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Abstract

Recent years have witnessed the widespread use of artificial intelligence (AI) algorithms
and machine learning (ML) models. Despite their tremendous success, a number of vital
problems like ML model brittleness, their fairness, and the lack of interpretability warrant
the need for the active developments in explainable artificial intelligence (XAI) and formal
ML model verification. The two major lines of work in XAI include feature selection meth-
ods, e.g. Anchors, and feature attribution techniques, e.g. LIME and SHAP. Despite their
promise, most of the existing feature selection and attribution approaches are susceptible
to a range of critical issues, including explanation unsoundness and out-of-distribution sam-
pling. A recent formal approach to XAI (FXAI) although serving as an alternative to the
above and free of these issues suffers from a few other limitations. For instance and besides
the scalability limitation, the formal approach is unable to tackle the feature attribution
problem. Additionally, a formal explanation despite being formally sound is typically quite
large, which hampers its applicability in practical settings. Motivated by the above, this
paper proposes a way to apply the apparatus of formal XAI to the case of feature attribution
based on formal explanation enumeration. Formal feature attribution (FFA) is argued to be
advantageous over the existing methods, both formal and non-formal. Given the practical
complexity of the problem, the paper then proposes an efficient technique for approximat-
ing exact FFA. Finally, it offers experimental evidence of the effectiveness of the proposed
approximate FFA in comparison to the existing feature attribution algorithms not only in
terms of feature importance and but also in terms of their relative order.1

1 Introduction

Thanks to the unprecedented fast growth and the tremendous success, Artificial Intelligence (AI) and Ma-
chine Learning (ML) have become a universally acclaimed standard in automated decision making causing a
major disruption in computing and the use of technology in general (LeCun et al., 2015; Jordan & Mitchell,
2015; Mnih et al., 2015; ACM, 2018). An ever growing range of practical applications of AI and ML, on the
one hand, and a number of critical issues observed in modern AI systems (e.g. decision bias (Angwin et al.,
2016) and brittleness (Szegedy et al., 2014)), on the other hand, gave rise to the quickly advancing area of
theory and practice of Explainable AI (XAI).

Numerous methods exist to explain decisions made by what is called black-box ML models (Miller, 2019;
Molnar, 2020). Here, model-agnostic approaches based on random sampling prevail (Miller, 2019), with the
most popular being feature selection (Ribeiro et al., 2018) and feature attribution (Lundberg & Lee, 2017;
Ribeiro et al., 2018) approaches. Despite their promise, model-agnostic approaches are susceptible to a
range of critical issues, like unsoundness of explanations (Ignatiev, 2020; Huang & Marques-Silva, 2023) and
out-of-distribution sampling (Slack et al., 2020; Lakkaraju & Bastani, 2020), which exacerbates the problem
of trust in AI.

An alternative to model-agnostic explainers is represented by the methods building on the success of formal
reasoning applied to the logical representations of ML models (Shih et al., 2018; Marques-Silva & Ignatiev,
2022). Aiming to address the limitations of model-agnostic approaches, formal XAI (FXAI) methods them-
selves suffer from a few downsides, including the lack of scalability and the requirement to build a complete

1Source code and complete experimental setup are available at https://github.com/tmlr-ffa/tmlr-ffa.git.
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T1 (≥ 50k)

Status = Married?

Education = Dropout? Rel. = Not-in-family?

-0.1569 0.0770 -0.1089 -0.3167

yes no

yes no yes no

T2 (≥ 50k)

Hours/w ≤ 40?

Status = Married? Status = Never-Married?

-0.0200 -0.2404 -0.1245 0.0486

yes no

yes no yes no

T3 (≥ 50k)

Education = Doctorate?

40 < Hours/w ≤ 45? Rel. = Own-child?

0.0605 0.3890 -0.2892 -0.0580

yes no

yes no yes no

Figure 1: Example boosted tree model Chen & Guestrin (2016) trained on the well-known adult classification
dataset.

logical representation of the ML model. Formal explanations also tend to be larger than their model-agnostic
counterparts because they do not attempt to reason about (unknown) data distribution (Wäldchen et al.,
2021). Finally and most importantly, FXAI methods have not been applied so far to answer feature attri-
bution questions.

Motivated by the above, we define a novel formal approach to feature attribution, which builds on the success
of existing FXAI methods (Marques-Silva & Ignatiev, 2022). By exhaustively enumerating all formal expla-
nations, we can give a crisp definition of formal feature attribution (FFA) as the proportion of explanations
in which a given feature occurs. We argue that formal feature attribution is hard for the second level of the
polynomial hierarchy. Although it can be challenging to compute exact FFA in practice, we show that ex-
isting anytime formal explanation enumeration methods can be applied to efficiently approximate FFA. Our
experimental results demonstrate the effectiveness of the proposed approach in practice and its advantage
over LIME and a few variants of SHAP given publicly available tabular and image datasets, as well as on a
real application of XAI in the domain of Software Engineering (McIntosh & Kamei, 2017; Pornprasit et al.,
2021).

2 Background

This section briefly overviews the status quo in XAI and background knowledge the paper builds on.

2.1 Classification Problems

Classification problems consider a set of classes K = {1, 2, . . . , k}2, and a set of features F = {1, . . . , m}.
The value of each feature i ∈ F is taken from a domain Di, which can be categorical or ordinal, i.e. integer,
real-valued or Boolean. Therefore, the complete feature space is defined as F ≜

∏m
i=1 Di. A concrete point

in feature space is represented by v = (v1, . . . , vm) ∈ F, where each component vi ∈ Di is a constant
taken by feature i ∈ F . An instance or example is denoted by a specific point v ∈ F in feature space
and its corresponding class c ∈ K, i.e. a pair (v, c) represents an instance. Additionally, the notation
x = (x1, . . . , xm) denotes an arbitrary point in feature space, where each component xi is a variable taking
values from its corresponding domain Di and representing feature i ∈ F . A classifier defines a non-constant
classification function κ : F→K.

Many ways exist to learn classifiers κ given training data, i.e. a collection of labeled instances (v, c), including
decision trees (Hyafil & Rivest, 1976) and their ensembles (Breiman, 2001; Chen & Guestrin, 2016), decision
lists (Rivest, 1987), neural networks (LeCun et al., 2015), etc. This paper considers boosted tree (BT)
models trained with the use of XGBoost (Chen & Guestrin, 2016). BT models comprise an ensemble of
decision trees; given an instance to classify, each decision tree in a BT model contributes a numeric weight
to a particular class and the class with the largest total weight is selected as the model’s prediction.
Example 1. Figure 1 shows a BT model trained for a simplified version of the adult dataset (Kohavi,
1996). For a data instance v = {Education = Bachelors, Status = Separated, Occupation = Sales, Relation-
ship = Not-in-family, Sex = Male, Hours/w ≤ 40}, the model predicts <50k because the sum of the weights
in the 3 trees for this instance equals −0.4073 = (−0.1089− 0.2404− 0.0580) < 0.

2Any set of classes {c1, . . . , ck} can always be mapped into the set of the corresponding indices {1, . . . , k}.
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||||||||||

0.03
Hours/w <= 40

||||||||||

-0.03
Relationship: Not-in-family

||||||||||

0.07
Status: Separated

(a) LIME

|||||||||
0.01
Education: Bachelors

|||||||||
0.09

Status: Separated

|||||||||
0.11

Hours/w <= 40

|||||||||
-0.12

Relationship: Not-in-family

(b) SHAP

X 1 = { Education, Hours/w }

IF Education = Bachelors
AND Hours/w ≤ 40
THEN Target <50k

X 2 = { Education, Status }

IF Education = Bachelors
AND Status = Separated
THEN Target <50k

(c) AXp’s X1 and X2

||||||||||

0.50
Status: Separated

||||||||||

0.50
Hours/w <= 40

||||||||||

1.00
Education: Bachelors

(d) FFA

Figure 2: Examples of feature attribution reported by LIME and SHAP, as well as both AXp’s (no more
AXp’s exist) followed by FFA for the instance v shown in Example 1.

2.2 ML Model Interpretability and Post-Hoc Explanations

Interpretability is generally accepted to be a subjective concept, without a formal definition (Lipton, 2018).
One way to measure interpretability is in terms of the succinctness of information provided by an ML
model to justify a given prediction. Recent years have witnessed an upsurge in the interest in devising and
applying interpretable models in safety-critical applications (Rudin, 2019; Molnar, 2020). An alternative to
interpretable models is post-hoc explanation of black-box models, which this paper focuses on.

Numerous methods to compute explanations have been proposed recently (Miller, 2019; Molnar, 2020). The
lion’s share of these comprise what is called model-agnostic approaches to explainability (Ribeiro et al.,
2016; Lundberg & Lee, 2017; Ribeiro et al., 2018) of heuristic nature that resort to extensive sampling in
the vicinity of an instance being explained in order to “estimate” the behavior of the classifier in this local
vicinity of the instance. In this regard, they rely on estimating input data distribution by building on the
information about the training data (Lakkaraju & Bastani, 2020). Depending on the form of explanations
model-agnostic approaches offer, they are conventionally classified as feature selection or feature attribution
approaches briefly discussed below.

Feature Selection. A feature selection approach identifies subsets of features that are deemed sufficient
for a given prediction c = κ(v). As such, a feature selection explanation given as a set of features ω ⊆ F
should be interpreted as the conjunction

∧
i∈ω (xi = vi) deemed responsible for prediction c = κ(v), v ∈ F,

c ∈ K. The majority of feature selection approaches are model-agnostic with one prominent example being
Anchors (Ribeiro et al., 2018). As such, the sufficiency of the selected set of features for a given prediction
is determined statistically based on extensive sampling around the instance of interest, by assessing a few
measures like fidelity, precision, among others. Due to the statistical nature of these explainers, they are
known to suffer from various explanation quality issues (Lakkaraju & Bastani, 2020; Ignatiev, 2020; Slack
et al., 2021). An additional line of work on formal explainability (Shih et al., 2018; Ignatiev et al., 2019)
also tackles feature selection while offering guarantees of soundness; these are discussed below.

Feature Attribution. A different view on post-hoc explanations is provided by feature attribution ap-
proaches, e.g. LIME (Ribeiro et al., 2016) and SHAP (Lundberg & Lee, 2017). Based on random sampling
in the neighborhood of the target instance, these approaches attribute responsibility to all model’s features
by assigning a numeric value wi ∈ R of importance to each feature i ∈ F . Given these importance values,
the features can then be ranked from most important to least important. As a result, a feature attribution
explanation is conventionally provided as a linear form

∑
i∈F wi · xi, which can be also seen as approximating

the original black-box explainer κ in the local neighborhood of instance v ∈ F. Among feature attribution
approaches, SHAP (Lundberg & Lee, 2017; Arenas et al., 2021b;c) and its variants is often claimed to stand
out as it aims at approximating Shapley values, a powerful concept originally introduced by L. Shapley in
the context of cooperative game theory (Shapley, 1953) as a mechanism for assessing player importance in
cooperative games.

Formal Explainability. This work builds on formal explainability proposed in earlier work (Shih et al.,
2018; Ignatiev et al., 2019; Darwiche & Hirth, 2020; Audemard et al., 2020; Marques-Silva & Ignatiev, 2022)
where explanations are equated with abductive explanations (AXp’s). Abductive explanations are subset-
minimal sets of features formally proved to suffice to explain an ML prediction given a formal representation
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of the classifier of interest. Concretely, given an instance v ∈ F and a prediction c = κ(v), an AXp is a
subset-minimal set of features X ⊆ F , such that

∀(x ∈ F).
∧

i∈X
(xi = vi)→(κ(x) = c) (1)

Abductive explanations are guaranteed to be subset-minimal sets of features proved to satisfy (1). As other
feature selection explanations, they answer why a certain prediction was made. An alternate way to explain
a model’s behavior is to seek an answer why not another prediction was made, or, in other words, how to
change the prediction. Explanations answering why not questions are referred to as contrastive explanations
(CXp’s) (Miller, 2019; Ignatiev et al., 2020; Marques-Silva & Ignatiev, 2022). As in prior work, we define a
CXp as a subset-minimal set of features that, if allowed to change their values, are necessary to change the
prediction of the model. Formally, a CXp for prediction c = κ(v) is a subset-minimal set of features Y ⊆ F ,
such that

∃(x ∈ F).
∧

i ̸∈Y
(xi = vi) ∧ (κ(x) ̸= c) (2)

Finally, recent work has shown that AXp’s and CXp’s for a given instance v ∈ F enjoy the minimal hitting
set duality (Ignatiev et al., 2020; Reiter, 1987). The duality implies that each AXp for a prediction c = κ(v)
is a minimal hitting set3 (MHS) of the set of all CXp’s for that prediction, and the other way around:
each CXp is an MHS of the set of all AXp’s. The explanation enumeration algorithm applied in this paper
heavily relies on this duality relation and is inspired by the MARCO algorithm originating from the area
of over-constrained systems (Liffiton & Malik, 2013; Previti & Marques-Silva, 2013; Liffiton et al., 2016).
A growing body of recent work on formal explanations is represented (but not limited) by (Marques-Silva
et al., 2021; Arenas et al., 2021a; Wäldchen et al., 2021; Darwiche & Marquis, 2021; Malfa et al., 2021;
Boumazouza et al., 2021; Blanc et al., 2021; Gorji & Rubin, 2022; Marques-Silva & Ignatiev, 2022; Amgoud
& Ben-Naim, 2022; Ferreira et al., 2022; Arenas et al., 2022).
Example 2. In the context of Example 1, feature attribution computed by LIME and SHAP as well as all
2 AXp’s are shown in Figure 2. AXp X1 indicates that specifying Education = Bachelors and Hours/w ≤
40 guarantees that any compatible instance is classified as < 50k independent of the values of other features,
e.g. Status and Relationship, since the maximal sum of weights is 0.0770 − 0.0200 − 0.0580 = −0.0010 < 0
as long as the feature values above are used. Observe that another AXp X2 for v is {Education, Status},
i.e. the model is guaranteed to predict < 50k for any instance in the feature space where features Education
and Status have values Bachelors and Separated, respectively. Note that no more AXp’s exist for instance v.
Since both of the two AXp’s for v consist of two features, it is difficult to judge which one is better without
a formal feature importance assessment.

3 Why Formal Feature Attribution?

On the one hand, abductive explanations serve as a viable alternative to non-formal feature selection ap-
proaches because they (i) guarantee subset-minimality of the selected sets of features and (ii) are computed
via formal reasoning over the behavior of the corresponding ML model. Having said that, they suffer from a
few issues. First, observe that deciding the validity of (1) requires a formal reasoner to take into account the
complete feature space F, assuming that the features are independent and uniformly distributed (Wäldchen
et al., 2021). In other words, the reasoner has to check all the combinations of feature values, including those
that never appear in practice. This makes AXp’s unnecessarily conservative (long), i.e. they may be hard for
a human decision maker to interpret. Second, AXp’s are not aimed at providing feature attribution. The
abundance of various AXp’s for a single data instance (Ignatiev et al., 2019), e.g. see Example 2, exacer-
bates this issue as it becomes unclear for a user which of the AXp’s to use to make an informed decision in
a particular situation.

On the other hand, non-formal feature attribution in general is known to be susceptible to out-of-distribution
sampling (Lakkaraju & Bastani, 2020; Slack et al., 2020) while SHAP has been recently shown to fail to
effectively approximate Shapley values (Huang & Marques-Silva, 2023). Quite surprisingly, (Huang &

3Given a set of sets S, a hitting set of S is a set H such that ∀S ∈ S, S ∪ H ̸= ∅, i.e. H “hits” every set in S. A hitting set H
for S is minimal if none of its strict subsets is also a hitting set.
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Marques-Silva, 2023; Marques-Silva & Huang, 2023) also argued that even the use of exact Shapley values
may be inadequate as a measure of feature importance. Namely, they used the concept of formal feature
relevancy, i.e. a feature is said to be relevant for a given prediction c = κ(v) iff it appears in at least one
AXp for the prediction (Huang et al., 2023), and practically showed that (i) irrelevant features may have
non-zero Shapley values while (ii) relevant features may be assigned zero Shapley values. Note that this
disparity between feature attribution defined by exact Shapley values on the one hand and formal feature
relevancy on the other hand suggests that the same problem (perhaps to a larger extent) should pertain
to feature attribution obtained with explanation methods aiming to approximate Shapley values, including
SHAP and its variants (Lundberg & Lee, 2017; Lundberg et al., 2020; Jethani et al., 2022). Our experimental
results below confirm that in a number of practical scenarios both LIME and SHAP often report attributions
inconsistent with relevant features for the corresponding predictions.

To address the above limitations, we propose the concept of formal feature attribution (FFA) as defined next.
(An insight on this was also given in (Huang & Marques-Silva, 2023).) Let us denote the set of all formal
abductive explanations for a prediction c = κ(v) by Aκ(v, c). Then formal feature attribution of a feature
i ∈ F can be defined as the proportion of abductive explanations where it occurs. More formally,
Definition 1: (FFA). The formal feature attribution ffaκ(i, (v, c)) of a feature i ∈ F to an instance (v, c)
for machine learning model κ is

ffaκ(i, (v, c)) = |{X | X ∈ Aκ(v, c), i ∈ X )|
|Aκ(v, c)| (3)

Formal feature attribution has some nice properties. First, it has a strict and formal definition, i.e. we
can, assuming we are able to compute the complete set of AXp’s for an instance, exactly define it for all
features i ∈ F . Second, it is fairly easy to explain to a user of the classification system, even if they are
non-expert. Indeed, it is the percentage of (formal abductive) explanations that make use of a particular
feature i. Third, as we shall see later, even though we may not be able to compute all AXp’s exhaustively,
we can still get good FFA approximations fast. Fourth, since it is based on formal explanations, it is immune
to out-of-distribution sampling problems.
Example 3. Recall Example 2. As there are 2 AXp’s for instance v, the prediction can be attributed to
the 3 features with non-zero FFA shown in Figure 2d: Education, Status, and Hours/w. Also, observe how
both LIME and SHAP (see Figure 2a and Figure 2b) assign non-zero attribution to the feature Relationship,
which is in fact irrelevant for the prediction, but overlook the highest importance of feature Education.

One criticism of the above definition is that it does not take into account the length of explanations where the
feature arises. Arguably if a feature arises in many AXp’s of size 2, it should be considered more important
than a feature which arises in the same number of AXp’s but where each is of size 10. An alternate definition,
which tries to take this into account, is the weighted formal feature attribution (WFFA), i.e. the average
proportion of AXp’s that include feature i ∈ F . Formally,
Definition 2: (WFFA). The weighted formal feature attribution wffaκ(i, (v, c)) of a feature i ∈ F to an
instance (v, c) for machine learning model κ is

wffaκ(i, (v, c)) =
∑

X ∈Aκ(v,c),i∈X |X |−1

|Aκ(v, c)| (4)

Note that these attribution values are not on the same scale although they are convertible:

∑
i∈F

ffaκ(i, (v, c)) =
∑

X ∈Aκ(v,c) |X |
|Aκ(v, c)| ×

∑
i∈F

wffaκ(i, (v, c)).

Although WFFA in theory better reflects feature importance than FFA, our practical results suggest that
the size of AXp’s is tightly clustered around the mean, which makes the values of FFA and WFFA almost
indistinguishable. For this reason and due to simplicity of the unweighted variant from a user’s perspective,
our experimental results focus solely on FFA (the appendix details WFFA results).

5
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Importantly, both FFA and WFFA, by definition, respect feature relevancy (Huang et al., 2023) as feature
i ∈ F is relevant for prediction c = κ(v) if and only if ffaκ(i, (v, c)) > 0. Furthermore,
Proposition 1. Given a feature i ∈ F and a prediction c = κ(v), deciding whether ffaκ(i, (v, c)) > ω,
ω ∈ (0, 1), is at least as hard as deciding whether feature i is relevant for the prediction.

Sketch. We need to show that deciding feature relevancy can be done by determining whether ffaκ(i, (v, c)) >
ω for some ω ∈ (0, 1). This holds due to the above observation that a feature i ∈ F is relevant for prediction
c = κ(v) iff ffaκ(i, (v, c)) > 0, which holds iff there is an AXp for c = κ(v) containing feature i ∈ F . ⊓⊔

The above result indicates that computing exact FFA values may be expensive in practice. For example,
(Huang et al., 2023, Proposition 10) argues that feature relevancy is hard for ΣP

2 in the case of DNF
classifiers Huang et al. (2021). Hence, one can conclude that deciding whether or not a feature has a
non-zero FFA is at least ΣP

2 -hard for DNF classifiers.

Using the relation between FFA and feature relevancy above, we can also note that the decision version
of the problem is in ΣP

2 as long as deciding the validity of (1) is in NP, which in general is the case.
(Note that in practice deciding (1) may be simpler, e.g. for decision trees (Izza et al., 2022) or monotone
classifiers Marques-Silva et al. (2021).) Namely,
Proposition 2. Deciding whether ffaκ(i, (v, c)) > 0 is in ΣP

2 if deciding (1) is in NP.

Sketch. This is a simple consequence of the membership result for the feature relevancy problem (Huang
et al., 2023, Proposition 7) stating that feature relevancy is in ΣP

2 as long as deciding (1) is in NP. ⊓⊔

4 Approximating Formal Feature Attribution

As the previous section argues and as our experimental results confirm, it may be challenging in practice to
compute exact FFA values due to the general complexity of the problem. Although some ML models admit
efficient formal encodings and reasoning procedures, effective principal methods for FFA approximation seem
necessary.4 This section proposes one such method.

Normally, formal explanation enumeration is done by exploiting the MHS duality between AXp’s and CXp’s
and the use of MARCO-like (Liffiton et al., 2016) algorithms aiming at efficient exploration of minimal
hitting sets of either AXp’s or CXp’s (Liffiton & Malik, 2013; Previti & Marques-Silva, 2013; Liffiton et al.,
2016; Ignatiev et al., 2020). Depending on the target type of formal explanation, MARCO exhaustively
enumerates all such explanations one by one, each time extracting a candidate minimal hitting set and
checking if it is a desired explanation. If it is then it is recorded and blocked such that this candidate is
never repeated again. Otherwise, a dual explanation is extracted from the subset of features complementary
to the candidate (Ignatiev et al., 2019), gets recorded and blocked so that it is hit by each future candidate.
The procedure proceeds until no more hitting sets of the set of dual explanations can be extracted, which
signifies that all target explanations are enumerated. Observe that while doing so, MARCO also enumerates
all the dual explanations as a kind of “side effect”.

One of the properties of MARCO used in our approximation approach is that it is an anytime algorithm,
i.e. we can run it for as long as we need to get a sufficient number of explanations. This means we can stop
it by using a timeout or upon collecting a certain number of explanations.

The main insight of FFA approximation is as follows. Recall that to compute FFA, we are interested in
AXp enumeration. Although intuitively this suggests the use of MARCO targeting AXp’s, for the sake
of fast and high-quality FFA approximation, we propose to target CXp enumeration with AXp’s as dual
explanations computed “unintentionally”. The reason for this is twofold: (i) we need to get a good FFA
approximation as fast as we can and (ii) according to our practical observations, MARCO needs to amass

4We emphasize that the complexity of exact FFA computation should not be perceived as a significant drawback hampering
its practical applicability. As a counterexample, one can think of exact Shapley values, which are known to be in general
intractable (Arenas et al., 2021b; den Broeck et al., 2021; 2022; Arenas et al., 2023) although this fact does not prevent active
research on approximating Shapley values (Lundberg & Lee, 2017; Lundberg et al., 2020; Jethani et al., 2022).
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Algorithm 1 MARCO-like Anytime Explanation Enumeration
1: procedure XpEnum(κ, v, c)
2: (A,C)← (∅, ∅) ▷ Sets of AXp’s and CXp’s to collect.
3: while true do
4: Y ←MinimalHS(A,C) ▷ Get a new MHS of A subject to C.
5: if Y = ⊥ then break ▷ Stop if none is computed.
6: if ∃(x ∈ F).

∧
i ̸∈Y(xi = vi) ∧ (κ(x) ̸= c) then ▷ Check CXp condition (2) for Y.

7: C← C ∪ {Y} ▷ Y appears to be a CXp.
8: else ▷ There must be a missing AXp X ⊆ F \ Y.
9: X ← ExtractAXp(F \ Y, κ, v, c) ▷ Get AXp X by iteratively checking (1).

10: A← A ∪ {X} ▷ Collect new AXp X .
return A, C

a large number of dual explanations before it can start producing target explanations. This is because the
hitting set enumerator is initially “blind” and knows nothing about the features it should pay attention to —
it uncovers this information gradually by collecting dual explanations to hit. This way a large number of dual
explanations can quickly be enumerated during this initial phase of grasping the search space, essentially
“for free”. Our experimental results demonstrate the effectiveness of this strategy in terms of monotone
convergence of approximate FFA to the exact FFA with the increase of the time limit. A high-level view
of the version of MARCO used in our approach targeting CXp enumeration and amassing AXp’s as dual
explanations is shown in Algorithm 1.

5 Properties of Formal Feature Attribution

A few final remarks should be made on formal feature attribution, its approximation, their advantages and
disadvantages, and the relation to other attribution metrics.

FFA as a Metric. First, a reader may wonder why FFA should be deemed advantageous over other existing
feature attribution metrics, i.e. those offered by LIME, SHAP, and their variants. The key insight of FFA
is that it builds on the use of formal explanation enumeration and hence is tightly related with feature
relevancy. Here, we should emphasize that each AXp computed by means of formally proving the validity of
(1) provides us with certain practical guarantees. Namely, if a subset of features is claimed to be an AXp for
a prediction made by our model then it logically holds that assigning these features to the values dictated
by the instance will necessarily lead to the same prediction of the model. Thanks to the subset-minimality
of AXp’s, we can also be certain that no feature can be removed from an AXp. As a result, complete
enumeration of AXp’s offers a way to explore all the possible subsets of feature-values that logically entail
a concrete prediction from the perspective of a target model (note that no other logical reasons exist for
this model’s prediction). This information enables us to investigate feature relevancy and irrelevancy (i.e. a
feature is irrelevant for a given prediction iff it does not appear in any AXp for the prediction) but also gives
us a simple and trustable means to measure how relevant a feature is. From this perspective, it is intriguing
to check whether feature attribution measured by the state-of-the-art statistical methods based on extensive
sampling in the vicinity of a data instance correlates with formal feature attribution obtained by logically
reasoning about the model’s behavior. Furthermore, although the other methods are not designed to get
close to FFA, they still claim to measure feature importance for a given model’s prediction, which makes
such a comparison valid.

FFA Approximation. Second, as exact FFA computation is challenging, it is interesting to think of some
guarantees of the quality of FFA approximations if computed with Algorithm 1. Although this is beyond the
scope of this work, some initial insights about the convergence of the worst-case approximations to the true
FFA can be devised as follows. Suppose while running Algorithm 1, have discovered n out of N = |Aκ(v, c)|
total AXp’s. Also consider feature i ∈ F and let ζi denote the count of the number of AXp’s found so far
including feature i. Then the value of FFA approximation for feature i is given by ffaκ(i, (v, c)) = ζi/n. The
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following holds:
ζi

N
≤

[
ffaκ(i, (v, c)) = ζi

n

]
≤ ζi + (N − n)

N

Here, the left holds since n ≤ N and the right holds since ζi ≤ n. Clearly, the true proportion ffaκ(i, (v, c)) =
ζi+ζ′

i

N also lies between these bounds, since ζ ′
i, which is the count of feature i in the remaining unseen AXp’s,

is between 0 and N − n. Hence the error
∣∣∣ffaκ(i, (v, c))− ffaκ(i, (v, c))

∣∣∣ is bounded by the maximal distance
from ffaκ(i, (v, c)) to the upper or lower bound. As the number of explanations increases over time, this
maximal error decreases. For instance, if we have determined half the AXp’s, the difference between the
estimated and the true FFA value is at most half in the worst-case scenario. Note that in practice the error
should be lower. This is because due to the operation of Algorithm 1, the AXp’s generated to support a
single CXp must necessarily be diverse, which means the error reduces rapidly. Getting a better theoretical
bound for this behaviour remains (challenging) future work.

Relation to Relevancy. Interestingly, the above logic indicates that no FFA approximation can assign
a non-zero attribution to an irrelevant feature, a problem found in exact and approximate Shapley val-
ues (Huang & Marques-Silva, 2023; Marques-Silva & Huang, 2023). This brings us to the overview of the
potential issues a feature attribution method is in general desired to be free of. Marques-Silva & Huang
(2023) identify 7 attribution issues I1–I7 related to feature relevancy that a user may want to avoid. Among
these, I1 represents the above problem of irrelevant features receiving non-zero attribution, i.e.

∃(i ∈ F). [Irrelevant(i) ∧ (Attribution(i) ̸= 0)]

Issue I3 signifies the opposite situation, i.e. when a relevant feature receives a zero attribution, which can
be formally expressed as

∃(i ∈ F). [Relevant(i) ∧ (Attribution(i) = 0)]
Note that the other relevancy-related attribution issues covered in (Marques-Silva & Huang, 2023) describe
more complex scenarios involving either I1 or I3, or their combinations and multiple features. Thanks to
the nature of FFA, none of the issues I1–I7 apply to exact FFA values. However, we should say that issue
I3 may manifest itself in approximate FFA values computed with Algorithm 1. This is because at a given
point in time the algorithm may yet be unaware of any AXp containing the feature of interest although it
will do so if we have the resources to continue the enumeration process.

Attribution Properties. Sundararajan et al. (2017) define a few axiomatic properties of feature attribu-
tions, which are argued to be practically desirable. These include

• Sensitivity(a): a feature should receive a non-zero attribution if for any two instances different only
on this feature the model’s predictions differ,

• Sensitivity(b): if a model does not functionally depend on a feature, the feature’s attribution should
be 0,

• Implementation Invariance: feature attribution computed for two functionally equivalent models
should be the same, and

• Linearity: feature attribution computed for linear combinations of two model should be equal to the
corresponding linear combination of feature attribution for the two models,

among a few others. Observe that exact FFA satisfies the properties of Sensitivity(a) and Sensitivity(b)
as they informally paraphrase the connection of feature attribution with feature relevancy. Similarly, by
definition (1), each AXp for a model’s decision is a prime implicant of the decision function associated with
the decision Shih et al. (2018); Ignatiev et al. (2019) and, hence, FFA respects the property of Implementation
Invariance. Indeed, if we have two functionally equivalent models, then each AXp for the first model will
also be an AXp for the second model, and vice versa, which will necessarily render the FFA values computed
for these models for each feature identical. As for Linearity, the property would hold for FFA only if FFA
values computed for linear regression models necessarily coincided with the coefficients of the regression,

8



Under review as submission to TMLR

Hispanic: 0
Native_American: 0
African_American: 1

Female: 0
Misdemeanor: 1

score_factor: 1
Age_Above_FourtyFive: 0

Number_of_Priors: 3
Age_Below_TwentyFive: 1

Other: 0
Asian: 0

0.00
0.00

0.17
0.17
0.17

0.67
0.67

0.83
0.83
0.83

1.00

(a) FFA

Hispanic: 0
Native_American: 0
African_American: 1

Female: 0
Misdemeanor: 1

score_factor: 1
Age_Above_FourtyFive: 0

Number_of_Priors: 3
Age_Below_TwentyFive: 1

Other: 0
Asian: 0

0.02
0.02

0.21
0.13

0.05
0.20

0.82
0.83
0.82

0.13
1.00

(b) LIME

Hispanic: 0
Native_American: 0
African_American: 1

Female: 0
Misdemeanor: 1

score_factor: 1
Age_Above_FourtyFive: 0

Number_of_Priors: 3
Age_Below_TwentyFive: 1

Other: 0
Asian: 0

0.00
0.00

0.12
0.10

0.05
0.14

0.37
1.00

0.89
0.06

0.03

(c) TreeSHAP

Hispanic: 0
Native_American: 0
African_American: 1

Female: 0
Misdemeanor: 1

score_factor: 1
Age_Above_FourtyFive: 0

Number_of_Priors: 3
Age_Below_TwentyFive: 1

Other: 0
Asian: 0

0.01
0.00
0.04

0.11
0.04

0.21
0.38

0.01
1.00

0.05
0.01

(d) KernelSHAP

Figure 3: Explanations for a randomly selected instance of the Compas dataset.

which seems unlikely to hold. Although our initial results suggest that FFA does not satisfy the linearity
axiom, a more comprehensive analysis is required to conclusively determine this fact, to be addressed in a
separate future study.

Formal (Contrastive) Feature Attribution. Finally, formal feature attribution could be alternatively
calculated based on the statistics about contrastive explanations and their sizes (instead of abductive ex-
planations and their sizes). Indeed, to do so, one could follow the calculations of formulas (3) and (4) by
replacing the set of AXp’s Aκ(v, c) for prediction c = κ(v) with the set of CXp’s Cκ(v, c) for the same
prediction. Importantly, approximation of this modified formal (contrastive) feature attribution (FCFA)
could be done with Algorithm 1 with no modifications (although one might want to consider optimizing the
algorithm for the case of CXp enumeration similar to those discussed in Section 4). Having said that, we do
not expect this attribution metric to produce values significantly different from those of FFA (especially in
terms of relative feature order) and, hence, its analysis is left for future work.

6 Experimental Evidence

Here, we assess FFA for gradient boosted trees (Chen & Guestrin, 2016) on multiple widely used images
and tabular datasets and compare it with LIME (Ribeiro et al., 2016), TreeSHAP (Lundberg et al., 2020),
and KernelSHAP (Lundberg & Lee, 2017).5 (The appendix also showcases the use of FFA in a real-world
scenario of Just-in-Time (JIT) defect prediction (Pornprasit et al., 2021).)

Setup and Prototype Implementation. All experiments were performed on an Intel Xeon 8260 CPU
running Ubuntu 20.04.2 LTS, with the memory limit of 8 GByte. An FFA computation prototype imple-
menting Algorithm 1 was developed in Python and builds on (Ignatiev et al., 2022). As the FFA and WFFA
values turn out to be almost identical (subject to normalization) in our experiments, here we report only
(unweighted) FFA.

Datasets and Machine Learning Models. The well-known MNIST dataset (Deng, 2012; Paszke et al.,
2019) of hand-written digits 0–9 is considered, with two concrete binary classification tasks created: 1 vs. 3
and 1 vs. 7. We also consider PneumoniaMNIST (Yang et al., 2023), a binary classification dataset to
distinguish X-ray images of pneumonia from normal cases. To demonstrate extraction of exact FFA values
for the above datasets, we also examine their downscaled versions, i.e. reduced from 28×28×1 to 10×10×1.
Furthermore, we examine the CIFAR-10 image dataset, and the detailed results for this dataset can be found
in the appendix. We also consider 11 tabular datasets often applied in the area of ML explainability and
fairness (Olson et al., 2017; Dua & Graff, 2017; Schmidt & Witte, 1988; Angwin et al., 2016; FairML; Friedler
et al., 2015). All the considered datasets are randomly split into 80% training and and 20% test data. For
images, 15 test instances are randomly selected in each test set for explanation while all tabular test instances
are explained. For all datasets, gradient boosted trees (BTs) are trained by XGBoost (Chen & Guestrin,
2016), where each BT consists of 25 trees of depth 3 per class.6
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Table 1: LIME, TreeSHAP, and KernalSHAP versus FFA on tabular data.

Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism
(|F|) (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.48 2.25 5.13 1.53 3.28 4.48 4.56 1.39 2.39 2.72 4.73

TreeSHAP 4.47 2.01 4.49 1.40 2.67 3.71 4.14 1.44 2.28 3.00 4.76
KernelSHAP 4.32 2.13 4.60 0.83 2.59 3.55 4.02 1.34 2.23 2.95 4.81

Kendall’s Tau
LIME 0.07 0.11 0.22 -0.11 -0.11 0.17 0.04 -0.36 -0.22 0.17 0.05

TreeSHAP 0.03 0.12 0.27 -0.10 -0.10 0.17 0.20 -0.39 -0.21 0.07 0.12
KernelSHAP 0.04 0.19 0.17 -0.06 -0.10 0.21 0.14 -0.34 -0.19 0.09 0.08

RBO
LIME 0.54 0.66 0.49 0.63 0.55 0.56 0.41 0.59 0.66 0.68 0.39

TreeSHAP 0.49 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.63 0.44
KernelSHAP 0.57 0.69 0.56 0.63 0.57 0.55 0.56 0.61 0.68 0.64 0.45

6.1 Exact Formal Feature Attribution

Here we consider examples where we can compute the exact FFA values by computing all AXp’s. To compare
FFA with feature attribution produced by LIME, TreeSHAP and KernelSHAP, we take the absolute values
of their feature attribution and normalize the values into [0, 1]. The error is measured as Manhattan
distance, i.e. the sum of absolute differences across all features. We also compare feature rankings according
to the competitors (again using absolute values for LIME, TreeSHAP and KernelSHAP) using Kendall’s
Tau (Kendall, 1938) and rank-biased overlap (RBO) (Webber et al., 2010) metrics.7 Kendall’s Tau and
RBO are measured on a scale [−1, 1] and [0, 1], respectively. A higher value in both metrics indicates better
agreement or closeness between a ranking and FFA.

Tabular Data. Figure 3 exemplifies a comparison of FFA, LIME, TreeSHAP and KernelSHAP on a
randomly selected instance of the Compas dataset (Angwin et al., 2016). While FFA and LIME agree on
the most important feature, “Asian”, TreeSHAP gives it very little weight. None of LIME, TreeSHAP and
KernelSHAP agree with FFA, though there is clearly some similarity.

Table 1 details the comparison conducted on 11 tabular datasets, including adult, compas, and recidivism
datasets commonly used in XAI. For each dataset, we calculate the metric for each individual instance
and then average the outcomes to obtain the final result for that dataset. As can be observed, the errors
of LIME’s feature attribution across these datasets span from 1.39 to 5.13. TreeSHAP and KernelSHAP
demonstrate errors within a range [1.40, 4.76] and [0.83, 4.81], respectively. These three approaches also
exhibit comparable performance in relation to the two ranking comparison metrics. The values of Kendall’s
Tau for LIME (resp. TreeSHAP and KernelSHAP) range from −0.36 to 0.22 (resp. −0.39 to 0.27 and
−0.34 to 0.21). Regarding the RBO values, LIME exhibits values between 0.39 and 0.68, whereas TreeSHAP
demonstrates values ranging from 0.44 to 0.67 and KernelSHAP yields results between 0.45 and 0.69. Overall,
as Table 1 indicates, neither LIME, nor TreeSHAP, nor KernelSHAP agree with FFA and so neither of them
capture feature relevancy well enough.

10× 10 Digits. We now compare the results on 10× 10 downscaled MNIST digits and PneumoniaMNIST
images, where it is feasible to compute all AXp’s. Table 2 compares LIME’s, TreeSHAP’s, KernelSHAP’s
feature attribution and approximate FFA. Here, we run AXp enumeration for a number of seconds, which
is denoted as FFA∗, ∗ ∈ R+. The runtime required for each image by LIME and TreeSHAP is less than one
second, whereas KernelSHAP takes 33.26s per image on average. The results show that the errors of our

5LIME, TreeSHAP, and KernelSHAP are sampling-based feature attribution methods. LIME and KernelSHAP are model-
agnostic while TreeSHAP is specifically designed to effectively address tree-based models.

6Test accuracy for MNIST digits is 0.99, while it is 0.83 for PneumoniaMNIST. This holds both for the 28 × 28 and 10 ×
10 versions of the datasets. The average accuracy across the 11 selected tabular datasets is 0.80.

7Kendall’s Tau and RBO measure the similarity between two ranked lists. The former is a correlation coefficient assessing
the ordinal association while the latter accounts for the order and the depth of the overlap.
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Table 2: Comparison on 10× 10 Images of FFA versus competitors and FFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA10 FFA30 FFA60 FFA120 FFA600 FFA1200

(|F| = 100) Error
10×10-mnist-1vs3 11.50 10.07 10.43 5.74 5.33 4.97 4.62 3.37 2.67
10×10-mnist-1vs7 12.64 8.28 8.27 4.16 3.58 2.94 2.50 1.42 1.01

10×10-pneumoniamnist 17.32 17.90 18.15 5.37 4.32 3.78 3.39 2.22 1.64
Kendall’s Tau

10×10-mnist-1vs3 -0.15 0.48 0.14 0.49 0.57 0.62 0.65 0.74 0.80
10×10-mnist-1vs7 -0.33 0.47 0.17 0.52 0.63 0.70 0.77 0.85 0.89

10×10-pneumoniamnist -0.02 0.24 0.01 0.58 0.71 0.79 0.80 0.89 0.92
RBO

10×10-mnist-1vs3 0.20 0.50 0.53 0.61 0.65 0.69 0.74 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.53 0.73 0.77 0.81 0.86 0.90 0.90

10×10-pneumoniamnist 0.21 0.37 0.47 0.61 0.70 0.73 0.77 0.83 0.87

LIME T-SHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 4: 28 × 28 MNIST 1 vs. 3. The prediction is digit 3. The plasma gradient is used ranging from deep
purple for the least important features to vibrant yellow for the most important features.

Table 3: Comparison on 28 × 28 Images of FFA7200 versus competitors and FFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA10 FFA30 FFA120 FFA1200 FFA3600

(|F| = 784) Error
28×28-mnist-1vs3 49.66 22.77 26.42 9.44 7.61 6.81 3.13 2.69
28×28-mnist-1vs7 55.10 24.92 28.93 11.78 9.58 6.94 3.30 2.18

28×28-pneumoniamnist 62.94 31.55 41.92 8.17 7.81 5.69 3.77 3.10
Kendall’s Tau

28×28-mnist-1vs3 -0.80 0.42 -0.40 0.44 0.62 0.69 0.86 0.87
28×28-mnist-1vs7 -0.79 0.34 -0.53 0.40 0.56 0.72 0.87 0.92

28×28-pneumoniamnist -0.66 0.24 -0.65 0.34 0.50 0.67 0.80 0.87
RBO

28×28-mnist-1vs3 0.03 0.40 0.32 0.43 0.50 0.61 0.83 0.88
28×28-mnist-1vs7 0.03 0.34 0.30 0.40 0.45 0.58 0.83 0.93

28×28-pneumoniamnist 0.03 0.23 0.25 0.31 0.35 0.42 0.66 0.83

approximation are small, even after 10 seconds it beats LIME, TreeSHAP and KernelSHAP, and decreases
as we generate more AXp’s. The results for the orderings show again that after 10 seconds, FFA∗ ordering
gets closer to the exact FFA than LIME, TreeSHAP and KernelSHAP. Observe how LIME is particularly
far away from the exact FFA ordering.

Summary. Exact FFA may be efficiently approximated without exhaustively computing all AXp’s. While
feature attribution determined by LIME, TreeSHAP and KernelSHAP is not meant to approximate FFA,
the observed disagreement demonstrates that they fail to capture the true feature relevancy and so may be
unable to provide a human-decision maker with useful insights, despite being fast.

6.2 Approximating Formal Feature Attribution

Since the problem of formal feature attribution is computationally expensive to solve, it is not surprising
that computing FFA may be challenging in practice. Table 2 suggests that our approach gets good FFA
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LIME TreeSHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 5: 28 × 28 MNIST 1 vs. 7. The prediction is digit 7.

LIME T-SHAP K-SHAP FFA10 FFA30 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 6: 28 × 28 PneumoniaMNIST. The prediction is normal.

approximations even if we only collect AXp’s for a short time. Here we compare the fidelity of our approach
versus the approximate FFA computed after 2 hours (7200s). Figures 4, 5, and 6 depict feature attribution
generated by LIME, TreeSHAP, KernelSHAP and FFA∗ for the three selected 28 × 28 images. The compar-
ison between LIME, TreeSHAP, KernelSHAP and the approximate FFA computation is detailed in Table 3.
The LIME and TreeSHAP processing time for each image is less than one second, where KernelSHAP re-
quires 98.56s to process on average. The average findings detailed in Table 3 are consistent with those shown
in Table 2. Namely, FFA approximation yields better errors, Kendall’s Tau and RBO values, outperform-
ing LIME, TreeSHAP and KernelSHAP after 10 seconds. Furthermore, the results demonstrate that after
10 seconds our approach places feature attribution closer to FFA7200 compared to LIME, TreeSHAP and
KernelSHAP hinting on the features that are truly relevant for the prediction.

7 Limitations

Despite the rigorous guarantees provided by formal feature attribution and high-quality of the result expla-
nations, the following limitations can be identified. First, our approach relies on formal reasoning and thus
requires an ML model of interest to admit a representation in some fragment of first-order logic, and the
corresponding reasoner to deal with it (Marques-Silva & Ignatiev, 2022). Second, the complexity of com-
puting exact FFA demands the development of effective methods of FFA approximation. Finally, though
our experimental evidence suggests that FFA approximations quickly converge to the exact values of FFA,
whether or not this holds in general remains an open question.

8 Conclusions

Most approaches to XAI are heuristic methods that are susceptible to unsoundness and out-of-distribution
sampling. Formal approaches to XAI have so far concentrated on the problem of feature selection, detecting
which features are important for justifying a classification decision, and not on feature attribution, where
we can understand the weight of a feature in making such a decision. In this paper we define the first formal
approach to feature attribution (FFA) we are aware of, using the proportion of abductive explanations in
which a feature occurs to weight its importance. We show that we can compute FFA exactly for many
classification problems, and when we cannot we can compute effective approximations. Existing heuristic
approaches to feature attribution do not agree with FFA. Sometimes they markedly differ, for example,
assigning no weight to a feature that appears in (a large number of) explanations, or assigning (large) non-
zero weight to a feature that is irrelevant for the prediction. Overall, the paper argues that if we agree that
FFA is a correct measure of feature attribution then we need to investigate methods that compute good FFA
approximations quickly.
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Appendices
These supplementary materials repeat the above experiments for weighted formal feature attribution and
detail the corresponding experimental results. They also demonstrate the use of FFA and WFFA in the case
of CIFAR-10 images as well as showcase the use of both unweighted and weighted formal feature attribution
in a real-world scenario of Just-in-Time (JIT) defect prediction (Pornprasit et al., 2021) where post-hoc
explanations are saught.

A Exact Weighted Formal Feature Attribution

In this appendix, we once again limit our analysis to instances where we can calculate the exact WFFA
values for the instance of interest by enumerating all AXp’s. Also, the settings used in Section 6 are
applied here, i.e. we take the absolute values of feature attribution assigned by LIME (Ribeiro et al., 2016),
TreeSHAP (Lundberg et al., 2020) and KernelSHAP (Lundberg & Lee, 2017), and normalize them within
the range of [0, 1]. Just like in the main text of the paper, we then compare these approaches with normalized
WFFA values in terms of errors, Kendall’s Tau (Kendall, 1938) and rank-biased overlap (RBO) (Webber
et al., 2010).

A.1 Tabular Data

A comparison of WFFA, LIME, TreeSHAP and KernelSHAP on a randomly selected instance (for illus-
trativity, the instance is the same as the one shown earlier in Figure 3) of the Compas dataset (Angwin
et al., 2016) is exemplified in Figure 7. We can observe the patterns similar to those depicted in Figure 3.
The feature that WFFA considers most important is “Asian” while this viewpoint is shared by LIME but
disputed by TreeSHAP and KernelSHAP. However, none of LIME, TreeSHAP and KernelSHAP fully align
with WFFA, although there is evident similarity between them. As with FFA, these observations can be
generalized to the other instances of Compas, as discussed below.

Table 4 presents a comparison of WFFA against LIME, SHAP and KernelSHAP on the 11 selected tabular
datasets as in Table 1, demonstrating similarities in the findings observed for WFFA and FFA for these
datasets. The average runtime for generating the exact WFFA in a dataset varies between 0.18 and 1.89
seconds while the average number of AXp’s per instance to explain and so to compute exact WFFA in a
dataset ranges from 1.40 to 33.33. LIME exhibits errors ranging from 1.37 to 4.96 across these datasets
while TreeSHAP shows similar errors spanning from 1.36 to 4.67 and KernelSHAP displays errors between
0.79 and 4.42. Besides errors, LIME, TreeSHAP and KernelSHAP yield comparable outcomes in terms of
the two ranking comparison metrics. The values of Kendall’s Tau for LIME are between −0.35 and 0.25,
whereas the values for TreeSHAP and KernelSHAP range from −0.38 to 0.31 and −0.33 to 0.31, respectively.
Regarding RBO values, LIME (resp. TreeSHAP and KernelSHAP) demonstrates values ranging from 0.38
to 0.69 (resp. 0.43 to 0.67 and 0.43 to 0.71). Overall and consistent with the FFA findings shown earlier in
Table 1, Table 4 indicates that LIME, TreeSHAP and KernelSHAP fail to achieve close enough agreement
with WFFA.

A.2 10 × 10 Digits

Table 5 provides a comprehensive comparison of approximate WFFA against feature attribution reported by
LIME, TreeSHAP and KernelSHAP with respect to the exact WFFA values, conducted on the downscaled
MNIST digists and PneumoniaMNIST images, where exhaustive AXp enumeration is feasible. The values
of feature attribution generated by LIME, TreeSHAP, KernelSHAP and approximate WFFA∗ for the three
selected 10 × 10 images are shown in Figure 11, Figure 12, and Figure 13. Over time, the number of
features included in the AXp’s increases, and the weighted attribution of each feature changes converging
to the exact WFFA. The results shown in Figure 8, Figure 9, and Figure 10 align with the main finding for
FFA approximation shown earlier. Furthermore, the results shown in Table 5 are also consistent with FFA
observations in Table 2. Both LIME and TreeSHAP can process each image within a runtime of less than
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Figure 7: Explanations for an instance of Compas v = {#Priors = 3, Score_factor =
1, Age_Above_FourtyFive = 0, Age_Below_TwentyFive = 1, African_American = 1, Asian =
0, Hispanic = 0, Native_American = 0, Other = 0, Female = 0, Misdemeanor = 1} predicted as
Two_yr_Recidivism = true.

Table 4: LIME, TreeSHAP and KernelSHAP versus WFFA on tabular data.

Dataset adult appendicitis australian cars compas heart-statlog hungarian lending liver-disorder pima recidivism
|F| (12) (7) (14) (8) (11) (13) (13) (9) (6) (8) (15)

Approach Error
LIME 4.32 2.06 4.96 1.48 3.26 4.40 4.43 1.37 2.37 2.63 4.66

TreeSHAP 4.29 1.87 4.31 1.36 2.63 3.61 4.00 1.43 2.25 2.91 4.67
KernelSHAP 4.14 1.90 4.42 0.79 2.54 3.43 3.87 1.33 2.20 2.86 4.72

Kendall’s Tau
LIME 0.11 0.17 0.25 -0.08 -0.08 0.22 0.08 -0.35 -0.17 0.25 0.08

TreeSHAP 0.07 0.23 0.31 -0.07 -0.07 0.22 0.26 -0.38 -0.16 0.15 0.16
KernelSHAP 0.08 0.31 0.20 -0.03 -0.07 0.25 0.21 -0.33 -0.14 0.16 0.11

RBO
LIME 0.53 0.65 0.48 0.64 0.56 0.56 0.40 0.59 0.65 0.69 0.38

TreeSHAP 0.48 0.67 0.55 0.66 0.59 0.52 0.49 0.61 0.67 0.64 0.43
KernelSHAP 0.55 0.71 0.54 0.63 0.57 0.53 0.54 0.61 0.68 0.64 0.43

one second, while KernelSHAP takes 33.26s per image on average. The average runtime and average number
of AXp’s generated for 10 × 10 MNIST 1 vs 3 (resp. 1 vs 7) are 14264.78s and 15781.87 (resp. 6834.61s and
4028.27), while the values in 10 × 10 PneumoniaMNIST are 8656.18s and 8802.87, respectively. Similarly to
the results in Table 2, Table 5 indicates that our approximation yields small errors. Even after 10 seconds,
it outperforms LIME, TreeSHAP and KernelSHAP, and the errors continue to decrease as we compute more
AXp’s. Once again, the results of the orderings demonstrate that after 10 seconds, the ordering of WFFA∗
approaches closer to the exact WFFA compared to LIME, TreeSHAP and KernelSHAP, and converges to
the exact WFFA ordering with the growth of the number AXp’s enumerated. As can also be seen, LIME
exhibits a substantial distance from the exact WFFA ordering.

A.3 Summary

The findings of this section again indicate that we can confidently obtain valuable approximations of the
exact WFFA values without the need to exhaustively enumerate all AXp’s for a given data instance. Similarly
to the main results shown in Section 6, it is once again worth noting that feature attribution determined by
LIME, TreeSHAP and KernelSHAP is inconsistent with WFFA and its approximations, and hence does not
capture formal feature relevancy, despite being computationally fast.

B Approximate Weighted Formal Feature Attribution

As argued in Section 3, the exact WFFA computation can be difficult in practice, due to the complexity of
the problem. But as Table 5 indicates, our approach can yield decent WFFA approximations even with a
short duration of collecting AXp’s. Here we assess the fidelity of our approach in contrast to the approximate
WFFA computed after a duration of 2 hours (7200s). WFFA∗ and the values of feature attribution generated
by LIME, TreeSHAP and KernelSHAP for the three considered 28 × 28 images are depicted in Figure 14,
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Table 5: Comparison on 10 × 10 Images of WFFA versus LIME, TreeSHAP, KernelSHAP and WFFA
approximations.

Dataset LIME TreeSHAP KernelSHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1200

|F| = 100 Error
10×10-mnist-1vs3 11.28 9.81 10.15 5.52 5.12 4.83 3.32 2.61
10×10-mnist-1vs7 12.46 8.11 8.09 4.07 3.47 2.83 1.34 0.97

10×10-pneumoniamnist 17.25 17.84 18.08 5.33 4.29 3.76 2.20 1.63
Kendall’s Tau

10×10-mnist-1vs3 -0.14 0.48 0.15 0.53 0.60 0.64 0.75 0.81
10×10-mnist-1vs7 -0.33 0.47 0.17 0.58 0.65 0.73 0.86 0.90

10×10-pneumoniamnist -0.02 0.24 0.01 0.67 0.74 0.80 0.90 0.92
RBO

10×10-mnist-1vs3 0.20 0.50 0.53 0.63 0.67 0.70 0.81 0.84
10×10-mnist-1vs7 0.19 0.58 0.53 0.73 0.77 0.81 0.90 0.91

10×10-pneumoniamnist 0.21 0.37 0.46 0.63 0.70 0.74 0.82 0.87

LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 8: 10 × 10 MNIST 1 vs. 3. Competitors and FFA∗. The prediction is 3.

Table 6: Comparison on 28 × 28 Images of WFFA7.2k versus LIME, TreeSHAP , KernelSHAP and WFFA
approximations.

Dataset LIME TreeSHAP KernelSHAP WFFA10 WFFA30 WFFA120 WFFA1200 WFFA3600

|F| = 784 Error
28,28-mnist-1,3 49.28 22.33 25.97 9.22 7.50 6.69 3.08 2.75
28,28-mnist-1,7 54.78 24.39 28.39 11.53 9.40 7.00 3.33 2.29

28,28-pneumoniamnist 62.88 31.46 41.80 8.17 7.74 5.67 3.75 3.08
Kendall’s Tau

28,28-mnist-1,3 -0.80 0.42 -0.40 0.49 0.64 0.70 0.86 0.88
28,28-mnist-1,7 -0.79 0.34 -0.53 0.43 0.57 0.72 0.87 0.92

28,28-pneumoniamnist -0.66 0.24 -0.65 0.37 0.57 0.69 0.81 0.88
RBO

28,28-mnist-1,3 0.03 0.40 0.32 0.45 0.54 0.63 0.84 0.89
28,28-mnist-1,7 0.03 0.34 0.29 0.41 0.47 0.60 0.81 0.91

28,28-pneumoniamnist 0.03 0.23 0.24 0.30 0.35 0.43 0.65 0.81

Table 7: Just-in-time Defect Prediction comparison of WFFA versus LIME, TreeSHAP and KernelSHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error Kendall’s Tau RBO Error Kendall’s Tau RBO
LIME 4.79 0.08 0.56 5.60 -0.07 0.45

TreeSHAP 5.01 0.02 0.54 5.17 -0.11 0.44
KernelSHAP 5.06 -0.33 0.64 5.19 -0.44 0.69

15, and 16. As time progresses, the accumulated AXp’s incorporate an increasing number of features, and
as a result the value of weighted attribution for each feature can change. Table 6 details the comparison
between LIME, TreeSHAP, KernelSHAP and the approximate WFFA. Both LIME and TreeSHAP process
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LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 9: 10 × 10 MNIST 1 vs. 7. Competitors and FFA∗. The prediction is 7.

LIME T-SHAP K-SHAP FFA10 FFA30 FFA60 FFA120 FFA1.2k FFA

Figure 10: 10 × 10 PneumoniaMNIST. Competitors and FFA∗. The prediction is pneumonia.

Table 8: JIT Defect Prediction comparison of FFA versus LIME, TreeSHAP and KernelSHAP.

Approach openstack (|F| = 13) qt (|F| = 16)

Error Kendall’s Tau RBO Error Kendall’s Tau RBO
LIME 4.84 0.05 0.55 5.63 -0.08 0.45

TreeSHAP 5.08 0.00 0.53 5.22 -0.13 0.44
KernelSHAP 5.06 -0.33 0.64 5.19 -0.44 0.69

each image in under one second, whereas KernelSHAP, on average, requires 98.56s to process. The average
results presented in Table 6 are consistent with those illustrated in Table 5 and the FFA results depicted in
Table 2 and Table 3. Table 6 demonstrates that after only 10 seconds, our WFFA approximation outperforms
both LIME, TreeSHAP and KernelSHAP in terms of errors, Kendall’s Tau, and RBO values. Additionally,
after 10 seconds our approach produces weighted feature attributions, which is closer to WFFA7200 compared
to LIME, TreeSHAP and KernelSHAP. This suggests that our approach effectively identifies the features that
are genuinely relevant for the prediction, which is in stark contrast to LIME, TreeSHAP and KernelSHAP.

C Application in Just-in-Time Defect Prediction

Modern software companies often engage in the rapid and frequent release of software products in short cycles.
Because of the exponential growth of highly complex source code, such rapid-release software development
presents significant challenges for under-resourced Software Quality Assurance (SQA) teams. Developers
are unable to thoroughly ensure the highest quality of all newly developed code commits or pull requests
within the limited time and resources available, due to the time-consuming and costly nature of various
SQA activities, e.g. code review. To address this issue, a recent approach called Just-in-Time (JIT) defect
prediction (Kim et al., 2007; Kamei et al., 2013; Pornprasit & Tantithamthavorn, 2021; Lin et al., 2021)
has been proposed. This approach aims to predict whether a commit will introduce software defects in the
future such that development teams can prioritize their limited SQA resources on the riskiest commits or
pull requests.

However, the JIT defect prediction approach has frequently been criticized for being opaque and lacking
explainability for practitioners. Model-agnostic explainability methods, e.g. LIME, TreeSHAP and Ker-
nelSHAP, fail to respect the actual feature relevancy and so can hardly guarantee accurate feature attribu-
tion, as discussed earlier in this appendix and Section 6). Here, we apply the computation of both FFA and
WFFA in the setting of JIT defection prediction and demonstrate that they can represent a viable approach
to addressing practical explainability challenges.

In particular, where we use logistic regression models built on two widely-used large-scale open-source
datasets, namely Openstack and Qt, which are commonly used in JIT defect prediction studies (Porn-
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LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 11: 10 × 10 MNIST 1 vs. 3. Competitors and WFFA∗. The prediction is 3.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 12: 10 × 10 MNIST 1 vs. 7. Competitors and WFFA∗. The prediction is 7.

Table 9: Comparison on CIFAR Images of FFA7200 versus LIME, TreeSHAP and KernelSHAP and FFA
approximations.

Dataset LIME TreeSHAP KernelSHAP FFA30 FFA60 FFA120 FFA600 FFA1200 FFA3600

(|F| = 1024) Error

32,32-cifar-10-ship,truck

222.15 104.22 89.33 40.14 7.06 5.22 3.48 3.21 1.76
Kendall’s Tau

-0.75 -0.75 -0.81 -0.28 0.25 0.37 0.65 0.71 0.85
RBO

0.02 0.16 0.39 0.43 0.51 0.55 0.69 0.74 0.84

Table 10: Comparison on CIFAR Images of WFFA7200 versus LIME, TreeSHAP and KernelSHAP and
WFFA approximations.

Dataset LIME TreeSHAP KernelSHAP FFA30 FFA60 FFA120 FFA600 FFA1200 FFA3600

(|F| = 1024) Error

32,32-cifar-10-ship,truck

222.14 104.19 89.29 40.12 7.05 5.21 3.45 3.19 1.76
Kendall’s Tau

-0.75 -0.75 -0.91 -0.39 0.17 0.35 0.75 0.79 0.88
RBO

0.02 0.11 0.27 0.24 0.35 0.41 0.60 0.65 0.76

prasit et al., 2021). The property of monotonicity in logistic regression allows us to enumerate explanations
efficiently, following the approach of (Marques-Silva et al., 2021). By leveraging this method, we can enumer-
ate all abductive explanation for each instance within one second and hence compute both exact FFA and
exact WFFA. Table 8 details the comparison between exact FFA values and feature attribution by the other
competitors in terms of the three selected metrics while the comparison of WFFA, LIME, TreeSHAP and
KernelSHAP is provided in Table 7. Similar to all the other findings above (see Table 1, Table 2, Table 3,
Table 4, Table 5, and Table 6), LIME, TreeSHAP and KernelSHAP misalign with unweighted and weighted
formal feature attribution, although there are some similarities between them.

D CIFAR-10 Images

The appendix presents the results of the well-known CIFAR-10 image dataset, which consists of 32 × 32
color images in 10 classes. We create a concrete binary classification task within this dataset: ship vs. truck,
where 5000 and 1000 images for each class are included in the training and test data, respectively. For this
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LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA

Figure 13: 10 × 10 PneumoniaMNIST. Competitors and WFFA∗. The prediction is pneumonia.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 14: 28 × 28 MNIST 1 vs. 3. Competitors and WFFA∗. The prediction is digit 3.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 15: 28 × 28 MNIST 1 vs. 7. Competitors and WFFA∗. The prediction is digit 7.

LIME T-SHAP K-SHAP WFFA10 WFFA30 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 16: 28 × 28 PneumoniaMNIST. Competitors and WFFA∗. The prediction is normal.

LIME T-SHAP K-SHAP FFA30 FFA60 FFA120 FFA1.2k FFA3.6k FFA7.2k

Figure 17: 32 × 32 CIFAR Ship vs. Truck. Competitors and FFA∗. The prediction is truck.

LIME T-SHAP K-SHAP WFFA30 WFFA60 WFFA120 WFFA1.2k WFFA3.6k WFFA7.2k

Figure 18: 32 × 32 CIFAR Ship vs. Truck. Competitors and WFFA∗. The prediction is truck.

dataset, 15 test instances are randomly selected in the test set for evaluation. We applied XGBoost (Chen
& Guestrin, 2016) to train gradient boosted trees (BTs) on this dataset, where each BT consists of 50
trees of maximum depth of 3 per class and the test accuracy is 0.87. As discussed in Section 6.2, it is not
surprising that computation of exact FFA/WFFA may be challenging in practice, as the problem of formal
(weighted) feature attribution “lives” in ΣP

2 . Table 2 and Table 5 demonstrate that our approach yields
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good FFA/WFFA approximations even when we only collect AXp’s for a short time. In this appendix, we
compare the fidelity of our approach with the approximate FFA and WFFA computed after 2 hours (7200s).

The comparisons between LIME, TreeSHAP, KernelSHAP and the approximate FFA/WFFA computation
are detailed in Table 9 and Table 10. Figures 17 and 18 present feature attributions generated by LIME,
TreeSHAP, KernelSHAP, FFA∗ and WFFA∗ for the dataset. The TreeSHAP processing time for each image
is less than one second, where LIME and KernelSHAP 5.50s and 188.98s to process on average. The average
findings detailed in Figures 17 and 18 align with those presented in Figures 2, 3, 5 and 6. Namely, in terms
of (unweighted) FFA, its approximation yields superior errors, Kendall’s Tau and RBO values, surpassing
LIME, TreeSHAP and KernelSHAP after 30 seconds. This observation also holds for WFFA approximation.
Furthermore, the results demonstrate that after 30 seconds our approach provides feature attributions closer
to FFA7200 and WFFA7200 compared with LIME, TreeSHAP and KernelSHAP, indicating the features that
are truly relevant for the prediction.
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