussian Splatting to render images at corresponding poses in both maps, by transforming the camera
pose in one map to the associated camera pose in the other map, utilizing the coarse registration
result to compute the corresponding pose. With this approach, not only do the resulting images
contain common features from the overlapping region, the images also contain a dense set of features,
associated with the semantic submap. However, the pair of rendered images may not contain sufficient
matches, which could degrade the accuracy of the fine registration procedure. To mitigate this risk,
we harness image semantics in vision foundation models to evaluate the similarity between each
pair of rendered images, retaining only sufficiently similar images. In this work, we use CLIP along
with the cosine-similarity metric, given that the image embeddings of CLIP were trained with a
cosine-similarity loss function; however, other vision foundation can also be used, e.g., [12].

Image Registration and Triangulation. Following the generation of corresponding images, we
extract features from all images using the learned feature extractors NetVLad [53] for global image-
level descriptors and SuperPoint [54] for local features, which we found to be more robust compared
to classical feature extractors, e.g., SIFT [55]. Subsequently, we match features across all images
using [54]. From corresponding features, we estimate the relative pose of the camera and the estimated
3D locations of the feature points via image registration and triangulation, yielding an initial estimate
of the camera pose associated with each image in a common reference frame.

Bundle Adjustment. The image registration step does not always provide high-accuracy camera pose
estimates. Hence, we refine the estimated camera poses via bundle adjustment, i.e., we optimize over
the camera pose and the 3D locations of the feature points jointly through non-linear optimization.
For brevity, we do not discuss the bundle adjustment problem in greater detail, noting its extensive
discussion in prior work, e.g., [56]. Although non-convex, the optimization problem can be solved
efficiently via iterative methods, such as the Levenberg-Marquardth method, which we employ in this
work. From the bundle adjustment optimization problem, we compute the camera poses associated
with each image in an arbitrary common frame B. Given the camera poses expressed in A and the
corresponding poses in the source and target maps, we can compute an optimal transformation for
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registering A to either the source frame (frame Bs) or the target frame (frame Bt) from the following
registration problem in SE(3):

minimize
sf∈R++,R∈SO(3),t∈R3

1

2

∑
(i,j)∈V

(
∥sfRai + t− bj∥22 +βij

∥∥RRci −Rdj

∥∥2
F

)
, (15)

where sf , R, and t denote the scale, rotation, and translation parameters, respectively, V denotes
the set of edges between the camera poses expressed in A and the corresponding poses in either the
source or target frame, with ai ∈ R3 and bj ∈ R3 denoting the origin of the camera in A and the
origin of the camera in the frame Bs or Bt, respectively, and Rai and Rbj denoting the associated
rotation matrices. We introduce the weight parameter βij ∈ R++, which determines the contribution
of the rotation-error component. In general, the optimization problem in (15) cannot be solved
in closed-form. Solving (15) generally requires an iterative optimization method, e.g., sequential
convex programming methods or Riemannian optimization methods. However, as βij approaches
zero, ∀(i, j) ∈ V , the optimal solution (15) approaches a limit point, with:

R⋆
f → UfΘfV

⊤
f , s

⋆
f →

trace(ΘfΣf )

trace
(
Ǎ⊤Ǎ

) , t⋆f → µB − s⋆fR⋆
fµA, (16)

where UfΣfV
⊤
f = B̌Ǎ⊤, Θf = diag(1, 1,det(UfV

⊤
f )), µA and µB denote the mean of the camera

origins in frames A and B, respectively, and the ith column of Ǎ ∈ R3×N and the jth column
of B̌ ∈ R3×N are given by ai − µA and bj − µB, respectively. The limit point follows from the
derivation in Section 3.2 and [31]. We can compose the pairwise transformations between frame
A and frames Bs and Bt to compute a transformation from Bs and Bt. We apply the resulting
transformation to the source map to express the source and target maps in a common frame and
subsequently merge the resulting maps to obtain a composite GSplat map. Following the registration
procedures, the composite map can be finetuned with new or existing data, which we explore in our
experiments in Appendix F.5. We summarize the procedures in SIREN in Algorithm 1.

Algorithm 1: SIREN: Multi-Robot Map Registration
Input: Local GSplat Maps G1, G2;
Output: Fused GSplat Map Gf ;
// Semantic Feature Extraction and Matching
Correspondence Set C ← GetCorrespondence(G1,G2);
// Coarse Registration
// Compute the Optimal Rotation
R⋆

c ← Procedure (5);
// Compute the Optimal Scale
s⋆c ← Procedure (6);
// Compute the Optimal Translation
t⋆c ← Procedure (7);
// Fine Registration
// Get Images
Ds ← Render(G1,G2, R⋆

c , s
⋆
c , t

⋆
c);

// Refine Transformation
(R⋆

f , s
⋆
f , t

⋆
f )← Procedure (16);

// Fuse Local Maps
Gf ← Fuse(G1,G2, R⋆

f , s
⋆
f , t

⋆
f );

Appendix F Experiments

We report the photometric performance of each registration method with the Mip-NeRF360 dataset
and the data collected by the robots in our experiments and provide further discussion of the exper-
imental results. In addition, we present ablations, examining the different components of SIREN.
Lastly, we explore finetuning the resulting composite maps for higher visual fidelity.
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Experimental Setup and Metrics. For the real-world robot data, we utilize the Unitree Go1
Quadruped and a Modal AI drone with an onboard camera and the Franka Panda manipulator with a
wrist camera to collect RGB images. In addition, we evaluate all methods on the real-world scenes in
the Mip-NeRF360 dataset [43], a state-of-the-art benchmark dataset for neural rendering. We train the
GSplat models using the original implementation provided by the authors of [1] for baselines which
require this pipeline and utilize Nerfstudio [57] for SIREN. We execute SIREN on a desktop computer
with a 24GB NVIDIA GeForce RTX 3090 GPU and the baselines on an H20 GPU after training the
GSplat maps for 30000 iterations. We note that in robotics, the geometric fidelity of robot’s map
is of significant importance for effective localization and collision avoidance. Hence, we compare
all methods in terms of the rotation error (RE) [deg.], translation error (TE), and scale error (SE)
[in non-metric units] attained by each method, in addition to the computation time (CT) [sec.]. We
can then compute the mean for each error metric in each dataset. RE represents the absolute relative
rotation angle between the estimated and ground-truth rotation matrices, i.e., the geodesic distance
between the estimated and ground-truth rotation matrices on the SO(3) manifold computed via the
trace function. SE and TE represent the ℓ2-distance between the estimated scale and translation and
the ground-truth scale and translation. Moreover, we examine the photometric quality of the fused
maps generated by each method, computing the peak signal-to-noise ratio (PSNR), the structural
similarity index measure (SSIM), and the learned perceptual image patch similarity (LPIPS), standard
metrics in the computer vision community for assessing visual fidelity. We provide color-coded results
for each metric with the red shade denoting the top-performing statistic, the yellow shade denoting the
second-best, and the green shade denoting the third-best. In all the registration methods, we do not
pre-process the individual submaps to remove floaters (i.e., non-existing geometry). Consequently,
floaters present in these submaps are retained in the fused map.

Specifying the Ground-Truth Transformation. In our evaluations, e.g., in the benchmark datasets,
we compute the camera poses over all the images in a common (global) frame using structure-from-
motion, for each dataset. Next, we partition the dataset into subsets with different level of overlap
and apply a random transformation (i.e., rotation, translation, and scaling) to the subset of the data
to create a local frame, capturing the broad range of differences in rotation, scaling, and translation
that robots might encounter in multi-robot mapping. These transformation parameters represent the
ground-truth transformation from the local frame to the global frame. By composing the ground-truth
transformations between the local and global frames, we compute the ground-truth source-to-target
transformation, i.e., from the local frame of the source submap to the local frame of the target submap.

F.1 Mip-NeRF360 Dataset

Geometric Evaluation. In the Room scene, PhotoReg achieves the lowest rotation error by a
factor of about 1.47x but also achieves the largest translation and scale errors. Based on the results
across all scenes, SIREN almost always consistently outperforms competing methods. From Table 1,
RANSAC-GR and FGR achieve the fastest computation times; however, RANSAC-GR and FGR do
not generally achieve consistently low geometric errors. Although SIREN is slower than the classical
point-cloud registration algorithms and GaussReg, SIREN generally outperforms these methods in
accuracy by significant margins. Moreover, about 40% to 50% of the total computation time of
SIREN is spent on the semantics extraction procedure. Hence, the total computation time can be
significantly improved by utilizing faster semantics distillation methods, e.g., [25].

In our geometric evaluations, we note that the scale errors of the baseline methods are quite high,
which we discuss here. The baseline methods essentially rely exclusively on geometric and visual
details in each map to compute a transformation between the maps. As a result, the baseline methods
are more likely to achieve higher scale errors when the maps lack a sufficiently high number of
distinct geometric and visual features. For example, the baseline methods achieve notably lower
scale errors when evaluated in the Playroom dataset, which contains many interesting visual features,
shown in Fig. 4. In contrast, the baseline methods have notably larger scale errors in the Truck dataset,
which contain objects with fewer colors and other interesting geometric detail. Further, the translation
parameter estimated by each method accounts for the scale and relative rotation between both maps.
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Photometric Evaluation. In the Truck scene, RANSAC-GR achieves the best mean PSNR and SSIM
scores. Although this finding may appear inconsistent with the geometric results presented in Table 1,
the high standard deviation of each of the scores achieved by RANSAC-GR (about 2x to 3x larger
than that of SIREN) suggests that the geometric and photometric performance metrics for this scene
might actually be consistent, indicating that the fused map generated by RANSAC-GR warrants
further examination. We provide rendered images from the fused map generated by RANSAC-GR
compared to the ground-truth images in Figure 5 to examine the registration results of RANSAC-GR.
From Figure 5, we note that RANSAC-GR fails to accurately register the left and right sides of the
truck. In fact, the left side of the truck is missing in the bottom panel associated with RANSAC-GR
in Figure 5. However, this failure mode is not fully captured by the mean score of the photometric
performance metrics, since the rendered images of the right side of the truck (shown in the top panel in
Figure 5) look quite similar to the corresponding ground-truth images. In conclusion, RANSAC-GR
does not accurately register the individual GSplat maps, despite achieving the highest mean PSNR
and SSIM scores in the Truck scene.

From Figure 3, the fused map in GaussReg and Colored-ICP contain duplicate objects due to inaccu-
rate registration of the individual maps. In contrast, SIREN-R provides greater accuracy. Likewise,
SIREN-R achieves the highest-fidelity rendering in the Truck scene with consistent geometry, whereas
Colored-ICP fails to register the left and right sides of the truck. Although GaussReg fuses both sides
of the truck, GaussReg fails to compute a high-accuracy transform, resulting in the artifacts visible in
Figure 3. Although PhotoReg registers the cargo bed of the truck in both maps, PhotoReg fails to
align the truck accurately in terms of the rotation transform, with the front end of the truck in one map
registered to the rear end of the truck in the other map. Finally, in the Room scene, whereas SIREN-R
generates high-fidelity rendered images, other methods fail to accurately register the individual maps.
In particular, Colored-ICP generates a fused map with duplicate objects, e.g., the piano and the table,
indicated by the green squares, while PhotoReg and GaussReg generate fused maps with notable
artifacts.

Ground-Truth RANSAC-GR

Right

Left

Figure 5: Although RANSAC-GR achieves the highest mean PSNR and SSIM scores and the lowest
LPIPS score in the Truck scene, RANSAC-GR does not accurately register the individual GSplat
maps. While the right side of the truck in the RANSAC-GR fused map looks similar to the ground-
truth image (shown in the top panel), the left side of the truck is missing (shown in the bottom panel).
The standard deviation of the PSNR, SSIM, and LPIPS scores achieved by RANSAC-GR reflects the
actual registration performance of the method.
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F.2 Mobile-Robot Mapping

Photometric Evaluation. From Figure 6, as highlighted by the green squares, SIREN-R generates
composite maps that are consistent with the ground-truth, unlike GaussReg and PhotoReg. The
fused maps generated by GaussReg and PhotoReg contain conspicuous artifacts due to inaccurate
registration of the individual maps created by the robots, especially in the Kitchen scene. PhotoReg
fails to sufficiently register the individual maps, resulting in blurry renderings, with few recognizable
features, e.g., in the Workshop scene. In the Apartment scene, the rendered images from GaussReg
contain duplicate objects, unlike those of SIREN-R, which have accurate geometric detail.

PhotoReg GaussReg SIREN-RGround-Truth
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Figure 6: Rendered images from the fused GSplat maps of the Kitchen, Workshop, and Apartment
scenes mapped by a quadruped and drone. Unlike other competing methods, SIREN generates fused
GSplat maps of high visual fidelity, e.g., in the regions indicated by the green squares.

Real-time Applicability. We emphasize that the current Python implementation of SIREN is not op-
timized for speed unlike the baselines (explaining its slower runtimes), e.g., ICP, FGR, and RANSAC
are all written in highly-optimized C++ code. Through code optimizations (e.g., code/model compila-
tion), we can achieve orders of magnitude speedup. Nevertheless, in multi-robot mapping, the map
fusion process is often performed at a much lower frequency than the local mapping process executed
by a robot. Hence, our method can be employed in real-time multi-robot mapping problems.
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F.3 Tabletop Mapping with Multiple Manipulators

We demonstrate the effectiveness of SIREN in tabletop robotics tasks with fixed-base manipulators,
which often require the robots to map the scene prior to the task, e.g., in manipulation [2, 6]. In
Figure 7, we provide an example with two Franka robots, each with a wrist camera. Due to the
limited workspace of each robot, visualized in Figure 7, mapping often requires the assistance of
a human-operator [6] or ad-hoc solutions such as hardware improvisation, e.g., using selfie sticks
[2]. By enabling the fusion of GSplat maps trained individually by each robot, SIREN effectively
eliminates these limitations. In other words, with SIREN, each robot can train a submap within its
reachable workspace and still recover the global map via registration with SIREN. In Figure 8, we
show the submaps trained by each robot. As expected, each robot has a high-fidelity submap within
the confines of its reachable workspace, evident in the first-two images in the left robot’s map and
the last-two images in the right’s robot map in Figure 8. In areas outside of its reachable workspace,
the robot’s map fails to represent the real world accurately, visible in the last-two images in the left
robot’s map and the first-two images in the right’s robot map. With SIREN, each robot obtains a
higher-fidelity map over a much broader region of the environment. However, floaters present in the
submaps can degrade the quality of the fused map in certain regions. To address this challenge, we
finetune the fused map for about 70.98 secs using images generated entirely from the GSplat maps,
i.e., we do not require any real-world data. We provide rendered images from the finetuned fused
map in Figure 8, showing near-perfect reconstruction of the global scene. We explore the finetuning
procedure in Appendix F.5.

Tabletop Task

𝒲! 𝒲"

Limited Workspace Multi-Robot Mapping

Figure 7: Tabletop robotics tasks, e.g., manipulation, generally require robots to map the scene prior
to completing the task. However, the limited workspace of each robot often demands assistance from
a human-operator or improvised hardware, e.g., selfie sticks. SIREN eliminates these challenges, via
registration of the local maps trained by each robot to construct a global map consistent with the
real-world.

F.4 Ablations

We examine the constituent registration steps in SIREN, namely: the coarse Gaussian-to-Gaussian and
fine photometric registration procedures, assessing the accuracy of the registration result generated
by each procedure. We denote the variant of SIREN with coarse registration performed without
RANSAC and fine registration by SIREN-CNR. Likewise, we denote the variant of SIREN with
coarse registration performed using RANSAC but without fine registration by SIREN-CR. We
compute the geometric and photometric performance metrics for each of these variants and report
the results in Table 5 and Table 6, respectively. We also report the performance of SIREN-NR and
SIREN-R from Table 1 and Table 2 for easy reference. From Table 5, we note that the fine registration
step in SIREN notably improves the rotation error to sub-degree errors, achieving about 2x smaller
translation errors and in some cases, 100x smaller translation errors. Likewise, the fine registration
step generally results in much smaller scale errors, although not necessarily in all cases, as reflected
in the Truck scene. Similarly, the variants of SIREN with fine registration (i.e., SIREN-NR and
SIREN-R) achieve notably higher photometric performance, especially in the Playroom and Room
scenes, reported in Table 6. In general, the coarse registration step brings corresponding objects in
both GSplat maps into close proximity in the fused map. However, the resulting fused map lacks
precise geometric detail, degrading its visual fidelity. After the coarse registration step, the fine
registration procedure refines the transformation parameters for precise alignment of the individual
maps, ultimately generating a photorealistic fused map.
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Figure 8: Rendered images of the local maps of a tabletop scene trained by two manipulators. The
maps provide high-fidelity reconstructions within the workspace of each robot, but fail to represent the
real-world in regions outside the workspace. SIREN fuses the local maps to generate a high-fidelity
global map consistent with the entirety of the scene, especially after finetuning on data rendered
directly from the GSplat to remove floaters, without any interaction with the real-world, as indicated
by the green squares.

Although SIREN-CR does not always outperform RANSAC-GR in Table 1, we observed empirically
that the performance of RANSAC-GR has a high variance, posing a challenge for the fine registration
step, which requires a sufficient number of corresponding features between rendered frames across
the individual maps to compute a solution. Moreover, ICP and its variants tend to converge to a
local optimum, close to the solution used for initialization. As a result, these methods generally
fail to provide a sufficiently good initialization for the fine registration procedure. The coarse
registration step in SIREN relies significantly on the semantics extracted from the map to overcome
these limitations, leveraging the inherent semantics to register corresponding objects at a sufficient
level of accuracy for fine registration.

Table 5: Geometric Performance: Ablation of the Coarse Gaussian-to-Gaussian and Fine Photometric
Registration in SIREN.

Playroom Truck Room
Methods RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓ RE ↓ TE ↓ SE ↓ CT ↓
SIREN-CNR 22.72 454.2 482.1 20.20 49.98 355.4 55.06 24.17 20.50 474.0 371.9 17.27
SIREN-CR 21.15 324.2 51.94 20.47 0.804 7.691 7.744 26.32 24.07 381.8 155.1 17.58
SIREN-NR 0.348 4.860 0.282 41.16 0.511 8.07 9.581 53.42 0.381 2.648 1.016 40.24
SIREN-R 0.170 1.933 0.170 39.73 0.413 6.845 2.548 52.47 0.237 3.289 2.673 39.71

To avoid any confusion, we emphasize that the ablations without a fine registration step are not
designed to outperform the baselines in this work. In particular, we emphasize that the baselines
in this paper are fine registration methods, e.g., Colored-ICP and ICP. Colored-ICP and ICP are
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Table 6: Photometric Performance: Ablation of the Coarse Gaussian-to-Gaussian and Fine Photomet-
ric Registration in SIREN.

Playroom Truck Room
Methods PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
SIREN-CNR 12.0 ± 3.2 0.67 ± 0.11 0.65 ± 0.17 11.4 ± 2.4 0.52 ± 0.11 0.63 ± 0.22 6.9 ± 5.9 0.72 ± 0.11 0.39 ± 0.15
SIREN-CR 13.7 ± 3.4 0.65 ± 0.14 0.58 ± 0.19 16.2 ± 2.2 0.56 ± 0.14 0.31 ± 0.07 11.7 ± 1.9 0.48 ± 0.12 0.64 ± 0.10
SIREN-NR 26.3 ± 3.1 0.87 ± 0.05 0.17 ± 0.06 15.4 ± 1.7 0.52 ± 0.12 0.35 ± 0.05 24.8 ± 3.3 0.83 ± 0.04 0.22 ± 0.06
SIREN-R 28.3 ± 2.9 0.90 ± 0.04 0.15 ± 0.06 16.4 ± 2.4 0.57 ± 0.13 0.31 ± 0.07 24.1 ± 3.1 0.82 ± 0.05 0.23 ± 0.06

first initialized using a RANSAC-based coarse registration method. Hence, Colored-ICP and ICP
generally outperform our coarse registration method, when they converge. Moreover, our implemen-
tation of the coarse registration procedure is very basic compared to the fully-featured open-source
implementations of Colored-ICP and ICP used in our work. For example, Colored-ICP and ICP
utilize a more robust implementation of RANSAC and more informative geometric features, such
as FPFH descriptors. Although we could integrate these robust code implementations into our
coarse registration method, we note that our fine registration method already provides robustness to
inaccurate transformations computed by our coarse registration method. We highlight that a more
appropriate comparison would be between Colored-ICP, ICP, and our fine registration method. In fact,
our experiments demonstrate that our fine registration method generally outperforms Colored-ICP
and ICP.

F.5 Finetuning

SIREN does not pre-process the local GSplat maps before registration of the maps, resulting in the
retention of floaters in the fused map whenever floaters exist in the local maps. Here, we examine
finetuning the fused map with rendered images from the local maps to remove visual artifacts, without
requiring access to the data used in the training the local GSplat maps, i.e., we do not require access
to the real-world camera images and poses. To finetune the fused map without access to the original
dataset, we select camera poses expressed in the local frames of the local GSplat maps (e.g., randomly
or via an informed approach) and render images from these maps at these camera poses. Subsequently,
we transform the set of camera poses from their associated local frames to the frame of the fused map
using the transformation parameters computed by SIREN. We construct a finetuning dataset from the
set of images and associated camera poses, which we use in finetuning the fused map.

In Table 7, we provide the photometric scores of the fused GSplat map from SIREN-R before and
after finetuning and the ground-truth GSplat map. We train the ground-truth GSplat map using the
combined training datasets used in training the local GSplat maps (i.e., the real-world camera images
and poses, not the set of rendered images generated from the local GSplat maps), representing the
ideal composite GSplat model. The computation time in Table 7 represents the total training time
for the ground-truth map and the total time used in finetuning the fused map. Table 7 indicates
that finetuning the fused map improves the PSNR, SSIM, and LPIPS scores compared to that of
the pre-finetuned map. Specifically, in less than 90 seconds, finetuning reduces the gap between
the photometric scores of the ground-truth map and the photometric scores of the fused map by
about 20% to 40%. The relative improvements provided by finetuning the fused map depend on
the finetuning data used, an area for future research. We provide rendered images from the fused
GSplat map computed by SIREN-R, before and after finetuning, and the corresponding images in
the ground-truth fused map in Figure 9. Across all three scenes, finetuning the fused map removes
floaters and other artifacts, e.g., in the regions indicated by the green squares, ultimately resulting in
higher PSNR and SSIM scores, as reported in Table 7.

Table 7: Photometric performance after finetuning SIREN-R.

Playroom Truck Room
Methods PSNR ↑ SSIM ↑ LPIPS ↓ CT ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CT ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CT ↓
Ground-Truth 36.3 ± 3.5 0.96 ± 0.03 0.09 ± 0.05 721.1 26.4 ± 1.4 0.89 ± 0.02 0.10 ± 0.01 601.7 34.1 ± 1.7 0.94 ± 0.02 0.12 ± 0.04 840.1
Pre-Finetuning 29.1 ± 3.3 0.91 ± 0.04 0.15 ± 0.06 N/A 16.8 ± 2.5 0.61 ± 0.10 0.30 ± 0.07 N/A 22.5 ± 2.5 0.79 ± 0.05 0.26 ± 0.06 N/A
Post-Finetuning 30.8 ± 2.6 0.92 ± 0.04 0.14 ± 0.06 72.69 21.1 ± 1.8 0.69 ± 0.1 0.23 ± 0.04 86.26 26.0 ± 3.6 0.83 ± 0.09 0.22 ± 0.08 79.78
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Figure 9: Rendered images from the fused GSplat maps generated by SIREN-R before and after
finetuning, in the Playroom, Truck, and Room scenes. Finetuning improves the visual fidelity of the
fused map, removing floaters and other artifacts.

For clarity, we reiterate that in our comparisons with the baseline methods, we do not fine-tune any
method after the map fusion procedure. We explore fine-tuning only in this subsection.
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