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ABSTRACT

Generalized zero shot learning (GZSL) aims to correctly predict seen and unseen
classes, and most GZSL methods focus on the single label case. However, med-
ical images can have multiple labels as in the case of chest x-rays. We propose
a novel multi-modal multi-label GZSL approach that leverages feature disentan-
glement and multi-modal dictionaries to synthesize features of unseen classes.
Feature disentanglement extracts class specific features, which are used with text
embeddings to learn a multi-modal dictionary. A subsequent clustering step iden-
tifies class centroids, all of which contribute to better multi-label feature synthesis.
Compared to existing methods, our approach does not require class attribute vec-
tors, which are an essential part of GZSL methods for natural images but are not
available for medical images. Our approach outperforms state of the art GZSL
methods for chest x-rays. We also analyse the performance of different loss terms
in ablation studies.

1 INTRODUCTION

Fully supervised deep learning methods provide state-of-the-art (SOTA) performance for a variety
of medical image analysis tasks Gulshan et al. (2016); Irvin et al. (2017) due to access to all classes
during training. In real radiological workflows unseen disease types are commnly encountered, e.g.,
new strains of COVID-19 or tumour types in histopathological data. Conventional fully supervised
approaches misclassify the new disease subtypes into one of previously seen classes leading to
erroneous diagnosis and lengthy system re-certification loops for clinically deployed AI systems.

Zero-Shot Learning (ZSL) aims to learn plausible representations of unseen classes from seen class
features. In a more generalized setting of Generalized Zero-Shot Learning (GZSL), we expect to
encounter both seen and unseen classes during the test phase. Previous works on GZSL in medical
images have mostly focused on the single label scenario Mahapatra et al. (2022); Paul et al. (2021).
However, chest X-ray (CXR) datasets have multiple labels assigned to the images and single-label
methods do not work well in this setting. Hayat et al. (2021) proposed a multi-label GZSL method to
predict multiple seen and unseen diseases in CXR images by mapping visual and semantic modal-
ities to a latent feature and learning a visual representation guided by the input’s corresponding
semantics extracted from a medical text corpus. They obtain sub-optimal results on the external
NIH chest xray dataset Wang et al. (2017) in terms of AUROC values of seen (0.79) and unseen
(0.66) classes, possibly due to the sub-optimal use of multi-label text and imaging data. We propose
a multi-label GZSL approach that uses multi-modal dictionaries encoding text and imaging informa-
tion to encode the semantic relationship between multiple disease labels. This enables us to learn a
highly accurate feature representation which plays an important role in synthetic feature generation.

In contrast with medical imaging datasets for GZSL, datasets for GZSL in natural images Feng
et al. (2022); Lee et al. (2018); Su et al. (2022); Kong et al. (2022) have the advantage of providing
attribute vectors for all classes to enable a model to correlate between attribute vectors and corre-
sponding feature representations of the seen classes. Defining unambiguous attribute vectors for
medical images requires deep clinical expertise and extensive invested time to annotate radiological
images. This complexity is exacerbated for the multi-label scenario, where many disease conditions
have similar appearances and textures.
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To achieve this non-trivial task we introduce the following contributions for multi-label GZSL: 1)
We propose a novel feature disentanglement method where a given image is decomposed into class-
specific and class-agnostic features. This step is necessary for multi-label problems to enable accu-
rate combination of class-specific features. 2) We apply graph aggregation on class-specific features
to learn an image feature based multi-label dictionary based on interactions between different labels
at a global scale. This leads to more discriminative feature learning and contributes to better multi-
label feature synthesis. 3) We learn the semantic relationships between text embeddings of different
disease class labels and use this knowledge to guide the generation of realistic feature vectors that
preserve the semantic relationship among multiple disease labels.

2 PRIOR WORK

Feature Disentanglement In Medical Image Analysis: Liu et al. (2022) provide a comprehen-
sive overview of feature disentanglement techniques in medical image analysis. Wang et al. (2023)
propose a feature disentanglement based unsupervised domain adaptation (UDA) method for image
segmentation and apply it to retinal vessel segmentation. Chartsias et al. (2019) propose Spatial
Decomposition Network (SDNet) to decompose 2D medical images into spatial anatomical factors
and non-spatial modality factors. They use it for different cross modal segmentation tasks. Ouyang
et al. (2021) use margin loss, conditional convolution and a fusion function, with applications to
three multi-modal neuroimaging datasets for brain tumor segmentation.

Generalized Zero-Shot Learning: In GZSL, the purpose is to recognize images from known
and unknown domains. Prior work on natural images show promising results by training GANs in
the known domain and generating unseen visual features from semantic labels Felix et al. (2018);
Verma et al. (2018); Xian et al. (2019). Keshari et al. (2020) use over-complete distributions to gen-
erate features of unseen classes, while Min et al. (2020) used domain-aware visual bias elimination
for synthetic feature generation. Feng et al. (2022) propose a non-generative model for synthe-
sizing edge-pseudo and center-pseudo samples to introduce greater diversity. The work by Kong
et al. (2022) promotes intra-class compactness with inter-class separability on both seen and unseen
classes in the embedding space and visual feature space. Su et al. (2022) leverage visual and seman-
tic modalities to distinguish seen and unseen categories by deploying two variational autoencoders
to generate latent representations for visual and semantic modalities in a shared latent space.

Multi-Label Zero-Shot Learning: Lee et al. (2018) propose a novel deep learning architecture
for multi-label zero-shot learning (ML-ZSL), that predicts multiple unseen class labels for each
input instance using an information propagation mechanism from the semantic label space. Zhang
et al. (2016) consider the separability of relevant and irrelevant labels, proposing a model that learns
principal directions for images in the embedding space. Gaure et al. (2017) leverage co-occurrence
statistics of seen and unseen labels and learns a graphical model for ZSL.

GZSL In Medical Images: This is a less explored topic primarily because conventional methods
from the natural image domain cannot be directly applied due to lack of class attribute vectors for
medical images. Some initial works explored registration Kori & Krishnamurthi (2019) and artifact
reduction Chen et al. (2020). Paul et al. (2021) proposed a GZSL method for chest X-ray diagnosis
by learning the relationship between multiple semantic spaces (from X-ray, CT images, and reports).
However, not all datasets have multiple image modalities and text reports. Mahapatra et al. (2022)
proposed a class-attribute-free method for GZSL on different medical images by using saliency
maps and self-supervised learning. Hayat et al. (2021) learn an image’s visual representation guided
by the input’s corresponding semantics extracted from BioBERTLee et al. (2019), a BERT Devlin
et al. (2018)-based language model. The primary challenge of multi-label GZSL is to synthesize
features that capture the characteristics of multiple classes. Different from other works, our method,
combining feature disentanglement with image and text features, works with images from a single
modality and shows state-of-the-art performance on multiple public CXR datasets.
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Figure 1: Workflow of the proposed method. Training data goes through a feature disentanglement
stage, followed by multi-modal and multi-label dictionary learning and clustering, feature synthesis
and training of a multi-label classifier. Our novel contributions and loss functions are highlighted as
green blocks and letters. DicSpe is the dictionary created from class specific features of seen classes
and DicText is the dictionary obtained from label texts.

3 METHOD

Method Overview: Figure 1 depicts our proposed workflow with the following stages: 1) Image
feature disentanglement to get class-specific and class-agnostic features; 2) Create two multi-label
dictionaries using class-specific features and text embeddings of disease labels. Class-specific fea-
tures learn a global relationship between label features, whereas the text embeddings for different
labels are obtained from BioBert Lee et al. (2019). We use this dictionary to guide the clustering
and feature synthesis steps; 3) Clustering of seen and unseen class samples to obtain class centroids
that function as class representative vectors; 4) Feature synthesis to generate multi-label features of
different label combinations. The centroid vectors are used as reference vectors for feature synthe-
sis. The synthesized vectors are compared with the centroids to determine whether they belong to
the desired classes; 5) Train a multi-label classifier using synthesized and real features of unseen
and seen classes.

3.1 FEATURE DISENTANGLEMENT

Feature disentanglement for domain adaptation separates the features into domain-specific and
domain-invariant components Park et al. (2020). In case of GZSL the data is from the same do-
main with different labels. Hence we propose to decompose the feature space of seen class samples
into ‘class-specific’ and ‘class-agnostic’ features. The class-specific features of each class will en-
code information specific to the particular class, and the class-specific features of different classes
will be dissimilar. On the other hand, the class-agnostic features (e.g., characterization of bone in
X-ray scans) of each class will be highly similar to each other. In this setup, we aim to yield class-
specific and class-agnostic features to be mutually complementary and hence have minimal overlap
in semantic content. Feature disentanglement helps to obtain features specific to each class which
in turn allows for more accurate synthesis of multi-label features by incorporating characteristics of
the desired classes.

Figure 2 shows the architecture of our feature disentanglement network (FDN). The FDN consists
of L encoder-decoder architectures corresponding to the L classes in the training data. The encoders
and decoders (generators) are denoted, respectively, as El(·) and Gl(·). Similar to a classic autoen-
coder, the encoder, El, produces a latent code zi for image xi ∼ p. Each decoder, Gl, reconstructs
the original image from zi. Furthermore, we divide the latent code, zi, into two components: a class-
specific component, zspecli for class l, and a class-agnostic component, zagnl

i . Both components are
vectors, and they are combined and fed to the decoder, which reconstructs the original input. The
disentanglement network is trained using the following loss function:

LDisent = LRec + λ1Lspec + λ2Lagn + λ3Lagn−spec (1)
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Reconstruction Loss: LRec, is the commonly used image reconstruction loss and is defined as:

LRec =

L∑
l=1

Exi∼pl

[∥∥xl
i −Gl(El(x

l
i))

∥∥] (2)

The above term is a sum of the reconstruction losses from the class specific autoencoders. We train
different autoencoders for each class in order to obtain class specific features.

Class Specific Loss: For given class l the class specific component zspecli will have high similarity
according to some metric (e.g. cosine similarity) with samples from the same class. Since this
feature is class specific it will have low similarity with the zspecki of other classes k (k ̸= l). These
two conditions are incorporated using the following terms

Lspec =
∑
i,j

∑
l

(
1− ⟨zspecli , zspeclj ⟩

)
+

∑
k

⟨zspecli , zspeckj ⟩ (3)

where ⟨.⟩ denotes cosine similarity. The first term encourages high similarity for class specific
features of samples having the same training labels. The second term encourages different classes, l
and k to have highly dissimilar class specific features. The sum is calculated for all classes indexed
by

∑
l and over all samples indexed by i, j.

Class Agnostic Loss: The class agnostic features of different classes have, by definition, similar
semantic content and hence they will have high cosine similarity. Lagn is defined as

Lagn =
∑
i,j

∑
l

∑
k

(
1− ⟨zagnl

i , zagnk

j ⟩
)

(4)

The above formulation ensures that the loss is minimized. Finally, we want the class specific and
class agnostic features of same-class samples to be mutually complementary and have minimal
overlap in semantic content. This implies that their cosine similarity values should be minimal.
Hence the final loss term is defined as

Lagn−spec =
∑
l

⟨zagnl

i , zspeclj ⟩ (5)

Since the above loss terms are minimized it helps us achieve our stated objectives.

Figure 3 (a) shows the t-sne plots of image features (taken from the fully connected layer of a
DenseNet-121 trained for image classification) while Figure 3 (b) shows the plot using the class
specific features. We observe that plots of the original features shows different image class clusters
that overlap and that makes it challenging to have good classification. On the other hand the clus-
ters obtained using the class specific features are well separated and there is less overlap between
different clusters. Figure 3 (c) shows the output of using class agnostic features where a significant
overlap is observed between classes. This clearly demonstrates the efficacy of our feature disentan-
glement method, i.e., the class specific and class agnostic features fulfil their desired objectives. The
features are taken from images belonging to 5 classes from the NIH dataset. We chose 5 classes to
clearly demonstrate the output since more classes clutter the figure.

3.2 DICTIONARY OF TEXT EMBEDDINGS

We generate embeddings of image class labels using BioBERT Lee et al. (2020), a BERT Devlin
et al. (2018)-like pre-trained model. BioBERT Lee et al. (2020) is pre-trained on biomedical liter-
ature, more specifically the model available from Huggingface1, which is a base and cased model.
We consider a pooled set that produces a single 768 dimension vector for a label. We then calculate
the cosine similarity between each of the labels and is represented as a matrix, which we refer as
DictText - dictionary for text embeddings (Figure 2 (b)).

3.3 MULTI-MODAL MULTI-LABEL DICTIONARY

The dictionary is constructed from two sources: 1) class specific features of seen class samples;
2) text embeddings of label vectors for all classes (Dicttext described in Section 3.2). We learn

1https://huggingface.co/dmis-lab/biobert-v1.1
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(a) (b)

Figure 2: (a) Architecture of class specific feature disentanglement network. Given training images
from different classes of the same domain we disentangle features into class specific and class ag-
nostic using autoencoders. The different feature components are used to define the different loss
terms. (b) Cosine similarity of the labels’ BioBERT embeddings

Figure 3: T-sne results comparison between original image features and feature disentanglement
output. (a) Original image features; (b) Class specific features; (c) Class agnostic features.

image feature based dictionary only of seen classes. Since we do not know the actual image sam-
ples of unseen classes it is difficult to identify features corresponding to them and construct the
corresponding dictionary. We construct a graph from the seen class samples in the following man-
ner: 1: Represent each image sample as a separate graph. 2: Within a graph each Seen class
label (representing a disease or condition) is represented by a node which is represented using
the class specific features. Since we train multiple feature disentanglement network correspond-
ing to number of classes we obtain, for each image, a class specific feature for all disease labels
(nodes). 3: Edge weights in the graph represent the similarity between corresponding nodes using
cosine similarity of class specific features. Assuming K nodes in each graph (i.e., K seen classes),
each node has K − 1 edge weights to all other nodes. The edge weight wij between nodes i, j is
wij = cosine similarity(zspeclI , zspeckI ) = ⟨zspeclI , zspeckI ⟩; where zspeclI and zspeckI are the class
specific features, respectively, of classes l and k for sample images I .Each graph has K(K−1)

2 edges.

Informativeness Dictionary:We average the inter-node weights across all graphs, to get an ‘aver-
age’ graph. Each inter-node link value quantifies the average cosine similarity across all training
samples from the seen class. An example inter-node similarity is depicted in Table 1, and we refer
to this matrix as DictSpe the multi-label dictionary from class specific features. Any synthetically
generated sample will preserve this relationship between Seen labels by using appropriate losses.

3.4 SSL BASED CLUSTERING

Having created multi-label dictionaries from two modalities our next step is to synthesize multi-
label features that will play an important role in training the classifier to recognize seen and unseen
classes. Before that we determine the centroids of different class specific features which func-
tion as reference vectors (or class anchor vectors for individual classes Li et al. (2019)) to deter-
mine whether synthesized features have characteristics of the desired classes. We use class specific
features, zspecl , and apply self supervised learning (SSL) based online clustering approach SwAV
(Swapping Assignments between multiple Views) Caron et al. (2020) to determine the seen class
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Atelectasis Cardiomegaly Consolidation Edema Effusion
Atelectasis 1 0.80 0.89 0.90 0.68

Cardiomegaly 0.80 1 0.91 0.91 0.89
Consolidation 0.89 0.91 1 0.94 0.80

Edema 0.90 0.91 0.94 1 0.83
Effusion 0.68 0.89 0.80 0.83 1

Table 1: Example of the multi-label similarity dictionary from saliency maps for seen classes only.
This is an example dictionary for K=5 seen classes.

centroids. Our experimental results in Figure 3 show clustering using class specific features results
in better separability of the clusters than using image features from pre-trained feature extractors.

Let the number of seen and unseen classes be, respectively, nS and nU . We first cluster seen class
features into nS clusters and obtain their centroids as CS = c1, · · · , cnS

. We enforce the con-
straint that the semantic relationship between the Seen class centroids be close to that obtained from
DictSpe. This is achieved by constructing a matrix of inter-label similarities using the cosine dis-
tance between the cluster centroids at each iteration, denoted as CentSeen(i, j). We then calculate
an element wise difference between DictSpe and CentSeen(i, j):

LML−Seen =
1

n2
S

∑
i

∑
j

DictSpe(i, j)− CentSeen(i, j). (6)

Since the matrix of cosine similarities is a square matrix having nS rows and columns it is divided
by a factor of n2

S to get a normalized distance measure. LML−Seen is the loss for multi-label seen
classes. In the next pass, we compute the clusters CU = cnS+1, · · · , cnS+nU

of the nU unseen
classes using the following additional constraints:

1. The centroids in CS are kept fixed. Since the centroids CS have been computed from
labeled samples we assume that the computed centroids are reliable and are not changed in
the second stage.

2. We add a constraint that the semantic relationship between the seen and unseen class cen-
troids should follow the dictionary DictText created using the text embedding vectors as
described in Section 3.2. This condition is implemented using:

LML−All =
1

N2

∑
i

∑
j

DictText(i, j)− CentAll(i, j) (7)

where CentAll refers to the changing matrix of cluster centroid similarities for all seen and
unseen classes. N = nS + nU is the total number of seen and unseen classes.

Given image features xt and xs from two different transformations of the same image, we compute
their cluster assignments qt and qs by assessing the distance of the features to a set of K cluster
centers c1, · · · , cK . A “swapped” prediction problem Caron et al. (2020) is solved using :

L(xt, xs) = ℓ(xt, qs) + ℓ(xs, qt), (8)

where ℓ(x, q) measures the fit between features x and assignment q. Thus we compare features xt

and xs using their intermediate cluster assignments qt and qs. If the two x’s capture same informa-
tion, we can predict the cluster assignment from the other feature. The final loss term for clustering
all class samples is

LClust = L(xs, xt) + λ4LML−Seen + λ5LML−All (9)

We obtain a set of cluster centroids for seen and unseen classes to guide the feature generation step.

3.5 FEATURE GENERATION NETWORK

We synthesize the class specific features of unseen and seen classes following Xian et al. (2018).
Given training images of seen classes, and unlabeled images of the unseen classes we learn a gen-
erator G : E ,Z −→ X , which takes a class label vector ey ∈ E and a Gaussian noise vector z ∈ Z
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as inputs, and generates a feature vector x̃ ∈ X . The discriminator D : X , E −→ [0, 1] takes a
real feature x or synthetic feature x̃ and corresponding class label vector ey as input and determines
whether the feature vector matches the class label vector. G aims to fool D by producing features
highly correlated with ey using a Wasserstein adversarial lossArjovsky et al. (2017):

LWGAN = min
G

max
D

E[D(x, ey)]− E[D(x̃, ey)]

−λE[(∥∇x̃D(x̃, ey)∥2 − 1)2],
(10)

where the third term is a gradient penalty term, and x̃ = αx + (1 − α)x̃. α ∼ U(0, 1) is sampled
from a uniform distribution.

D is a classifier that determines whether the generated feature vector x̃ belongs to one of the seen
classes. As the anchor vectors (i.e., the cluster centers) are fixed, we calculate the cosine similarity
between the generated vector x̃ and the anchor vector corresponding to the desired classes. Since we
are synthesizing multi-label features it is expected that the cosine similarities of the synthetic vector
will be high with respect to the centroids of the desired classes. We integrate these conditions in the
following formulation:

LML−Syn =
∑
ly

(1− ⟨x̃, cy⟩) (11)

LML−Syn is the multi-label synthetic loss. If x̃ truly represents the set of desired classes y then the
cosine similarity between x̃ and the corresponding anchor vectors cy is high and the loss is low.

3.6 TRAINING, INFERENCE AND IMPLEMENTATION

The final loss function for feature generation is:

L = LWGAN + λ6LML−Syn (12)

where λ6 is a weight balancing the contribution of the different terms. Once training is complete we
specify the label of desired classes and input a noise vector to G which synthesizes a new feature
vector. We combine the synthesized target features of the unseen classes x̃u and real and synthetic
features of seen class xs, x̃s to construct the training set. Then we train a multi-label sigmoid
classifier by minimizing the negative log likelihood loss:

min
θ

− 1

|X |
∑

(x,y)∈(X ,Y)

logP (y|x, θ), (13)

where P (y|x, θ) = exp(θT
y x)

1+exp(θT
y x)

is the classification probability and θ denotes classifier parameters.

Inference: Given initial seen and unseen class samples, the clustering stages yields class centroids.
The subsequent feature synthesis module generates samples of different classes for classifier train-
ing, and applying to test features.

Implementation Details: We compare the results of our method for medical images with existing
GZSL methods. For methods developed for natural images we replace the class label vector ey with
the corresponding class attribute vectors. For feature extraction we use our feature disentanglement
approach to obtain class specific features. The generator (G) and discriminator (D) are all multilayer
perceptrons. G has two hidden layers of 2000 and 1000 units respectively while the discriminator
D is implemented with one hidden layer of 1000 hidden units. We chose Adam Kingma & Ba
(2014) as our optimizer, and the momentum was set to (0.9, 0.999). The values of loss term weights
are λCL = 0.6, λ3 = 0.9. Training the Swav Clustering algorithm takes 12 hours and the feature
synthesis network for 50 epochs takes 17 hours, all on a single NVIDIA V100 GPU (32 GB RAM).
PyTorch was used for all implementations.

3.7 EVALUATION PROTOCOL

The seen class S can have samples from 2 or more disease classes, and the unseen class U contains
samples from the remaining classes. We use all possible combinations of labels in S and U . Fol-
lowing standard practice for GZSL, average class accuracies are calculated for two settings: 1) S:
training is performed on synthesized samples of S + U classes and test on the seen test set STe. 2)
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U: training is performed on synthesized samples of S + U classes and test on unseen test set UTe.
We also report the harmonic mean defined as,

H =
2×AccU ×AccS
AccU +AccS

(14)

where AccS and AccU denote the accuracy of images from seen (setting S) and unseen (setting U )
classes respectively:

4 EXPERIMENTAL RESULTS

4.1 DATASET DESCRIPTION

We demonstrate our method’s effectiveness on the following chest xray datasets for multi-label
classification tasks: 1. NIH Chest X-ray Dataset: For lung disease classification we adopted the
NIH Chest X-ray14 dataset Wang et al. (2017) having 112, 120 expert-annotated frontal-view X-
rays from 30, 805 unique patients and has 14 disease labels. Hyperparameter values are λ1 =
1.1, λ2 = 0.7, λ3 = 0.9, λ4 = 1, λ5 = 1.1, λ6 = 1.1. 2. CheXpert Dataset: We used the CheXpert
dataset Irvin et al. (2017) consisting of 224, 316 chest radiographs of 65, 240 patients labeled for
the presence of 14 common chest conditions. Hyperparameter values are λ1 = 1.2, λ2 = 0.8, λ3 =
1.1, λ4 = 0.9, λ5 = 1.2, λ6 = 0.9. For both datasets original images were resized to 224 × 224,
and the reported results are an average of 25 runs across different combinations. A 70/10/20 split
at patient level was done to get training, validation and test sets for both datasets.

Comparison Methods: We compare our method’s performance with multiple GZSL methods -
single label and multi-label techniques - employing different feature generation approaches such as
CVAE or GANs. Our method is denoted as ML-GZSL (Multi Label GZSL).

Method NIH X-ray CheXpert NIH X-ray CheXpert
S U H S U H S U H S U H

Single Label GZSL Methods Proposed Method And Benchmark
SDGN Wu et al. (2020) 84.4 81.1 82.7 89.8 88.3 89.0 ML-GZSL 86.2 84.8 85.5 90.8 90.2 90.5
Feng Feng et al. (2022) 84.7 81.4 83.0 90.2 88.6 89.4 FSL(Multi Label) 86.0 85.1 85.5 90.8 90.5 90.6
Kong Kong et al. (2022) 84.8 81.2 82.9 90.0 88.7 89.3 Feature Disentanglement Effects

Su Su et al. (2022) 84.5 81.4 82.9 90.3 88.6 89.4 wLagn−spec 83.8 81.9 82.8 88.6 86.3 87.4
Different Clustering Methods pre-train 83.4 82.0 82.7 88.2 85.3 86.7

Deep-Cluster Caron et al. (2018) 83.9 80.7 82.2 88.9 87.4 88.1 wLagn
84.5 82.1 83.3 89.1 86.9 88.0

K-Means 83.4 80.7 82.0 88.2 87.2 87.7 wLspec
83.0 81.2 82.1 87.8 85.2 86.5

Multi Label GZSL Methods Effect of Dictionary/Clustering
Hayat Hayat et al. (2021) 79.1 69.2 73.8 81.2 79.8 80.5 wLDictText

83.2 81.0 82.1 87.6 85.1 86.3
Lee Lee et al. (2018) 85.1 81.3 83.1 87.4 85.7 86.5 wLDictSpe

82.6 80.7 81.6 87.0 84.5 85.7
Huynh Huynh & Elhamifar (2020) 84.7 80.8 82.7 86.9 85.1 86.0 wLML−Syn

81.3 79.9 80.6 85.8 82.8 84.2

Table 2: GZSL Results For CXRs in Multi-Label setting: Average per-class classification accu-
racy (%) and harmonic mean accuracy (H) for GZSL. FSL denotes the benchmark fully supervised
learning approach. Results demonstrate the superior performance of our proposed method.

4.2 GENERALIZED ZERO SHOT LEARNING RESULTS

Classification results for CXRs in Table 2 show our proposed method significantly outperforms
all competing GZSL methods. This significant difference in performance can be explained by the
fact that the complex architectures that worked for natural images will not be equally effective for
medical images which have less information. Our proposed ML-GZSL method does as good as
the multi-label fully supervised learning (FSL) benchmark (using a DenseNet-121 classifier). Class
specific features play an important role here since they focus on the features relevant to specific
classes and provide more discriminatory information than an FSL approach. We also show results
when using different clustering methods such as Deep-Cluster and k-means instead of SwAV, with
our feature generation method. The results are inferior to our proposed method thus demonstrating
the fact that SwAV gives better representations of the cluster centroids.

4.3 ABLATION STUDIES FOR MEDICAL IMAGES

Table 2 also shows results for ablation studies, which are grouped under two categories: 1) Feature
disentanglement and 2) Clustering using multi-label dictionaries. For the ablation methods related to
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feature disentanglement we exclude each of the three loss terms - Lagn,Lspec and Lagn−spec- and re-
port the results as ML-GZSLwLagn

, ML-GZSLwLspec
, and ML-GZSLwLagn−spec

. We also compare
with the results of using image features obtained from a CNN based feature extractor (ResNet50
trained on Imagenet), which we denote as ‘pre-train’. We observe that the class specific features
has the greatest influence on the results and excluding it, ML-GZSLwLspec

results in maximum
degradation of performance compared to ML-GZSL. ML-GZSLwLagn−spec

shows the next worst
performance, while ML-GZSLwLagn shows the least difference among the three methods. These
results highlight the importance of the class specific features and at the same time illustrate that
the class agnostic features have a relatively smaller influence on the method’s performance. This is
desirable since our objective for feature disentanglement was to get complementary features.

The second category of ablation experiments are related to learning the multi-modal multi-label
dictionary, clustering and feature synthesis. The primary goal of dictionary learning is to influence
clustering and feature synthesis. We conduct two set of experiments where we exclude DictSpe and
DictText. The ablation study results in Table 2 show the two dictionaries have similar influences on
the outcome, with DictText exerting a greater influence due to its ability to encode more information
from all classes. Excluding LML−Syn uses only the Wasserstein loss for feature synthesis without
including the class centroids. This results in a significant performance degradation since there is no
mechanism to check the realism of synthetic features. This leads to a severe reduction in perfor-
mance as the classifier is trained with lots of spurious samples which affect the final performance.

4.4 HYPERPARAMETER SELECTION

Figure 4 shows the harmonic mean values for the NIH Chest X-ray dataset for different values
of hyperparameters λ1, λ2, λ3. The λ’s were varied between [0.4 − 1.5] in steps of 0.05 and the
performance on a separate test set of 10, 000 images were monitored. We start with the base cost
function of Eqn. 1, and first select the optimum value of λ1 by keeping λ2 = λ3 = 1. λ1 value is
fixed and we then determine optimal λ2, and subsequently λ3. Similarly for values of λ4, λ5, we
start with the cost function of Eqn. 9, fix λ5 = 1 and search for the optimum value of λ4. Then
we fix λ4 and search for the optimal value of λ5. ‘Finally we search for the optimal value of λ6 in
Eqn. 12. The plots for the loss function with different values of λ are shown in Figure 4.

(a) (b)

Figure 4: Hyperparameter Plots showing the value of H and classification accuracy for different
values of λ. The observed trends justify our final choice of the values.

5 CONCLUSION

We propose a multi-label GZSL approach for medical images. Our novel method can accurately syn-
thesize feature vectors of unseen classes by learning a multi-label dictionary using graph aggregation
and class specific features, alongwith text embedding relationships. Experimental results show our
method outperforms other GZSL approaches in literature, and is consistently better across multiple
public CXR datasets. Our approach is useful in scenarios where the number of disease classes are
known but labeled samples of all classes cannot be accessed due to infrequent occurrence of such
cases or lack of expert clinicians to annotate complex cases. While fully supervised settings still
provide the best performance they are dependent upon sufficient labeled samples. Hence GZSL can
be useful in addressing low data scenarios.
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