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Abstract

To assist with everyday human activities, robots must solve complex long-horizon
tasks and generalize to new settings. Recent deep reinforcement learning (RL)
methods show promises in fully autonomous learning, but they struggle to reach
long-term goals in large environments. On the other hand, Task and Motion
Planning (TAMP) approaches excel at solving and generalizing across long-horizon
tasks, thanks to their powerful state and action abstractions. But they assume
predefined skill sets, which limits their real-world applications. In this work,
we combine the benefits of these two paradigms and propose an integrated task
planning and skill learning framework named LEAGUE (Learning and Abstraction
with Guidance). LEAGUE leverages symbolic interface of a task planner to
guide RL-based skill learning and creates abstract state space to enable skill reuse.
More importantly, LEAGUE learns manipulation skills in-situ of the task planning
system, continuously growing its capability and the set of tasks that it can solve.
We demonstrate LEAGUE on three challenging simulated task domains and show
that LEAGUE outperforms baselines by a large margin, and that the learned skills
can be reused to accelerate learning in new tasks and domains. Additional resource
is available at https://bit.ly/3eUOx4N.

1 Introduction

A longstanding challenge in robotics is to develop robots that can autonomously learn to work in
everyday human environments such as households. Recently, Deep Reinforcement Learning (DRL)
has emerged as a promising paradigm to allow robots to acquire skills with minimal supervision [1, 2,
3, 4, 5]. However, DRL methods are still far from enabling home robots on their own. Among the
multitudes of challenges, two have stood out. First, complex real-world tasks are often long-horizon.
This requires a learning agent to explore a prohibitively large space of possible action sequences that
scales exponentially with the task horizon. Second, effective home robots must carry out diverse
tasks in varying environments. As a result, a learner must generalize or quickly adapt its knowledge
to new settings.

To better learn long-horizon tasks, many DRL methods propose to leverage domain knowledge and
structural prior [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
Automatic goal generation in curriculum learning guides a learning process using intermediate
subgoals, enabling an agent to effectively explore and make incremental progress toward a long-
horizon task goal [10, 11, 21, 22]. Other methods use predefined behavior primitives or learn
hierarchical policies to enable temporally-extended decision-making [6, 7, 8, 13, 15, 17, 18, 24,
23, 25, 28, 29]. Although these approaches can outperform vanilla DRL, they still suffer from low
sample efficiency, lack of interpretability, and fragile generalization. Most importantly, the learned
policies are often task-specific and fall short in cross-task and cross-domain generalization.
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Figure 1: Overview of the LEAGUE framework. We present an integrated task planning and skill
learning framework. (a) The system uses the symbolic operator interface of a TAMP-like system
as guidance to learn reusable manipulation skills. (b) A task planner composes the learned skills to
solve long-horizon tasks. As an integrated system, the task planner acts as a feedback curriculum to
guide the skill learning, and the RL-based skill learner continuously grows the set of tasks that the
system can solve.

In the meantime, more established paradigms in robotics have long sought to address these challenges.
In particular, Task and Motion Planning (TAMP) [30, 31, 32, 33, 34] leverages symbolic action
abstractions to enable tractable planning and strong generalization. Specifically, the symbolic action
operators divide a large planning problem into pieces that are each easier to solve. And the “lifted”
action abstraction allows skill reuse across tasks and even domains. For example, a grasp skill
operator and its underlying implementation can be easily adapted to solve a new task in a new domain.
At the same time, most TAMP-style approaches assume access to a complete set of skills before
deployment. This is impractical for two reasons. First, it is hard to prepare skills for all possible
tasks. A robot must be able to grow its skill set on demand. Second, it is hard to hand-engineer
manipulation skills for complex or contact-rich tasks (i.e., pouring or insertion). The challenges make
TAMP methods difficult to deploy in real-world settings.

In this work, we introduce LEAGUE (LEarning and Abstraction with GUidancE), an integrated
task planning and skill learning framework that learns to solve and generalize across long-horizon
tasks. LEAGUE harnesses the merits of the two research paradigms discussed above. Starting with
a task planner that is equipped with skills that are easy to implement (e.g., reaching), LEAGUE
continuously grows the skill set in-situ using a DRL-based learner. The intermediate goals in a task
plan are prescribed as reward for the learner to acquire and refine skills, and the mastered skills are
used to reach the initial states of the new skills. Moreover, LEAGUE leverages the action operator
definition, i.e., the preconditions and the effects, to determine a reduced state space for each learned
skill, akin to the concept of information hiding in feudal learning [35, 36]. The key idea is to abstract
away task-irrelevant features to make the learned skills modular and reusable. Together, the result
is a virtuous cycle where the task planner guides skill learning and abstraction, and the learner
continuously expands the set of tasks that the overall system can perform.

We conduct empirical studies on three challenging long-horizon manipulation tasks built on the
Robosuite simulation framework [37]. We show that LEAGUE is able to outperform state-of-the-art
hierarchical reinforcement learning methods [6] by a large margin. We also highlight that our method
can achieve strong generalization to new task goals and even task domains by reusing and adapting
learned skills. As a result, LEAGUE can solve a challenging simulated coffee making task where
competitive baselines fall flat.
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In summary, our primary contributions are: 1) we leverage the state and action abstractions readily
available in a TAMP system to learn reusable skills, 2) we instantiate the strong synergy between the
task planner and the skill learner as an integrated task planning and skill learning framework, and 3)
we show that the framework can progressively learn skills to solve complex long-horizon tasks and
generalize the learned skills to new task goals and domains.

2 Related Work

TAMP and Learning for TAMP. Task and Motion Planning (TAMP) [38, 39, 40, 41, 42, 43] is a
powerful paradigm to solve long-horizon manipulation tasks. The key idea is to break a challenging
planning problem into a set of symbolic-continuous search problems that are individually easier to
solve. However, TAMP methods require high-level skills and their kinematics or dynamics models
a priori. The assumptions preclude domains for which hand-engineering manipulation skills is
difficult, such as contact-rich tasks. Recent works proposed to learn dynamics models for TAMP by
characterizing skill preconditions and effects [44, 45, 46, 47, 48, 49, 26]. For example, Konidaris et
al. [48] learns compact symbolic models of an environment through trial-and-error. Liang et al. [26]
uses graph neural networks to model skill effects. However, these works still require hand-engineering
complete skill sets that can solve the target task, which may not be feasible in real-world applications.
Our work instead aims to progressively learn new skills to extend the capability of a TAMP-like
system.

Curriculum for RL. Our idea to guide skill learning with a symbolic task planner is connected
to curriculum for RL. The key idea is to expose a learning agent to incrementally more difficult
intermediate tasks before mastering a target task [50]. The intermediate tasks can take the form of
state initialization [51, 52, 53], environments [54, 55, 56], and subgoals [57, 58, 59, 60]. For example,
Florensa et al. [51] starts with near-success initialization and gradually moves the initial states further
away. Campero et al. [58] trains a goal-generator teacher and a goal-seeking student. While effective
at accelerating task learning, existing curricula focus on teaching task or domain-specific policies.
In contrast, our method leverages the symbolic abstraction of a task planner to learn a repertoire of
modular and composable skills. We show that we can compose learned skills to achieve new goals
and even transfer skills to new task domains.

State and Action Abstractions. State and action abstractions are crucial for learning complex tasks
in a large environment [61]. State abstraction allows agents to focus on task-relevant features of
the environment. Action abstraction enables temporally-extended decision-making for long-horizon
tasks. There exists a large body of work on learning either or both types of abstractions [62, 63, 64,
48, 65, 66, 67]. For example, Jonschkowski et al. [64] explores different representation learning
objectives for effective state abstraction. Abel et al. [66] introduces a theory for value-preserving
state-action abstraction. However, autonomously discovering suitable abstractions remains an open
challenge. Our key insight is that a TAMP framework provides powerful state and action abstractions
that can readily guide skill learning. Specifically, the symbolic interface of an action operator defines
both the precondition and the effect (action abstraction) and the state subspace that is relevant to the
action (state abstraction). The abstractions allow us to train skills that are compatible with the task
planner and prevent the learned skills from being distracted by irrelevant objects, making skill reuse
across tasks and domains possible.

Hierarchical Modeling in Robot Learning. Our method inherits the bi-level hierarchy of a TAMP
framework. Hierarchical modeling has a rich history in robotics and robot learning. In addition to
TAMP, various general frameworks including hierarchical task networks [68, 69], logical-geometric
programming [41, 42], and hierarchical reinforcement learning (HRL) [23, 24, 36] have been proposed
to exploit the hierarchical nature of common robotics tasks. In the context of HRL, a small number of
works have explored symbolic planner-guided HRL [70, 71]. However, these methods require tabular
state representations and are thus limited to simple grid-world domains. In robotics domains, a closely
related research thread is to use behavior primitives in RL [6, 72]. For example, MAPLE [6] trains a
high-level policy that chooses among hand-engineered behavior primitives and atomic actions. Our
method instead leverages a symbolic planner to serve as the high-level controller to compose learned
skills, allowing us to continuously extend the skill set while also leading to better generalization.
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3 Method

We seek to enable robots to solve and generalize across long-horizon tasks. Our primary contribution
is a novel integrated task planning and skill learning framework named LEAGUE. Here, we first
provide necessary background in Sec. 3.1, and describe how LEAGUE (1) learns reusable skills
guided by the symbolic operators of a task planner in Sec. 3.2 and (2) uses planner-generated task
plans as an autonomous curriculum to continuously learn skills and expand the capability of the
overall system in Sec. 3.3.

3.1 Background

MDP. A Markov decision process (MDP) is a tuple < X ,A,R(x, a), T (x′|x, a), p(x0), γ >, where
X is the set of environment state, A is the set of actions the agent can taken, R is the reward function,
T is the transition model of the environment. p(x0) denotes the distribution of the initial states, and
γ is the discount factor. The objective for RL training is to maximize the expected total reward with
related to the policy π(a|x) that the agent uses to interact with the environment:

J = Ex0,a0,...at−1,sT∼π,p(x0)

[∑
t

γtR(xt, at)

]
(1)

Task planning space. To support task planning, we assume the environment is augment with a
symbolic interface < O,Λ, Ψ̄, Ω̄,G >, where O denotes the object set and Λ denotes a finite set
of object types. Each object entity o ∈ O (e.g., peg1) has a specific type λ ∈ Λ (e.g., peg) and a
tuple of dim(λ) dimential feature (i.e., (x, y, z, quaternion, ...)), and the environment state x ∈ X
is a mapping from object entities to features: x(o) ∈ Rdim(type(o)). Predicates Ψ describe the
relationships among multiple objects. Each predicate ψ (i.e., Holding) is characterized by a tuple
of object types (λ1, ..., λm) and a binary classifier that determines whether the relationship holds:
cψ : X × Om → {True, False}, where each substitute entity oi ∈ O should have type λi ∈ Λ.
Evaluating a predicate on the state by substituting corresponding object entities will result in a ground
atom (e.g., Holding(peg1)), where a lifted atom is a predicate that maps to typed object variables,
which can be viewed as placeholders (e.g., Holding(?object)). A task goal g ∈ G is represented
as a set of ground atoms, where a symbolic state xΨ can be obtained by evaluating a set of predicates
Ψ̄ and keeping all positive ground atoms:

xΨ = PARSE(x,Ψ)
△
= {ψ : cψ(x) = True,∀ψ ∈ Ψ} (2)

Symbolic skill operators. Following prior works [43, 44], we characterize lifted skill operator
ω̄ ∈ Ω̄ by a tuple < PAR, PRE, EFF+, EFF− >, where PRE denotes the precondition of the
operator, which is a set of lifted atoms defining the condition that the operator is executable. EFF+

and EFF− are lifted atoms that describe the expected effects (changes in conditions) upon successful
skill execution. PAR is an ordered parameter list that defines all object types used in PRE, EFF+,

and EFF−. A ground skill operator ω substitutes lifted atoms with object instances: ω = <ω̄, δ>
△
=<

PRE, EFF+, EFF− >, where δ : PAR → O. Given a task goal, a symbolic task plan is a list of
ground operators that, when the instantiated skills executed successfully, leads to a environment state
that satisfies the goal condition.

We are interested in learning primitive manipulation skills for accomplishing individual subgoal
induced by the expected effects of the corresponding operators – the building blocks that constitute
a symbolic task plan. In our setting, each lifted operator ω̄ will have a corresponding skill policy
π to be learned, while during execution the ground operators belong to the same lifted operator ω̄
share the same skill policy. We assume access to the predicates Ψ̄ and the lifted operators Ω̄ of the
environments and focus on efficiently learning the skills for achieving the effects. Note that it is
possible to invent and learn predicates and operators [49, 46, 73, 74, 75, 76, 77, 33, 78], but the topics
are beyond the scope of this work.

3.2 Skill Learning and Abstraction with Operator Guidance

Action and state abstractions [61] are fundamental to TAMP systems’ abilities to solve and generalize
across long-horizon tasks [43]. Our key insight is that these abstractions, in the form of symbolic

4



Pick (peg1)
Pre: {HandEmpty(), }
Eff: {¬HandEmpty(),
Holding(peg1)}

…

env. state

symbolic skill 
operator

ground

skill abstract 
state

skill effect 
reward

skill learning

Figure 2: Operator-guided skill learning and abstraction. We leverage TAMP-style skill operators
as a guidance for skill learning (use desired effect as reward) and state abstraction (enforce skill-
relevant state space).

action operators (see Fig. 2 for example), can readily guide RL-trained policies to gain similar abilities.
Specifically, for action abstraction, we train temporally-extended skills to reach desired effects of a
skill operator by prescribing the effect condition as shaped reward. For state abstraction, we take
inspiration from the idea of information hiding in feudal learning [35, 36] and use the precondition
and effect signature of an operator to determine a skill-relevant state space for its corresponding
learned policy. This allows the policy to be robust against domains shift and achieve generalization,
especially in large environments where most elements are impertinent to a given skill. To further
accelerate skill learning, we also leverage the existing motion planning capability of a TAMP system
to augment the learned skill with a transition primitive. Below we describe each component in more
details.

Symbolic operators as reward guidance. Our skill learning scheme can build on top of any RL
method that supports continuous action space. In this work, we use Soft Actor-Critic (SAC) [79] as
the basis for skill learning. SAC leverages entropy regularization to enhance exploration. Given the
ground operator ω of a skill, we can define an operator-guided reward RΨ for each individual skill
based on continuous environment state x and the action a produced by the corresponding policy π
that takes in skill-related state ẋ (which will be described later), the objective for our skill learning is
therefore rewritten as:

J = Ex0,a0,...at−1,sT∼π,p(x0)

[∑
t

γt(RΨ(x
t, at, ω) + αH(π(·|ẋt))

]
(3)

where RΨ(·) 7→ [0, 1], and H(·) is the entropy term introduced by SAC.

Enhance skill reuse with feudal state abstraction. With the precondition and effect signature of a
ground operator ω, we can determine a skill-relevant state space to further prevent the learned policy
from being distracted by task-irrelevant objects:

ẋ = EXTRACT(x, ω,O)
△
= {x(o) : o ∈ PAR,∀o ∈ O} (4)

, where PAR is the parameter list of the ground operator. For example, for the skill Pick(peg1), the
skill-related state ẋ includes the 6D pose of peg1 and the end-effector, the offset between the gripper
and peg1, the joint parameters of the robot. This design echos previous work that learn to impose
constraints on states [67, 80, 34], except that the constraints are directly informed by the task planner.

Accelerate learning with transition motion primitives. A key to our method is learning modular
manipulation skills that can be composed to solve long tasks. However, for complex manipulation
problems, even learning such short skills can be challenging. On the other hand, although TAMP
systems fall short when facing contact-rich manipulation, they excel at finding collision-free paths.
To this end, we propose to augment our policy with motion planner-based transition primitives. The
key idea is to first approach the skill-relevant object (per the skill operator) using a off-the-shelf
motion planner, before convening RL-based skill learning. The component can significantly speed up
the exploration while still allowing the system to learn closed-loop contact-rich manipulation skills.
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Figure 3: Visualizing skill learning progress. The plot shows the proficiency level of each skills
throughout the process of learning the task HammerPlace. The proficiency is the average normalized
reward a skill receive at an iteration.

3.3 Integrated Task Planning and Skill Learning

So far, we have described a recipe for learning reusable skills using symbolic skill operators as
guidance. But these skills are not learned in silos. A key to LEAGUE’s success is to learn skills
in-situ of a task planning system. The integrated planning and learning scheme ensures that the
learned skills are compatible with the planner, and the skill learner can continuously extend the
capability of the overall system to solve more tasks. Here we first describe how LEAGUE performs
task planning and execution at inference time, and then we introduce an algorithm that uses task plans
as an autonomous curriculum to schedule skill learning.

Task planning and skill execution. To plan for task goal g, we first PARSE (See Eq. 2) the continuous
environment state x for obtaining the symbolic state xΨ, which affords symbolic search with ground
operators. We then ground each lifted operator ω̄ ∈ Ω̄ on the object set O by substituting object
entities in preconditions and effects, leading to ground operators ω =< PRE, EFF+, EFF− > that
support operating with symbolic states. A ground operator is considered executable only when its
preconditions are satisfied: PRE ⊆ xΨ. The operators induce an abstract transition model F (xΨ, ω)
that allows planning in the symbolic space:

x′Ψ = F (xΨ, ω)
△
= (xΨ \ EFF−) ∪ EFF+ (5)

We use PDDL [81, 82] to build the symbolic planner and we use A∗ search for generating the
high-level plans.

With the generated task plan, we sequentially invoke the corresponding skill πl to reach the subgoal
that complies with the effects of each ground operator ωl in the plan. We rollout each skill controller
until it fulfills the effects of the operator or a maximum skill horizon H is reached. To verify whether
the skill is executed successfully, we first obtain the corresponding symbolic state xlΨ by parsing the
ending environment state xl. The execution is considered successful only when the environment state
xl conforms to the expected effects: F (xl−1

Ψ , ω) ⊆ xlΨ. We keep track of the failed skills to inform
the learning curriculum, as described next.

Task planner as autonomous curriculum. To efficiently acquire all necessary skills for solving a
given multi-step task, we leverage task plans as an autonomous curriculum to schedule skill learning
in a progressive manner. The key idea is to use more proficient skills to reach the preconditions
of skills that require additional learning. The learning algorithm is sketched in Alg. 1 (we omit
PLANNINGWITHSKILLS, as described in text above, due to space constraint). On a high level, we
repeat task planning and skill learning until convergence. We keep track of failed skills during N
task executions and adopt a strict scheduling criteria, where a skill is scheduled for learning (Sec. 3.2)
if it ever fails during the N episodes. Notably, for different skill instances (e.g., Pick(peg1) and
Pick(peg2)) that belong to the same lifted operator, we share the replay buffers so that the relevant
experience can be reused to further improve the learning efficiency and generalization.

4 Experiments

Our experiments aim to show that 1) our integrated task planning and skill learning framework can
progressively learn and refine skills to solve long-horizon tasks and 2) our novel operator-guided skill
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Algorithm 1 Skill Learning
hyperparameters:
Number of training iterations K
input:
env ▷ task environment
g ▷ symbolic task goal
Ψ̄ ▷ state predicates
Ω̄ ▷ lifted operators
start
Π← [π0

1 , ..., π
0
N ]

// initialize all skill controllers
t← 0
while Not Converged do
D ← ∅
for i← [1, ..., N ] do
D ← D ∪ PLANNINGWITHSKILLS(env, g, Ψ̄, Ω̄,Π)

end for
// evaluate planner and collect failed skills
for i, si, ω ← D do

πt
i ← Π[i]

for k ← [1, ...,K] do
πt+k
i ← OPTIMIZE(env, πt+k−1

i , ω)
// RL training

end for
Π[i]← πt+K

i

end for
t← t+K

end while
return Π

learning and abstraction algorithm method produces composable and reusable skills, enabling quick
adaptation to new tasks and domains.

4.1 Experimental Setup

We conduct evaluations on three simulated manipulation domains: HammerPlace, PegInHole, and
MakeCoffee, in which we devise tasks that require multi-step reasoning and long-horizon interactions.
The environments are built on Robosuite [37] with Mujoco [83] as the physics engine. We use a
Franka Emika Panda robot arm that controlled at frequency 20Hz with an operational space controller
(OSC) [84], which has 5 degrees of freedom: the position of the end-effector, the yaw angle, and the
position of the gripper. See Figure 4 for an illustration. HammerPlace requires the robot to place two
hammers into different closed cabinets, where four skill operators are applicable in the environment:
Pick(?object), Place(?object), Pull(?handle), Push(?handle). Since the workspace is
tight, the robot needs to close an opened cabinet before being able to open the other one, which
requires complex reasoning over the task plan. PegInHole is to pick up and insert two pegs into two
target holes. The applicable operators are Pick(?object) and Insert(?object, ?hole). This
task challenges the robot with contact-rich manipulations and multi-step planning; MakeCoffee is
the most challenging task that requires the robot to pick up a coffee pod from a closed cabinet and
insert it into the holder of the coffee machine. Finally, the robot also needs to close the lid and the
cabinet before finishing the task. The applicable operators are Pick(?object), Pull(?handle),
Push(?handle), CloseLid(?machine), and InsertHolder(?object, ?machine). This task
is difficult due to the fine-grained manipulation (e.g., take out a round pod from a small drawer and
insert pod to a tight hole) and reasoning over multiple steps (i.e., first insert the pod then close the lid
and cabinet).

4.2 Visualize Progressive Skill Learning

Before discussing quantitative comparisons, we seek to gain intuitive understanding of our progressive
skill learning scheme (Sec. 3.3), where the learning curriculum adjust based on the proficiencies
of the skills. In Fig. 3, we visualize the proficiency level of each skill throughout the process of

7



0 1 2 3 4 5

Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

T
a
s
k
 P

 
o
g
 
e
s
s

MakeCoffee

Ou s

Ou s W/O SA

MAPLE

SAC

0 1 2 3 4 5
Env Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 P
r 
gr
es
s

PegInH le
Ours
Ours W/O SA
MAPLE
SAC

initial state hammer 1 hammer 2 initial state goal state initial state
pick insertpull

close push

0 1 2 3 4 5
E v Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ta
sk
 P
ro
gr
es
s

HammerPlace
Ours
Ours W/O SA
MAPLE
SAC

initial dip 
after 

hammer1

successful
adaptation to 

hammer2

Figure 4: Main results. (Top) We visualize the key stages of the three evaluation tasks. (Bottom)
We compare relevant methods on the three task domains. The plot shows the corresponding task
completion progress (0 for initial state, 1 for task completion) throughout training. The results are
reported using four random seeds, with standard deviation shown as the shaded area.

learning the task HammerPlace. The y axis shows the average normalized reward a skill receives
at an iteration. The corresponding task progress of each skill is visualized in the snapshots on top
of the plot. At the beginning of the training, the Pull(?cabinet) skill is repeatedly selected for
training, until the agent is able to open one of the cabinets. The Pick(?object) is then instantiated
for learning and execution. Finally at the end of the training, all skills become proficient to be used
to execute the entire task. The result qualitatively shows that LEAGUE’s automated curriculum is
effective at progressively learning skills to achieve long-horizon task goals.

4.3 Quantitative Evaluation

We compare LEAGUE with three baseline methods. The first baseline MAPLE [6] is a recent
state-of-the-art hierarchical RL method that learns a task controller to invoke parametric action
primitives or atomic actions. MAPLE is shown to outperform competitive hierarchical RL methods
such as DAC [85] and HIRO [23], and learned task controller with open-loop policies [29]. Different
than MAPLE that assumes access to a variety of open-loop hand-engineered skills, our method aims
to learn closed-loop manipulation skills augmented with a transition motion primitive (Sec. 3.2).
To facilitate a fair comparison, we provide MAPLE with staged dense reward based on task plans
generated by our task planner, in addition to the affordance-based reward used in their original
implementation. The second baseline is a variant of our approach without the proposed state
abstraction. We also report the performance of SAC [79] that trained with the staged dense reward.
We report the normalized task progress score (0 for initial state, 1 for task completion) over the
training stages. For example, for a task composed of 8 skills, the successful execution of first 4 skills
achieves a progress score of 0.5.

The results are shown in Fig. 4. For easier task PegInHole with fewer object states and shorter
horizon, MAPLE is able to learn to pick up a peg (progress≈ 0.25), but struggles to learn insertion.
Our baseline variant that takes in full environment state learns to insert the first peg, but plateaus
before picking up the second peg. We hypothesize that learning to pick the second peg causes the
policy to forget the policy for the first one. And LEAGUE with state abstraction can effectively reuse
the knowledge. For harder task like HammerPlace, which requires 8 skills to finish, MAPLE is
stuck at the initial stage after opening the first cabinet, while our method is able to learn all skills
efficiently and solve the task. We also found that SAC is able to reach the second stage by exploiting
the reward function with unexpected behavior (i.e., grasp the head part of the hammer instead of the
handle). In addition, we note that our method experiences a performance dip when switching to the
second hammer (as illustrated in the plot). This is because there is a kinematic structure difference
between pulling the left drawer and the right one. This phenomenon is also observed when fine-tuning
RL policy for a new goal and has been reported in the literature [86, 87]. But the state abstraction
allows the skill to quickly adapt the skill to the new task, thus the sharp improvement highlighted
in the green region. In the most challenging MakeCoffee, LEAGUE is able to make reasonable
progress but plateaus at inserting the pod and closing the cabinet and lid. Note that because this task
does not facilitate in-domain skill reuse, LEAGUE performs on par with its full-state baseline.
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Figure 5: Generalization to new domain. For the most challenging MakeCoffee task, we com-
pare (a) learning the task from scratch and (b) learning by adapting the skills (Pick(?object),
Pull(?cabinet), and Push(?cabinet)) learned from the HammerPlace domain.

4.4 Generalization to New Tasks and Domains

To validate that our method can effectively generalize to new task goals and even new task domains
by reusing learned skills, we present the following experiments.

Generalize to new task goals. Here we devise new task goals for the HammerPlace and the
PegInHole domains. For HammerPlace domain, the first test goal is to swap the hammer-cabinet
mapping. The second test goal is to place hammer1 into cabinet2 and keep cabinet1 open. For
PegInHole, the first test goal is to swap the peg-hole mapping. The second goals to only insert peg1
into hole2. The results are in Table 1. We observe that LEAGUE experiences little performance drop
when generalizing to new task goals without additional training, demonstrating strong compositional
generalization capability and skill modularity.

Table 1: We report the performance of applying our method to new task goals in the HammerPlace
(H.P.) and the PegInHole (P.I.H.) domains without additional learning.

Train goal Test goal1 Test goal2 Mean
H.P. 0.94 ± 0.21 0.90 ± 0.12 0.73 ± 0.31 0.81 ± 0.25

P.I.H. 0.87 ± 0.23 0.53 ± 0.05 1.00 ± 0.00 0.76 ± 0.24

Quick adaptation to new domains. Another exciting possibility of LEAGUE is to transfer skills
learned from one domain to another. We design an experiment to verify this feature. The target
domain is MakeCoffee, which is the hardest task of the three. We adapt skills Pick(?object),
Pull(?cabinet), and Push(?cabinet) learned in the HammerPlace domain by slightly modi-
fying the preconditions and effects and integrate the skills into learning the MakeCoffee task. As
shown in Fig. 5, compared to learning from scratch, transferring learned skills can significantly
accelerate learning (the x-axis is shorter than in Fig. 4) and enables the robot to solve the entire task.
This highlights LEAGUE’s strong potential for continual learning.

5 Conclusion

We presented LEAGUE, an integrated task planning and skill learning framework. Through challeng-
ing manipulation tasks, we demonstrated that LEAGUE is effective at solving long-horizon tasks
and generalizing the learned skills to new tasks and domains. Our idea of leveraging TAMP-style
skill abstractions for RL-based skill learning allude to a number of open challenges. As we discussed
in Sec. 3.1, we assume access to a library of skill operators that serve as the basis for skill learn-
ing. Relatedly, our assumptions pertaining to skill-relevant state abstraction, although empirically
effective, may not hold in certain cases (e.g. unintended consequences during exploration). A
possible path to address both challenges is to learn skill operators with sparse transition models from
experience [47, 46, 49].
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