Guided Skill Learning and Abstraction for
Long-Horizon Manipulation

Shuo Cheng and Danfei Xu
Georgia Institute of Technology
Atlanta, GA, 30308, USA
{shuocheng, danfeil}@gatech.edu

Abstract

To assist with everyday human activities, robots must solve complex long-horizon
tasks and generalize to new settings. Recent deep reinforcement learning (RL)
methods show promises in fully autonomous learning, but they struggle to reach
long-term goals in large environments. On the other hand, Task and Motion
Planning (TAMP) approaches excel at solving and generalizing across long-horizon
tasks, thanks to their powerful state and action abstractions. But they assume
predefined skill sets, which limits their real-world applications. In this work,
we combine the benefits of these two paradigms and propose an integrated task
planning and skill learning framework named LEAGUE (Learning and Abstraction
with Guidance). LEAGUE leverages symbolic interface of a task planner to
guide RL-based skill learning and creates abstract state space to enable skill reuse.
More importantly, LEAGUE learns manipulation skills in-sifu of the task planning
system, continuously growing its capability and the set of tasks that it can solve.
We demonstrate LEAGUE on three challenging simulated task domains and show
that LEAGUE outperforms baselines by a large margin, and that the learned skills
can be reused to accelerate learning in new tasks and domains. Additional resource
is available athttps://bit.1ly/3eU0x4N.

1 Introduction

A longstanding challenge in robotics is to develop robots that can autonomously learn to work in
everyday human environments such as households. Recently, Deep Reinforcement Learning (DRL)
has emerged as a promising paradigm to allow robots to acquire skills with minimal supervision [1} 2}
31 14,15]. However, DRL methods are still far from enabling home robots on their own. Among the
multitudes of challenges, two have stood out. First, complex real-world tasks are often long-horizon.
This requires a learning agent to explore a prohibitively large space of possible action sequences that
scales exponentially with the task horizon. Second, effective home robots must carry out diverse
tasks in varying environments. As a result, a learner must generalize or quickly adapt its knowledge
to new settings.

To better learn long-horizon tasks, many DRL methods propose to leverage domain knowledge and
structural prior [6} (7} 18] |9} 10} (11} 112} (13} {14} [15) 116, 17, [18) [19} 20, 211 22} 23], 124} 251 26| 27]).
Automatic goal generation in curriculum learning guides a learning process using intermediate
subgoals, enabling an agent to effectively explore and make incremental progress toward a long-
horizon task goal [10} [11, 21} 22]. Other methods use predefined behavior primitives or learn
hierarchical policies to enable temporally-extended decision-making [6} [7, 8} [13} [15] [17, [18| 24}
2311250128, 129]]. Although these approaches can outperform vanilla DRL, they still suffer from low
sample efficiency, lack of interpretability, and fragile generalization. Most importantly, the learned
policies are often task-specific and fall short in cross-task and cross-domain generalization.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).


https://bit.ly/3eUOx4N

Symbolic Skill Ops { Goal: And [In (pegl, holel), | Symbolic Task Plan
Insert (?peg, ?hole) % In (pegz’ h0|e2)] :
Pre: {P1(?peg), ...} Pick (peg2) Insert (pegl, holel)
Eff: {P3(?hole), ...} ‘ Pre: {P4(peg2), - Pre: {P1(pegl), -}
Eff: {-P2(peg2), } ) ) Eff: {P3(holel), -}
Pick (7peq) —) Task Planner —)
Pre: {P4(?peg), ...}
Eff: {-P2(?peg), ...}
Skill Library state abstraction &
Pick Insert skill instantiation
state abstraction Ql @)
& rewards : !
:r----é-----------------‘l Place
K : 3y
Y : —
. — ! [
E Skill Learning ' reused across
"""""" T“““""' tasks and domains

Feedback Curriculum

(a) Skill Learning and Abstraction

with Symbolic Operator Guidance (b) Task and Skill Planning

Figure 1: Overview of the LEAGUE framework. We present an integrated task planning and skill
learning framework. (a) The system uses the symbolic operator interface of a TAMP-like system
as guidance to learn reusable manipulation skills. (b) A task planner composes the learned skills to
solve long-horizon tasks. As an integrated system, the task planner acts as a feedback curriculum to
guide the skill learning, and the RL-based skill learner continuously grows the set of tasks that the
system can solve.

In the meantime, more established paradigms in robotics have long sought to address these challenges.
In particular, Task and Motion Planning (TAMP) [30] [33] leverages symbolic action
abstractions to enable tractable planning and strong generalization. Specifically, the symbolic action
operators divide a large planning problem into pieces that are each easier to solve. And the “lifted”
action abstraction allows skill reuse across tasks and even domains. For example, a grasp skill
operator and its underlying implementation can be easily adapted to solve a new task in a new domain.
At the same time, most TAMP-style approaches assume access to a complete set of skills before
deployment. This is impractical for two reasons. First, it is hard to prepare skills for all possible
tasks. A robot must be able to grow its skill set on demand. Second, it is hard to hand-engineer
manipulation skills for complex or contact-rich tasks (i.e., pouring or insertion). The challenges make
TAMP methods difficult to deploy in real-world settings.

In this work, we introduce LEAGUE (LEarning and Abstraction with GUidancE), an integrated
task planning and skill learning framework that learns to solve and generalize across long-horizon
tasks. LEAGUE harnesses the merits of the two research paradigms discussed above. Starting with
a task planner that is equipped with skills that are easy to implement (e.g., reaching), LEAGUE
continuously grows the skill set in-situ using a DRL-based learner. The intermediate goals in a task
plan are prescribed as reward for the learner to acquire and refine skills, and the mastered skills are
used to reach the initial states of the new skills. Moreover, LEAGUE leverages the action operator
definition, i.e., the preconditions and the effects, to determine a reduced state space for each learned
skill, akin to the concept of information hiding in feudal learning [35] [36]]. The key idea is to abstract
away task-irrelevant features to make the learned skills modular and reusable. Together, the result
is a virtuous cycle where the task planner guides skill learning and abstraction, and the learner
continuously expands the set of tasks that the overall system can perform.

We conduct empirical studies on three challenging long-horizon manipulation tasks built on the
Robosuite simulation framework [37]. We show that LEAGUE is able to outperform state-of-the-art
hierarchical reinforcement learning methods [6] by a large margin. We also highlight that our method
can achieve strong generalization to new task goals and even task domains by reusing and adapting
learned skills. As a result, LEAGUE can solve a challenging simulated coffee making task where
competitive baselines fall flat.



In summary, our primary contributions are: 1) we leverage the state and action abstractions readily
available in a TAMP system to learn reusable skills, 2) we instantiate the strong synergy between the
task planner and the skill learner as an integrated task planning and skill learning framework, and 3)
we show that the framework can progressively learn skills to solve complex long-horizon tasks and
generalize the learned skills to new task goals and domains.

2 Related Work

TAMP and Learning for TAMP. Task and Motion Planning (TAMP) (38,39, 40| 411,142 [43]] is a
powerful paradigm to solve long-horizon manipulation tasks. The key idea is to break a challenging
planning problem into a set of symbolic-continuous search problems that are individually easier to
solve. However, TAMP methods require high-level skills and their kinematics or dynamics models
a priori. The assumptions preclude domains for which hand-engineering manipulation skills is
difficult, such as contact-rich tasks. Recent works proposed to learn dynamics models for TAMP by
characterizing skill preconditions and effects [44] 145|146l 47,148\ 49| 26]. For example, Konidaris et
al. [48]] learns compact symbolic models of an environment through trial-and-error. Liang et al. [26]
uses graph neural networks to model skill effects. However, these works still require hand-engineering
complete skill sets that can solve the target task, which may not be feasible in real-world applications.
Our work instead aims to progressively learn new skills to extend the capability of a TAMP-like
system.

Curriculum for RL. Our idea to guide skill learning with a symbolic task planner is connected
to curriculum for RL. The key idea is to expose a learning agent to incrementally more difficult
intermediate tasks before mastering a target task [50]. The intermediate tasks can take the form of
state initialization [51,152, 53], environments [54} 55 56], and subgoals [57,58.159,160]. For example,
Florensa et al. [S1] starts with near-success initialization and gradually moves the initial states further
away. Campero et al. [58] trains a goal-generator teacher and a goal-seeking student. While effective
at accelerating task learning, existing curricula focus on teaching task or domain-specific policies.
In contrast, our method leverages the symbolic abstraction of a task planner to learn a repertoire of
modular and composable skills. We show that we can compose learned skills to achieve new goals
and even transfer skills to new task domains.

State and Action Abstractions. State and action abstractions are crucial for learning complex tasks
in a large environment [61]]. State abstraction allows agents to focus on task-relevant features of
the environment. Action abstraction enables temporally-extended decision-making for long-horizon
tasks. There exists a large body of work on learning either or both types of abstractions [62} 63\ 64,
481165, 166, 167]. For example, Jonschkowski et al. [64] explores different representation learning
objectives for effective state abstraction. Abel et al. [66] introduces a theory for value-preserving
state-action abstraction. However, autonomously discovering suitable abstractions remains an open
challenge. Our key insight is that a TAMP framework provides powerful state and action abstractions
that can readily guide skill learning. Specifically, the symbolic interface of an action operator defines
both the precondition and the effect (action abstraction) and the state subspace that is relevant to the
action (state abstraction). The abstractions allow us to train skills that are compatible with the task
planner and prevent the learned skills from being distracted by irrelevant objects, making skill reuse
across tasks and domains possible.

Hierarchical Modeling in Robot Learning. Our method inherits the bi-level hierarchy of a TAMP
framework. Hierarchical modeling has a rich history in robotics and robot learning. In addition to
TAMP, various general frameworks including hierarchical task networks [68, |69]], logical-geometric
programming [41}42]], and hierarchical reinforcement learning (HRL) [23} 124, 136] have been proposed
to exploit the hierarchical nature of common robotics tasks. In the context of HRL, a small number of
works have explored symbolic planner-guided HRL [70l [71]]. However, these methods require tabular
state representations and are thus limited to simple grid-world domains. In robotics domains, a closely
related research thread is to use behavior primitives in RL [6} [72]. For example, MAPLE [6] trains a
high-level policy that chooses among hand-engineered behavior primitives and atomic actions. Our
method instead leverages a symbolic planner to serve as the high-level controller to compose learned
skills, allowing us to continuously extend the skill set while also leading to better generalization.



3 Method

We seek to enable robots to solve and generalize across long-horizon tasks. Our primary contribution
is a novel integrated task planning and skill learning framework named LEAGUE. Here, we first
provide necessary background in Sec. and describe how LEAGUE (1) learns reusable skills
guided by the symbolic operators of a task planner in Sec. [3.2]and (2) uses planner-generated task
plans as an autonomous curriculum to continuously learn skills and expand the capability of the
overall system in Sec.[3.3]

3.1 Background

MDP. A Markov decision process (MDP) is a tuple < X, A, R(x,a), T (2’|, a), p(z?),v >, where
X is the set of environment state, A is the set of actions the agent can taken, R is the reward function,
T is the transition model of the environment. p(x°) denotes the distribution of the initial states, and
« is the discount factor. The objective for RL training is to maximize the expected total reward with
related to the policy 7(a|x) that the agent uses to interact with the environment:

J = Ezo’aoyu_atfl’STN,,T’;D(IU) [ZWtR(ﬁt,at)] (1)
t

Task planning space. To support task planning, we assume the environment is augment with a
symbolic interface < O, A, ¥, Q, G >, where O denotes the object set and A denotes a finite set
of object types. Each object entity o € O (e.g., pegl) has a specific type A € A (e.g., peg) and a
tuple of dim(\) dimential feature (i.e., (X, y, z, quaternion, ...)), and the environment state x € X
is a mapping from object entities to features: (o) € R¥™(type(0))  Predicates ¥ describe the
relationships among multiple objects. Each predicate v (i.e., Holding) is characterized by a tuple
of object types (A1, ..., A,) and a binary classifier that determines whether the relationship holds:
ey X x O™ — {True, False}, where each substitute entity o; € O should have type A\; € A.
Evaluating a predicate on the state by substituting corresponding object entities will result in a ground
atom (e.g., Holding(pegl)), where a lifted atom is a predicate that maps to typed object variables,
which can be viewed as placeholders (e.g., Holding(7object)). A task goal g € G is represented
as a set of ground atoms, where a symbolic state xy can be obtained by evaluating a set of predicates
¥ and keeping all positive ground atoms:

Xy = PARSE(z, ¥) 2 W ey(x) = True, ¥y € ¥} )

Symbolic skill operators. Following prior works [43} 144], we characterize lifted skill operator
@ € Q by atuple < PAR,PRE,EFF", EFF~ >, where PRE denotes the precondition of the
operator, which is a set of lifted atoms defining the condition that the operator is executable. EFF™*
and EFF™ are lifted atoms that describe the expected effects (changes in conditions) upon successful
skill execution. PAR is an ordered parameter list that defines all object types used in PRE, EFF ™,

and EFF~. A ground skill operator w substitutes lifted atoms with object instances: w = <w, §> é<
PRE, EFE" EFF~ >, where 6 : PAR — O. Given a task goal, a symbolic task plan is a list of
ground operators that, when the instantiated skills executed successfully, leads to a environment state
that satisfies the goal condition.

We are interested in learning primitive manipulation skills for accomplishing individual subgoal
induced by the expected effects of the corresponding operators — the building blocks that constitute
a symbolic task plan. In our setting, each lifted operator cw will have a corresponding skill policy
m to be learned, while during execution the ground operators belong to the same lifted operator
share the same skill policy. We assume access to the predicates W and the lifted operators € of the
environments and focus on efficiently learning the skills for achieving the effects. Note that it is
possible to invent and learn predicates and operators [49, 46, (73,74, 7576} [77} 133} 78]], but the topics
are beyond the scope of this work.

3.2 Skill Learning and Abstraction with Operator Guidance

Action and state abstractions [61]] are fundamental to TAMP systems’ abilities to solve and generalize
across long-horizon tasks [43]]. Our key insight is that these abstractions, in the form of symbolic



symbolic skill .
skill abstract

operator

env. state Pick (pegl) state e T AT
e — . > '
[ | Pre: {HandEmpty(), } ' 60@% -— i
— B iif (-HandEmpty(), P |
roun Holding(pegl)} ! \ . i
] B ground - - skill learning '
skill effect ~ ~TTTTTTTTTTTTTTTTTTTTTT

reward

Figure 2: Operator-guided skill learning and abstraction. We leverage TAMP-style skill operators
as a guidance for skill learning (use desired effect as reward) and state abstraction (enforce skill-
relevant state space).

action operators (see Fig. 2] for example), can readily guide RL-trained policies to gain similar abilities.
Specifically, for action abstraction, we train temporally-extended skills to reach desired effects of a
skill operator by prescribing the effect condition as shaped reward. For state abstraction, we take
inspiration from the idea of information hiding in feudal learning [35, [36]] and use the precondition
and effect signature of an operator to determine a skill-relevant state space for its corresponding
learned policy. This allows the policy to be robust against domains shift and achieve generalization,
especially in large environments where most elements are impertinent to a given skill. To further
accelerate skill learning, we also leverage the existing motion planning capability of a TAMP system
to augment the learned skill with a transition primitive. Below we describe each component in more
details.

Symbolic operators as reward guidance. Our skill learning scheme can build on top of any RL
method that supports continuous action space. In this work, we use Soft Actor-Critic (SAC) [[79] as
the basis for skill learning. SAC leverages entropy regularization to enhance exploration. Given the
ground operator w of a skill, we can define an operator-guided reward Ry for each individual skill
based on continuous environment state x and the action a produced by the corresponding policy 7
that takes in skill-related state & (which will be described later), the objective for our skill learning is
therefore rewritten as:

J = Ezoyao"_”at—1_’STNW’p(IO) th(R\p(mt,at,g) + O/H(Tr(|xt)) 3)
t

where Ry (-) — [0, 1], and H(-) is the entropy term introduced by SAC.

Enhance skill reuse with feudal state abstraction. With the precondition and effect signature of a
ground operator w, we can determine a skill-relevant state space to further prevent the learned policy
from being distracted by task-irrelevant objects:

i = EXTRACT(z,w, ©) 2 {2(0) : 0 € PAR,Yo € O} @)

, where PAR is the parameter list of the ground operator. For example, for the skill Pick(peg1), the
skill-related state & includes the 6D pose of pegl and the end-effector, the offset between the gripper
and pegl, the joint parameters of the robot. This design echos previous work that learn to impose
constraints on states [67, 180, |34]], except that the constraints are directly informed by the task planner.

Accelerate learning with transition motion primitives. A key to our method is learning modular
manipulation skills that can be composed to solve long tasks. However, for complex manipulation
problems, even learning such short skills can be challenging. On the other hand, although TAMP
systems fall short when facing contact-rich manipulation, they excel at finding collision-free paths.
To this end, we propose to augment our policy with motion planner-based transition primitives. The
key idea is to first approach the skill-relevant object (per the skill operator) using a off-the-shelf
motion planner, before convening RL-based skill learning. The component can significantly speed up
the exploration while still allowing the system to learn closed-loop contact-rich manipulation skills.



Skill Proficiency

“0.0 0.2 0.4 0.6 0.8 1.0 1.2 14 1.6 1.8
Env Steps (x1M)

Figure 3: Visualizing skill learning progress. The plot shows the proficiency level of each skills
throughout the process of learning the task HammerPlace. The proficiency is the average normalized
reward a skill receive at an iteration.

3.3 Integrated Task Planning and Skill Learning

So far, we have described a recipe for learning reusable skills using symbolic skill operators as
guidance. But these skills are not learned in silos. A key to LEAGUE'’s success is to learn skills
in-situ of a task planning system. The integrated planning and learning scheme ensures that the
learned skills are compatible with the planner, and the skill learner can continuously extend the
capability of the overall system to solve more tasks. Here we first describe how LEAGUE performs
task planning and execution at inference time, and then we introduce an algorithm that uses task plans
as an autonomous curriculum to schedule skill learning.

Task planning and skill execution. To plan for task goal g, we first PARSE (See Eq.[2) the continuous
environment state = for obtaining the symbolic state &y, which affords symbolic search with ground
operators. We then ground each lifted operator w € €2 on the object set O by substituting object
entities in preconditions and effects, leading to ground operators w =< PRE, EFFT EFF~ > that
support operating with symbolic states. A ground operator is considered executable only when its
preconditions are satisfied: PRE C zy. The operators induce an abstract transition model F'(xy,w)
that allows planning in the symbolic space:

o}y = F(zy,w) 2 (vg \ EFF~) U EFE* )

We use PDDL [81] [82]] to build the symbolic planner and we use Ax search for generating the
high-level plans.

With the generated task plan, we sequentially invoke the corresponding skill 7r; to reach the subgoal
that complies with the effects of each ground operator w; in the plan. We rollout each skill controller
until it fulfills the effects of the operator or a maximum skill horizon H is reached. To verify whether
the skill is executed successfully, we first obtain the corresponding symbolic state %, by parsing the
ending environment state '. The execution is considered successful only when the environment state
x! conforms to the expected effects: F' (xf;l ,w) C xY,. We keep track of the failed skills to inform
the learning curriculum, as described next.

Task planner as autonomous curriculum. To efficiently acquire all necessary skills for solving a
given multi-step task, we leverage task plans as an autonomous curriculum to schedule skill learning
in a progressive manner. The key idea is to use more proficient skills to reach the preconditions
of skills that require additional learning. The learning algorithm is sketched in Alg. [T] (we omit
PLANNINGWITHSKILLS, as described in text above, due to space constraint). On a high level, we
repeat task planning and skill learning until convergence. We keep track of failed skills during N
task executions and adopt a strict scheduling criteria, where a skill is scheduled for learning (Sec. [3.2)
if it ever fails during the IV episodes. Notably, for different skill instances (e.g., Pick (pegl) and
Pick(peg2)) that belong to the same lifted operator, we share the replay buffers so that the relevant
experience can be reused to further improve the learning efficiency and generalization.

4 Experiments

Our experiments aim to show that 1) our integrated task planning and skill learning framework can
progressively learn and refine skills to solve long-horizon tasks and 2) our novel operator-guided skill



Algorithm 1 Skill Learning

hyperparameters:

Number of training iterations K

input:

env > task environment
g > symbolic task goal
v > state predicates
Q > lifted operators
start

O« [7, ..., 7%]
// initialize all skill controllers
t<0
while Not Converged do
D+
fori < [1,...,N] do
D < D UPLANNINGWITHSKILLS (env, g, ¥, Q, 1)
end for
// evaluate planner and collect failed skills
for i, s;,w < D do
7l TI[3]
for k + [1,..., K] do
7ith « OPTIMIZE(env, i 7771 W)
/I RL training
end for
[i] < 7i %
end for
t—t+ K
end while
return I1

learning and abstraction algorithm method produces composable and reusable skills, enabling quick
adaptation to new tasks and domains.

4.1 Experimental Setup

We conduct evaluations on three simulated manipulation domains: HammerPlace, PeginHole, and
MakeCoffee, in which we devise tasks that require multi-step reasoning and long-horizon interactions.
The environments are built on Robosuite [37] with Mujoco [83] as the physics engine. We use a
Franka Emika Panda robot arm that controlled at frequency 20Hz with an operational space controller
(OSC) [84], which has 5 degrees of freedom: the position of the end-effector, the yaw angle, and the
position of the gripper. See Figure dfor an illustration. HammerPlace requires the robot to place two
hammers into different closed cabinets, where four skill operators are applicable in the environment:
Pick(7object), Place(7object), Pull(7handle), Push(7handle). Since the workspace is
tight, the robot needs to close an opened cabinet before being able to open the other one, which
requires complex reasoning over the task plan. PegInHole is to pick up and insert two pegs into two
target holes. The applicable operators are Pick(7object) and Insert(?object, 7hole). This
task challenges the robot with contact-rich manipulations and multi-step planning; MakeCoffee is
the most challenging task that requires the robot to pick up a coffee pod from a closed cabinet and
insert it into the holder of the coffee machine. Finally, the robot also needs to close the lid and the
cabinet before finishing the task. The applicable operators are Pick(7object), Pull(7handle),
Push(7handle), CloseLid(?machine), and InsertHolder(7object, 7machine). This task
is difficult due to the fine-grained manipulation (e.g., take out a round pod from a small drawer and
insert pod to a tight hole) and reasoning over multiple steps (i.e., first insert the pod then close the lid
and cabinet).

4.2 Visualize Progressive Skill Learning

Before discussing quantitative comparisons, we seek to gain intuitive understanding of our progressive
skill learning scheme (Sec. [3.3), where the learning curriculum adjust based on the proficiencies
of the skills. In Fig.|3] we visualize the proficiency level of each skill throughout the process of



initial state hammer 1 hammer 2 initial state

goal state initial state

——

HammerPlace PeginHole MakeCoffee

— ours

—— Ours W/O SA successful

08 MAPLE adaptat
— sAC a

— ours
—— Ours W/O SA
08 MAPLE

— sAC

°
>
>

initial dip
04 after
hammerl

Task Progress
Task Progress

AT
|

My ol
e WA AP N n

=

S

N

2 3 2 3 a i 2 3 4
Env Steps 1e6 Env Steos 1e6 Env Steps 1e6

Figure 4: Main results. (Top) We visualize the key stages of the three evaluation tasks. (Bottom)
We compare relevant methods on the three task domains. The plot shows the corresponding task
completion progress (0 for initial state, 1 for task completion) throughout training. The results are
reported using four random seeds, with standard deviation shown as the shaded area.

learning the task HammerPlace. The y axis shows the average normalized reward a skill receives
at an iteration. The corresponding task progress of each skill is visualized in the snapshots on top
of the plot. At the beginning of the training, the Pull (?cabinet) skill is repeatedly selected for
training, until the agent is able to open one of the cabinets. The Pick(7object) is then instantiated
for learning and execution. Finally at the end of the training, all skills become proficient to be used
to execute the entire task. The result qualitatively shows that LEAGUE’s automated curriculum is
effective at progressively learning skills to achieve long-horizon task goals.

4.3 Quantitative Evaluation

We compare LEAGUE with three baseline methods. The first baseline MAPLE [6] is a recent
state-of-the-art hierarchical RL method that learns a task controller to invoke parametric action
primitives or atomic actions. MAPLE is shown to outperform competitive hierarchical RL methods
such as DAC [83] and HIRO [23], and learned task controller with open-loop policies [29]. Different
than MAPLE that assumes access to a variety of open-loop hand-engineered skills, our method aims
to learn closed-loop manipulation skills augmented with a transition motion primitive (Sec. [3.2).
To facilitate a fair comparison, we provide MAPLE with staged dense reward based on task plans
generated by our task planner, in addition to the affordance-based reward used in their original
implementation. The second baseline is a variant of our approach without the proposed state
abstraction. We also report the performance of SAC that trained with the staged dense reward.
We report the normalized task progress score (0 for initial state, 1 for task completion) over the
training stages. For example, for a task composed of 8 skills, the successful execution of first 4 skills
achieves a progress score of 0.5.

The results are shown in Fig.[d] For easier task PegInHole with fewer object states and shorter
horizon, MAPLE is able to learn to pick up a peg (progress~ 0.25), but struggles to learn insertion.
Our baseline variant that takes in full environment state learns to insert the first peg, but plateaus
before picking up the second peg. We hypothesize that learning to pick the second peg causes the
policy to forget the policy for the first one. And LEAGUE with state abstraction can effectively reuse
the knowledge. For harder task like HammerPlace, which requires 8 skills to finish, MAPLE is
stuck at the initial stage after opening the first cabinet, while our method is able to learn all skills
efficiently and solve the task. We also found that SAC is able to reach the second stage by exploiting
the reward function with unexpected behavior (i.e., grasp the head part of the hammer instead of the
handle). In addition, we note that our method experiences a performance dip when switching to the
second hammer (as illustrated in the plot). This is because there is a kinematic structure difference
between pulling the left drawer and the right one. This phenomenon is also observed when fine-tuning
RL policy for a new goal and has been reported in the literature (86} [87]. But the state abstraction
allows the skill to quickly adapt the skill to the new task, thus the sharp improvement highlighted
in the green region. In the most challenging MakeCoffee, LEAGUE is able to make reasonable
progress but plateaus at inserting the pod and closing the cabinet and lid. Note that because this task
does not facilitate in-domain skill reuse, LEAGUE performs on par with its full-state baseline.



MakeCoffee

g
=}

—— Ours - from scratch
Ours - skill reusing

o o o
IN o ©
N

Task Progress

I
N

AZK

0.0 0.5 1.0 15 2.0 2.5 3.0
Env Steps le6

Figure 5: Generalization to new domain. For the most challenging MakeCoffee task, we com-
pare (a) learning the task from scratch and (b) learning by adapting the skills (Pick(7object),
Pull(?cabinet), and Push(?cabinet)) learned from the HammerPlace domain.

4.4 Generalization to New Tasks and Domains

To validate that our method can effectively generalize to new task goals and even new task domains
by reusing learned skills, we present the following experiments.

Generalize to new task goals. Here we devise new task goals for the HammerPlace and the
PegIlnHole domains. For HammerPlace domain, the first test goal is to swap the hammer-cabinet
mapping. The second test goal is to place hammer1 into cabinet?2 and keep cabinet1 open. For
PegInHole, the first test goal is to swap the peg-hole mapping. The second goals to only insert peg1
into hole2. The results are in Table[T} We observe that LEAGUE experiences little performance drop
when generalizing to new task goals without additional training, demonstrating strong compositional
generalization capability and skill modularity.

Table 1: We report the performance of applying our method to new task goals in the HammerPlace
(H.P.) and the PegInHole (P.I.H.) domains without additional learning.

Train goal Test goall Test goal2 Mean

HP | 094+0.21 | 0.90+0.12 | 0.73 £0.31 | 0.81 £0.25

PILH. | 0.87 £0.23 | 0.53 £0.05 | 1.00 £0.00 | 0.76 + 0.24

Quick adaptation to new domains. Another exciting possibility of LEAGUE is to transfer skills
learned from one domain to another. We design an experiment to verify this feature. The target
domain is MakeCoffee, which is the hardest task of the three. We adapt skills Pick(7object),
Pull(7cabinet), and Push(?cabinet) learned in the HammerPlace domain by slightly modi-
fying the preconditions and effects and integrate the skills into learning the MakeCoffee task. As
shown in Fig. [5] compared to learning from scratch, transferring learned skills can significantly
accelerate learning (the z-axis is shorter than in Fig. 4) and enables the robot to solve the entire task.
This highlights LEAGUE’s strong potential for continual learning.

5 Conclusion

We presented LEAGUE, an integrated task planning and skill learning framework. Through challeng-
ing manipulation tasks, we demonstrated that LEAGUE is effective at solving long-horizon tasks
and generalizing the learned skills to new tasks and domains. Our idea of leveraging TAMP-style
skill abstractions for RL-based skill learning allude to a number of open challenges. As we discussed
in Sec. we assume access to a library of skill operators that serve as the basis for skill learn-
ing. Relatedly, our assumptions pertaining to skill-relevant state abstraction, although empirically
effective, may not hold in certain cases (e.g. unintended consequences during exploration). A
possible path to address both challenges is to learn skill operators with sparse transition models from
experience [47, 146\ 49].



References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang,
Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al. Scalable deep
reinforcement learning for vision-based robotic manipulation. In Conference on Robot Learning,
pages 651-673. PMLR, 2018.

Dmitry Kalashnikov, Jacob Varley, Yevgen Chebotar, Benjamin Swanson, Rico Jonschkowski,
Chelsea Finn, Sergey Levine, and Karol Hausman. Mt-opt: Continuous multi-task robotic
reinforcement learning at scale. arXiv preprint arXiv:2104.08212, 2021.

OpenAl: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob Mc-
Grew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3-20,
2020.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning
for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international
conference on robotics and automation (ICRA), pages 3389-3396. IEEE, 2017.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep
visuomotor policies. The Journal of Machine Learning Research, 17(1):1334-1373, 2016.

Soroush Nasiriany, Huihan Liu, and Yuke Zhu. Augmenting reinforcement learning with
behavior primitives for diverse manipulation tasks. In IEEE International Conference on
Robotics and Automation (ICRA), 2022.

Karl Pertsch, Youngwoon Lee, and Joseph J. Lim. Accelerating reinforcement learning with
learned skill priors. In Conference on Robot Learning (CoRL), 2020.

Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S.
Liang, and J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 21847-21859. Curran Associates, Inc., 2021.

Danfei Xu, Roberto Martin-Martin, De-An Huang, Yuke Zhu, Silvio Savarese, and Li F Fei-Fei.
Regression planning networks. Advances in Neural Information Processing Systems, 32, 2019.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In Jennifer Dy and Andreas Krause, editors, Proceedings of the
35th International Conference on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, pages 1515-1528. PMLR, 10-15 Jul 2018.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and
Rob Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. In 6tk
International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada,
April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

Suraj Nair and Chelsea Finn. Hierarchical foresight: Self-supervised learning of long-horizon
tasks via visual subgoal generation. In 8th International Conference on Learning Representa-
tions, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

Yifeng Zhu, Peter Stone, and Yuke Zhu. Bottom-up skill discovery from unsegmented demon-
strations for long-horizon robot manipulation. arXiv preprint arXiv:2109.13841, 2021.

Chen Wang, Danfei Xu, and Li Fei-Fei. Generalizable task planning through representation
pretraining. arXiv preprint arXiv:2205.07993, 2022.

Vivek Veeriah, Tom Zahavy, Matteo Hessel, Zhongwen Xu, Junhyuk Oh, Iurii Kemaev, Hado
van Hasselt, David Silver, and Satinder Singh. Discovery of options via meta-learned sub-
goals. In Marc’ Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and
Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 29861-29873, 2021.

10



[16] Danfei Xu, Ajay Mandlekar, Roberto Martin-Martin, Yuke Zhu, Silvio Savarese, and Li Fei-Fei.
Deep affordance foresight: Planning through what can be done in the future. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 6206—-6213. IEEE, 2021.

[17] Taewook Nam, Shao-Hua Sun, Karl Pertsch, Sung Ju Hwang, and Joseph J. Lim. Skill-based
meta-reinforcement learning. In International Conference on Learning Representations (ICLR),
2022.

[18] Kevin Lu, Aditya Grover, Pieter Abbeel, and Igor Mordatch. Reset-free lifelong learning with
skill-space planning. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021, 2021.

[19] Danfei Xu, Suraj Nair, Yuke Zhu, Julian Gao, Animesh Garg, Li Fei-Fei, and Silvio Savarese.
Neural task programming: Learning to generalize across hierarchical tasks. In 2018 IEEE
International Conference on Robotics and Automation (ICRA), pages 3795-3802. IEEE, 2018.

[20] De-An Huang, Suraj Nair, Danfei Xu, Yuke Zhu, Animesh Garg, Li Fei-Fei, Silvio Savarese,
and Juan Carlos Niebles. Neural task graphs: Generalizing to unseen tasks from a single video
demonstration. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 8565-8574, 2019.

[21] Archit Sharma, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Au-
tonomous reinforcement learning via subgoal curricula. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neural Information
Processing Systems, volume 34, pages 18474—18486. Curran Associates, Inc., 2021.

[22] Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically
motivated goal exploration processes with automatic curriculum learning. arXiv preprint
arXiv:1708.02190, 2017.

[23] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31, 2018.

[24] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 31, 2017.

[25] Anurag Ajay, Aviral Kumar, Pulkit Agrawal, Sergey Levine, and Ofir Nachum. Opal: Of-
fline primitive discovery for accelerating offline reinforcement learning. arXiv preprint
arXiv:2010.13611, 2020.

[26] Jacky Liang, Mohit Sharma, Alex LaGrassa, Shivam Vats, Saumya Saxena, and Oliver Kroemer.
Search-based task planning with learned skill effect models for lifelong robotic manipulation.
In 2022 International Conference on Robotics and Automation (ICRA), pages 6351-6357. IEEE,
2022.

[27] Lin Guan, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging approximate symbolic
models for reinforcement learning via skill diversity. arXiv preprint arXiv:2202.02886, 2022.

[28] Youngwoon Lee, Jingyun Yang, and Joseph J Lim. Learning to coordinate manipulation skills
via skill behavior diversification. In International conference on learning representations, 2019.

[29] Rohan Chitnis, Shubham Tulsiani, Saurabh Gupta, and Abhinav Gupta. Efficient bimanual
manipulation using learned task schemas. In 2020 IEEE International Conference on Robotics
and Automation (ICRA), pages 1149-1155. IEEE, 2020.

[30] Siddharth Srivastava, Eugene Fang, Lorenzo Riano, Rohan Chitnis, Stuart Russell, and Pieter
Abbeel. Combined task and motion planning through an extensible planner-independent
interface layer. In 2014 IEEE international conference on robotics and automation (ICRA),
pages 639-646. IEEE, 2014.

[31] Rohan Chitnis, Tom Silver, Joshua B Tenenbaum, Tomas Lozano-Perez, and Leslie Pack
Kaelbling. Learning neuro-symbolic relational transition models for bilevel planning. arXiv
preprint arXiv:2105.14074, 2021.

11



[32] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomds Lozano-Pérez. Integrated task and motion planning. Annual review of
control, robotics, and autonomous systems, 4:265-293, 2021.

[33] Tom Silver, Rohan Chitnis, Joshua Tenenbaum, Leslie Pack Kaelbling, and Tomds Lozano-Pérez.
Learning symbolic operators for task and motion planning. In 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 3182-3189. IEEE, 2021.

[34] Danny Driess, Jung-Su Ha, and Marc Toussaint. Deep visual reasoning: Learning to predict
action sequences for task and motion planning from an initial scene image. arXiv preprint
arXiv:2006.05398, 2020.

[35] Peter Dayan and Geoffrey E Hinton. Feudal reinforcement learning. Advances in neural
information processing systems, 5, 1992.

[36] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max Jaderberg,
David Silver, and Koray Kavukcuoglu. Feudal networks for hierarchical reinforcement learning.
In International Conference on Machine Learning, pages 3540-3549. PMLR, 2017.

[37] Yuke Zhu, Josiah Wong, Ajay Mandlekar, and Roberto Martin-Martin. robosuite: A modular
simulation framework and benchmark for robot learning. In arXiv preprint arXiv:2009.12293,
2020.

[38] Leslie Pack Kaelbling and Tomds Lozano-Pérez. Hierarchical task and motion planning in the
now. In ICRA, 2011.

[39] Leslie Pack Kaelbling and Tomds Lozano-Pérez. Integrated task and motion planning in belief
space. The International Journal of Robotics Research, 32(9-10):1194-1227, 2013.

[40] Caelan Reed Garrett, Tomds Lozano-Pérez, and Leslie Pack Kaelbling. Pddlstream: Integrating
symbolic planners and blackbox samplers via optimistic adaptive planning. In Proceedings
of the International Conference on Automated Planning and Scheduling, volume 30, pages
440-448, 2020.

[41] Marc Toussaint. Logic-geometric programming: An optimization-based approach to combined
task and motion planning.

[42] Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differen-
tiable physics and stable modes for tool-use and manipulation planning. 2018.

[43] Caelan Reed Garrett, Rohan Chitnis, Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomas Lozano-Pérez. Integrated task and motion planning. arXiv preprint
arXiv:2010.01083, 2020.

[44] Leslie Pack Kaelbling and Tomds Lozano-Pérez. Learning composable models of parameterized
skills. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pages
886-893. IEEE, 2017.

[45] Zi Wang, Caelan Reed Garrett, Leslie Pack Kaelbling, and Tomdas Lozano-Pérez. Active
model learning and diverse action sampling for task and motion planning. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 4107-4114. IEEE,
2018.

[46] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling. Learning symbolic models of
stochastic domains. Journal of Artificial Intelligence Research, 29:309-352, 2007.

[47] Victoria Xia, Zi Wang, and Leslie Pack Kaelbling. Learning sparse relational transition models.
International Conference on Learning Representations, 2018.

[48] George Konidaris, Leslie Pack Kaelbling, and Tomas Lozano-Perez. From skills to sym-
bols: Learning symbolic representations for abstract high-level planning. Journal of Artificial
Intelligence Research, 61:215-289, 2018.

12



[49] Tom Silver, Rohan Chitnis, Nishanth Kumar, Willie McClinton, Tomas Lozano-Perez,
Leslie Pack Kaelbling, and Joshua Tenenbaum. Inventing relational state and action abstractions
for effective and efficient bilevel planning. arXiv preprint arXiv:2203.09634, 2022.

[50] Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. Journal of
Machine Learning Research, 21(181):1-50, 2020.

[51] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pages
482-495. PMLR, 2017.

[52] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE international
conference on robotics and automation (ICRA), pages 6292-6299. IEEE, 2018.

[53] Meng Fang, Tianyi Zhou, Yali Du, Lei Han, and Zhengyou Zhang. Curriculum-guided hindsight
experience replay. Advances in neural information processing systems, 32, 2019.

[54] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning. In International conference on machine learning, pages

2048-2056. PMLR, 2020.

[55] Kuan Fang, Yuke Zhu, Silvio Savarese, and L Fei-Fei. Adaptive procedural task generation for
hard-exploration problems. In International Conference on Learning Representations, 2020.

[56] Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew,
and Igor Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint
arXiv:1909.07528, 2019.

[57] Vasanth Sarathy, Daniel Kasenberg, Shivam Goel, Jivko Sinapov, and Matthias Scheutz. Spotter:
Extending symbolic planning operators through targeted reinforcement learning. In AAMAS
Conference proceedings, 2021.

[58] A Campero, R Raileanu, H Kiittler, JB Tenenbaum, T Rocktischel, and E Grefenstette. Learning
with amigo: Adversarially motivated intrinsic goals. In /CLR. OpenReview. net, 2021.

[59] Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation
for reinforcement learning agents. In International conference on machine learning, pages
1515-1528. PMLR, 2018.

[60] Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source task creation for
curriculum learning. In Proceedings of the 2016 international conference on autonomous agents
& multiagent systems, pages 566574, 2016.

[61] David Abel. A theory of abstraction in reinforcement learning. arXiv preprint arXiv:2203.00397,
2022.

[62] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A
framework for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-
2):181-211, 1999.

[63] Daphne Koller and Ronald Parr. Computing factored value functions for policies in structured
mdps. In IJCAI, volume 99, pages 1332-1339, 1999.

[64] Rico Jonschkowski and Oliver Brock. Learning state representations with robotic priors.
Autonomous Robots, 39(3):407-428, 2015.

[65] Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine.
Learning invariant representations for reinforcement learning without reconstruction. In Inter-
national Conference on Learning Representations, 2020.

[66] David Abel, Nate Umbanhowar, Khimya Khetarpal, Dilip Arumugam, Doina Precup, and
Michael Littman. Value preserving state-action abstractions. In International Conference on
Artificial Intelligence and Statistics, pages 1639-1650. PMLR, 2020.

13



[67] Rohan Chitnis, Tom Silver, Beomjoon Kim, Leslie Pack Kaelbling, and Tomas Lozano-Perez.
Camps: Learning context-specific abstractions for efficient planning in factored mdps. arXiv
preprint arXiv:2007.13202, 2020.

[68] Negin Nejati, Pat Langley, and Tolga Konik. Learning hierarchical task networks by observation.
In Proceedings of the 23rd international conference on Machine learning, pages 665-672, 2006.

[69] Shirin Sohrabi, Jorge A Baier, and Sheila A Mcllraith. Htn planning with preferences. In
Twenty-First International Joint Conference on Artificial Intelligence, 2009.

[70] Fangkai Yang, Daoming Lyu, Bo Liu, and Steven Gustafson. Peorl: Integrating symbolic
planning and hierarchical reinforcement learning for robust decision-making. arXiv preprint
arXiv:1804.07779, 2018.

[71] Leén Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A Mcllraith. Symbolic plans as high-level
instructions for reinforcement learning. In Proceedings of the international conference on
automated planning and scheduling, volume 30, pages 540-550, 2020.

[72] Murtaza Dalal, Deepak Pathak, and Russ R Salakhutdinov. Accelerating robotic reinforcement
learning via parameterized action primitives. Advances in Neural Information Processing
Systems, 34:21847-21859, 2021.

[73] Hankz Hankui Zhuo, Qiang Yang, Derek Hao Hu, and Lei Li. Learning complex action models
with quantifiers and logical implications. Artificial Intelligence, 174(18):1540-1569, 2010.

[74] Emre Ugur and Justus Piater. Bottom-up learning of object categories, action effects and
logical rules: From continuous manipulative exploration to symbolic planning. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 2627-2633. IEEE, 2015.

[75] Barrett Ames, Allison Thackston, and George Konidaris. Learning symbolic representations for
planning with parameterized skills. In 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 526-533. IEEE, 2018.

[76] Joao Loula, Tom Silver, Kelsey R Allen, and Josh Tenenbaum. Discovering a symbolic planning
language from continuous experience. In CogSci, page 2193, 2019.

[77] Hankz Hankui Zhuo, Tuan Nguyen, and Subbarao Kambhampati. Refining incomplete planning
domain models through plan traces. In Twenty-third international joint conference on artificial
intelligence. Citeseer, 2013.

[78] Ankuj Arora, Humbert Fiorino, Damien Pellier, Marc Métivier, and Sylvie Pesty. A review of
learning planning action models. The Knowledge Engineering Review, 33, 2018.

[79] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
Conference on Machine Learning, pages 1856-1865, 2018.

[80] Andrew M Wells, Neil T Dantam, Anshumali Shrivastava, and Lydia E Kavraki. Learning
feasibility for task and motion planning in tabletop environments. IEEE robotics and automation
letters, 4(2):1255-1262, 2019.

[81] Maria Fox and Derek Long. Pddl2. 1: An extension to pddl for expressing temporal planning
domains. Journal of artificial intelligence research, 20:61-124, 2003.

[82] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram, Manuela Veloso,
Daniel Weld, and David Wilkins. Pddl-the planning domain definition language. 1998.

[83] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026-5033. IEEE, 2012.

[84] Oussama Khatib. Inertial properties in robotic manipulation: An object-level framework. The
international journal of robotics research, 14(1):19-36, 1995.

14



[85] Shangtong Zhang and Shimon Whiteson. Dac: The double actor-critic architecture for learning
options. Advances in Neural Information Processing Systems, 32, 2019.

[86] Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

[87] Jiachen Li, Quan Vuong, Shuang Liu, Minghua Liu, Kamil Ciosek, Henrik Christensen, and
Hao Su. Multi-task batch reinforcement learning with metric learning. Advances in Neural
Information Processing Systems, 33:6197-6210, 2020.

15



	Introduction
	Related Work
	Method
	Background
	Skill Learning and Abstraction with Operator Guidance
	Integrated Task Planning and Skill Learning

	Experiments
	Experimental Setup
	Visualize Progressive Skill Learning
	Quantitative Evaluation
	Generalization to New Tasks and Domains

	Conclusion

