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ABSTRACT

Irregular Multivariate Time Series (IMTS) are characterized by uneven intervals be-
tween consecutive timestamps, which carry sampling pattern information valuable
and informative for learning temporal and variable dependencies. In addition, IMTS
often exhibit diverse dependencies across multiple time scales. However, many ex-
isting multi-scale IMTS methods use resampling to obtain the coarse series, which
can alter the original timestamps and disrupt the sampling pattern information. To
address the challenge, we propose ReIMTS, a Recursive multi-scale modeling
approach for Irregular Multivariate Time Series forecasting. Instead of resampling,
ReIMTS keeps timestamps unchanged and recursively splits each sample into sub-
samples with progressively shorter time periods. Based on the original sampling
timestamps in these long-to-short subsamples, an irregularity-aware representation
fusion mechanism is proposed to capture global-to-local dependencies for accurate
forecasting. Extensive experiments demonstrate an average performance improve-
ment of 29.1% in the forecasting task across different models and real-world
datasets. Our code is available at https://anonymous.4open.science/r/ReIMTS-
CA7B/.

1 INTRODUCTION

Multivariate Time Series (MTS) are commonly seen in real-world applications such as healthcare,
weather, and biomechanics (Zhang et al., 2023b; Shukla & Marlin, 2021). While extensive research
efforts have been devoted to MTS forecasting task (Nie et al., 2022; Zhang & Yan, 2022; Yu
et al., 2024), these methods often assume the input to be regularly sampled and fully observed. In
reality, varying sampling rates or schedules can be applied to different series, giving rise to Irregular
Multivariate Time Series (IMTS). IMTS forecasting for informed decision-making is challenging due
to irregular time intervals within each variable and unaligned observations across variables, where
an increasing number of studies have paid attention to (Yalavarthi et al., 2024; Zhang et al., 2024;
Mercatali et al., 2024).

Under different temporal resolutions, IMTS can exhibit different patterns reflected in temporal and
variable dependencies, similar to hourly, monthly, and yearly patterns in regularly sampled time
series. For example, in the healthcare dataset PhysioNet’12 (Silva et al., 2012), IMTS samples
contain biomarker (variable) readings for ICU patients during their first 48 hours after admission. In
these samples, a 6-hour window corresponds to the common clinical monitoring period (Seymour
Christopher W. et al., 2017), while a 24-hour window reflects daily cycles of patients, both of which
are useful for assessing disease fluctuations (Klerman et al., 2022; Luo et al., 2025).

Although IMTS can have varying dependencies at different scales under scenarios like healthcare
and weather (Menne et al., 2016), capturing them into multi-scale representations while maintaining
the original sampling patterns remains challenging. On the one hand, multi-scale methods for MTS
typically assume inputs to be regularly sampled and fully observed (Shabani et al., 2022; Wang et al.,
2023; Chen et al., 2023), which are not well-suited for IMTS. On the other hand, multi-scale methods
for IMTS are still underexplored (Zhang et al., 2023a; Luo et al., 2025; Marisca et al., 2024). These
multi-scale IMTS methods often involve resampling to obtain a coarse-grain series, which balances
the number of observations across different variables but may disrupt the original sampling pattern.
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As depicted in Figure 1, the upper sample is from the healthcare dataset PhysioNet’12, while the
lower one is downsampled using the same way as (Zhang et al., 2023a). Variable Bilirubin in the
original sample shows relatively dense observations in the first 12 hours and sparse observations in
the subsequent 36 hours, indicating careful monitoring of disease progression at the beginning of
ICU admission (Lakshman et al., 2025; Holford, 2019; Morrill et al., 2020). After downsampling to
the coarse series, the dense-to-sparse sampling pattern of variable Bilirubin is disrupted, affecting
subsequent dependency learning. Additionally, the disruption of urgent to mild clinical monitoring
information is disrupted, where information obtained through more frequent monitoring could be
beneficial for early clinical decision-making (Miller et al., 2007).

Figure 1: Existing multi-scale methods for IMTS
resample the coarse series to balance differences
in sampling densities across different variables. In
the original sample from the healthcare dataset
PhysioNet’12, liver function marker Bilirubin and
heart rate (HR) exhibit a dense-to-sparse sampling
pattern reflecting urgent to mild clinical monitor-
ing, which is disrupted in the coarse series.

To preserve essential sampling pattern informa-
tion during multi-scale dependency learning in
the above scenarios, we propose ReIMTS, a
recursive multi-scale approach for IMTS fore-
casting. At each scale level, ReIMTS splits
an IMTS sample into smaller subsamples with
shorter time periods, while maintaining the orig-
inal sampling timestamps for all observations
and thus preserving the original sampling pat-
tern. By recursively splitting the sample in
a top-down manner, input IMTS are viewed
from a global to local perspective. Each back-
bone captures dependencies within a specific
scale level, and learned latent representations
are transferred from higher scale levels to lower
ones. Leveraging global-to-local multi-scale rep-
resentations learned from preserved sampling
patterns, ReIMTS employs an irregularity-aware
fusion mechanism to capture semantics across
different scales, thereby providing accurate fore-
casting results. Moreover, ReIMTS is compat-
ible with most existing IMTS models due to
its flexible architectural design, boosting their
forecasting performance in a plug-and-play way.

Our main contributions are as follows:

• We introduce recursive splitting based on time periods for IMTS samples to preserve the
original sampling patterns across all scale levels, and leverage IMTS backbones to capture
dependencies in different time periods as multi-scale representations.

• We propose ReIMTS, a recursive multi-scale method for IMTS forecasting. Using
irregularity-aware representation fusion, it recursively captures global-to-local dependencies
and provides accurate predictions.

• Extensive experiments including twenty-six baseline methods and five IMTS datasets on
IMTS forecasting are conducted. Tested on six IMTS backbones, ReIMTS consistently
boosts their forecasting performance in all settings while maintaining good efficiency.

2 RELATED WORK

2.1 IRREGULAR MULTIVARIATE TIME SERIES FORECASTING

In recent years, an increasing number of studies have paid attention to IMTS forecasting (Yalavarthi
et al., 2024; Zhang et al., 2024; Mercatali et al., 2024). From a model architecture perspective,
methods for IMTS modeling can be broadly categorized into RNN-based (Che et al., 2018; Shukla &
Marlin, 2018), ODE-based (Rubanova et al., 2019; Biloš et al., 2021; Mercatali et al., 2024), GNN-
based (Yalavarthi et al., 2024; Zhang et al., 2021; Luo et al., 2025), Set-based (Horn et al., 2020),
Diffusion-based (Tashiro et al., 2021), and Transformer-based (Zhang et al., 2023a). While a variety
of model architectures have been employed in IMTS modeling, most of them follow the encoder-
decoder structure. Therefore, inputs for their decoders can include temporal representations (Che
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et al., 2018; Shukla & Marlin, 2018; Rubanova et al., 2019; Biloš et al., 2021; Mercatali et al.,
2024), variable representations (Luo et al., 2024; Zhang et al., 2024; Luo et al., 2025; Marisca et al.,
2024), observation representations (Yalavarthi et al., 2024; Zhang et al., 2021; Horn et al., 2020), or
combinations thereof.

2.2 MULTI-SCALE MODELING FOR TIME SERIES

Existing methods for regularly sampled time series have widely adopted multi-scale information
during modeling for accurate predictions. From a sampling pattern perspective, Pyraformer (Liu et al.,
2021), NHITS (Challu et al., 2023), Scaleformer (Shabani et al., 2022), and TimeMixer (Wang et al.,
2023) use embedding merging or resampling that disrupts original observed timestamps to obtain
different scales, potentially missing out on sampling pattern information. Pathformer (Chen et al.,
2023) and MOIRAI (Woo et al., 2024) segment time series based on the number of observations
rather than time periods, which cannot preserve the sampling rate information. TAMS-RNNs (Chen
et al., 2021) was designed based on RNNs for regularly sampled time series, thus not well adapted
for IMTS. Multi-scale modeling in IMTS methods is relatively underexplored. Warpformer (Zhang
et al., 2023a), Hi-Patch (Luo et al., 2025), and HD-TTS (Marisca et al., 2024) address irregularities
within IMTS, but they also employ resampling to get different scales and still cannot preserve the
original sampling patterns.

3 PROBLEM DEFINITION

With a total of T timestamps and V variables, an IMTS sample can be denoted as a set containing
Y observation tuples S := {(ti, zi, vi)|i = 1, ..., Y }, where ti ∈ {0, ..., T}, zi ∈ R, and vi ∈
{1, ..., V } represents the timestamp, observed value, and variable indicator respectively. For the IMTS
forecasting task, the set of forecast queries Q := {qj |j = 1, ..., YQ} containing YQ observations is
derived by combining (tj , vj) of the j-th observation tuple within the forecast window. We aim to
learn a forecasting model F(·), such that given an input IMTS sample S and a forecast query Q as
input, it accurately predicts the corresponding observed values Z:

F(S,Q)→ Z. (1)

4 METHODOLOGY

The overview of our proposed method, ReIMTS, is illustrated in Figure 2. We first explain how
to learn representations recursively at different scale levels in Section 4.1. Subsequently, we detail
the irregularity-aware representation fusion in Section 4.2. Training loss design is described in
Section 4.3. Finally, we discuss the differences between our method and existing approaches in
Section 4.4. Details on the operations are available at Algorithm 1. Further discussion of how
backbones address irregularities and forecast-related queries can be found in the Appendix C.

4.1 RECURSIVE LEARNING ACROSS SCALES IN IMTS

In this section, we explain the methods for obtaining representations at each scale level, and how
we ensure that the shape of global representations at the current scale matches the shape of local
representations in the subsequent scale. It should be noted that in the following discussion, ‘global’
and ‘local’ are used to describe relative scales between upper and lower levels, rather than considering
all N levels. During data preprocessing, we align the raw multivariate time series within each sample
S based on timestamps to obtain the zero-padded sample S1 ∈ RL1×V at scale level 1, where L1

is the maximum number of observations in a univariate time series. Also, a corresponding mask
M1 ∈ {0, 1}L1×V is created, indicating actual observations with 1s and zero-padded values with 0s.
As shown in the left panel of Figure 2, for each scale level n ∈ {1, . . . , N} among the total N levels,
an IMTS sample S1 is recursively partitioned by time periods to generate a series of subsamples. At
scale level n, we denote the length of time period as Tn, the number of subsamples as Pn = T 1

Tn ,
and the maximum number of observations in a univariate time series after splitting and zero padding

3
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Figure 2: The architecture of ReIMTS with three scale levels. For the original IMTS sample on the
top left, ReIMTS recursively splits it into subsamples with shorter time periods at each scale level.
ReIMTS is compatible with most IMTS models, and we use graph neural networks as backbones here
to illustrate multi-scale variable representation learning. Local representations from lower scale levels
are fused with global ones from upper scale levels. The decoder in the lowest scale concatenates
representations and decodes them into forecast predictions.

as Ln. For the k-th subsample s(tnk ) with k ∈ {1, ..., Pn}, its time period consists of the timestamps
tnk = {t|Tn(k − 1) < t ≤ Tnk}. Therefore, the set of all subsamples at scale level n can be written
as:

Sn := {s(tnk )}P
n

k=1, (2)

where Sn ∈ RPn×Ln×V . The mask is splitted in the same way to obtain Mn. It should be noted that
Ln and Tn are distinct: whereas Tn incorporates real-world time units such as minutes, hours, or
years, Ln merely denotes the number of observations without any time units. It should also be noted
that the split position is based on time periods rather than an equal number of observations, where the
term ‘observation’ includes both actual observed values and zero-padded values used for alignment.
As noted in previous studies (Chowdhury et al., 2023; Zhang et al., 2024), splitting IMTS samples
based on the number of observations can result in subsamples that correspond to different time lengths
in reality. This can affect the learning of varying sampling density information in the original data.
Therefore, we use a time period splitting approach to preserve the sampling information across all
scale levels. The specific time periods chosen for each dataset are described in Appendix B.2.

At scale level n, the IMTS backbone Fn(·) uses its encoder Fn
enc(·) to obtain latent representations

En of input subsamples Sn:
En = Fn

enc(S
n). (3)

The definition of the encoder can vary across different IMTS backbones, with our implementation
details provided in Appendix C. For most existing IMTS models, latent representations fall into
three categories En ∈ {En

time,E
n
var,E

n
obs}: temporal representations En

time ∈ RPn×Ln×D, variable
representations En

var ∈ RPn×V×D, and observation representations En
obs ∈ RPn×Ln×V×D. Here, D

denotes the hidden dimension.

During subsequent processing, En is first transformed into Gn through irregularity-aware representa-
tion fusion, and then reshaped into Hn to match the shape of En+1 at the next scale. To compute
Gn from En, we incorporate global representations from the upper scale when n > 1, as detailed in
Section 4.2. For n = 1, we simply set Gn = En. Accordingly, Gn also consists of the three types
Gn ∈ {Gn

time,G
n
var,G

n
obs}, each retaining the same shape as its corresponding counterpart in En. To

further obtain Hn from Gn, we follow the implementation described in Appendix A. Specifically,
we split along the temporal dimension for temporal or observation representations, yielding Hn

time
or Hn

obs, and apply duplication for variable representations to obtain Hn
var. The resulting output
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Hn ∈ {Hn
time,H

n
var,H

n
obs} at scale n is then provided to scale n+ 1 as its global representation. In

the following section, we discuss how global-to-local representations are recursively fused across
scales.

4.2 IRREGULARITY-AWARE REPRESENTATION FUSION

In this section, we introduce the irregularity-aware recursive fusion of global-to-local representations.
At the lower scale level n + 1, we want to evaluate the importance of the global representation
Hn from upper scale level n, while accounting for the inherent irregularity in the original IMTS.
Therefore, a lightweight scoring layer is utilized to assign weights α to the global representation Hn.
Moreover, the binary mask Mn+1 is also used to indicate irregularity.

Hn
IMTS =

{
Hn ·Mn+1, when Hn = Hn

time or Hn
obs

Hn, when Hn = Hn
var

, (4)

α = ReLU(FF(Hn
IMTS)), (5)

where ReLU is the non-linear activation function and FF is a feed-forward layer. It should be noted
that the irregularity information for variable representations Hn

var has been encoded by the encoders
of IMTS backbones, while padding values are still present in observation representations Hn

time and
Hn

obs. Therefore, we use the mask Mn+1 to distinguish between observations and padding values
specifically in temporal and observation representations. The score α is then used to fuse the local
representation En+1 and global one:

Gn+1 = En+1 + αHn
IMTS. (6)

4.3 TRAINING OF REIMTS

In this section, we introduce the process for obtaining forecast values and training ReIMTS. At the
lowest scale level N , the decoder of IMTS backbone Fdec takes the concatenated representation as
input and predicts the forecast values Ẑ:

Ẑ = Fdec(Concat({Gn}Nn=1)), (7)

where the definition of decoder is the subsequent network modules after the encoder of IMTS
backbone, and Concat denotes the concatenation of representations from the same sample. For a
detailed explanation of the backbone decoder’s structure, please refer to Appendix C. The model
is trained by minimizing the Mean Squared Error (MSE) loss between the predicted values Ẑ for
forecast queries and their corresponding ground truth Z:

L =
1

YQ

YQ∑
j=1

(ẑj − zj)
2. (8)

It should be noted that only forecast queries are used in loss calculations, which is implemented by
multiplying prediction Ẑ and binary masks MQ ∈ {0, 1}LQ×V corresponding to the forecast horizon
LQ.

4.4 DELINEATING FROM EXISTING METHODS

We discuss the differences and similarities between ReIMTS and existing approaches in this section,
and depicted in Figure 3. Patch-based methods, such as tPatchGNN (Zhang et al., 2024) and
PrimeNet (Chowdhury et al., 2023), can be viewed as variants of ReIMTS with only one scale level.
Although they split samples based on time periods, tPatchGNN and PrimeNet are limited to a single
time period length during training. In contrast, ReIMTS can choose varying lengths at different
scale levels, allowing for the exploration of richer multi-scale dependencies. Moreover, ReIMTS
is a plug-and-play method that seamlessly works with most encoder-decoder IMTS backbones.
It should be noted that tPatchGNN and PrimeNet learn global dependencies through inter-patch
learning, while ReIMTS learns from its upper scale levels. Compared to multi-scale methods for
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Figure 3: Comparison of our method and existing approaches. (a) ReIMTS preserves the original
sampling pattern while remaining compatible with most IMTS backbones. (b) Sample-space resam-
pling methods. (c) Patch-based methods for IMTS. (d) Representation-space resampling methods.

Table 1: Summary of five irregular time series datasets.

Description MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN
Max length 96 971 47 131 337
# Variable 96 100 36 12 5
# Sample 21,250 17,874 11,981 1,359 1,114
Avg # obs. 144.6 304.8 308.6 362.2 313.5
Avg # obs. (padding) 9,216.0 92,000.0 1,692.0 1,573.2 1,685.0

regularly sampled time series such as Pathformer (Chen et al., 2023), MOIRAI (Woo et al., 2024), and
Scaleformer (Shabani et al., 2022), the assumption of regular sampling and division by the number
of observations makes them not well-suited, as described in Section 4.1. Furthermore, Pathformer
and MOIRAI require slow transformer-based layers, whereas ReIMTS can utilize lightweight IMTS
backbones such as GraFITi (Yalavarthi et al., 2024) or mTAN (Shukla & Marlin, 2020). Scaleformer
uses resampling to obtain multi-scale inputs, which can disrupt the sampling pattern information, as
discussed in Section 1.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 DATASETS

Five widely studied irregular multivariate time series datasets, covering healthcare, biomechanics, and
climate, are used in the experiments. Their statistics are summarized in Table 1. MIMIC-III (Johnson
et al., 2016) is a clinical database collected from ICU patients during the initial 48 hours of admission,
which is rounded for 30 minutes. MIMIC-IV (Johnson et al., 2023) is built upon MIMIC-III, which
has a higher sampling frequency and data are rounded for 1 minute. PhysioNet’12 (Silva et al.,
2012) is also a clinical database collected during the first 48 hours of ICU stay, rounded for 1 hour.
Human Activity includes biomechanical data detailing 3D positional variables, which are rounded for
1 millisecond. USHCN (Menne et al., 2016) includes climate data spanning over 150 years, collected
from meteorological stations distributed across the United States. Our analysis focuses on a subset of
4 years between 1996 and 2000. For all five datasets, we follow the preprocessing setup provided in
the publicly available code pipeline PyOmniTS (Li et al., 2025), which originated from GraFITi and
tPatchGNN (Yalavarthi et al., 2024; Zhang et al., 2024). It splits datasets into training, validation,
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Table 2: Experimental results for our method (+ReIMTS) with respective baselines, evaluated by
MSE (mean ± std) ×10−1 on five irregular multivariate time series datasets. The best results are
indicated in bold. Average improvements (error reductions) are marked with ↑.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN Vs Ours

PrimeNet original 9.04 ± 0.00 6.25 ± 0.00 7.93 ± 0.00 26.84 ± 0.02 3.66 ± 0.01
+ReIMTS 4.76 ± 0.19 3.58 ± 0.03 3.01 ± 0.03 0.82 ± 0.02 1.37 ± 0.09 ↑62.3%

mTAN original 8.51 ± 0.14 5.09 ± 0.12 3.75 ± 0.02 0.89 ± 0.03 1.93 ± 0.02
+ReIMTS 6.37 ± 0.05 4.04 ± 0.10 3.51 ± 0.02 0.89 ± 0.01 1.23 ± 0.03 ↑17.7%

TimeCHEAT original 4.41 ± 0.05 2.50 ± 0.01 3.27 ± 0.11 0.68 ± 0.04 2.97 ± 0.29
+ReIMTS 4.40 ± 0.03 2.02 ± 0.03 2.90 ± 0.01 0.52 ± 0.01 1.24 ± 0.06 ↑22.5%

GRU-D original 4.75 ± 0.04 5.97 ± 0.22 3.25 ± 0.00 1.76 ± 0.23 1.58 ± 0.04
+ReIMTS 4.67 ± 0.05 3.91 ± 0.10 3.25 ± 0.00 0.51 ± 0.01 1.49 ± 0.02 ↑22.6%

Raindrop original 5.13 ± 0.02 3.41 ± 0.05 3.27 ± 0.01 0.89 ± 0.02 2.13 ± 0.07
+ReIMTS 5.05 ± 0.06 2.95 ± 0.06 3.14 ± 0.01 0.87 ± 0.00 1.53 ± 0.06 ↑9.9%

GraFITi original 3.70 ± 0.03 2.39 ± 0.01 2.85 ± 0.01 0.43 ± 0.00 1.59 ± 0.00
+ReIMTS 3.66 ± 0.03 1.79 ± 0.05 2.83 ± 0.01 0.42 ± 0.00 1.23 ± 0.02 ↑10.4%

and test sets adhering to ratios of 8:1:1, a common split setting used in previous works (Zhang et al.,
2021; Luo et al., 2025).

5.1.2 BASELINES

We perform the comparisons also using code pipeline PyOmniTS (Li et al., 2025). Twenty-six base-
lines are included in the benchmark, covering SOTA methods categorized as (1) Multi-scale methods
for IMTS: HD-TTS (Marisca et al., 2024), Hi-Patch (Luo et al., 2025), Warpformer (Zhang et al.,
2023a), (2) Other SOTA methods for IMTS: TimeCHEAT (Liu et al., 2025), GNeuralFlow (Mercatali
et al., 2024), tPatchGNN (Zhang et al., 2024), GraFITi (Yalavarthi et al., 2024), PrimeNet (Chowdhury
et al., 2023), CRU (Schirmer et al., 2022), Raindrop (Zhang et al., 2021), NeuralFlows (Biloš et al.,
2021), mTAN (Shukla & Marlin, 2020), SeFT (Horn et al., 2020), GRU-D (Che et al., 2018) (3) Multi-
scale methods for regularly sampled time series: Ada-MSHyper (Shang et al., 2024), MOIRAI (Woo
et al., 2024), TimeMixer (Wang et al., 2023), Pathformer (Chen et al., 2023), Scaleformer (Shabani
et al., 2022), (4) Other SOTA methods for regularly sampled time series: Leddam (Yu et al., 2024),
PatchTST (Nie et al., 2022), TimesNet (Wu et al., 2022), Crossformer (Zhang & Yan, 2022), Auto-
former (Wu et al., 2021). We adapt their publicly available codes into the pipeline for comparisons,
where network structures remain unchanged.

5.1.3 IMPLEMENTATION DETAILS

We follow the setting of widely acknowledged Time-Series-Library (Wang et al., 2024) in learning
rate adjustments. All experiments run with a maximum of 300 epochs and early stopping patience
of 10 epochs. To mitigate randomness, we conduct each experiment with five different random
seeds ranging from 2024 to 2028 also following Time-Series-Library, calculating both the mean
and standard deviation of the results. MSE is used as the training loss function for models, unless
a custom loss function proposed in the original paper is used. When adapting regular time series
models for IMTS, masks indicating observed values are included in the MSE calculations during
training. The detailed settings for the hyperparameters are provided in Appendix E. Due to our more
fine-grained hyperparameter searches for each experimental settings, baselines can perform better
than those reported in previous works (Li et al., 2025; Yalavarthi et al., 2024; Zhang et al., 2024). All
models are trained on a Linux server with PyTorch version 2.7.0 and two NVIDIA GeForce RTX
3090 GPUs, while the efficiency analysis is conducted on another Linux server with PyTorch version
2.2.2+cu118 and one NVIDIA GeForce RTX 2080Ti GPU.

5.2 MAIN RESULTS

Table 2 compares the ReIMTS version of existing IMTS models with respective baselines, and
Table 3 shows the models’ forecasting performance. Both are evaluated using MSE across five
datasets, with the best results highlighted in bold. The visualization of forecasting results can be
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Table 3: Experimental results for other state-of-the-art regular and irregular baselines on five irregular
multivariate time series datasets evaluated by MSE (mean ± std) ×10−1. The best and second-best
results are indicated in bold and underlined, respectively. ‘ME’ indicates memory error.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

R
eg

ul
ar

MOIRAI 8.66 ± 0.00 4.29 ± 0.00 4.92 ± 0.00 1.08 ± 0.00 12.32 ± 0.00
Ada-MSHyper 6.16 ± 0.01 3.89 ± 0.01 4.06 ± 0.02 1.48 ± 0.04 2.41 ± 0.19
Autoformer 7.08 ± 0.08 5.45 ± 0.16 4.14 ± 0.04 0.98 ± 0.07 4.37 ± 0.45
Scaleformer 5.50 ± 0.07 4.55 ± 0.13 4.02 ± 0.02 1.01 ± 0.05 5.50 ± 0.73
TimesNet 5.78 ± 0.01 3.82 ± 0.01 4.08 ± 0.01 1.21 ± 0.03 2.40 ± 0.12
NHITS 5.83 ± 0.01 3.95 ± 0.01 3.84 ± 0.01 0.98 ± 0.01 2.71 ± 0.09
Pyraformer 5.69 ± 0.02 4.08 ± 0.04 3.82 ± 0.00 1.17 ± 0.01 2.35 ± 0.27
PatchTST 5.68 ± 0.01 2.94 ± 0.01 3.40 ± 0.01 0.68 ± 0.00 2.83 ± 0.75
Leddam 5.93 ± 0.00 3.70 ± 0.02 3.75 ± 0.03 0.91 ± 0.01 2.89 ± 0.26
Pathformer 5.59 ± 0.13 ME 3.46 ± 0.01 0.91 ± 0.01 2.98 ± 0.40
Crossformer 5.37 ± 0.01 3.00 ± 0.02 3.39 ± 0.05 1.41 ± 0.21 2.12 ± 0.04
TimeMixer 5.67 ± 0.05 3.54 ± 0.02 3.25 ± 0.01 0.67 ± 0.02 2.45 ± 0.10

Ir
re

gu
la

r

SeFT 9.23 ± 0.01 6.60 ± 0.00 7.67 ± 0.01 13.76 ± 0.02 3.34 ± 0.01
NeuralFlows 7.17 ± 0.03 4.74 ± 0.02 4.20 ± 0.02 1.68 ± 0.03 2.01 ± 0.04
CRU 7.07 ± 0.03 4.35 ± 0.02 6.19 ± 0.01 1.37 ± 0.04 2.26 ± 0.09
GNeuralFlow 6.95 ± 0.05 5.01 ± 0.02 3.88 ± 0.03 1.73 ± 0.01 1.83 ± 0.03
tPatchGNN 5.17 ± 0.04 2.74 ± 0.02 3.22 ± 0.02 0.44 ± 0.01 1.82 ± 0.18
Hi-Patch 4.35 ± 0.02 2.36 ± 0.02 3.11 ± 0.05 0.48 ± 0.01 1.60 ± 0.08
Warpformer 4.09 ± 0.01 2.42 ± 0.02 2.88 ± 0.01 0.54 ± 0.01 1.56 ± 0.01
HD-TTS 4.17 ± 0.01 2.36 ± 0.00 2.83 ± 0.01 0.50 ± 0.01 1.66 ± 0.05
ReIMTS (Ours) 3.66 ± 0.03 1.79 ± 0.05 2.83 ± 0.01 0.42 ± 0.00 1.23 ± 0.02

found in Appendix D. The lookback time periods are 36 hours for MIMIC-III, MIMIC-VI, and
PhysioNet’12, 3000 milliseconds for Human Activity, and 3 years for USHCN. Human Activity uses
a forecast length of 300 milliseconds, and the rest datasets use the next 3 timestamps as forecast
targets, following the settings in existing works (Biloš et al., 2021; De Brouwer et al., 2019). Results
evaluated using MAE are detailed in Appendix B.3, and an analysis of varying forecast horizons
can be found in Appendix B.4. As can be seen, our method ReIMTS boosts the performance of six
existing IMTS models by an average of 29.1%, including well-known models and SOTA ones. When
using GraFITi as the backbone, ReIMTS achieves the best performance compared to all baseline
models. Compared to existing multi-scale methods for IMTS such as Hi-Patch, Warpformer, and
HD-TTS, ReIMTS demonstrates superior extensibility by integrating multi-scale techniques without
requiring a dedicated multi-scale module within the backbone. We also observe that older methods,
such as mTAN and GRU-D, can also achieve performance improvements and even outperform more
recent models. This demonstrates the potential of enhancing classic methods for IMTS forecasting
with our approach. PrimeNet demonstrates significant performance improvements after applying
ReIMTS, which may suggest that its pretraining-finetuning approach require more input samples to
achieve optimal performance, and we further discuss it in Appendix B.4. As for regularly sampled
time series models, some of them can surpass relatively old IMTS models, which shows the necessity
of comprehensive comparisons.

Table 4: Ablation results of ReIMTS and its four variants on five irregular multivariate time series
datasets using GraFITi as the backbone.

Ablation MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

ReIMTS 3.66 ± 0.03 1.79 ± 0.05 2.83 ± 0.01 0.42 ± 0.00 1.23 ± 0.02
rp sample 4.86 ± 0.02 1.92 ± 0.04 2.83 ± 0.01 0.45 ± 0.01 1.23 ± 0.03
rp split 5.06 ± 0.04 2.36 ± 0.03 3.20 ± 0.01 0.61 ± 0.02 1.30 ± 0.10
rp IARF 5.07 ± 0.22 1.84 ± 0.02 2.79 ± 0.00 0.47 ± 0.01 1.23 ± 0.03
w/o IARF 4.98 ± 0.07 2.07 ± 0.04 3.06 ± 0.00 0.54 ± 0.00 1.36 ± 0.01
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5.3 EFFICIENCY ANALYSIS
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Figure 4: Model efficiency comparison on MIMIC-
III, with a 36-hour lookback length, 3 forecast
timestamps, 96 variables, and a batch size of 32.
ReIMTS uses GraFITi as backbone in the figure,
which achieves the best efficiency compared to
other multi-scale IMTS methods, including Warp-
former, HD-TTS, and Hi-Patch.

We compare the efficiency of our method
ReIMTS with existing multi-scale methods
for IMTS, namely Warpformer (Zhang et al.,
2023a), HD-TTS (Marisca et al., 2024), and Hi-
Patch (Luo et al., 2025). GraFITi (Yalavarthi
et al., 2024) is used as the backbone in ReIMTS,
and we also perform a comparison with it. Mod-
els are assessed based on their MSE, training
time, and GPU memory footprint. The train-
ing time for one epoch with a batch size of
32 is recorded, then divided by the number of
batches to determine the training time per iter-
ation. Memory footprints only encompass the
model’s usage instead of representing the entire
process. Results on the MIMIC-III dataset are
shown in Figure 4, and results from the remain-
ing datasets are plotted in Figure 6 and discussed
in Appendix B.5. As can be seen, ReIMTS runs
the fastest and uses the least GPU memory com-
pared to existing multi-scale methods for IMTS,
while achieving the lowest MSE. It demonstrates
ReIMTS’s flexibility in using lightweight back-
bones and scalability in performing the best.
Compared with the original backbone GraFITi,
ReIMTS controls the overhead of multi-scale
learning within an acceptable range, without the
GPU memory usage being proportional to the number of scale levels.

5.4 ABLATION STUDY

We evaluate the performance of ReIMTS and its four variants across all five datasets. (1) rp sample
replaces split subsamples with original sample; (2) rp split splits subsamples based on the number of
observations rather than time periods; (3) rp IARF replaces irregularity-aware representation fusion
with addition; (4) w/o IARF removes irregularity-aware representation fusion; The ablation results
are summarized in Table 4. As can be seen, all model designs are necessary. Results from rp sample
and rp split show the necessity of splitting samples, particularly by time periods rather than the
number of observations. rp IARF and w/o IARF demonstrate the effectiveness of irregularity-aware
representation fusion, and highlight the necessity of leveraging both global and local representations.

6 CONCLUSION

This paper introduces a recursive multi-scale method, ReIMTS, to address the IMTS forecasting
problem. ReIMTS recursively divides original IMTS samples into subsamples with shorter time
periods while maintaining the original sampling patterns. By recursively invoking the backbone to
learn representations at each scale level, ReIMTS retrieves global-to-local multi-scale representa-
tions based on the preserved sampling patterns. Moreover, ReIMTS leverages an irregularity-aware
representation fusion mechanism to adaptively combine global and local representations based on
content and sampling patterns, thereby preserving crucial semantics for accurate forecasting. ReIMTS
exhibits strong flexibility and improves performance across various existing IMTS backbones, out-
performing twenty-six baseline models in our unified code pipeline. Nevertheless, ReIMTS still has
more potential in combining with wider range of backbones. ODE-based models might need further
theoretical explainability when used with our method. Additionally, some diffusion-based models
predict noisy latent representations in their backbones, which may not be directly compatible with
our method. Possible solutions include predicting clean observations during the denoising process, or
using ReIMTS within the denoising backbone. We will investigate these challenges further in future
work.
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Algorithm 1 ReIMTS: Learning Recursive Multi-Scale Representations

Require: input IMTS S1 ∈ RL1×V , binary mask M1 ∈ {0, 1}L1×V , scale level n ∈ {1, ..., N},
a series of time periods {Tn}Nn=1, forecast horizon LQ,
IMTS backbone decoder Fdec, and a series of encoders in IMTS backbones {Fn

enc}Nn=1.
Ensure: forecast result Ẑ ∈ RLQ×V

function REIMTS(Sn,Mn, n,N, {Tn}Nn=1, LQ, {Fn
enc}Nn=1,Fdec,H

n−1)
En ← Fn

enc(S
n, LQ) ▷ Equation (3) of the paper

if Hn−1 ̸= null then
Gn = Fuse(En,Hn−1,Mn) ▷ Equation (4), (5), and (6) of the paper

else
Gn = En

end if
if n = N then

Ẑ← Fn
dec(G

n, LQ) ▷ Base case
return Ẑ

else
Sn+1 ← Split(Sn, Tn+1) ▷ Equation (2) of the paper
Mn+1 ← Split(Mn, Tn+1)
Hn ← SplitOrDuplicate(Gn) ▷ Equation (9), (10), and (11) of the paper
REIMTS(Sn+1,Mn+1, n+ 1, N, {Tn}Nn=1, LQ, {Fn

enc}Nn=1,Fdec,H
n) ▷ Recursive call

end if
end function
procedure MAIN

Ẑ← REIMTS(S1,M1, 1, N, {Tn}Nn=1, LQ, {Fn
enc}Nn=1,Fdec, null)

return Ẑ
end procedure

A RECURSIVE REPRESENTATION SPLITTING OR DUPLICATION

After En is fused with the representation from scale level n−1 to obtain Gn as detailed in Section 4.2,
for the temporal representation case Gn

time := {gn
time(t

n
k )}P

n

k=1 where Gn
time ∈ RPn×Ln×D, ReIMTS

splits them along the time dimension before passing these global representations to the lower n+ 1
scale level. It should be noted that in this discussion, ‘global’ and ‘local’ are used to describe relative
scales between upper and lower levels, rather than considering all N levels. The splitting process is
similar to that for original IMTS samples, with split positions determined by time periods:

Hn
time := {gn

time(t
n+1
k′ )}P

n+1

k′=1 , (9)

where Hn
time ∈ RPn+1×Ln+1×D. It should be noted that although representations from different levels

share the same timestamps, the dependencies they learn differ. Global dependencies Hn
time are learned

from time periods of length Tn, while local ones En+1
time correspond to shorter time periods of length

Tn+1.

The observation representation case Gn
obs := {gn

obs(t
n
k )}P

n

k=1, where Gn
obs ∈ RPn×Ln×V×D, is

similar to the temporal representation case. We also split them using time periods:

Hn
obs := {gn

obs(t
n+1
k′ )}P

n+1

k′=1 , (10)

where Hn
obs ∈ RPn+1×Ln+1×V×D. As for the variable representation case Gn

var := {gn
var(t

n
k )}P

n

k=1

where Gn
var ∈ RPn×V×D, we duplicate the number of representations Pn at scale level n for

⌈
Pn+1

Pn

⌉
times, resulting in the same number of representations Pn+1 at scale level n+ 1:

Hn
var := {gn

var(t
n+1
k′ )}P

n+1

k′=1 , (11)

where Hn
var ∈ RPn+1×V×D.
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B ADDITIONAL EXPERIMENTS

B.1 EFFECT OF SCALE LEVELS

Table 5: Effect of the number of scale levels on five datasets. A larger number of scale levels performs
better on datasets with longer maximum lengths and a sufficient number of samples.

Scale level MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN

2 3.66 ± 0.04 1.79 ± 0.05 2.86 ± 0.01 0.42 ± 0.00 1.23 ± 0.02
3 4.14 ± 0.02 1.95 ± 0.05 2.83 ± 0.01 0.71 ± 0.00 1.26 ± 0.02
4 3.98 ± 0.02 2.00 ± 0.02 2.84 ± 0.01 0.44 ± 0.00 1.40 ± 0.12

We assess how the number of scale levels impacts model performance, with results summarized
in Table 5. Time periods in different scale levels are 24h, 12h, and 6h for the healthcare datasets
MIMIC-III, MIMIC-IV, and PhysioNet’12, 2000ms, 1000ms, and 500ms for Human Activity, and
2 years, 1 year, and 6 months for USHCN. These chosen time periods are based on prior domain
knowledge, including cycles in clinical medicine (Lakshman et al., 2025; Holford, 2019; Morrill
et al., 2020) and periodic changes in climate (Almazroui et al., 2012). In general, most datasets
achieve optimal performance at a scale level of 2, except for PhysioNet’12. Although the USHCN
dataset has a relatively long maximum length, it suffers from an insufficient number of samples for
training a robust model, as reported in previous work (Yalavarthi et al., 2024).

B.2 EFFECT OF TIME PERIODS

The impact of varying time periods on model performance is demonstrated in Figure 5 for all datasets.
We fix the number of scale levels to two for these experiments. As can be seen, time periods
corresponding to optimal performance across all datasets are half the total time length when the
number of scale levels is two. This is expected given that most IMTS datasets are sparse, exhibiting
dependencies over long time periods, as discussed in Appendix B.1. Specifically, for the medical
datasets MIMIC-III, MIMIC-IV, and PhysioNet’12, a 24-hour time length corresponds to the daily
cycles of patients.

B.3 DIFFERENT METRICS

We present the results measured using MAE in Table 6, which follows the same experimental setup
as Table 3. As can be seen, ReIMTS still outperforms all twenty-six baselines across all five datasets.
Additionally, it consistently enhances the performance of existing IMTS models under all settings,
aligning with the findings from the MSE evaluations discussed in Section 5.2.

B.4 VARYING FORECAST HORIZONS

We also evaluate performance across different forecast horizons. We follow the same settings as
in existing work (Zhang et al., 2024) and keep the lookback length settings the same as in Table 3.
For MIMIC-III, MIMIC-IV, and PhysioNet’12, the forecast horizon is set to 12 hours. For Human
Activity, the forecast horizon is 1000 milliseconds. For USHCN, the forecast horizon is set to 1 year.
The results are summarized in Table 7. It is evident that ReIMTS consistently enhances performance
across longer forecast lengths. Regarding other baseline models, we have surprisingly noticed that a
few models can outperform others in forecasting longer time horizons, as the empirical results have
been thoroughly verified. For example, GRU-D exhibits lower MSE across all five datasets when
forecasting longer lengths, so as ReIMTS+GRU-D. This might due to the longer chains of hidden
states, where GRU-D views forecasting as a task of imputation on the right side of the input series.
Also, PrimeNet performs better on longer forecast lengths, suggesting that apart from requiring more
input samples, its pretraining-finetuning approach may also require more training targets in forecast
horizons to achieve optimal performance. It should be noted that, unlike fully observed MTS, IMTS
samples are typically split into lookback and forecast window based on time periods rather than the
number of observations. The forecast settings here view 75% of the time period as the lookback
window, while the remaining 25% as the forecast window.
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(a) MIMIC-III (b) MIMIC-IV

(c) PhysioNet’12 (d) Human Activity

(e) USHCN

Figure 5: Effect of different time period lengths on PhysioNet’12, Human Activity, and USHCN.
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Table 6: Experimental results on five irregular multivariate time series datasets, evaluated using MAE
(mean ± std) ×10−1. The experimental setup is the same as in Table 3. ‘ME’ indicates Memory
Error.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN Vs Ours

R
eg

ul
ar

MOIRAI 5.79 ± 0.00 4.00 ± 0.00 4.94 ± 0.00 1.91 ± 0.00 8.27 ± 0.00
Ada-MSHyper 5.22 ± 0.00 4.28 ± 0.01 4.50 ± 0.00 2.61 ± 0.04 3.19 ± 0.07
Autoformer 5.47 ± 0.03 5.20 ± 0.00 4.53 ± 0.03 2.18 ± 0.06 4.10 ± 0.05
Scaleformer 4.93 ± 0.03 4.64 ± 0.08 4.45 ± 0.02 2.25 ± 0.05 3.76 ± 0.12
TimesNet 5.03 ± 0.01 4.25 ± 0.01 4.54 ± 0.01 2.26 ± 0.02 3.38 ± 0.02
NHITS 4.92 ± 0.01 4.13 ± 0.01 4.29 ± 0.01 2.16 ± 0.01 3.42 ± 0.04
Pyraformer 5.08 ± 0.00 4.53 ± 0.00 4.28 ± 0.01 2.28 ± 0.00 3.20 ± 0.13
PatchTST 4.54 ± 0.01 3.25 ± 0.01 3.90 ± 0.00 1.70 ± 0.01 3.50 ± 0.42
Leddam 4.83 ± 0.03 3.98 ± 0.02 4.28 ± 0.02 2.00 ± 0.01 3.13 ± 0.07
Pathformer 4.75 ± 0.02 ME 4.01 ± 0.01 1.89 ± 0.02 3.50 ± 0.16
Crossformer 4.74 ± 0.00 3.59 ± 0.01 3.95 ± 0.05 2.50 ± 0.17 3.32 ± 0.06
TimeMixer 4.75 ± 0.04 3.88 ± 0.02 3.80 ± 0.01 1.66 ± 0.03 3.13 ± 0.06

Ir
re

gu
la

r

PrimeNet 6.59 ± 0.00 5.73 ± 0.00 6.79 ± 0.00 13.27 ± 0.01 4.28 ± 0.02
SeFT 6.62 ± 0.00 5.88 ± 0.01 6.68 ± 0.01 9.75 ± 0.01 4.08 ± 0.04
mTAN 6.19 ± 0.06 5.01 ± 0.05 4.30 ± 0.00 2.18 ± 0.03 3.34 ± 0.02
NeuralFlows 5.49 ± 0.01 4.79 ± 0.01 4.60 ± 0.01 3.09 ± 0.04 3.14 ± 0.03
CRU 5.37 ± 0.01 4.56 ± 0.01 5.82 ± 0.01 2.57 ± 0.04 3.37 ± 0.07
TimeCHEAT 4.12 ± 0.03 2.97 ± 0.01 3.70 ± 0.00 1.70 ± 0.06 3.78 ± 0.18
GNeuralFlow 5.35 ± 0.03 4.90 ± 0.00 4.38 ± 0.03 3.15 ± 0.02 2.98 ± 0.03
GRU-D 4.53 ± 0.02 5.47 ± 0.15 3.91 ± 0.01 3.15 ± 0.20 2.83 ± 0.03
Raindrop 4.44 ± 0.01 3.88 ± 0.03 3.94 ± 0.01 2.09 ± 0.03 3.13 ± 0.08
tPatchGNN 4.18 ± 0.00 3.10 ± 0.02 3.83 ± 0.02 1.24 ± 0.00 2.93 ± 0.07
Hi-Patch 4.08 ± 0.01 2.88 ± 0.01 3.71 ± 0.04 1.25 ± 0.02 2.62 ± 0.06
Warpformer 3.90 ± 0.01 2.97 ± 0.01 3.54 ± 0.01 1.30 ± 0.01 2.70 ± 0.02
HD-TTS 3.94 ± 0.00 2.94 ± 0.01 3.49 ± 0.01 1.39 ± 0.04 2.94 ± 0.12
GraFITi 3.69 ± 0.02 3.07 ± 0.02 3.52 ± 0.01 1.20 ± 0.00 2.75 ± 0.13

R
eI

M
T

S

+mTAN 5.17 ± 0.03 4.23 ± 0.05 3.96 ± 0.01 2.11 ± 0.01 2.42 ± 0.03 ↑13.9%
+GRU-D 4.29 ± 0.00 4.27 ± 0.07 3.83 ± 0.00 1.43 ± 0.01 2.76 ± 0.11 ↑17.3%
+Raindrop 4.40 ± 0.02 3.64 ± 0.05 3.76 ± 0.01 1.97 ± 0.01 2.62 ± 0.08 ↑5.6%
+PrimeNet 4.34 ± 0.00 4.04 ± 0.01 3.64 ± 0.02 2.02 ± 0.00 2.53 ± 0.04 ↑47.1%
+TimeCHEAT 4.10 ± 0.04 2.56 ± 0.06 3.51 ± 0.01 1.47 ± 0.01 2.51 ± 0.11 ↑13.3%
+GraFITi 3.65 ± 0.04 2.36 ± 0.01 3.48 ± 0.01 1.15 ± 0.01 2.38 ± 0.09 ↑8.6%
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Table 7: Experimental results of varying forecast horizons on five irregular multivariate time series
datasets evaluated using MSE (mean ± std) ×10−1, with the lookback length following Table 3
and forecast horizons set to the rest length of the whole series, which are 12 hours for MIMIC-III,
MIMIC-IV, and PhysioNet’12, 1000 milliseconds for Human Activity, and 1 year for USHCN. ‘ME’
indicates memory error.

Algorithm MIMIC-III MIMIC-IV PhysioNet’12 Human Activity USHCN Vs Ours

R
eg

ul
ar

MOIRAI 9.68 ± 0.00 4.75 ± 0.00 5.36 ± 0.00 1.02 ± 0.00 8.94 ± 0.00
Ada-MSHyper 6.73 ± 0.05 4.30 ± 0.03 4.46 ± 0.02 1.60 ± 0.01 4.96 ± 0.04
Scaleformer 7.36 ± 0.08 4.84 ± 0.11 4.34 ± 0.03 1.54 ± 0.04 5.66 ± 0.09
NHITS 7.43 ± 0.02 5.16 ± 0.20 4.60 ± 0.01 1.10 ± 0.01 5.21 ± 0.09
Pyraformer 6.49 ± 0.02 4.71 ± 0.00 4.30 ± 0.01 1.23 ± 0.01 4.38 ± 0.04
PatchTST 5.90 ± 0.01 3.36 ± 0.00 3.91 ± 0.01 0.87 ± 0.01 4.78 ± 0.07
Pathformer 6.08 ± 0.10 ME 3.88 ± 0.01 0.91 ± 0.03 5.15 ± 0.08
TimeMixer 5.43 ± 0.02 3.71 ± 0.05 3.76 ± 0.01 0.69 ± 0.01 4.70 ± 0.01

Ir
re

gu
la

r

PrimeNet 8.85 ± 0.00 5.90 ± 0.00 7.89 ± 0.00 10.94 ± 0.00 7.40 ± 0.00
mTAN 9.35 ± 0.32 4.95 ± 0.12 4.16 ± 0.02 1.01 ± 0.02 4.59 ± 0.03
TimeCHEAT 4.89 ± 0.03 3.02 ± 0.01 3.61 ± 0.30 0.74 ± 0.03 4.79 ± 0.15
GNeuralFlow 7.43 ± 0.07 4.83 ± 0.00 4.39 ± 0.02 1.89 ± 0.08 4.87 ± 0.05
GRU-D 5.53 ± 0.05 4.45 ± 0.00 3.81 ± 0.01 1.83 ± 0.23 5.32 ± 0.06
Raindrop 5.82 ± 0.02 5.58 ± 0.25 3.81 ± 0.01 0.97 ± 0.04 5.44 ± 0.41
tPatchGNN 5.90 ± 0.05 2.88 ± 0.00 3.81 ± 0.01 0.60 ± 0.01 5.44 ± 0.41
Hi-Patch 5.03 ± 0.02 2.97 ± 0.02 3.81 ± 0.00 0.59 ± 0.00 4.45 ± 0.10
Warpformer 4.83 ± 0.02 2.99 ± 0.00 3.62 ± 0.01 0.61 ± 0.01 4.46 ± 0.01
HD-TTS 5.62 ± 0.07 2.84 ± 0.02 3.78 ± 0.00 0.60 ± 0.01 4.56 ± 0.05
GraFITi 4.45 ± 0.04 2.72 ± 0.01 3.60 ± 0.01 0.60 ± 0.01 4.28 ± 0.09

R
eI

M
T

S

+mTAN 6.54 ± 0.02 3.49 ± 0.01 3.94 ± 0.01 0.96 ± 0.01 4.48 ± 0.04 ↑14.4%
+GRU-D 5.17 ± 0.05 3.85 ± 0.12 3.72 ± 0.05 1.39 ± 0.02 4.63 ± 0.09 ↑11.9%
+Raindrop 5.52 ± 0.05 3.80 ± 0.02 3.74 ± 0.01 0.97 ± 0.01 4.98 ± 0.16 ↑9.5%
+PrimeNet 5.17 ± 0.03 3.53 ± 0.01 3.67 ± 0.01 0.84 ± 0.01 4.42 ± 0.02 ↑53.6%
+TimeCHEAT 4.75 ± 0.01 2.91 ± 0.02 3.55 ± 0.01 0.69 ± 0.04 4.39 ± 0.05 ↑4.7%
+GraFITi 4.40 ± 0.02 2.50 ± 0.01 3.53 ± 0.01 0.55 ± 0.00 4.09 ± 0.18 ↑4.8%

B.5 ADDITIONAL EFFICIENCY ANALYSIS

We provide additional efficiency comparisons on datasets MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, using the same settings as in Table 3. Results are summarized in Figure 6. ReIMTS
uses GraFITi as its backbones in these comparisons. As can be seen, on most datasets, our method
ReIMTS uses significantly fewer GPU memory than other multi-scale IMTS methods, including
Warpformer, HD-TTS, and Hi-Patch. The training speed is similar to other multi-scale methods,
while ReIMTS can achieve better performance. ReIMTS also has comparable efficiency with the
original model GraFITi.

C BACKBONE DETAILS

We introduce how existing IMTS models servce as backbones in ReIMTS, with modifications
potentially including reductions in hidden dimension size, layer count, or the removal of specific
modules. Also, the structure of decoders and how backbones handle future timestamp queries and
irregularities are also explained. We use the same strategy in the search of hyperparameters as
compared baseline models, which aims to minimize the loss on validation sets. The number of layers
is searched within 1, 2, 3, and 4, and the hidden dimension size is searched within 16, 32, 64, 128,
256, and 512. The number of scale levels used by ReIMTS are described in following paragraphs,
which differs based on backbones. The time period lengths for all variants follow these settings: (1)
MIMIC-III: 48 hours, 24 hours, 12 hours, and 6 hours; (2) MIMIC-IV: 48 hours, 24 hours, 12 hours,
and 6 hours; (3) PhysioNet’12: 48 hours, 24 hours, 12 hours, and 6 hours; (4) Human Activity: 4000
milliseconds, 2000 milliseconds, 1000 milliseconds, and 500 milliseconds; (5) USHCN: 4 years, 2
years, 1 year, and 6 months. In the following descriptions, we use LS and LQ to denote the maximum
number of observations in a univariate series in lookback and forecast window, respectively.
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Figure 6: Efficiency comparisons on MIMIC-IV, PhysioNet’12, Human Activity, and USHCN with a
batch size of 32. ReIMTS demonstrates significantly lower GPU memory usage than other multi-scale
methods Warpformer, HD-TTS, and Hi-Patch on most datasets, while maintaining similar training
time. Compared to the original backbone GraFITi, ReIMTS achieves comparable efficiency.
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ReIMTS+mTAN uses mTAN (Shukla & Marlin, 2020) as backbones. mTAN encodes input IMTS
into temporal representations at a fixed set of reference points, described in Figure 2(b) of its paper.
Therefore, it belongs to the case En = En

time in Eq. 9, and we pass these temporal representations
from top to bottom within the ReIMTS architecture to learn multi-scale temporal representations. For
the decoder of mTAN, it consists of a GRU, a multi-head attention, and an MLP sequentially. It maps
temporal representations of shape LS ×D into time series LQ × V . Future timestamps are used as
queries in the multi-head attention, and the number of variables corresponds to the output dimension
of the MLP. As for the hyperparameters, the hidden dimension size is set to 128, the number of
reference points is 32, and the number of scale levels used by ReIMTS is 2 on all five datasets. The
learning rate is 1× 10−3.

ReIMTS+GRU-D uses GRU-D (Che et al., 2018) as backbones. GRU-D encodes input IMTS
into temporal representations for both lookback and future timestamps, as described in Eq.16 of
its paper. Therefore, it belongs to the case En = En

time in Eq. 9 and learns multi-scale temporal
representations. For the decoder of GRU-D, it consists of an MLP maps temporal representations of
shape (LS + LQ)×D into time series (LS + LQ)× V . Therefore, future timestamps are included
in the temporal representations, and the number of variables corresponds to the output dimension
of the linear layer. To handle irregularities, GRU-D replaces padding values with the last observed
values before processing through a GRU unit. After generating the predicted series, it uses a mask
to retain only the observed and predicted values. As for the hyperparameters, since the original
paper of GRU-D set the hidden dimension size to 100, we additionally include this setting during
hyperparameter searching. The hidden dimension size is set to 100, 64, 100, 64, and 32 on dataset
MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The number of
scale levels used by ReIMTS is set to 2 on all datasets except MIMIC-III, which adopts 3 levels
instead. The learning rate is 1× 10−3.

ReIMTS+Raindrop uses Raindrop (Zhang et al., 2021) as backbones. Raindrop encodes input
IMTS into observation representations, as described in Eq.2 of its paper. Therefore, it belongs to the
case En = En

obs in Eq. 10 during implementation and learns multi-scale observational representations.
Other modifications include reducing the number of propagation layers from two to one and removing
the final transformer encoder layer. For the decoder of Raindrop, it is a linear layer that maps then
rearranges variable representations of shape V × D into a time series with shape LQ × V . The
variable IDs are learned within these representations, and the forecast length is the output dimension
of the linear layer. To handle irregularities, it employs the mask on learned representations to retain
only the positions corresponding to actual input observations. As for the hyperparameters, the number
of layers used by Raindrop backbone is set to 2 on all five datasets. The hidden dimension size is
set to 64, 1, 16, 64, and 16 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively. The number of scale levels used by ReIMTS is set to 2 on all five datasets.
The learning rate is 1× 10−3.

ReIMTS+PrimeNet uses PrimeNet (Chowdhury et al., 2023) as backbones. PrimeNet encodes
input IMTS into temporal representations for both lookback and future timestamps, as described
in Eq.2 in its paper. Therefore, it belongs to the case En = En

time in Eq. 9 and learns multi-scale
temporal representations. We disable the patch splitting operation in the original PrimeNet. For the
decoder of PrimeNet, it is also an MLP maps temporal representations of shape (LS +LQ)×D into
time series (LS + LQ)× V . Future timestamps are included in the temporal representations, and the
number of variables corresponds to the output dimension of the linear layer. To handle irregularities,
it retains only the observed and predicted values after obtaining output series by applying the mask.
As for the hyperparameters, the hidden dimension size is set to 256, 256, 256, 256, and 128 on dataset
MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The number of
scale levels used by ReIMTS is set to 2 on all five datasets. The learning rate is 1× 10−4.

ReIMTS+TimeCHEAT uses TimeCHEAT (Liu et al., 2025) as backbones. TimeCHEAT is based
on GraFITi (Yalavarthi et al., 2024) and simultaneously learns temporal, variable, and observation
representations, as described from Eq.3 to Eq.10 of its paper. We found that sharing variable
embeddings across different scale levels is sufficient during our experiments. Therefore, it belongs to
the case En = En

var in Eq. 11 during implementation and learns multi-scale variable representations.
The patch splitting operation in orginal TimeCHEAT is disabled, and the final transformer encoding
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is discarded. Other settings remain the same. For the decoder of TimeCHEAT, it is a linear
layer that decodes and squeezes representations of shape (LS + LQ)× V × (3D) into time series
(LS + LQ) × V . These representations are obtained by concatenating temporal, variable, and
observational representations along the hidden dimension, each repeated and expanded to shape
(LS + LQ) × V ×D. Therefore, future timestamps are included in the temporal representations,
while variable IDs are included in the variable ones. To handle irregularities, it uses a bipartite graph
approach like GraFITi, which removes all padding values and transform inputs into bipartite graphs.
As for the hyperparameters, the number of layers is set to 2, 2, 4, 2, and 4 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 128, 64, 32, 32, and 64 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively. The number of scale levels used by ReIMTS is set to 2 on all five datasets.
The learning rate is 1× 10−3.

ReIMTS+GraFITi uses GraFITi (Yalavarthi et al., 2024) as backbones. GraFITi simultaneously
learns temporal, variable, and observation representations, as described from Eq.11 to Eq.13 of its
paper. During our implementation, we only transfer variable representations across different scale
levels. Therefore, it belongs to the case En = En

var in Eq. 11 during implementation and learns
multi-scale variable representations. For the decoder of GraFITi, please refer to the descriptions
of TimeCHEAT’s decoder above. To handle irregularities, it uses a bipartite graph approach that
removes all padding values and transform inputs into bipartite graphs. As for the hyperparameters,
the number of layers is set to 4, 1, 1, 4, and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12,
Human Activity, and USHCN, respectively. The hidden dimension size is set to 128, 64, 128, 128,
and 32 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.
The number of scale levels used by ReIMTS is set to 2 on all datasets except PhysioNet’12, which
adopts 3 levels instead. The learning rate is 1× 10−3.

D VISUALIZATION

D.1 FORECASTING RESULTS

30h20h10h0

groundtruth
ReIMTS
GraFITi

(a) MIMIC-III

groundtruth
ReIMTS
GraFITi

30h20h10h0 40h

(b) MIMIC-IV
groundtruth
ReIMTS
GraFITi

30h20h10h0 40h

(c) PhysioNet’12

groundtruth
ReIMTS
GraFITi

3000ms2000ms1000ms0

(d) Human Activity

groundtruth
ReIMTS
GraFITi

(e) USHCN

Figure 7: Visualization of forecast results on all five datasets, under the same settings as in Table 2.
Compared to original backbone GraFITi (in green), ReIMTS (in orange) is closer to the ground truth
(in blue).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We visualize the forecasting results of our proposed ReIMTS when using GraFITi as its backbone,
and also ones from the original GraFITi model, as depicted in Figure 7. The forecast settings are
exactly the same as in Table 2, which means the lookback window length is set to 36 hours for
MIMIC-III, MIMIC-IV, and PhysioNet’12, 3000 milliseconds for Human Activity, and 3 years for
USHCN. The goal is to predict next 300ms for Human Activity, and 3 timestamps for other datasets.
As can be seen, ReIMTS is closer to the ground truth value. The detailed information for these
visualized time series is also provided below. For MIMIC-III, the time series is the 58th variable
from the 2029th sample of test set. For MIMIC-IV, the time series is the 6th variable from the 537th
sample of test set. For PhysioNet’12, the time series is the 6th variable from the 663rd sample of
test set. For Human Activity, the time series is the 1st variable from the 1st sample of test set. For
USHCN, the time series is the 4th variable from the 2nd sample of test set.

D.2 MULTI-SCALE REPRESENTATIONS

(a) w/o ReIMTS (b) ReIMTS

Figure 8: The t-SNE visualization of multi-scale representations in ReIMTS+GRU-D on classification
dataset PAM. Red boxs indicate the region of interest, which mainly contain samples from class 2. (a)
Without ReIMTS, samples from class 2 are very close to ones from class 5 and 7. (b) After applying
ReIMTS, samples from class 2 are more distant from others, leading to improved performance. It
should be noted that class 3 and class 2 have similar colors, where samples from class 3 are mostly
outside of the region of interest.

Since it’s hard to visualize the relationships between learned representations and forecasting accuracy,
we train ReIMTS+GRU-D on classification task instead for visualization, as depicted in Figure 8
where colored points represent test set samples. GraFITi is not originally designed for classification
task, so we choose the classic and widely acknowledged GRU-D as backbones for ReIMTS. Widely
studied dataset PAM (Reiss & Stricker, 2012) is used, which contains 8 class labels. We follow the
preprocessing scripts of Raindrop (Zhang et al., 2021) and split the train/val/test sets adhere to ratio
8:1:1. Other training protocols are the same as forecasting training in Table 3. As can be seen in
Figure 8 (a), when learning without ReIMTS, samples from class 2 are very close to ones from class
5 and 7. The test set performance is 84.14% in precision, 78.04% in recall, and 75.03% in F1. After
applying ReIMTS in Figure 8 (b), samples from class 2 are more distant from others multi-scale
representations. The test set performance is improved to 86.74% in precision, 84.04% in recall, and
82.44% in F1.

E BASELINE DETAILS

We briefly introduce each baseline model along with their key hyperparameter settings here. The
search of hyperparameters aims to minimize the loss on validation sets. The number of layers is
searched within 1, 2, 3, and 4, the hidden dimension size is searched within 16, 32, 64, 128, 256,
and 512, and the patch length is searched in 3, 6, 10, 12, 24, 50, 90, 180, 300, 360, and 500. Unless
otherwise specified, we use a batch size of 16 for USHCN, and 32 for others. However, if the model
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cannot be trained using 24 GB of GPU memory, we recursively halve the batch size until training is
possible. Number of epochs, early stopping patience, random seeds, and learning rates have been
described in Section 5.1.3. We aim to use the same hyperparameters for learning rate and special loss
functions, as specified in their original papers and codes, whenever available. For all classification
models, we replace the final softmax layer with a linear layer to enable forecasting.

E.1 METHODS FOR MTS

MOIRAI (Woo et al., 2024) is a pretraining model for time series forecasting. We use the small
version of the provided pretrained configurations and weights, comprising 6 layers with hidden
dimension 384. We finetune the model on IMTS datasets with learning rate of 1× 10−4.

Ada-MSHyper (Shang et al., 2024) uses hypergraphs for temporal multi-scale learning in MTS
forecasting. The window size for multiscale is 4. The learning rate is 1 × 10−3. We also use its
node and hyperedge constrainted loss function for training. The number of layers is set to 1, 1, 2, 1,
and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.
The hidden dimension size is set to 32, 256, 256, 512, and 512 on dataset MIMIC-III, MIMIC-IV,
PhysioNet’12, Human Activity, and USHCN, respectively.

Autoformer (Wu et al., 2021) is a transformer variant with auto-correlation decomposition for
MTS forecasting. The attention factor is 3. The learning rate is 1× 10−3. The number of layers is set
to 4, 2, 1, 1, and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively. The hidden dimension size is set to 32, 32, 64, 512, and 512 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

Scaleformer (Shabani et al., 2022) is a coarse-to-fine multi-scale framework for transformer
models in MTS forecasting. We adopt its best-performing backbone evaluated in original paper,
Autoformer, in our benchmark. The scale factor is 2. The attention factor is 3. The number of
encoder layers is 2. The number of decoder layers is 1. The number of total layers is set to 4, 1, 1, 1,
and 2 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.
The hidden dimension size is set to 128, 256, 64, 256, and 32 on dataset MIMIC-III, MIMIC-IV,
PhysioNet’12, Human Activity, and USHCN, respectively. The learning rate is 1× 10−3.

TimesNet (Wu et al., 2022) uses 2-D variantion modeling for MTS analysis. The attention factor
is 3. The dimension for FCN is 32. The learning rate is 1 × 10−3. The number of layers is set to
1, 4, 1, 1, and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively. The hidden dimension size is set to 256, 128, 128, 32, and 32 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

NHITS (Challu et al., 2023) is a multi-scale model with hierarchical interpolation technique
for MTS forecasting. The learning rate is 1 × 10−3. The hidden dimension size is set to 64, 32,
32, 512, and 128 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively.

PatchTST (Nie et al., 2022) leverages patching in transformer for MTS forecasting. The patch
lengths are 12, 90, 6, 300 and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively. The number of encoder layers is 3. The attention factor is 3. The number of
heads in attention is 16. The learning rate is 1× 10−4. The hidden dimension size is set to 128, 128,
256, 512, and 512 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively.

Leddam (Yu et al., 2024) uses learnable seasonal-trend decomposition for MTS forecasting. The
learning rate is 1 × 10−3. The number of layers is set to 2, 4, 2, 1, and 1 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 32, 32, 128, 512, and 512 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, respectively.
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Pathformer (Chen et al., 2023) is a multi-scale transformer with multi patch size aggregation.
Since Pathformer does not support splitting irregular time series into patches of different lengths,
the number of layers is fixed as 1. The hidden dimension size is set to 32, 16, 32, 16, and 16 on
dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The patch
lengths are 12, 360, 6, 300, and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively. The learning rate is 1× 10−3.

Crossformer (Zhang & Yan, 2022) learns cross-dimensional dependencies for MTS forecasting.
The segment lengths are 12, 360, 6, 300, and 3 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human
Activity, and USHCN respectively. The learning rate is 1 × 10−3. The number of encoder layers
is set to 2. The hidden dimension size is set to 32, 32, 128, 512, and 512 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

TimeMixer (Wang et al., 2023) uses seasonal-trend decomposition at each sampling scale level.
The down sampling windows are 12, 360, 6, 300, and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12,
Human Activity, and USHCN, respectively. The number of encoder layer is 3. The dimension
for feed-forward layer is 32. The learning rate is 1 × 10−2. The number of total layers is set to
4, 2, 1, 1, and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN,
respectively. The hidden dimension size is set to 32, 32, 64, 16, and 16 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

E.2 METHODS FOR IMTS

PrimeNet (Chowdhury et al., 2023) is an IMTS pretraining model. Since the provided weights
are specific to datasets with 41 variables, we retrain the model on all datasets. The patch lengths are
12, 180, 6, 300, and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN
respectively. The number of heads in attention is 1. The learning rate is 1 × 10−4. The hidden
dimension size is set to 32, 32, 128, 128, and 256 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12,
Human Activity, and USHCN, respectively.

SeFT (Horn et al., 2020) is a set-based method for IMTS classification. The dropout rate is 0.1.
The learning rate is 1× 10−3. The number of layers is set to 2, 2, 4, 4, and 4 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 256, 64, 32, 128, and 256 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, respectively.

mTAN (Shukla & Marlin, 2020) converts IMTS to reference points for IMTS classification. The
number of reference points is 32 on MIMIC-III and 8 on the rest datasets. The hidden dimension size
is set to 32, 64, 64, 64, and 128 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, respectively. The learning rate is 1× 10−3.

NeuralFlows (Biloš et al., 2021) is an efficient alternative to Neural ODE in IMTS analysis. The
number of flow layers is 2. The latent dimension is 20. The hidden dimension for time is 8. The
number of hidden layers is 3. The learning rate is 1× 10−3.

CRU (Schirmer et al., 2022) uses continuous recurrent units for IMTS analysis. The hidden
dimension is 20. The learning rate is 1× 10−3.

TimeCHEAT (Liu et al., 2025) uses channel-dependent within patches and channel-independent
among patches. The patch lengths are 12, 180, 6, 300, and 10 for MIMIC-III, MIMIC-IV, Phy-
sioNet’12, Human Activity, and USHCN respectively. The number of attention heads is 4. The
learning rate is 1 × 10−3. The number of layers is set to 1, 1, 1, 2, and 1 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 32, 32, 32, 64, and 32 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively.

GNeuralFlow (Mercatali et al., 2024) enhances NeuralFlows with graph neural networks for IMTS
analysis. The flow model uses ResNet. The number of flow layers is 2. The latent dimension for
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input is 20. The latent dimension for time is 8. The number of hidden layers is 3. The learning rate is
1× 10−3.

GRU-D (Che et al., 2018) adapts GRUs for IMTS classification. The learning rate is 1× 10−3.
Since the original paper of GRU-D set the hidden dimension size to 100, we additionally include this
setting during hyperparameter searching. The hidden dimension size is set to 100, 32, 100, 100, and
256 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

Raindrop (Zhang et al., 2021) models time-varying variable dependencies for IMTS classification.
The learning rate is 1× 10−4. The number of layers is set to 1, 2, 1, 1, and 2 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 32, 32, 32, 32, and 32 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively.

tPatchGNN (Zhang et al., 2024) processes IMTS into patches and use graph neural networks
for IMTS forecasting. The patch lengths are 12, 360, 6, 300, and 10 for MIMIC-III, MIMIC-IV,
PhysioNet’12, Human Activity, and USHCN, respectively. The number of heads in attention is 1.
The learning rate is 1× 10−3. The number of layers is set to 4, 2, 4, 4, and 1 on dataset MIMIC-III,
MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively. The hidden dimension size is
set to 64, 32, 64, 64, and 256 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively.

Hi-Patch (Luo et al., 2025) implements hierarchical graph fusion inside backbone. The patch
lengths are 12, 360, 6, 300, and 10 for MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and
USHCN, respectively. The number of attention heads is 1. The learning rate is 1×10−3. The number
of layers is set to 4, 1, 4, 4, and 2 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, respectively. The hidden dimension size is set to 32, 64, 32, 128, and 256 on dataset
MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

Warpformer (Zhang et al., 2023a) uses warping for multiscale modeling in IMTS classification.
The number of heads is 1. The dropout rate is 0. The learning rate is 1 × 10−3. The number of
layers is set to 4, 1, 1, 3, and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity,
and USHCN, respectively. The hidden dimension size is set to 64, 64, 64, 64, and 128 on dataset
MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.

HD-TTS (Marisca et al., 2024) implements both variable and temporal multi-scale inside backbone.
The number of rnn layers is 4. The number of pooling layers is 1. The learning rate is 1 × 10−3.
The hidden dimension size is set to 64, 64, 256, 128, and 64 on dataset MIMIC-III, MIMIC-IV,
PhysioNet’12, Human Activity, and USHCN, respectively.

GraFITi (Yalavarthi et al., 2024) uses bipartite graphs for IMTS forecasting. The number of
heads in attention is 4. The learning rate is 1 × 10−3. The number of layers is set to 4, 1, 2, 4,
and 1 on dataset MIMIC-III, MIMIC-IV, PhysioNet’12, Human Activity, and USHCN, respectively.
The hidden dimension size is set to 128, 32, 32, 32, and 128 on dataset MIMIC-III, MIMIC-IV,
PhysioNet’12, Human Activity, and USHCN, respectively.

F THE USE OF LARGE LANGUAGE MODELS

We use Large Language Models (LLMs) to polish writing only. Specifically, we write all contents
ourselves, then use LLMs to check for any possible grammar mistakes or incorrect usage of words.
We have not used LLMs for any other purpose.
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