
Binary Search with Distributional Predictions

Michael Dinitz∗
Johns Hopkins University
mdinitz@cs.jhu.edu

Sungjin Im†

UC Merced
sim3@ucmerced.edu

Thomas Lavastida
University of Texas at Dallas

thomas.lavastida@utdallas.edu

Benjamin Moseley‡

Carnegie Mellon University
moseleyb@andrew.cmu.edu

Aidin Niaparast‡
Carnegie Mellon University
aniapara@andrew.cmu.edu

Sergei Vassilvitskii
Google Research

sergeiv@google.com

Abstract

Algorithms with (machine-learned) predictions is a powerful framework for com-
bining traditional worst-case algorithms with modern machine learning. However,
the vast majority of work in this space assumes that the prediction itself is non-
probabilistic, even if it is generated by some stochastic process (such as a machine
learning system). This is a poor fit for modern ML, particularly modern neural net-
works, which naturally generate a distribution. We initiate the study of algorithms
with distributional predictions, where the prediction itself is a distribution. We
focus on one of the simplest yet fundamental settings: binary search (or searching a
sorted array). This setting has one of the simplest algorithms with a point prediction,
but what happens if the prediction is a distribution? We show that this is a richer
setting: there are simple distributions where using the classical prediction-based
algorithm with any single prediction does poorly. Motivated by this, as our main
result, we give an algorithm with query complexity O(H(p) + log η), where H(p)
is the entropy of the true distribution p and η is the earth mover’s distance between
p and the predicted distribution p̂. This also yields the first distributionally-robust
algorithm for the classical problem of computing an optimal binary search tree
given a distribution over target keys. We complement this with a lower bound
showing that this query complexity is essentially optimal (up to constants), and
experiments validating the practical usefulness of our algorithm.

1 Introduction

Algorithms with predictions, or algorithms with machine-learned advice, has proved to be a useful
framework for combining machine learning (which is extremely useful in the usual case but can
be quite bad when in the worst case) with traditional worst-case algorithms (which are quite good
in the worst-case but do not do as well as we might hope in the usual case). While similar ideas
have appeared in many places in the past, the formal study of this setting was pioneered by Lykouris
and Vassilvitskii [2021], and was particularly motivated by the practical success of learned index
structures [Kraska et al., 2018]. The goal is usually to design an algorithm for some classical and
important problem in the setting when we are also provided with some type of “advice” or “prediction”
(presumably given by some machine learning algorithm) as to what the instance is like. If the advice
is “good” then we want our algorithm to do extremely well, while if the advice is “bad” then we

∗Supported in part by NSF awards 1909111 and 2228995.
†Supported in part by NSF awards 1844939, 2121745, and 2423106, and by ONR grant N00014-22-1-2701.
‡Supported in part by a Google Research Award, an Infor Research Award, a Carnegie Bosch Junior Faculty

Chair, NSF grants CCF-2121744 and CCF-1845146 and ONR Grant N000142212702.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

want to inherit the traditional worst-case guarantee. In other words, we want the best of both worlds:
good performance in the average case thanks to machine learning, but also robustness and good
performance in the worst-case from traditional algorithms.

Consider the basic problem of searching for a key in a sorted array. This problem is the first example
considered in the survey of Mitzenmacher and Vassilvitskii [2021], as it is perhaps one of the simplest
yet also best-motivated settings. Given a sorted array with n elements and a target key i, we can
of course do a binary search for i using only O(log n) comparisons to find its location α(i). But
suppose that we additionally receive a prediction α̂(i) ∈ [n] of the location of the target key i in the
array, possibly from some machine learning system which attempts to predict the correct location for
each key. If the prediction is perfect (α(i) = α̂(i)), then it is easy to use this prediction: only one
comparison is needed! On the other hand, if the prediction is meaningless, then we can run classical
binary search. But what if the prediction is “close”? It turns out that “doubling binary search” from
the predicted point can be used to design an algorithm which makes at most O(log(|α̂(i)− α(i)|))
comparisons [Mitzenmacher and Vassilvitskii, 2021]. So if the prediction is very close to the true
location then we make very few queries, while if it is very far away then we recover the traditional
binary search comparison bound.

The ability to obtain these types of results has led to an explosion of interest in algorithms with
predictions; see Section 1.2 for some references. Sometimes the prediction itself is simple, as in the
search problem, while sometimes it is quite complex, for instance encompassing a multi-dimensional
vector. However, with only a few exceptions such as Diakonikolas et al. [2021], Angelopoulos
et al. [2024], which will be discussed in Section 1.2 in detail, all of these papers share an important
feature: the prediction itself is non-probabilistic. That is, the prediction is a single (potentially
high-dimensional) point (or maybe a small number of such points). While making the setting simpler,
this is not a good match with the actual output of most ML systems (particularly modern neural
networks), which inherently output a distribution. The question we study in this work is how to take
advantage of the full richness of the prediction. Of course, we can always turn a distribution into
a single point in any number of ways (using a max likelihood estimator (MLE), sampling from the
distribution, etc.). But is that always the right thing to do? Or, can we in fact do better by taking full
advantage of the entire predicted distribution?

1.1 Our Results and Contributions

In this paper we initiate the study of algorithms with distributional predictions, focusing on the basic
search in a sorted array problem described above. In addition to the classic O(log n) comparisons
binary search for an array of size n, we recall the “median” or “bisection” algorithm (first described
by Knuth [1971] and analyzed by Mehlhorn [1975]) which probes the cell representing the median of
the distribution, and recurses appropriately. When the target keys are indeed drawn from the given
distribution, the expected query complexity (i.e. number of comparisons between elements in the
array and the target) is bounded by H(p)+1, where H(p) is the entropy of the distribution [Mehlhorn,
1975]. (Note that when the distribution is uniform over n elements, this recovers the O(log n) binary
search bound). This is in fact essentially optimal: it is known that every algorithm requires at least
H(p)/3 queries in expectation when target keys are drawn from p [Mehlhorn, 1975].

On the other hand, it is easy to see that if target keys are not drawn from p, then this algorithm
can be arbitrarily bad: it can easily be made to use Ω(n) comparisons in expectation. So our main
question is the following: how can we best utilize a prediction p̂ which is not the true distribution p?
Can we recover the near-optimality of the median algorithm without being subject to its worst-case
performance?

Reduction to point distributions. We first show in Section 2.1 that the obvious approach, of
reducing p̂ to a point prediction (whether by sampling, using a max-likelihood prediction, or some
other method) and then using previous algorithms, is a bad idea that can lead to poor worst-case
performance. In addition to ruling out a natural class of algorithms, this gives additional motivation
to our study of distributional predictions: as discussed, essentially all previous work studies the
case in which the prediction is a single point (in this case, location); yet, most machine-learning
systems will actually output a distribution. So our lower bound implies that any of these traditional
point-based algorithms, no matter how good the bound obtained compared to their prediction, must

2

suffer fundamentally poor performance in the real world where target keys actually come from a
distribution.

Main algorithm. We then give our main result in Section 3: an algorithm which interleaves
phases of the “median” algorithm and classical binary search to obtain a query complexity of
O(H(p) + log η), where η is the earth mover’s distance (EMD, also known as the Wasserstein
W1 metric) between p and p̂, See Section 3 for precise details. Note that H(p) ≤ O(log n) and
log η ≤ log n. So if our prediction p̂ is close to p, then our algorithm has performance essentially
equal to the best possible bound H(p). On the other hand, if our prediction p̂ is far from p (so
provides essentially no information), we do not suffer the poor performance of naively believing in p̂
and running the median algorithm on it, instead recovering a bound of O(H(p) + log η) = O(log n).

While there are many notions of “distance” between distributions, EMD is a natural one in our
setting. Many other notions of distance, like ℓ1, do not take the geometry of the line into account.
For example, consider some distribution p over [n], and let p′ be the distribution obtained from p by
moving γ/2 probability mass from 1 to 2, and let p′′ be the distribution obtained from p by moving
γ/2 probability mass from 1 to n. Then the ℓ1 distance between p and p′ is γ, and so is the ℓ1 distance
between p and p′′. Yet clearly p′ is a “more accurate” prediction for p. The earth mover’s distance
recognizes this fact, and so is a more appropriate measure than ℓ1. Similarly, popular measures such
as KL-divergence (which are not technically metrics, but do give a notion of distance) suffer the same
flaws as ℓ1 while also being extraordinarily sensitive to mismatches in the support (the KL-divergence
can be infinite if the supports of the two distributions do not agree).

Distributional Robustness of Optimal Binary Search Trees. We have so far discussed a distri-
butional prediction setting where a target key arrives with a predicted distribution p̂ of its location.
This is a strict generalization of Mitzenmacher and Vassilvitskii [2021], where the prediction is a
single location in the array. In their model, the location is error prone and in ours the distribution over
locations is error prone. Our goal is to construct an effective search strategy given the target and the
prediction.

But there is another related setting: there is a single (unknown) distribution over target keys, and
we are given a (possibly erroneous) prediction of this distribution and are asked to design a search
algorithm with minimum expected lookup time when target keys are drawn from the true distribution.
In other words, instead of each target key coming with a predicted distribution p̂ over locations in
[n] and the true location being drawn from some true distribution p, we are given ahead of time a
predicted distribution p̂ over target keys [n], and are asked to design a lookup algorithm for inputs
that use this distribution. But then these target keys in the input are actually drawn from p rather than
p̂, and do not come with target-specific predictions.

Since any comparison-based search algorithm is equivalent to a particular binary search tree, if p̂ = p
then this is precisely the classical problem of computing an optimal binary search tree [Mehlhorn,
1975]. So we can interpret our results as providing distributionally-robust optimal BSTs: given p̂, we
can efficiently compute a BST where the expected lookup time under the true (but unknown) query
distribution p is at most O(H(p) + log η). Surprisingly, given the classical nature of computing
optimal (or near-optimal) BSTs, this simple question of “what if my distribution is incorrect?” has
not been considered in the data structures and algorithms literature.

Worst case lower bound. We complement our algorithmic development with a lower bound in
Section 3.2, proving that no algorithm can use fewer than Ω(log η) queries in the worst case. Since
Ω(H(p)) is a known lower bound as well even if p is known perfectly [Mehlhorn, 1975], this implies
that our algorithm is asymptotically tight. So if we measure accuracy of the prediction via EMD, no
algorithm can make asymptotically better use of a distributional prediction.

Portfolios of predictions. There has been recent interest in the study of algorithm with multiple
predictions, sometimes called prediction portfolios. See, for example, [Balcan et al., 2021, Dinitz
et al., 2022, Anand et al., 2022, Kevi and Nguyen, 2023]. The goal is usually to do as well as the best
of the predictions in the portfolio, with the difficulty being that we do not know a priori which of
these predictions is best. We extend our main algorithm to this setting in Section 4, showing that it is
possible to use multiple distributional predictions effectively.

3

Experiments. Finally, in Section 5 we give empirical evidence of the efficacy of the algorithm we
propose. We first use synthetic data to demonstrate the effect of distribution error on the performance
of the algorithm. We then evaluate it on a number of real world datasets.

1.2 Other Related Work

Machine learning augmented algorithms have found applications in various areas — for example,
online algorithms [Lykouris and Vassilvitskii, 2021, Purohit et al., 2018], combinatorial algorithms
[Dinitz et al., 2021, Davies et al., 2023], differential privacy [Amin et al., 2022], data structures [Lin
et al., 2022, Vaidya et al., 2021, McCauley et al., 2024, Mccauley et al., 2024] and mechanism design
[Agrawal et al., 2022], to name a few. In particular, online algorithms have been extensively studied
with ML advice for various problems, such as online caching [Lykouris and Vassilvitskii, 2021],
ski-rental [Purohit et al., 2018], scheduling [Lattanzi et al., 2020], knapsack [Im et al., 2021], set
cover [Bamas et al., 2020], and more [Lindermayr and Megow, 2022]. Due to the vast literature, we
only provide a few samples.

Particularly relevant to our setting is the work of Lin et al. [2022], which initiated the study of
predictions for binary search trees. This work investigates how to improve a treap’s guarantees when
item frequencies follow distributions such as the Zipfian distribution.

As discussed earlier, in ML augmented algorithms, predictions are typically given in the form
of specific values, rather than distributions. Here, we discuss a few exceptions. The work by
Diakonikolas et al. [2021] studies the ski-rental problem and prophet inequalities with access to
i.i.d. samples from an unknown distribution. Their focus lies on the sample complexity and not
on the correctness of the distribution. Indeed, they obtain robustness by combining their consistent
algorithm and the best worst-case algorithm in a black-box manner. In contrast, we assume full access
to a distributional prediction and develop new ideas to obtain a tight trade-off between consistency
and robustness, in conjunction with natural error measures involving entropy and the earth mover’s
distance, which take the accuracy of the distributional prediction into account.

More broadly the question of how to improve performance of problems where either full instances, or
some model parameters come from a known distribution is well studied under the rubric of two-stage
stochastic optimization [Swamy and Shmoys, 2006, Ahmed, 2010], with techniques like Sample
Average Approximation (SAA) [Kim et al., 2015] having a rich history. Similar to our setting, one
can look at the robust setting, where the distribution available to the algorithm is different from the
true distribution that examples are drawn from, see e.g., [Bertsimas and Goyal, 2010, Dütting and
Kesselheim, 2019, Bertsimas et al., 2022, Besbes et al., 2022]. Typically in these cases one assumes
a bound on the difference between the two distributions, explicitly choosing what to hedge against,
and then derives optimal strategies. In contrast, in this work we aim to find a smooth trade-off on the
performance of the algorithm as a function of the distance between the two distributions, coupled
with an upper bound on worst-case performance.

Finally, the very recent work of Angelopoulos et al. [2024] is one of the few that consider distributional
predictions. It shows an optimal tradeoff between consistency and robustness for a scheduling problem.
However, their solution space explored is considerably more limited than ours, essentially consisting
of geometric sequences with a multiplicative ratio of 2, each characterized by its starting point.
Further, their bound analysis is restricted to cases where the error is sufficiently small. In contrast, our
work demonstrates how a binary search algorithm can compare generally to earth mover’s distance
(EMD) and a lower bound on the optimum for any predicted distribution. As a result, we develop
novel algorithmic solutions that build upon a close connection to EMD.

2 Preliminaries

We now formally describe our problem and setting. Let a1 < · · · < an be a set of n keys, and
p = (p1, . . . , pn) be a probability distribution over the keys. Our goal is to develop a search strategy
(or search algorithm), which takes a target key a as input, and finds a position i such that ai = a.
We aim to find search strategies with low expected search cost when the target key a is sampled
according to the distribution p. In our analysis we will consider the number of comparisons, also
known as the query complexity, as the main metric of study. This metric captures the information
theoretic complexity of the problem, and ignores computational overhead. Formally, let the search

4

cost C(ai) of finding ai be the number of comparisons done by the algorithm when the target key is
ai. The expected search cost is then

∑n
i=1 piC(ai).

To aid in this goal, we are given a prediction, p̂ = (p̂1, . . . , p̂n), of p. To account for the fact that the
predicted distribution may be incorrect, we let η denote the earth mover’s distance (EMD) between p
and p̂. The EMD between two distributions P and Q is the solution to the optimal transport problem
between them, or more formally, it is infγ∼Π(P,Q) E(x,y)∼γ [d(x, y)], where Π(P,Q) is the set of
joint distributions with marginals P and Q.

Finally, for a distribution p, we let H(p) = −
∑n

i=1 pi log(pi) be the entropy of p. Throughout the
paper, all logarithms are in base 2.

Given the breadth of work on point predictions, it is tempting to try and reduce the distributional
prediction problem to point predictions. We show that this approach does not lead to good results.

2.1 Point Predictions from Distributions

Given prediction p̂ of p, suppose the algorithm first computes some point α̂ from p̂ and then uses the
doubling binary search algorithm from Mitzenmacher and Vassilvitskii [2021] with prediction α̂. This
will have expected running time of O(log(|α̂−α|)), where α is the true location of the key. A natural
question is whether there is some α̂ so that O(log(|α̂− α|)) is comparable to O(H(p) + log η).

Unfortunately, this is not possible, necessitating our more involved algorithm and analysis. Let p
be the distribution on two atoms, with pn/4 = 1/2 and p3n/4 = 1/2, and let p̂ = p. Clearly η = 0,
and H(p) = 1, so any competitive algorithm must terminate after a constant number of comparisons
in expectation. On the other hand, consider some α̂ ∈ [n]. If α̂ ≤ n/2, then since α = 3n/4 with
probability 1/2 we have that E[log(|α̂ − α|)] ≥ 1

2 log(n/4)) = Ω(log n). Similarly, if α̂ ≥ n/2,
then since α = n/4 with probability 1/2 we have that E[log(|α̂−α|)] ≥ Ω(log n). Hence converting
p̂ to a point prediction and then using the algorithm of Mitzenmacher and Vassilvitskii [2021] as a
black box is doomed to failure.

3 Algorithm

To develop our robust approach, recall the two baseline algorithms—traditional binary search with
an O(log n) running time and the algorithm that recurses on the median element of the distribution,
with an O(H(p)) running time (assuming it has access to the true distribution p).

In our algorithm we interleave these two approaches to get the best of both worlds. Let
a ∈ {a1, . . . , an} be the target key. We proceed recursively, keeping track of an active search
range [ℓ, r] (if a = ai, we always have i ∈ [ℓ, r]). Initially, we start with ℓ = 1 and r = n. The
algorithm proceeds in iterations. Each iteration i for i = 0, 1, . . . has two phases

• Bisection. Divide the search range in half based on the predicted probabilities p̂. Formally,
find an index k, ℓ ≤ k ≤ r such that

∑k−1
j=ℓ p̂j ≤ 1

2S and
∑r

j=k+1 p̂j ≤ 1
2S, where

S =
∑r

j=ℓ p̂j . Compare a to ak. If they are equal, return k. Otherwise, based on the result
of the comparison, continue the search on the ranges [ℓ, k − 1] or [k + 1, r].
Continue this process for 2i steps, and if a is not found, begin the second phase.

• Binary Search at the Endpoints. Let [ℓ, r] be the current search range. Set d =

min(22
i

, r − ℓ). Check if a is in the range [ℓ, ℓ + d] or [r − d, r] (by comparing a to
aℓ+d and ar−d). If a is in one of these ranges, say [ℓ, ℓ+ d], do a regular binary search (by
choosing the middle point of the range each time) on the range [ℓ, ℓ+ d], until a is found.
Otherwise, start the next iteration with the new search range [ℓ+ d+ 1, r − d− 1].

The algorithm continues until a is found.

3.1 Analysis

The goal is to show the following theorem with respect to the algorithm.

5

Theorem 3.1. The expected query complexity of the described algorithm is at most 4H(p) +
8max(log(η) + 2, 1) + 8 = O(H(p) + max(log(η), 0)).4

Before formally proving the theorem, we give key intuition about the analysis. In iteration k, the
Bisection phase is continued for 2k steps. In each step, one comparison is made, which makes the
cost of this phase 2k.

Consider the Binary Search at the Endpoints phase. Two comparisons are made during the phase
unless a ∈ [ℓ, ℓ+ d] or a ∈ [r− d, r]. In those cases, we run a traditional binary search on an interval
of length d+ 1, whose cost is log d = log 22

k

= 2k.

For each key ai, it takes at most log(1
pi
) + 1 iterations of the Bisection phase to get to a search range

that has a predicted probability mass of at most pi/2. We can charge the total cost of the iterations up
to this point to the term pi log(

1
pi
) in H(p).

Either we find ai earlier, in which case the total cost of the iterations can be charged to H(p), or there
is an at least pi/2 mass that was predicted to lie outside the interval, allowing us to lower bound η.
We make this argument formal below.

Proof of Theorem 3.1. With probability pi, the target key a that we are looking for is ai. The goal
is to bound the expected cost of the algorithm, which is

∑n
i=1 piC(ai), where C(ai) is the cost

of the algorithm when a = ai. Let ki be the first iteration at which a is found, assuming a = ai.
As mentioned earlier, the total cost of the first phase of the iterations 0 to ki is

∑ki

j=0 2
j < 2ki+1.

Also, the cost of the second phase in each iteration before ki is 2, and in iteration ki is at most
2ki . So the total cost of the algorithm for iterations 0 to ki is at most 3 · 2ki + 2ki ≤ 4 · 2ki .
We partition the keys based on ki into two sets, and bound the cost of each set separately. Let
I1 := {i : ki ≤ log(log(4/pi))} and I2 := {i : ki > log(log(4/pi))}.

First, we bound the cost of indices in I1 by a constant factor of H(p):∑
i∈I1

piC(ai) ≤ 4
∑
i∈I1

pi2
ki ≤ 4

∑
i∈I1

pi log(4/pi) ≤ 4H(p) + 8.

Now we bound the cost of the indices in I2 by a constant factor of log(η). Let i ∈ I2. We know that
during iteration j of searching for ai, in the Bisection phase, the predicted probability mass in the
search range decreases by a factor of at least 22

j

. Therefore the predicted probability mass in the
search range [ℓ, r] at the end of the first phase in iteration ki − 1 is at most

1∏ki−1
j=0 22j

=
1

22
ki−1

=
2

22
ki

≤ 2

4/pi
=

pi
2
,

where the inequality holds because i ∈ I2. So
∑r

j=ℓ p̂j ≤ pi/2. Let Di := min(i− ℓ, r − i). In the
transportation problem corresponding to the earth mover’s distance between p and p̂, a probability
mass of at least pi/2 needs to be moved from point i to the outside of the interval [ℓ, r]. The cost of
this movement in the objective function of the transportation problem is at least Di · pi/2. Therefore
we have η ≥

∑
i∈I2

Di · pi/2. In the Binary Search at the Endpoints phase of iteration k, we probe

indices within distance d = 22
k

around the two endpoints of the search range. Since ai is not
found before iteration ki, we conclude that 22

ki−1

< Di, which means that 2ki ≤ 2 log(Di). Let
p(I2) :=

∑
i∈I2

pi. We have∑
i∈I2

piC(ai) ≤ 4
∑
i∈I2

pi2
ki ≤ 8

∑
i∈I2

pi log(Di) = 8

(∑
i∈I2

pi log(Di) + (1− p(I2)) log(1)

)
.

By concavity of the log(·) function and Jensen’s inequality we have

8

(∑
i∈I2

pi log(Di) + (1− p(I2)) log(1)

)
≤ 8 log

(∑
i∈I2

piDi + (1− p(I2))

)
≤ 8max(log(η)+2, 1).

4To account for the case where η ∈ [0, 1) where log(η) < 0, we impose a bound by taking the maximum of
log(η) and 0.

6

The last inequality follows from the fact that if
∑

i∈I2
piDi ≤ 1 we have

∑
i∈I2

piDi+(1−p(I2)) ≤
2, and otherwise we have

log

(∑
i∈I2

piDi + (1− p(I2))

)
≤ log

(∑
i∈I2

piDi

)
+ 1 ≤ log(2η) + 1 = log(η) + 2.

3.2 Lower Bound

It is well known that there is a lower bound of Ω(H(p)) on the expected query complexity for binary
search [Mehlhorn, 1975]. We now show that there is a lower bound of Ω(log η) on the expected query
complexity as well, even on instances with H(p) = 0. This shows that there must fundamentally be a
log η dependence on the earth mover’s distance, even for instances where it is not absorbed by the
dependence on the entropy.
Theorem 3.2. For any η ∈ [n], any comparison-based (deterministic or randomized) algorithm must
make Ω(log η) queries on some instance where H(p) = 0 and the earth mover’s distance between p
and p̂ is O(η).

Proof. Thanks to Yao’s principle, it suffices to give a distribution over instances of this problem and
argue that any deterministic algorithm has a large expectation over this distribution. Let the set of
keys be [n]. We present a family of problem instances I1, . . . , Iη, where each instance can happen
with probability 1

η . In instance Ii, the true access distribution is a singleton on location i, i.e., in Ii we
have pi = 1 and pj = 0 for each j ∈ [n]\{i}. In all the problem instances I1, . . . , Iη , the prediction
is the uniform distribution over [η]. Note that for each instance Ii, we have H(p) = 0. Also, the earth
mover’s distance between p̂ and p is at most η.

Our claim is that any deterministic algorithm has an expected cost of Ω(log η) over this distribution.
To see this, note that the expected cost of any deterministic algorithm over this distribution of
instances exactly equals the cost of that algorithm on an instance I∗ where the true access distribution
is uniform over [η]. Now by the lower bound of Mehlhorn [1975], the cost of any deterministic
comparison-based algorithm on I∗ is Ω(H(p∗)), where p∗ is the uniform distribution over [η]. To
conclude the proof, note that H(p∗) = Ω(log η).

Combining Theorem 3.2 with the Ω(H(p)) lower bound due to Mehlhorn [1975] results in the
following worst-case lower bound, asymptotically matching Theorem 3.1.
Corollary 3.3. Any comparison-based algorithm for binary search with distributional predictions
has worst-case expected query complexity Ω(H(p) + log(η)).

4 A Portfolio of Predictions

In the previous section we showed an algorithm that is optimal given a single distributional prediction.
Here we extend this result to the setting where there are m different distributions given as a prediction.
That is, for k ∈ {1, 2, . . . ,m}, there are predictions p̂k = (p̂1,k, . . . , p̂n,k) of p given. Let ηk be the
earth mover’s distance between p̂k and p. The goal is to design an algorithm competitive with single
best distribution p̂k. That is, comparable to mink∈[m] log ηk and H(p).

4.1 Algorithm for Multiple Predictions

We proceed in a similar manner, alternating the two phases. However, we change the algorithm so
that in the first phase the algorithm performs a binary search on the medians of each distribution. The
goal of this is to ensure that each distribution has its probability mass drop by at least half in each
step.

As before, the initial search range is [1, n]. The algorithm proceeds in iterations. For i = 0, 1, . . .,
iteration i has two phases.

• Bisection. Let [ℓ, r] be the current search range. Let Sk =
∑r

j=ℓ p̂j,k be the remaining
probability mass in the k’th prediction.

7

Let tk be such that
∑tk−1

j=ℓ p̂j,k ≤ 1
2Sk and

∑r
j=tk+1 p̂j,k ≤ 1

2Sk. That is, tk is the median
of the k’th distribution. Sort the indices k ∈ [m] so that t1 ≤ t2 . . . ≤ tm. For convenience,
let t0 = ℓ and tm+1 = r. Perform a binary search on at0 , at1 , at2 , . . . atm+1 to find the
interval where a ∈ (atj , atj+1

) for some j ∈ {0, 1, 2, . . .m}. The new search range is
[tj + 1, tj+1 − 1].
Continue this for 2i steps, and if a is not found, begin the second phase described below.

• Binary Search at the Endpoints. Let [ℓ, r] be the current search range. Set d =

min(22
i

, r − ℓ). Check if a is in the range [ℓ, ℓ + d] or [r − d, r] (by comparing a to
aℓ+d and ar−d). If a is in one of these ranges, say [ℓ, ℓ+ d], do a regular binary search (by
choosing the middle point of the range each time) on the range [ℓ, ℓ+ d], until a is found.
Otherwise, start the next iteration with the new search range [ℓ+ d+ 1, r − d− 1].

The algorithm continues until a is found.

4.2 Analysis for Multiple Predictions

We now state the following theorem regarding the algorithm for multiple predictions. The overhead
of using multiple predictions is a logm factor. The proof is very similar to the proof of Theorem 3.1
and has been deferred to Appendix A.
Theorem 4.1. Given m different distributions, the expected query complexity of the algorithm is
log(m) ·O(H(p) + max(mink∈[m] log ηk, 0)).

5 Experiments

We now present an empirical evaluation of the proposed algorithms on both synthetic and real datasets.
Our goal is to show how predictions can be used to improve the running time of traditional binary
search approaches. Since our theoretical results are about query complexity, and to keep the results
implementation-independent, our main metric will be the number of comparisons performed by each
method. Our implementation can be found at https://github.com/AidinNiaparast/Learned-BST.

We compare the performance of the following algorithms:

• Classic - The prediction agnostic approach that recursively queries the midpoint of the array.
• Bisection - The bisection algorithm recursively queries the median of the predicted distri-

bution (when the predicted probability in the search range is 0, this algorithm queries the
midpoint of the array). This strategy is nearly optimal when the predicted distribution is
correct [Mehlhorn, 1975]; however, it is not robust to errors in the predicted distribution.

• Learned BST - The algorithm described in Section 3. We make one modification, setting
the parameter d larger to broaden the search space in the very early iterations, setting d to
min(28·2

i

, r − ℓ).
• Convex Combination - This is a heuristic approach to make the Bisection algorithm more

robust. Given a prediction p̂ we generate a new distribution, q = λp̂ + (1 − λ)u, where
u is the uniform distribution on [n]. We then run the Bisection algorithm on q. In our
experiments, λ = 0.5 is used.

5.1 Synthetic Data Experiments

We begin with experiments on synthetic data where we can vary the prediction error in a controlled
environment to show the algorithms sensitivity and robustness to mispredictions.

In this setting, let the keyspace be the integers in [−105, 105]. We then generate t = 104 independent
points from a normal distribution with mean 0 and standard deviation 10, rounding down each to the
nearest integer. This results in a concentrated distribution in a very large key space. The t points form
the predicted distribution, p̂. To generate the test distribution, we proceed in the same manner, but
shift the mean of the normal distribution away from 0 by some value s > 0. Note that for s = 100
the train and test distributions have 0 overlap with high probability. For each value of s, we repeat the
experiment 5 times and report the average and standard deviation of the costs.

8

https://github.com/AidinNiaparast/Learned-BST

0 50 100 150 200 250 300 350
Mean of Test Data

5

10

15

20

25

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

Figure 1: Results for synthetic data experiments. The y-axis measures the average cost (query
complexity) of each algorithm and the x-axis measures the amount of shift in the test distribution.
The training and test data are regenerated 5 times. The solid lines are the mean and the clouds around
them are the standard deviation of these experiments.

0 1000 2000 3000 40000.00

0.05

Training

0 1000 2000 3000 40000.00

0.05

0.10
Test

(a) AskUbuntu

0 1000 2000 3000 4000 5000 60000.00

0.01

0.02
Training

0 1000 2000 3000 4000 5000 60000.000

0.025

0.050
Test

(b) SuperUser

0 2000 4000 6000 8000 100000.00

0.01

0.02

Training

0 2000 4000 6000 8000 100000.00

0.02

0.04

Test

(c) StackOverflow

Figure 2: The train and test distributions when t = 50 for the three datasets.

Our results for this setting can be found in Fig. 1, where we plot the average search cost (query
complexity) of each algorithm against the shift amount for the test distribution. At one extreme,
where there is no shift in the test distribution, we observe that all three algorithms which utilize the
predicted distribution perform well. Since the bisection algorithm is optimal when the error is 0,
it performs the best, as expected, while the Learned BST approach exhibits some overhead due to
hedging against possible errors. However, a perturbation to the predicted distribution causes the
bisection algorithm to perform worse than classical binary search. Both the convex combination
and learned BST algorithms demonstrate a smoother degradation in performance, with our proposed
method (learned BST) giving more robust performance to even large shifts in the test distribution.
When the erorr becomes very high, then the additional overhead of the learned BST algorithm makes
it slightly worse than the Classic baseline.

5.2 Real Data Experiments

Dataset Description. In order to test our approach on real-world data, we use temporal networks
from Stanford Large Network Dataset Collection5. These datasets represent the interactions on stack
exchange websites StackOverflow, AskUbuntu, and SuperUser [Paranjape et al., 2017]. In all cases,
we use the answers-to-questions dataset, which contains entries of the form (u, v, t), which represents
user u answering user v’s question at time t. In this interaction, u is the source and v is the target
user. Our data sequences consist of the source users from each interaction sorted in increasing order
of timestamp, and we restrict the dataset to the first one million entries.

Keys, Predictions, and Test Data. For each data sequence, the set of elements in the first 10% of
the sequence is used as the set of keys of the binary search trees. Let A be the remaining 90% of the
sequence and let a1 < a2 < . . . < an be the set of keys. For each element x ∈ A, if ai ≤ x < ai+1,
we replace x by ai. For t = 5, 10, . . . , 50, we use the first t percent of A as training data and the
rest as test data. The training and test data are used to obtain the predictions (p̂) and actual access
distribution (p), respectively. To obtain these distributions we use the normalized frequencies of each
key in the training and test data.

For completeness, we show the distributions of the keys when t = 50 both for the training set and the
test set in Figure 2.

5https://snap.stanford.edu/data/index.html

9

10 20 30 40 50
Percentage of Training Data

6

7

8

9

10

11

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(a) AskUbuntu

10 20 30 40 50
Percentage of Training Data

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(b) SuperUser

10 20 30 40 50
Percentage of Training Data

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(c) StackOverflow

Figure 3: Results for real data experiments. The y-axis measures the average cost of each algorithm
and the x-axis indicates the fraction of the dataset used for training

8.6 8.8 9.0 9.2 9.4 9.6 9.8
log(Earth Mover's Distance)

6

7

8

9

10

11

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(a) AskUbuntu

9.6 9.8 10.0 10.2 10.4 10.6
log(Earth Mover's Distance)

8.5

9.0

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(b) SuperUser

10.0 10.2 10.4 10.6 10.8 11.0
log(Earth Mover's Distance)

9.5

10.0

10.5

11.0

11.5

12.0

12.5

Av
er

ag
e

Co
st

Classic
Bisection
Learned BST
Convex Combination

(c) StackOverflow

Figure 4: Results for real data experiments. The y-axis measures the average cost of each algorithm
and the x-axis indicates the logarithm of the earth mover’s distance between p̂ and p.

We present the results on these experiments in Figures 3 and 4. In Figure 3 we plot the average cost
of the algorithms against the size of the training data. As we expect, as the size of the training data
increases, the performance of all distribution-dependent algorithms get better, as the distribution error
decreases. We make this more precise in Figure 4 where we plot the average cost against log of the
EMD error.

We note a few observations. The learning agnostic, Classic, is suboptimal in all but a handful of cases,
showing that there is value in using the distribution of the data to improve performance. Second, we
validate the theory, showing that the learned BST’s performance degrades smoothly as log η increases.
Third, the convex combination heuristic is not very effective on real world data, giving only marginal
improvements over the bisection method.

Finally, on both AskUbuntu and SuperUser datasets, the learned BST approach performs significantly
better than all of the baselines, saving 20-25% comparisons on average. Unlike the Bisection
algorithm it is also never worse than the Classic baseline. On the StackOverflow dataset our approach
is about 10% worse than bisection method, owing to the distribution being less concentrated around
the median. In these cases, the overhead of learned BST is apparent, given that the second phase is
unlikely to be fruitful in the first few iterations.

Overall, these results show that the Learned BST method is robust against errors, and performs
well against other approaches. Further improving the constant factors so that the learned approach
has strong worst-case guarantees and performs well against other learned approaches remains a
challenging open problem.

6 Conclusion

There has been a growing line of work showing how to improve optimization algorithms using
machine learned predictions. Predominately, prior work has leveraged non-probabilistic predictions,
despite the fact that most ML systems, such as neural networks, output a distribution.

This work introduces a model where the prediction is a distribution. We show that algorithms can
perform better by taking full advantage of the distributional nature of the prediction, and that reduction
to a point prediction is insufficient to provide competitive algorithms.

Given the breadth of work in the Algorithms with Predictions area Mitzenmacher and Vassilvitskii
[2021], there is a wide variety of open questions concerning how to adapt algorithms to the setting of
distributional predictions.

10

References
Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan. Learning-augmented

mechanism design: Leveraging predictions for facility location. In Proceedings of the 23rd ACM
Conference on Economics and Computation, pages 497–528, 2022.

Shabbir Ahmed. Two-stage stochastic integer programming: A brief introduction. Wiley encyclopedia
of operations research and management science, pages 1–10, 2010.

Kareem Amin, Travis Dick, Mikhail Khodak, and Sergei Vassilvitskii. Private algorithms with
private predictions. CoRR, abs/2210.11222, 2022. doi: 10.48550/ARXIV.2210.11222. URL
https://doi.org/10.48550/arXiv.2210.11222.

Keerti Anand, Rong Ge, Amit Kumar, and Debmalya Panigrahi. Online algorithms with multiple
predictions. In Proceedings of the 39th International Conference on Machine Learning, ICML
2022, 2022.

Spyros Angelopoulos, Marcin Bienkowski, Christoph Dürr, and Bertrand Simon. Contract scheduling
with distributional and multiple advice. In Kate Larson, editor, Proceedings of the Thirty-Third
International Joint Conference on Artificial Intelligence, IJCAI-24, pages 3652–3660. International
Joint Conferences on Artificial Intelligence Organization, 8 2024. doi: 10.24963/ijcai.2024/404.
URL https://doi.org/10.24963/ijcai.2024/404. Main Track.

Maria-Florina Balcan, Tuomas Sandholm, and Ellen Vitercik. Generalization in portfolio-based
algorithm selection. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-
Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intelligence, EAAI 2021, Virtual Event, February
2-9, 2021, pages 12225–12232. AAAI Press, 2021. URL https://ojs.aaai.org/index.php/
AAAI/article/view/17451.

Étienne Bamas, Andreas Maggiori, and Ola Svensson. The primal-dual method for learning aug-
mented algorithms. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, Decem-
ber 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html.

Dimitris Bertsimas and Vineet Goyal. On the power of robust solutions in two-stage stochastic and
adaptive optimization problems. Mathematics of Operations Research, 35(2):284–305, 2010.

Dimitris Bertsimas, Shimrit Shtern, and Bradley Sturt. Two-stage sample robust optimization.
Operations Research, 70(1):624–640, 2022.

Omar Besbes, Will Ma, and Omar Mouchtaki. Beyond IID: data-driven decision-making in heteroge-
neous environments. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave, K. Cho, and
A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual Conference on
Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November
28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/
hash/974ff7b5bf08dbf9400b5d599a39c77f-Abstract-Conference.html.

Sami Davies, Benjamin Moseley, Sergei Vassilvitskii, and Yuyan Wang. Predictive flows for faster
ford-fulkerson. In International Conference on Machine Learning, pages 7231–7248. PMLR,
2023.

Ilias Diakonikolas, Vasilis Kontonis, Christos Tzamos, Ali Vakilian, and Nikos Zarifis. Learning
online algorithms with distributional advice. In Marina Meila and Tong Zhang, editors, Proceedings
of the 38th International Conference on Machine Learning, volume 139 of Proceedings of Machine
Learning Research, pages 2687–2696. PMLR, 18–24 Jul 2021. URL https://proceedings.
mlr.press/v139/diakonikolas21a.html.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Faster
matchings via learned duals. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin,

11

https://doi.org/10.48550/arXiv.2210.11222
https://doi.org/10.24963/ijcai.2024/404
https://ojs.aaai.org/index.php/AAAI/article/view/17451
https://ojs.aaai.org/index.php/AAAI/article/view/17451
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/e834cb114d33f729dbc9c7fb0c6bb607-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/974ff7b5bf08dbf9400b5d599a39c77f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/974ff7b5bf08dbf9400b5d599a39c77f-Abstract-Conference.html
https://proceedings.mlr.press/v139/diakonikolas21a.html
https://proceedings.mlr.press/v139/diakonikolas21a.html

Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pages 10393–10406, 2021. URL https://proceedings.
neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html.

Michael Dinitz, Sungjin Im, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Algo-
rithms with prediction portfolios. In Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh, editors, Advances in Neural Information Processing Systems 35: Annual
Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/
paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html.

Paul Dütting and Thomas Kesselheim. Posted pricing and prophet inequalities with inaccurate priors.
In Anna R. Karlin, Nicole Immorlica, and Ramesh Johari, editors, Proceedings of the 2019 ACM
Conference on Economics and Computation, EC 2019, Phoenix, AZ, USA, June 24-28, 2019, pages
111–129. ACM, 2019. doi: 10.1145/3328526.3329576. URL https://doi.org/10.1145/
3328526.3329576.

Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Online knapsack with
frequency predictions. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy
Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021,
December 6-14, 2021, virtual, pages 2733–2743, 2021. URL https://proceedings.neurips.
cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html.

Eniko Kevi and Kim Thang Nguyen. Online covering with multiple experts. CoRR, abs/2312.14564,
2023. doi: 10.48550/ARXIV.2312.14564. URL https://doi.org/10.48550/arXiv.2312.
14564.

Sujin Kim, Raghu Pasupathy, and Shane G Henderson. A guide to sample average approximation.
Handbook of simulation optimization, pages 207–243, 2015.

Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1:14–25, 1971. doi: 10.1007/
BF00264289. URL https://doi.org/10.1007/BF00264289.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the 2018 International Conference on Management of Data, pages
489–504. ACM, 2018.

Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online scheduling
via learned weights. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium
on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 1859–
1877. SIAM, 2020. doi: 10.1137/1.9781611975994.114. URL https://doi.org/10.1137/1.
9781611975994.114.

Honghao Lin, Tian Luo, and David Woodruff. Learning augmented binary search trees. In Interna-
tional Conference on Machine Learning, pages 13431–13440. PMLR, 2022.

Alexander Lindermayr and Nicole Megow. Algorithms with predictions. https://
algorithms-with-predictions.github.io/, 2022.

Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
Journal of the ACM (JACM), 68(4):1–25, 2021.

Samuel McCauley, Ben Moseley, Aidin Niaparast, and Shikha Singh. Online list labeling with
predictions. Advances in Neural Information Processing Systems, 36, 2024.

Samuel Mccauley, Benjamin Moseley, Aidin Niaparast, and Shikha Singh. Incremental topological
ordering and cycle detection with predictions. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp, editors, Proceedings
of the 41st International Conference on Machine Learning, volume 235 of Proceedings of Machine
Learning Research, pages 35240–35254. PMLR, 21–27 Jul 2024. URL https://proceedings.
mlr.press/v235/mccauley24a.html.

12

https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5616060fb8ae85d93f334e7267307664-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7f9220f90cc85b0da693643add6618e6-Abstract-Conference.html
https://doi.org/10.1145/3328526.3329576
https://doi.org/10.1145/3328526.3329576
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/161c5c5ad51fcc884157890511b3c8b0-Abstract.html
https://doi.org/10.48550/arXiv.2312.14564
https://doi.org/10.48550/arXiv.2312.14564
https://doi.org/10.1007/BF00264289
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.1137/1.9781611975994.114
https://algorithms-with-predictions.github.io/
https://algorithms-with-predictions.github.io/
https://proceedings.mlr.press/v235/mccauley24a.html
https://proceedings.mlr.press/v235/mccauley24a.html

Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5:287–295, 1975.

Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with Predictions, page 646–662. Cam-
bridge University Press, 2021. doi: 10.1017/9781108637435.037.

Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal networks. In Proceedings
of the tenth ACM international conference on web search and data mining, pages 601–610, 2017.

Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms via ml predictions. In
Advances in Neural Information Processing Systems, pages 9661–9670, 2018.

Chaitanya Swamy and David B Shmoys. Approximation algorithms for 2-stage stochastic optimiza-
tion problems. ACM SIGACT News, 37(1):33–46, 2006.

Kapil Vaidya, Eric Knorr, Michael Mitzenmacher, and Tim Kraska. Partitioned learned bloom
filters. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event,
Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/forum?id=
6BRLOfrMhW.

13

https://openreview.net/forum?id=6BRLOfrMhW
https://openreview.net/forum?id=6BRLOfrMhW

A Omitted Proofs

Proof of Theorem 4.1. With probability pi, the key a that we are looking for is ai. The goal is to
bound the expected cost of the algorithm, which is

∑n
i=1 piC(ai), where C(ai) is the cost of the

algorithm when a = ai. In each step of the Bisection phase, a binary search is done on the medians
of the predicted probability distributions on the current search range. When the binary search is done,
for each prediction k, the median tk of the prediction falls outside of the new search range. This
means that the probability mass of p̂k on the new search range has dropped by at least a factor of 2
compared to the initial search range before the binary search. Let k∗ = argmink∈[m] ηk. From the
above discussion, the probability mass of p̂k∗ in the search range drops by a factor of at least 2 in each
step of the Bisection phase, which results in a total drop of at least 22

j

in iteration j of the algorithm.
The cost of each Bisection step is logm, which makes the total cost of the Bisection phase in iteration
j equal to (logm) · 2j . Let Ti be the first iteration at which a is found, assuming a = ai. The total
cost of the first phase of the iterations 0 to Ti is (logm)

∑Ti

j=0 2
j < (logm) · 2Ti+1. Also, the cost

of the second phase in each iteration before Ti is 2, and in iteration Ti is at most 2Ti . So the total
cost of the algorithm for iterations 0 to Ti is at most (logm) · 2Ti+1 +2Ti +2Ti = O((logm) · 2Ti).
We partition the keys based on Ti into two sets, and bound the cost of each set separately. Let
I1 := {i : Ti ≤ log(log(4/pi))} and I2 := {i : Ti > log(log(4/pi))}.

First, we bound the cost of indices in I1 by (logm) ·O(H(p)):

∑
i∈I1

piC(ai) = O

(∑
i∈I1

pi
(
(logm) · 2Ti

))
= (logm) ·O(

∑
i∈I1

pi log(4/pi)) = (logm) ·O(H(p)).

Now we bound the cost of the indices in I2 by (logm) ·O (max(log(ηk∗), 1)). Let i ∈ I2. We know
that during iteration j of searching for ai, in the Bisection phase, the predicted probability mass p̂k∗

in the search range decreases by a factor of at least 22
j

. Therefore the predicted probability mass p̂k∗

in the search range [ℓ, r] at the end of the first phase in iteration Ti − 1 is at most

1∏Ti−1
j=0 22j

=
1

22
Ti−1

=
2

22
Ti

≤ 2

4/pi
=

pi
2
,

where the inequality holds because i ∈ I2. So
∑r

j=ℓ p̂j,k∗ ≤ pi/2. Let Di := min(i − ℓ, r − i).
In the transportation problem corresponding to the earth mover’s distance between p and p̂k∗ , a
probability mass of at least pi/2 needs to be moved from point i to the outside of the interval [ℓ, r].
The cost of this movement in the objective function of the transportation problem is at least Di · pi/2.
Therefore we have ηk∗ ≥

∑
i∈I2

Di · pi/2. In the Binary Search at the Endpoints phase of iteration
j, we probe indices distance of d = 22

j

around the two endpoints of the search range. Since ai is not
found before iteration Ti, we conclude that 22

Ti−1

< Di, which means that 2Ti ≤ 2 log(Di). Let
p(I2) :=

∑
i∈I2

pi. We have

∑
i∈I2

piC(ai) ≤ (logm) ·O

(∑
i∈I2

pi2
Ti

)
(1)

≤ (logm) ·O

(∑
i∈I2

pi log(Di)

)
(2)

≤ (logm) ·O

(∑
i∈I2

pi log(Di) + (1− p(I2)) log(1)

)
(3)

≤ (logm) ·O

(
log

(∑
i∈I2

piDi + (1− p(I2))

))
(4)

≤ (logm) ·O (max(log(ηk∗), 1)) , (5)

where inequality (4) results from concavity of log(·) function and Jensen’s inequality, and inequal-
ity (5) is because of the following

14

• If
∑

i∈I2
piDi ≤ 1 then we have

log

(∑
i∈I2

piDi + (1− p(I2))

)
≤ log(2) = 1

• If
∑

i∈I2
piDi > 1 then we have

log

(∑
i∈I2

piDi + (1− p(I2))

)
≤ log

(∑
i∈I2

piDi

)
+ 1 = O(log(ηk∗)).

B Experimental Setup

We use Python 3.10 for conducting our experiments on a system equipped with an 11th Generation
Intel Core i7 CPU running at 2.80GHz, 32GB of RAM, a 128GB NVMe KIOXIA disk drive, and a
64-bit Windows 10 Enterprise operating system. It’s worth noting that the cost of the algorithms, i.e.,
the expected query complexity, is hardware-independent.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Yes, the results are fully stated with assumptions.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: A formal model with all assumptions is explicitly stated.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: A full proof is given in all detail.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All details stated regarding experiments. Code is provided in a public GitHub
repository.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Data is publicly available. Code is provided in a public GitHub repository.

6. Experimental Setting/Details

15

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All details are given.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Error bars are reported.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Setup is stated.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors have read the code of conduct and this research conforms.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The work is on a well-known and widely used algorithm. There is no need for
safeguarding.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Any code/data used is cited.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: Code is released in a public GitHub repository.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]

16

https://neurips.cc/public/EthicsGuidelines

Justification: No crowd-sourcing or human subjects.
15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human

Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects

17

	Introduction
	Our Results and Contributions
	Other Related Work

	Preliminaries
	Point Predictions from Distributions

	Algorithm
	Analysis
	Lower Bound

	A Portfolio of Predictions
	Algorithm for Multiple Predictions
	Analysis for Multiple Predictions

	Experiments
	Synthetic Data Experiments
	Real Data Experiments

	Conclusion
	Omitted Proofs
	Experimental Setup

