
Simple and Effective
Masked Diffusion Language Models

Subham Sekhar Sahoo 1 Marianne Arriola 1 Yair Schiff 1 Aaron Gokaslan 1 Edgar Marroquin 1 Justin T Chiu 1

Alexander Rush 1 Volodymyr Kuleshov 1

Abstract
While diffusion models excel at generating high-
quality images, prior work reports a significant
performance gap between diffusion and autore-
gressive (AR) methods in language modeling. In
this work, we show that simple masked discrete dif-
fusion is more performant than previously thought.
We apply an effective training recipe that improves
the performance of masked diffusion models and
derive a simplified, Rao-Blackwellized objective
that results in additional improvements. Our
objective has a simple form—it is a mixture of
classical masked language modeling losses—and
can be used to train encoder-only language
models that admit efficient samplers, including
ones that can generate arbitrary lengths of text
semi-autoregressively like a traditional language
model. On language modeling benchmarks, a
range of masked diffusion models trained with
modern engineering practices achieves a new
state-of-the-art among diffusion models, and
approaches AR perplexity. We release our code
at: https://github.com/kuleshov-group/mdlm

1. Introduction
Diffusion models excel at producing realistic, high-quality
images and have received significant attention as potential
tools for generating discrete data such as text (Austin et al.,
2021; Li et al., 2021; Lou et al., 2023), biological sequences
(Avdeyev et al., 2023), and graphs (Sun & Yang, 2023;
Vignac et al., 2022). Unlike autoregressive (AR) approaches,
diffusion-based methods are not constrained to generate data
sequentially, and therefore have the potential to improve
long-term planning, controllable generation, and sampling
speed. However, discrete diffusion methods exhibit a

1Department of Computer Science, Cornell Tech, NYC, USA.
Correspondence to: Subham Sahoo <ssahoo@cs.cornell.edu>.

Accepted by the Structured Probabilistic Inference & Generative
Modeling workshop of ICML 2024, Vienna, Austria. Copyright
2024 by the author(s).

performance gap relative to AR models (Austin et al., 2021;
Gulrajani & Hashimoto, 2024; He et al., 2022; Lou et al.,
2023), especially in language modeling. The standard mea-
sure of language modeling performance is log-likelihood:
when controlling for parameter count, prior work reports a
sizable log-likelihood gap between AR and diffusion models.

In this work, we show that a simple masked diffusion lan-
guage modeling (MDLM) framework combined with effec-
tive training recipes significantly improves log-likelihood
training of discrete diffusion models (Austin et al., 2021; He
et al., 2022). We develop a well-engineered MDLM imple-
mentation based on a simple substitution-based parameteriza-
tion of the reverse diffusion process that enables us to derive a
Rao-Blackwellized continuous-time variational lower bound
(ELBO) with improved tightness. Interestingly, our objective
has a simple form: it is a weighted average of masked lan-
guage modeling (MLM) losses (Devlin et al., 2018), and can
be used to endow BERT-style, encoder-only models with prin-
cipled generation capabilities. We complement this frame-
work with efficient samplers—including ones that can gen-
erate semi-autoregressively like a typical language model.

Our masked diffusion models achieve a new state-of-the-art
among diffusion models on language modeling benchmarks
and approach the perplexity of AR models within 15-25%.
Surprisingly, simple engineering choices significantly
improve performance in both our models and simple
baselines that were previously thought to perform poorly.
Our framework also extends to non-language domains,
including biological sequence modeling. We pre-train DNA
sequence models and observe similar or higher downstream
performance compared to classical BERT-style training, as
well as adding generative capabilities that classical masked
DNA language models lack.

Contributions We describe (1) a simple masked diffusion
language modeling (MDLM) framework with a well-
engineered implementation that outperforms all existing
diffusion models across language modeling benchmarks
(LM1B (Chelba et al., 2014), OWT (Gokaslan et al., 2019),
DNA (Schiff et al., 2024)), and that significantly improves
the performance of existing baselines (Austin et al., 2021;

1

https://github.com/kuleshov-group/mdlm

Title Suppressed Due to Excessive Size

He et al., 2022). Our MDLM framework implements (2a)
a substitution-based parameterization (SUBS) of the reverse
unmasking diffusion process; SUBS allows us to derive (2b)
a simple, continuous-time, Rao-Blackwellized objective
that improves tightness and variance of the ELBO, further
increasing performance. We complement MDLM with
(3) fast samplers that support semi-autoregressive (SAR)
generation and outperform previous SAR models.

2. Background
2.1. Diffusion Models

Diffusion models are trained to iteratively undo a forward
corruption process q that takes clean data x drawn from
the data distribution q(x) and defines latent variables zt for
t∈ [0,1] that represent progressively noisy versions of x (Ho
et al., 2020; Sohl-Dickstein et al., 2015; Song et al., 2020).
The standard forward process for continuous x is

zt=
√
αt ·x+

√
1−αt ·ϵ (1)

where ϵ∼N (0,I) and (αt)t∈[0,1] is a noise schedule, mono-
tonically decreasing in t. The parameterized reverse diffusion
model pθ over x and zt is trained to maximize a variational
lower bound on log-likelihood (ELBO). Given a number
of discretization steps T, defining s(i) = (i − 1)/T and
t(i)= i/T , and using DKL[·] to denote the Kullback–Leibler
divergence, the ELBO equals (Sohl-Dickstein et al., 2015):

Eq

[
logpθ(x|zt(0))︸ ︷︷ ︸

Lrecons

−
T∑

i=1

DKL[q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i))]︸ ︷︷ ︸
Ldiffusion

]

−DKL[q(zt(T)|x)∥pθ(zt(T))]︸ ︷︷ ︸
Lprior

(2)

For brevity, we drop i from t(i) and s(i) below; in general,
s will denote the time step before t.

2.2. Discrete Diffusion Models

Applications of diffusion modeling to discrete data can be
broken into two broad categories. First are works that em-
bed discrete structures in continuous space and then perform
the Gaussian diffusion defined above on these continuous
representations (Chen et al., 2022; Dieleman et al., 2022; Gul-
rajani & Hashimoto, 2024; Han et al., 2022; Li et al., 2022;
Lovelace et al., 2024; Strudel et al., 2022). More related to
our method are works that define a diffusion process directly
on discrete structures. D3PM (Austin et al., 2021) introduces
a framework with a Markov forward process q(zt|zt−1)=
Cat(zt;Qtzt−1) defined by the multiplication of matrices Qt

over T discrete time steps. This process induces marginals

q(zt|x)=Cat(zt;Q̄tx)=Cat(zt;Qt ·Qt−1···Q1x) (3)

that represent the discrete-state form of (1). Extending this
formalism to continuous time (as in (1)) relies on continuous
time Markov chain (CTMC) theory (Campbell et al., 2022).
The CTMC framework in turns leads to generalizations
of the score matching perspective on diffusion modeling
(Song & Ermon, 2019) to discrete data (Lou et al., 2023;
Sun et al., 2022). Notably, SEDD (Lou et al., 2023) connects
score-based approaches with ELBO maximization, enabling
performant likelihood-based training of score-based models.

3. Simple Masked Diffusion Models
While previous work on discrete diffusion supports general
forward processes (e.g., general Qt in D3PM), absorbing
state (i.e., masking) diffusion consistently achieves the best
performance (Austin et al., 2021; Lou et al., 2023). In this
work, instead of supporting general noise processes, we focus
on masking and derive tight Rao-Blackwellized objectives
that outperform general approaches and do not require
CTMC theory. We denote our overall approach as masked
diffusion (MDLM in the context of language models).

Notation. We denote scalar discrete random variables
with K categories as ‘one-hot’ column vectors and define
V ∈{x∈{0,1}K :

∑K
i=1xi=1} as the set of all such vectors.

Define Cat(·;π) as the categorical distribution overK classes
with probabilities given by π ∈ ∆K , where ∆K denotes
the K-simplex. We also assume that the K-th category
corresponds to a special [MASK] token and let m∈V be the
one-hot vector for this mask, i.e., mK=1. Additionally, let
1= {1}K and ⟨a,b⟩ and a⊙b respectively denote the dot
and Hadamard products between two vectors a and b.

3.1. Interpolating Discrete Diffusion

We restrict our attention to forward processes q that
interpolate between clean data x∈V and a target distribution
Cat(.;π), forming a direct extension of Gaussian diffusion
in (1). The q define a sequence of increasingly noisy latent
variables zt∈V , where the time step t runs from t=0 (least
noisy) to t=1 (most noisy). The marginal of zt conditioned
on x at time t is

q(zt|x)=Cat(zt;αtx+(1−αt)π), (4)

where αt ∈ [0,1] is a strictly decreasing function in t, with
α0 = 1 and α1 = 0. This implies transition probabilities
q(zt|zs) = Cat(zt; αt|szt + (1 − αt|s)1π

⊤zt) where
αt|s=αt/αs and

q(zs|zt,x)

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
(5)

2

Title Suppressed Due to Excessive Size

Figure 1: (Left) Our proposed masked diffusion language model (MDLM) is trained using a weighted average of masked cross
entropy losses. (Top Right) In comparison to masked language models (MLM), MDLM’s objective correspond to a principled
variational lower bound, and supports generation via ancestral sampling. (Bottom Right) Perplexity (PPL) on One Billion
Words benchmark.

See Suppl. 14 for details. While (4) and (5) represent
a special case of the more general diffusion processes
proposed in D3PM (Austin et al., 2021), we show below that
they yield a simplified variational lower bound objective and
admit straightforward continuous time extensions.

3.2. Masked Diffusion

Next, we focus on masking processes and derive a simple Rao-
Blackwellized objective for this choice of q. This objective
incurs lower variance during training and improves tightness.

3.2.1. FORWARD MASKING PROCESS

In masked (i.e., absorbing state) diffusion, we set π =m.
At each noising step, the input x transitions to a ‘masked’
state m with a probability increasing in t. If an input
transitions to m at any time t′, it will remain in this state for
all t>t′ :q(zt |zt′ =m)=Cat(zt;m). At time T , all inputs
are masked with probability 1.

The marginal of the forward process (4) is given by
q(zt|x)=αtx+(1−αt)m. Using properties of the masking
process, the posterior q(zs|zt,x) simplifies (5); see Suppl. A:

q(zs|zt,x)=

{
Cat(zs;zt) zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)x
1−αt

)
zt=m.

(6)

3.2.2. REVERSE UNMASKING PROCESS

The reverse process inverts the noise process defined by q.
We consider both a finite number of steps T , as well as a con-

tinuous time model corresponding to T →∞. We begin with
the discrete-time case for which the generative model is ex-
pressed as pθ(x)=

∫
z
pθ(z1)pθ(x|z0)

∏T
i=1pθ(zs|zt)dz0:T .

The optimal form for pθ(zs|zt) matches the true posterior
in (6): this follows immediately from the definition of the
diffusion objective in (2), which is a sum of terms of the form
DKL(q(zs|zt,x)∥pθ(zs|zt)). However, (6) is conditioned on
x, which we do not know. Therefore, we introduce a model
xθ(zt,t) :V×[0,1]→∆K that approximates x with a neural
network. We can also omit explicit dependence of xθ on
time t, which simplifies sampling, yielding a 2x inference
speed-up (see Suppl. H).

3.2.3. SUBS PARAMETERIZATION

The specific parameterization for pθ(zs|zt) that we use is

pθ(zs|zt)=

{
Cat(zs;zt), zt ̸=m,

Cat
(
zs;

(1−αs)m+(αs−αt)xθ(zt,t)
1−αt

)
. zt=m.

(7)

In order for pθ(zs|zt) to be a valid probability, xθ(zt, t)
must satisfy two requirements. We implement these as
substitutions to the output of xθ(zt, t), hence we call our
parameterization SUBS.

Zero Masking Probabilities First, notice that by defini-
tion, ⟨x,m⟩= 0. For this reason, we design the denoising
network such that ⟨xθ(zt, t),m⟩ = 0, i.e., we substitute
the logit index corresponding to the [MASK] token with
−∞. This property enables the simplified expression of

3

Title Suppressed Due to Excessive Size

(7) (Suppl. A.2.2) and ensures that case 2 in (7) is a valid
probability.

Carry-Over Unmasking Second, if zt is unmasked, then
we desire xθ(zt,t)= zt, i.e., unmasked latents are ‘carried
over’. We accomplish this by substituting the output of our
network to simply copy unmasked inputs. This ensures that
case 1 in (7) always holds, and furthermore reduces Lrecons
to 0.

3.3. Rao-Blackwellized Likelihood Bounds

Recall from (2) that the diffusion traning objective has the
form Lrecons +Ldiffusion +Lprior. For the simplified reverse
process in (7), the discrete-time diffusion loss for finite T
simplifies to (Suppl. B.1):

Ldiffusion=

T∑
i=1

Eq[DKL(q(zs(i)|zt(i),x)∥pθ(zs(i)|zt(i)))]

=

T∑
i=1

Eq

[
αt(i)−αs(i)

1−αt(i)
log⟨xθ(zt(i)),x⟩

]
. (8)

Note that this objective is simpler and more well-
behaved than the expression one would obtain for
DKL(q(zs|zt, x)∥pθ(zs|zt)) under the parameterization
induced by using pθ(zs|zt) = q(zs|zt,x= xθ(zt,t)) from
(5), which is similar to what is used by D3PM (Austin et al.,
2021) (see Suppl. 27):[

αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

]
⟨zt,m⟩.

(9)

We refer to the process of obtaining (8) in lieu of (9) as a
form of Rao-Blackwellization. Specifically, we analytically
compute expectations such as ⟨xθ(zt,t),m⟩=0 in order to
simplify objective (9) to obtain (8). Without analytical sim-
plifications, a model must learn θ such that ⟨xθ(zt,t),m⟩=0
holds. Unlike in regular Rao-Blackwellization, simplifica-
tions are possible because of modeling choices for xθ(zt,t)
(zero masking probabilities and carry-over unmasking).
In that sense, our approach has similarities to graphical
modeling, where incorporating conditional independencies
into pθ sets certain log-likelihood terms to zero. However,
our approach also empirically helps reduce variance, hence
we refer to it as Rao-Blackwellization, somewhat abusing
the usual terminology.

3.4. Continuous-Time Likelihood Bounds

Previous works have shown empirically and mathematically
that increasing the number of steps T yields a tighter ap-
proximation to the ELBO (Kingma et al., 2021). Following

a similar argument, we form an continuous extension of (8)
by taking T →∞ (see Suppl. B.2), which yields

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt
log⟨xθ(zt,t),x⟩dt (10)

Invariance to the noise schedule The functionαt is invert-
ible due to the monotonicity assumption in Sec. 3.1, and so we
can perform the following change of variables in (10): γ≡
log(1− αt). Thus, the diffusion loss can be equivalently
expressed as L∞

diffusion = −Eq

∫ γ=0

γ=−∞ log⟨xi
θ(xγ),x

i⟩dγ;
see Suppl. 10 for details. This new formulation demonstrates
that the diffusion loss is invariant to the functional form of
αt, which we verify empirically in Suppl. D.

3.5. Masked Diffusion Language Models

Next, we apply masked diffusion to language modeling over
sequences x1:L of L tokens, with xℓ denoting the ℓ-th token.
We make the assumption that the forward noising process
is applied independently across a sequence and that, condi-
tioned on a sequence of latents z1:Lt , the denoising process
factorizes independently across tokens, i.e., pθ(z1:Ls |z1:Lt)=∏L

ℓ=1pθ(z
ℓ
s |z1:Lt). Thus, we use a single model to compute

xℓ
θ(z

1:L
t ,t) for each ℓ from a masked sequence zt, optimizing:

L∞
diffusion=Eq

∫ t=1

t=0

α′
t

1−αt

∑
ℓ

log⟨xℓ
θ(zt),x

ℓ⟩dt (11)

Interestingly, our objective has a simple form: it is the
weighted average of masked language modeling (MLM)
losses (Devlin et al., 2018). Thus our work establishes
a connection between generative diffusion models and
encoder-only BERT models. Our objective enables
principled selection of a (randomized) masking rate, and
also endows BERT-style models with principled generation
capabilities, see Sec. 6.

3.5.1. EFFICIENT TRAINING FOR MASKED DIFFUSION

One of the key contributions of our work is a well-engineered
implementation of masked diffusion models. Our ex-
periments demonstrate that these improvements greatly
boost performance even for methods previously thought to
perform poorly, e.g., Austin et al. (2021). Below we briefly
summarize these implementation details. First, we find that
tokenization is critical to performance. Small vocabularies,
such as the 8k vocabulary in Austin et al. (2021), result in
longer-range dependencies that decrease the performance of
both diffusion and AR models. Additionally, by focusing on
masked diffusion, we are able to provide a numerically stable
implementation of the objective function. Namely, since pre-
vious formulations of discrete diffusion were constructed to
accommodate a wide range of limiting distributions (Austin
et al., 2021), the objective was implemented by materializing

4

Title Suppressed Due to Excessive Size

the full transition matrices Q̄t and posterior probabilities. In
contrast, we evaluate DKL[q(zs |zt,x)||pθ(zs |zt)] by exam-
ining only the masked token indices rather than comparing
the full true and approximate posterior distributions.

Furthermore, we modernize the architecture for the denois-
ing network relative to D3PM (Austin et al., 2021). In lieu
of the T5 architecture used in D3PM, we use the diffusion
transformer (DiT) introduced in Peebles & Xie (2023),
which integrates time step conditioning into a standard
encoder-only transformer (Vaswani et al., 2017) and uses ro-
tary positional embeddings (Su et al., 2021). In addition, we
implement a low-discrepancy sampler that reduces the vari-
ance of the ELBO, similar to Kingma et al. (2021) and draws
correlated samples ti rather than performing i.i.d. sampling.

4. Inference and Sampling
in Masked Diffusion Language Models

4.1. Efficient Ancestral Sampling

To generate a sequence of length L, the reverse diffusion
process starts with the sequence z1:Lt=1 where zℓt=1=m, ∀ℓ∈
{1,...,L}. Then the subsequent latents, z1:Lt are generated
by discretizing the reverse diffusion process with some finite
T. Given z1:Lt , we construct z1:Ls by sampling each token zℓs
independently from the distribution pθ(z

ℓ
s|z1:Lt) given in (7).

4.2. Semi-Autoregressive
Masked Diffusion Language Models

Our method also admits an effective semi-autoregressive
(SAR) decoding method that allows the model to generate
sequences of arbitrary length. Let x̃1:L represent the output
from sampling a sequence of L tokens using the reverse
diffusion process described above. To generate additional
L′<L tokens, we propose a generation algorithm in which
the latter L−L′ tokens x̃L′:L−L′

are used as a prefix for
an additional round of generation. Given the carry-over
unmasking described in Sec. 3.2.3, these prefix tokens will
simply be copied over at each decoding step. The remaining
tokens are generated as above with zℓs ∼ pθ(z

ℓ
s | zL

′:L+L′

t)

for all ℓ ∈ {L+1, ...L+L′}, with zL
′:L−L′

1 initialized to
x̃L′:L−L′

as opposed to being initialized as masked tokens
m. At the end of this process, we have produced L+ L′

tokens concat[x̃1:L, x̃L+1:L+L′
], where concat[·] denotes

concatenation along the sequence length dimension. This
process can repeat indefinitely, with the prefix shifted for
every new round of generation.

5. Experiments
5.1. Masked Diffusion Language Models

Experimental Setup We evaluate MDLM as a generative
model of language and as a representation model via
fine-tuning on downstream tasks.

For language modeling likelihood evaluation, we con-
duct experiments on two datasets: The One Billion
Words Dataset (LM1B; (Chelba et al., 2014)) and Open-
WebText (OWT; (Gokaslan et al., 2019)). We use the
bert-base-uncased tokenizer for One Billion Words,
and report perplexities on the test split. Models have a con-
text size of 128. For OWT, which does not have a pre-defined
split, we reserve the last 100K documents as a held-out
validation set and report perplexities on this set. We use the
GPT2 tokenizer (Radford et al., 2019) for OWT. Models
have a context size of 1,024. We utilize the transformer archi-
tecture from Lou et al. (2023), which augments the diffusion
transformer (Peebles & Xie, 2023) with rotary embeddings
(Su et al., 2021). MDLM was trained for 1M or 10M steps
(corresponding to 33B, 330B tokens, respectively) on LM1B
and 1M steps on OWT (which corresponds to 262B tokens).
The corresponding AR baseline was trained for half the num-
ber of steps to ensure similar number of tokens seen (details
in Suppl. F). Full hyperparameters are given in Suppl. I.1.
On OWT, we train with and without time step conditioning.

For representation learning, we pre-train models on
the C4 dataset (Raffel et al., 2020), then fine-tune and
evaluate models on the GLUE benchmark (Wang et al.,
2019). Models have a context size of 128. We use the
bert-base-uncased tokenizer for the representation
learning experiments. We utilize the MosaicBERT architec-
ture from Portes et al. (2024), an extension of the original
BERT architecture (Devlin et al., 2018). We pre-train a
bidirectional MosaicBERT using an MLM objective for 37B
tokens of C4, as well as a causal variant on the same data.
We further fine-tune MosaicBERT model using the MDLM
for 327M tokens, less than 1% of the pre-training data. We
provide the full hyperparameters in Suppl. I.3.

Likelihood Evaluation On LM1B, MDLM outperforms
all previous diffusion methods (Table 1). Compared to the
SEDD baseline reported by Lou et al. (2023), trained for
66B tokens, MDLM, which we train for the same amount,
achieves a 17% improvement on the perplexity bound. Fi-
nally, MDLM gets within 14% of an AR baseline and contin-
ues to improve with more training. We see the same trend for
models trained on OWT, a larger dataset, shown in Table 2 –
MDLM outperforms prior diffusion methods, closing the gap
towards AR models. Results on OWT time step conditioning
are in Table 10, Suppl. C.3 where we find that models trained
with and without time conditioning attain similar perplexities.
Additionally, Figure 2 demonstrates the reduced variance

5

Title Suppressed Due to Excessive Size

Table 1: Test perplexities (PPL; ↓) on LM1B. †Reported in He et al. (2022). Best diffusion value is bolded.

Parameters PPL (↓)

Autoregressive
Transformer-X Base (Dai et al., 2019) 0.46B 23.5
OmniNetT (Tay et al., 2021) 100M 21.5

Diffusion

BERT-Mouth (Wang & Cho, 2019) 110M ≤142.89
D3PM (absorb) (Austin et al., 2021) 70M ≤77.50
Diffusion-LM (Li et al., 2022)† 80M ≤118.62
DiffusionBert (He et al., 2022) 110M ≤63.78
SEDD (Lou et al., 2023) (33B tokens) 110M ≤ 32.79

Autoregressive
(Retrained)

Transformer (33B tokens) 110M 22.32
Transformer (330B tokens) 20.86

Diffusion
(Ours)

MDLM (33B tokens) 110M ≤27.04
MDLM (330B tokens) ≤23.00

Table 2: Test perplexities (PPL; ↓) on OWT for models
trained for 262B tokens. † denotes retrained models.

PPL (↓)

AR† 17.54

SEDD† ≤24.10
MDLM (Ours) ≤23.21

we achieve from our objective, when compared to previous
masked diffusion models, such as SEDD (Lou et al., 2023).

Zero-Shot Likelihood Evaluation We also explore
models’ ability to generalize by taking models trained on
OWT and evaluating how well they model unseen datasets.
We compare the perplexities of our MDLM with a SEDD
parameterization and an AR Transformer language model.
Our zero-shot datasets include the validation splits of Penn
Tree Bank (PTB; (Marcus et al., 1993)), Wikitext (Merity
et al., 2016), LM1B, Lambada (Paperno et al., 2016), AG
News (Zhang et al., 2015), and Scientific Papers (Pubmed
and Arxiv subsets; (Cohan et al., 2018)). Full experimental
details are available in Suppl. I.1.

MDLM consistently outperforms the SEDD diffusion
parameterization. In some cases, e.g., for Lambada and
Scientific Papers, MDLM attains better perplexity than AR.
We hypothesize that these datasets are farther from OWT, and
that diffusion models may be more robust to out-of-domain
evaluation due to the unmasking-based objective.

Downstream Task Evaluation We find that BERT
fine-tuned with MDLM to be a generative model results
in strong perplexities while preserving performance on
downstream tasks. On the C4 validation set, the AR model
attains perplexity (PPL) of 22, the pre-trained BERT attains

a PPL upper bound of 78 (evaluated using the MDLM
variational bound), and BERT + MDLM-FT attains a PPL
upper bound of 35. In Table 4, we further find that BERT +
MDLM fine-tuning has no degradation in downstream GLUE
performance compared to the BERT initialization. While
the perplexity of our method is higher than the AR baseline,
the downstream task performance is significantly better.

Semi-Autoregressive Modeling To test the SAR decoding
algorithm presented in Sec. 4.2, we compare to SSD-LM
(Han et al., 2022) a diffusion model that was designed to
generate blocks of text autoregressively. We generate 200
sequences of length 2048 tokens on a single 3090GPU and
evaluate generative perplexity under a pre-trained GPT-2
(Radford et al., 2019) model. The SSD-LM sequences
are generated using blocks of 25 tokens (as implemented
in their pre-trained model) and the MDLM sequences are
generated using L′=512. In Table 5, we find that in addition
to achieving better generative perplexity, MDLM enables
∼25-30x faster SAR decoding relative to SSD-LM.

5.2. Masked Diffusion DNA Models

We also explore the use of our generative formulation in
conjunction with Structured State Space models (Gu et al.,
2021). Namely, we build on the recently proposed Caduceus
(Schiff et al., 2024) model, which uses as a backbone the
data-dependent SSM Mamba block (Gu & Dao, 2023).

Experimental Setup We pre-train the encoder-only
Caduceus (Schiff et al., 2024), which is an MLM, on the
HG38 human reference genome (Consortium, 2009) and
perform fine-tuning using our diffusion parameterization.
We use a context length of 1024 tokens and follow Schiff
et al. (2024) for the experimental setup, other than learning
rate which was reduced to 1e-3. See Suppl. I.4 for full
experimental details. We assess both generative performance

6

Title Suppressed Due to Excessive Size

Table 3: Zero-shot validation perplexities (↓) of models trained for 524B tokens on OWT. All perplexities for diffusion models
are upper bounds.

PTB Wikitext LM1B Lambada AG News Pubmed Arxiv

AR (Retrained) 82.05 25.75 51.25 51.28 52.09 49.01 41.73

SEDD (Retrained) 100.09 34.28 68.20 49.86 62.09 44.53 38.48
MDLM (Ours) 95.26 32.83 67.01 47.52 61.15 41.89 37.37

Table 4: GLUE evaluation results. Evaluation measures (↑) are F1 score for QQP and MRPC, Spearman correlations for
STS-B, and accuracy for the rest. For MNLI, we report match/mismatch accuracies.

MNLI
(m/mm) QQP QNLI SST-2 COLA STS-B MRPC RTE Avg

AR 80.94/80.78 86.98 86.16 90.14 33.43 84.32 83.88 47.29 74.88
BERT 84.43/85.35 88.41 90.46 92.20 54.81 88.41 89.16 61.37 81.62
+MDLM-FT 84.76/85.07 88.49 90.30 92.20 57.69 87.48 90.53 62.09 82.06

Table 5: Semi-AR generative perplexity (Gen. PPL; ↓) for
sequences of 2048 tokens.

Gen. PPL (↓) Sec/Seq (↓)

SSD-LM 35.43 2473.9
MDLM (Ours) 27.18 89.3

Table 6: Test perplexities (PPL; ↓) of generative fine-tuning
of the Caduceus MLM (Schiff et al., 2024) on the HG38
reference genome. Best diffusion model values are bolded.
Error bars indicate the difference between the maximum and
minimum values across 5 random seeds used for fine-tuning.
† denotes retrained models.

Params PPL (↓)

AR† Mamba 465K 3.067 ± .0104
HyenaDNA 433K 3.153 ± .001

Dif †
Plaid 507K ≤ 3.240 ± .005
SEDD 467K ≤ 3.216 ± .003

Dif (Ours) MDLM 467K ≤ 3.199 ± .010

using perplexity and downstream performance on Genomics
Benchmarks (Grešová et al., 2023) across language diffusion
paradigms and AR models.

Generative Performance We fine-tune the Caduceus
MLM across diffusion parameterizations and compare
perplexities against AR models. We report perplexity values
in Table 6. MDLM outperforms all other diffusion language
modeling schemes.

Downstream Task Fine-tuning We perform downstream
evaluation with the Genomics Benchmarks (Grešová et al.,
2023), a recently proposed benchmark with eight regulatory
element classification tasks. As shown in Table 7, our
generative fine-tuning paradigm preserves or improves
upon downstream performance from MLM pre-training.
Absorbing-state diffusion methods outperform Plaid across
tasks except for the simplest task Human vs. Worm, where
all methods have roughly the same performance. For tasks
where the input is a biased subsample of the full genome,
we observe that the correlation between perplexity and
downstream performance is weaker; see Suppl. I.4.

5.3. Ablation Analysis

In Table 8, we can see the effect of our streamlined masked
diffusion implementation. The improvements described in
Sec. 3.5.1 allow us to greatly reduce perplexity of previously
discounted models, such as D3PM (see the bottom row
of this table, which is mathematically equivalent to the
D3PM formulation). While most works assumed that
D3PM achieves mediocre log-likelihoods, we show that
is is incorrect: our re-implementation almost matches
state-of-the-art score-based methods. This introduces a
new strong baseline that opens new research opportunities.
Additionally, in Table 8, we ablate different components
of MDLM. We observe that the perplexity for MDLM
trained with a discrete T = 1000 marginally worsens
by 0.1 compared to MDLM trained in continuous time.
Additionally, removing the “carry over” operation from the
SUBS parameterization increases the perplexity by 2 points.
However, further removing the “zero masking” operation
does not lead to any meaningful change in perplexity.

We provide further ablations for the continuous time formula-
tion in the Appendix, showing in Table 9 that for a pre-trained

7

Title Suppressed Due to Excessive Size

Table 7: Genomic Benchmarks. Top-1 accuracy (↑) across 5-fold cross-validation (CV) for a pre-trained AR Mamba, and a
pre-trained Caduceus model fine-tuned with different diffusion parameterizations. The best values per task are bolded and the
second best are italicized. Error bars indicate the difference between the maximum and minimum values across 5 random
seeds used for CV.

Model
Fine-Tuning Objective
(Parameter Count)

Mamba
AR

(465K)

Caduceus
MLM
(467K)

Caduceus
Plaid

(507k)

Caduceus
SEDD
(467k)

Caduceus
MDLM (ours)

(467k)

Mouse Enhancers 0.763 {±0.008} 0.810 {±0.016} 0.745 {±0.079} 0.784 {±0.058} 0 .795 {±0.029}
Coding vs. Intergenomic 0.897 {±0.004} 0.913 {±0.003} 0 .908 {±0.003} 0.913 {±0.005} 0.913 {±0.003}
Human vs. Worm 0.967 {±0.002} 0 .970 {±0.002} 0.971 {±0.001} 0 .970 {±0.003} 0 .970 {±0.003}
Human Enhancers Cohn 0.734 {±0.027} 0.737 {±0.001} 0 .743 {±0.010} 0.746 {±0.015} 0 .743 {±0.016}
Human Enhancer Ensembl 0.856 {±0.003} 0.907 {±0.000} 0.885 {±0.003} 0 .905 {±0.006} 0.899 {±0.004}
Human Regulatory 0.861 {±0.008} 0.874 {±0.003} 0 .868 {±0.010} 0.828 {±0.037} 0 .868 {±0.004}
Human OCR Ensembl 0.806 {±0.005} 0 .821 {±0.000} 0.820 {±0.004} 0.816 {±0.008} 0.823 {±0.008}
Human NonTATA Promoters 0.926 {±0.008} 0 .935 {±0.014} 0 .935 {±0l007} 0 .935 {±0.014} 0.940 {±0.007}

Table 8: Test perplexities (PPL; ↓) for MDLM ablations on
LM1B. All the models were trained for 200K steps. Standard
deviation is measured over 5 seeds during evaluation.

PPL

MDLM 33.59±.11
w/o Continuous time 33.70±.07

& carry-over 35.57±.15
& zero masking 35.31±.16

model, at inference, increasing T yields better likelihoods.

6. Discussion, Prior Work, and Conclusion
Comparison to D3PM Masked diffusion is a
strict subset of D3PM (Austin et al., 2021); setting
Qt =αt|sI+(1−αt|s)1m

⊤ in their framework yields our
forward diffusion. We improve over D3PM in three ways:
(1) we adopt the SUBS parameterization for pθ(zs|zt); (2)
this allows us to derive a simplified objective that analytically
simplifies certain expectations to zero; (3) we adopt
well-engineered training recipes that improve performance.
Both (1) and (2) are possible because we focus on masking
instead of developing a general discrete diffusion framework.
Surprisingly, (3) has the largest contribution to performance.

Comparison to CTMC Most implementations of diffu-
sion work best in continuous time. However, extending
D3PM in this way requires computing the limit of the product
of an infinite number of matrices QT ·QT−1···Qt as T →∞,
which requires advanced CTMC theory (Campbell et al.,
2022). Our work describes simple continuous-time formu-
lations for the most common noise processes (e.g., masking
and uniformπ), thus helping make an important part of the lit-
erature more accessible. Our results remain compatible with
CTMC: we effectively use rate matrices Rt=α′

t(1m
⊤−I).

Comparison to Score Estimation Score-based ap-
proaches to diffusion (Song & Ermon, 2019) extend to
discrete states, although they typically further build upon
advanced CTMC theory. In particular, SEDD (Lou et al.,
2023) derives and optimizes an ELBO that is a function of
the score model, obtaining state-of-the-art log-likelihoods
among diffusion models. We use a much simpler approach
that requires no advanced theory.

Comparison to BERT Our work provides a principled way
of making BERT generative when trained with randomized
masking rates. Previous work on generating from BERT used
Gibbs sampling or ad-hoc methods (Ghazvininejad et al.,
2019; Liao et al., 2020; Wang & Cho, 2019). The connection
between BERT and diffusion was first made by Austin et al.
(2021): their objective effectively involves unmasking. He
et al. (2022) additionally starts training from a pretrained
BERT. However, both works use an objective that is similar
to (9), which is less numerically stable than our objective (see
Section 3.5.1). Austin et al. (2021) describe in their appendix
how their ELBO can simplify to a weighted masking (MLM)
loss similar to (8), but using a more complex formula for the
weights. However, they do not train with that objective. Our
work derives a simpler expression for the average of MLM
losses, implements it, and obtains better likelihoods.

Conclusion In this work, we explore masked diffusion.
With a well-engineered implementation that supports a sim-
ple variational objective, we attain state-of-the-art diffusion
perplexities on language benchmarks and demonstrate how
to efficiently convert BERT-style encoders into generative
models. Given we are working on language modeling, we
carry any of the inherent risks and opportunities that come
with this line of research.

References
Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow,

and Rianne Van Den Berg. Structured denoising diffusion

8

Title Suppressed Due to Excessive Size

models in discrete state-spaces. Advances in Neural Infor-
mation Processing Systems, 34:17981–17993, 2021.

Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk,
and Jian Zhou. Dirichlet diffusion score model for bio-
logical sequence generation. In International Conference
on Machine Learning, pp. 1276–1301. PMLR, 2023.

Žiga Avsec, Vikram Agarwal, Daniel Visentin, Joseph R
Ledsam, Agnieszka Grabska-Barwinska, Kyle R Taylor,
Yannis Assael, John Jumper, Pushmeet Kohli, and
David R Kelley. Effective gene expression prediction
from sequence by integrating long-range interactions.
Nature methods, 18(10):1196–1203, 2021.

Andrew Campbell, Joe Benton, Valentin De Bortoli, Thomas
Rainforth, George Deligiannidis, and Arnaud Doucet. A
continuous time framework for discrete denoising models.
Advances in Neural Information Processing Systems, 35:
28266–28279, 2022.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge,
Thorsten Brants, Phillipp Koehn, and Tony Robinson.
One billion word benchmark for measuring progress in
statistical language modeling, 2014.

Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog
bits: Generating discrete data using diffusion models
with self-conditioning. arXiv preprint arXiv:2208.04202,
2022.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim, Trung
Bui, Seokhwan Kim, Walter Chang, and Nazli Goharian.
A discourse-aware attention model for abstractive
summarization of long documents. Proceedings of the
2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
2018. doi: 10.18653/v1/n18-2097. URL http:
//dx.doi.org/10.18653/v1/n18-2097.

Genome Reference Consortium. Genome reference
consortium human build 37 (grch37. Database (GenBank
or RefSeq), 2009.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell,
Quoc V Le, and Ruslan Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context.
arXiv preprint arXiv:1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805, 2018.

Sander Dieleman, Laurent Sartran, Arman Roshannai,
Nikolay Savinov, Yaroslav Ganin, Pierre H Richemond,
Arnaud Doucet, Robin Strudel, Chris Dyer, Conor Durkan,

et al. Continuous diffusion for categorical data. arXiv
preprint arXiv:2211.15089, 2022.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. Mask-predict: Parallel decoding
of conditional masked language models. In Kentaro
Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.),
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pp. 6112–6121, Hong
Kong, China, November 2019. Association for Compu-
tational Linguistics. doi: 10.18653/v1/D19-1633. URL
https://aclanthology.org/D19-1633.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie
Tellex. Openwebtext corpus. http://Skylion007.
github.io/OpenWebTextCorpus, 2019.

Katarína Grešová, Vlastimil Martinek, David Čechák,
Petr Šimeček, and Panagiotis Alexiou. Genomic bench-
marks: a collection of datasets for genomic sequence
classification. BMC Genomic Data, 24(1):25, 2023.

Albert Gu and Tri Dao. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently
modeling long sequences with structured state spaces.
arXiv preprint arXiv:2111.00396, 2021.

Ishaan Gulrajani and Tatsunori B Hashimoto. Likelihood-
based diffusion language models. Advances in Neural
Information Processing Systems, 36, 2024.

Xiaochuang Han, Sachin Kumar, and Yulia Tsvetkov.
Ssd-lm: Semi-autoregressive simplex-based diffusion
language model for text generation and modular control.
arXiv preprint arXiv:2210.17432, 2022.

Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing
Huang, and Xipeng Qiu. Diffusionbert: Improving
generative masked language models with diffusion
models. arXiv preprint arXiv:2211.15029, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising
diffusion probabilistic models. Advances in neural
information processing systems, 33:6840–6851, 2020.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan
Ho. Variational diffusion models. Advances in neural
information processing systems, 34:21696–21707, 2021.

Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang,
and Tatsunori B Hashimoto. Diffusion-lm improves
controllable text generation. Advances in Neural
Information Processing Systems, 35:4328–4343, 2022.

9

http://dx.doi.org/10.18653/v1/n18-2097
http://dx.doi.org/10.18653/v1/n18-2097
https://aclanthology.org/D19-1633
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus

Title Suppressed Due to Excessive Size

Xuanlin Li, Brandon Trabucco, Dong Huk Park, Michael
Luo, Sheng Shen, Trevor Darrell, and Yang Gao. Discov-
ering non-monotonic autoregressive orderings with varia-
tional inference. arXiv preprint arXiv:2110.15797, 2021.

Yi Liao, Xin Jiang, and Qun Liu. Probabilistically masked
language model capable of autoregressive generation
in arbitrary word order. In Dan Jurafsky, Joyce Chai,
Natalie Schluter, and Joel Tetreault (eds.), Proceed-
ings of the 58th Annual Meeting of the Association
for Computational Linguistics, pp. 263–274, Online,
July 2020. Association for Computational Linguistics.
doi: 10.18653/v1/2020.acl-main.24. URL https:
//aclanthology.org/2020.acl-main.24.

Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete
diffusion language modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

Justin Lovelace, Varsha Kishore, Chao Wan, Eliot Shekht-
man, and Kilian Q Weinberger. Latent diffusion for
language generation. Advances in Neural Information
Processing Systems, 36, 2024.

Vincent Mallet and Jean-Philippe Vert. Reverse-complement
equivariant networks for dna sequences. Advances in
neural information processing systems, 34:13511–13523,
2021.

Mitch Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. Building a large annotated corpus of
english: The penn treebank. Computational linguistics,
19(2):313–330, 1993.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer sentinel mixture models, 2016.

Eric Nguyen, Michael Poli, Marjan Faizi, Armin Thomas,
Michael Wornow, Callum Birch-Sykes, Stefano Massaroli,
Aman Patel, Clayton Rabideau, Yoshua Bengio, et al.
Hyenadna: Long-range genomic sequence modeling
at single nucleotide resolution. Advances in neural
information processing systems, 36, 2024.

Denis Paperno, Germán Kruszewski, Angeliki Lazari-
dou, Ngoc Quan Pham, Raffaella Bernardi, Sandro
Pezzelle, Marco Baroni, Gemma Boleda, and Raquel
Fernandez. The LAMBADA dataset: Word prediction
requiring a broad discourse context. In Proceedings
of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pp. 1525–1534, Berlin, Germany, August 2016. Asso-
ciation for Computational Linguistics. URL http:
//www.aclweb.org/anthology/P16-1144.

William Peebles and Saining Xie. Scalable diffusion models
with transformers. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pp.
4195–4205, 2023.

Jacob Portes, Alex Trott, Sam Havens, Daniel King, Abhinav
Venigalla, Moin Nadeem, Nikhil Sardana, Daya Khudia,
and Jonathan Frankle. Mosaicbert: A bidirectional
encoder optimized for fast pretraining, 2024.

Ofir Press, Noah A. Smith, and Mike Lewis. Train short,
test long: Attention with linear biases enables input length
extrapolation, 2022.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are
unsupervised multitask learners. 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with
a unified text-to-text transformer. J. Mach. Learn. Res.,
21(1), jan 2020. ISSN 1532-4435.

Yair Schiff, Chia-Hsiang Kao, Aaron Gokaslan, Tri
Dao, Albert Gu, and Volodymyr Kuleshov. Caduceus:
Bi-directional equivariant long-range dna sequence
modeling. arXiv preprint arXiv:2403.03234, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan,
and Surya Ganguli. Deep unsupervised learning using
nonequilibrium thermodynamics. In International confer-
ence on machine learning, pp. 2256–2265. PMLR, 2015.

Yang Song and Stefano Ermon. Generative modeling by
estimating gradients of the data distribution. Advances
in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma,
Abhishek Kumar, Stefano Ermon, and Ben Poole. Score-
based generative modeling through stochastic differential
equations. arXiv preprint arXiv:2011.13456, 2020.

Robin Strudel, Corentin Tallec, Florent Altché, Yilun
Du, Yaroslav Ganin, Arthur Mensch, Will Grathwohl,
Nikolay Savinov, Sander Dieleman, Laurent Sifre, et al.
Self-conditioned embedding diffusion for text generation.
arXiv preprint arXiv:2211.04236, 2022.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha,
Bo Wen, and Yunfeng Liu. Roformer: Enhanced
transformer with rotary position embedding. arXiv
preprint arXiv:2104.09864, 2021.

Haoran Sun, Lijun Yu, Bo Dai, Dale Schuurmans, and
Hanjun Dai. Score-based continuous-time discrete
diffusion models. arXiv preprint arXiv:2211.16750, 2022.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffu-
sion solvers for combinatorial optimization. Advances in

10

https://aclanthology.org/2020.acl-main.24
https://aclanthology.org/2020.acl-main.24
http://www.aclweb.org/anthology/P16-1144
http://www.aclweb.org/anthology/P16-1144

Title Suppressed Due to Excessive Size

Neural Information Processing Systems, 36:3706–3731,
2023.

Yi Tay, Mostafa Dehghani, Vamsi Aribandi, Jai Gupta,
Philip M Pham, Zhen Qin, Dara Bahri, Da-Cheng Juan,
and Donald Metzler. Omninet: Omnidirectional represen-
tations from transformers. In International Conference
on Machine Learning, pp. 10193–10202. PMLR, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan
Wang, Volkan Cevher, and Pascal Frossard. Digress:
Discrete denoising diffusion for graph generation. arXiv
preprint arXiv:2209.14734, 2022.

Alex Wang and Kyunghyun Cho. Bert has a mouth, and
it must speak: Bert as a markov random field language
model. arXiv preprint arXiv:1902.04094, 2019.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. GLUE: A
multi-task benchmark and analysis platform for natural
language understanding. In International Conference
on Learning Representations, 2019. URL https:
//openreview.net/forum?id=rJ4km2R5t7.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-
level convolutional networks for text classification. In
NIPS, 2015.

Hannah Zhou, Avanti Shrikumar, and Anshul Kundaje.
Towards a better understanding of reverse-complement
equivariance for deep learning models in genomics. In
Machine Learning in Computational Biology, pp. 1–33.
PMLR, 2022.

11

https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7

Title Suppressed Due to Excessive Size

A. Discrete time ELBO
This section is organized as follows: First, we derive the expressions for the true posterior and the approximate posterior as
outlined in Suppl. A.1. We then simplify these expressions specifically for the case of absorbing state diffusion in Suppl. A.2.
Finally, we derive the expression for the ELBO for absorbing state diffusion in Suppl. A.2.3.

A.1. Generic case

A.1.1. q(zs|zt,x)

Given the state transition matrix Qt, prior π, and the latent variables zs and zt, where s < t, the forward process defined
in (3) has the following posterior (Austin et al., 2021):

q(zs|zt,x)=Cat

(
zs;

Qt|szt⊙Q⊤
s x

z⊤t Q
⊤
t x

)
(12)

Qt|s=αt|sIn+(1−αt|s)1π
⊤ (13)

which we simplify to the following:

q(zs|zt,x)

=Cat

(
zs;

[αt|sIn+(1−αt|s)1π
⊤]zt⊙[αsIn+(1−αs)1π

⊤]⊤x

z⊤t [αtIn+(1−αt)1π⊤]⊤x

)

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

z⊤t [αtx+(1−αt)π1⊤x]

)
Using the property 1⊤x=1 we get,

=Cat

(
zs;

[αt|szt+(1−αt|s)1π
⊤zt]⊙[αsx+(1−αs)π]

αtz⊤t x+(1−αt)z⊤t π

)
. (14)

A.1.2. pθ(zs|zt)

Austin et al. (2021) approximate the reverse process in the following manner:

pθ(xs|xt)=q(zs|zt,x=xθ(zt,t))=Cat

(
xs;

Qt|sxt⊙Q⊤
s xθ(zt,t)

x⊤
t Q

⊤
t xθ(zt,t)

)
. (15)

where xθ(zt,t) :V×[0,1]→∆K is an approximation for x.

A.2. Absorbing state

For the absorbing state diffusion process we have π=m.

A.2.1. q(zs|zt,x)

Since, zt∈{x,m}, takes only 2 values we consider the separate cases: zt=x and zt=m.

12

Title Suppressed Due to Excessive Size

Case 1. Consider the case zt=x i.e. zt is unmasked. From (14), we have the following:

q(zs|zt=x,x)

=Cat

(
zs;

[αt|sx+(1−αt|s)1m
⊤x]⊙[αsx+(1−αs)m]

αtx⊤x+(1−αt)x⊤m

)

=Cat
(
zs;

[αt|sx]⊙[αsx+(1−αs)m]

αt

)
since x⊤m=0

=Cat
(
zs;

αtx

αt

)
since x⊤m=0 and αt=αt|sαs

=Cat(zs;x) since αt=αt|sαs (16)

Thus, we have the following:

q(zs|zt=x,x)=Cat(zs;x). (17)

Case 2. Consider the case zt=m. By substituting zt=m and π=m in (14), q(zs|zt,x) simplifies to the following:

q(zs|zt=m,x)=Cat
(
(αt|sm+(1−αt|s)1)⊙(αsx+(1−αs)m)

(1−αt)

)
=Cat

(
(αt|s(1−αs)m+(1−αt|s)(1−αs)m+(αs−αt)x)

(1−αt)

)
=Cat

(
zs;

(1−αs)m+(αs−αt)x

1−αt

)
(18)

Note that the above categorical distribution is non-zero for zs∈{x,m} and zero for every other value. The non-zero values
are specified as follows:

q(zs=x|zt=m,x)=
αs−αt

1−αt
(19)

q(zs=m|zt=m,x)=
1−αs

1−αt
(20)

A.2.2. pθ(zs|zt)

For the absorbing state diffusion process with π=m, we want to simplify the (15). For this reason, we consider 2 cases:
first, when zt ̸=m (case 1), second, when zt ̸=m (case 2).

13

Title Suppressed Due to Excessive Size

Case 1. Consider the case when zt ̸=m. (15) simplifies to the following:

pθ(zs|zt ̸=m)=Cat

(
xs;

Qt|szt⊙Q⊤
s xθ(zt,t)

z⊤t Q
⊤
t xθ(zt,t)

)
(21)

=Cat

(
xs;

Qt|szt⊙Q⊤
s xθ(zt,t)

[Qtzt]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|szt]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtzt]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨zt,xθ(zt,t)⟩

)
since ⟨1,xθ(zt,t)⟩=1, we have the following:

=Cat
(
xs;

[αt|szt]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨zt,xθ(zt,t)⟩

)
since zt⊙m=0, we have the following:

=Cat
(
xs;

αtzt⊙xθ(zt,t)

αt⟨zt,xθ(zt,t)⟩

)
(22)

Case 2. Consider the case when zt=m. (15) simplifies to the following:

pθ(xs|zt=m)=Cat

(
xs;

Qt|sm⊙Q⊤
s xθ(zt,t)

m⊤Qtxθ(zt,t)

)

=Cat

(
xs;

Qt|sm⊙Q⊤
s xθ(zt,t)

[Q⊤
t m]⊤xθ(zt,t)

)

=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsIn+(1−αs)m1⊤]xθ(zt,t)

[αtm+(1−αt)1]⊤xθ(zt,t)

)

=Cat
(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m⟨1,xθ(zt,t)⟩]
αt⟨m,xθ(zt,t)⟩+(1−αt)⟨1,xθ(zt,t)⟩

)
=Cat

(
xs;

[αt|sm+(1−αt|s)1]⊙[αsxθ(zt,t)+(1−αs)m]

αt⟨xθ(zt,t),m⟩+(1−αt)

)
=Cat

(
xs;

αtm⊙xθ(zt,t)+(αs−αt)xθ(zt,t)+(1−αs)m

αt⟨xθ(zt,t),m⟩+(1−αt)

)
(23)

Note that the above categorical distribution, we can obtain the values for pθ(xs=x|xt=m) and pθ(xs=m|xt=m) which
are as follows:

pθ(xs=x|xt=m)=
(αs−αt)⟨xθ(zt,t),x⟩

αt⟨xθ(zt,t),m⟩+(1−αt)
(24)

pθ(xs=m|xt=m)=
αs⟨xθ(zt,t),m⟩+(1−αs)

αt⟨xθ(zt,t),m⟩+(1−αt)
(25)

As a sanity check, we can verify that (24) reduces to (19), and (25) reduces to (20) if our denoising network can reconstruct
x perfectly, i.e., xθ(zt,t)=x.

A.2.3. DIFFUSION LOSS

For a given T , Let LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt)) denote the diffusion loss. We break down the
computation of DKL(q(xs|xt,x)∥pθ(xs|xt)) into 2 cases: zt=x (case 1) and zt=m (case 2).

Case 1. consider the case zt=x. Let’s simplify DKL(q(zs|zt=x,x)∥pθ(zs|zt=x)).

14

Title Suppressed Due to Excessive Size

DKL(q(zs|zt=x,x)∥pθ(zs|zt=x))

=
∑
zs

q(zs|zt=x,x)log
q(zs|zt=x,x)

pθ(zs|zt=x)

Since q(zs|zt,x) is 1 only for zs=x we get,

=log
1

pθ(zs=x|zt=x)

=log1 From (21)

=0 (26)

Case 2. Consider the case zt=m. Let’s simplify DKL(q(xs|xt=m,x)∥pθ(xs|xt=m)).

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
∑
xs

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=
∑

xs∈{x,m}

q(xs|xt=m,x)log
q(xs|xt=m,x)

pθ(xs|xt=m)

=q(xs=x|xt=m,x)log
q(xs=x|xt=m,x)

pθ(xs=x|xt=m)︸ ︷︷ ︸
Simplify using (19) and (24)

+q(xs=m|xt=m,x)log
q(xs=m|xt=m,x)

pθ(xs=m|xt=m)︸ ︷︷ ︸
Simplify using (20) and (25)

=
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))
(27)

Thus, DKL(q(xs|xt,x)∥pθ(xs|xt)) can be written in the following manner where ⟨zt,x⟩ evaluates to 1 if zt=x and ⟨zt,m⟩
evaluates to 1 if zt=m:

DKL(q(xs|xt,x)∥pθ(xs|xt))

=DKL(q(xs|xt=x,x)∥pθ(xs|xt=x))︸ ︷︷ ︸
=0 , from (26)

⟨zt,x⟩+DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))︸ ︷︷ ︸
Given by (27)

⟨zt,m⟩ (28)

Thus, we derive the diffusion loss, LT , in the following manner:

LT =Et∈{1,...,T}Eq(xt|x)TDKL(q(xs|xt,x)∥pθ(xs|xt))

=Et∈{1,...,T}Eq(xt|x)T

[
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

]
⟨zt,m⟩ (29)

Note that LT is 0 if zt is an unmasked token i.e. zt=x.

B. MDLM: Rao-Blackwelization using SUBS parameterization
In this section we show how SUBS parameterization can simplify the functional form of the ELBO as defined in (29).

15

Title Suppressed Due to Excessive Size

B.1. ELBO

The SUBS parameterization, as described in Sec. 3.2.3, simplifies DKL(q(xs|xt = m,x)∥pθ(xs|xt = m)) ((27)) to the
following:

DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))

=
αs−αt

1−αt
log

αt⟨xθ(zt,t),m⟩+(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

+
1−αs

1−αt
log

(1−αs)(αt⟨xθ(zt,t),m⟩+(1−αt))

(1−αt)(αs⟨xθ(zt,t),m⟩+(1−αs))

Since SUBS sets ⟨xθ(zt,t),m⟩=0, the above equation simplifies to the following:

=
αs−αt

1−αt
log

(1−αt)

(1−αt)⟨xθ(zt,t),x⟩

=
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

(30)

Using this, we obtain the following expression for the diffusion loss, LT :

LT =TEt∈{1,...,T}Eq(xt|x)DKL(q(xs|xt=m,x)∥pθ(xs|xt=m))⟨zt,m⟩

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt,t),x⟩⟨zt,m⟩

When zt=m, log⟨xθ(zt,t),x⟩=0; hence, the term ⟨zt,m⟩ can be safely dropped to obtain:

=TEt∈{1,...,T}Eq(xt|x)
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

(31)

B.2. Continous Time ELBO

To derive the continuous-time diffusion loss, L∞
diffusion, we consider the limiting case limT→∞LT :

L∞
diffusion= lim

T→∞
LT

=Et∈{1,...,T}Eq(xt|x)

[
lim

T→∞
T
αt−αs

1−αt
log⟨xθ(zt,t),x⟩

]
Using lim

T→∞
T (αs−αt)=α′

t, we obtain:

=Et∼[0,1]Eq(xt|x)

[
α′
t

1−αt
log⟨xθ(zt,t),x⟩

]
(32)

C. Additional Experiments
C.1. LM1B ablations

We assess the importance of our continuous-time framework by performing ablation on diffusion steps T . In Table 9, we
compare NLL and PPL under continuous and discrete T in MDLM. We find that NLL consistently decreases as T →∞.

C.2. Train NLL curves on OWT

In Figure 2, we show that MDLM achieves lower variance loss during training compared to a previous diffusion language
model, SEDD. Training is performed over 1M steps on OWT (which corresponds to 524B tokens).

C.3. Time-conditioning ablation on OWT

In Table 10, we assess the importance of time conditioning in MDLM on OWT. We observe that time-conditioning has
minimal impact on perplexity. Training is performed over 1M steps on OWT (which corresponds to 524B tokens).

16

Title Suppressed Due to Excessive Size

Table 9: Discrete vs continuous time evaluation for MDLM on LM1B. MDLM was trained with T =∞ and a smaller model
containing 70M non-embedding parameters for 200K steps. We report test perplexity for a discrete T .

Method NLL PPL

MDLMT=∞ ≤3.61±0.001 ≤37.25

MDLMT=10 ≤4.14±0.003 ≤62.83
MDLMT=100 ≤3.66±0.002 ≤39.04
MDLMT=1000 ≤3.62±0.000 ≤37.38

0.2M 0.4M 0.6M 0.8M 1M

2.5

3

3.5

4

4.5

5

5.5
Method

SEDD
AR
MDLM

Train Negative Log-Likelihood (NLL) on OpenWebText

Train steps

N
LL

Figure 2: Train negative log-likelihood (NLL) curves across 1M gradient steps (524B tokens) on OpenWebText (Gokaslan
et al., 2019). NLL is logged every 1K steps without value smoothing.

Table 10: Ablation on time-conditioning in MDLM on OWT.

Method PPL

MDLM w/ time-conditioning 23.21
MDLM w/o time-conditioning 23.05

D. Noise schedule parameterization
As described in Sec. 3.4, the ELBO is invariant to the functional form of αt. To demonstrate this, we evaluate MDLM, initially
trained using a log-linear schedule on OWT, by replacing the noise schedule with various other noise schedules as mentioned
below. Following prior works (Austin et al., 2021; Lou et al., 2023; Sohl-Dickstein et al., 2015), we parameterize αt=e−σ(t),
where σ(t) : [0,1]→R+. Various functional forms of σ(t) are listed below:

Log Linear (Austin et al., 2021; Lou et al., 2023; Sohl-Dickstein et al., 2015) The log linear schedule is given as:

σ(t)=−logt (33)

17

Title Suppressed Due to Excessive Size

Cosine Squared schedule (Han et al., 2022) The Cosine Squared schedule is given as:

σ(t)=−logcos2
(π
2
(1−t)

)
(34)

Cosine schedule The Cosine schedule is given as:

σ(t)=−logcos2
(π
2
(1−t)

)
(35)

Linear The Linear schedule is given as:

σ(t)=σmax(1−t) (36)

where σmax is a very large number. In our experiments we set it to 108.

In Table 11 we demonstrate empirically that noise schedules with different functional forms evaluate to the same Likelihood
which is consistent with our theory in Sec. 3.4. However, different schedules lead to different per data point variance.

Table 11: Likelihood in bits per dimension (BPD) for different noise schedules on OWT dataset, is reported along with the
mean and variance associated with each noise schedule per data point. We empirically observe that noise schedules with
different functional forms yield the same likelihood, consistent with our theory in Sec. 3.4; however, different schedules result
in different variances. Notably, the log-linear schedule exhibits the lowest variance among all the noise schedules considered.

σ(t) Mean Variance per datapoint

Log Linear (33) 3.30 1.81
Cosine (35) 3.30 3.30
Cosine Squared (34) 3.30 3.30
Linear (36) 3.30 7.57

E. Likelihood Evaluation
How you do it Say that it incurs lower variance by referencing to the Ablattions table The variance is low because of the
low discrepancy sampler

F. Avg. Number of Tokens seen
Given training_steps, batch_size, context_length, the number of tokens seen by the AR model is given as:

training_steps×batch_size×context_length.

However, this expression doesn’t hold true for a diffusion model, since at each training step, the model sees masked input.
Let pm be the probability of a token being masked at a timestep t. Then the diffusion model sees the following number of
tokens in expection:

Et[training_steps×batch_size×context_length×pm]

=training_steps×batch_size×context_length×Et[pm]

For log-linear schedule used in our experiments pm= t; thus,

=training_steps×batch_size×context_length×0.5 (37)

G. Low discrepancy sampler
To reduce variance during training we use a low-discrepancy sampler, similar to that proposed in Kingma et al. (2021).
Specifically, when processing a minibatch of N samples, instead of independently sampling N from a uniform distribution,
we partition the unit interval and sample the time step for each sequence i∈{1,...,N} from a different portion of the interval
ti∼U [i−1

N , i
N]. This ensures that our sampled timesteps are more evenly spaced across the interval [0,1], reducing the variance

of the ELBO.

18

Title Suppressed Due to Excessive Size

H. Faster sampling with caching
In Figure 12 we compare the wall clock times of variaous methods: AR, SEDD, MDLM with caching, and MDLM without
caching for generating 64 samples on a single GPU. We observe that MDLM without caching yields samples that consistently
get better generative perplexity than SEDD. For T = {5k,10k}, both SEDD and MDLM get better generative perplexity
than the AR model.

Table 12: Wall clock time reported in seconds.

T =5k T =10k

MDLM 4215.9 7675.4
+ caching 2407.3 3626.6

Speedup 1.75x 2.12x

0 2k 4k 6k 8k

20

30

40

50

60

70

80

90

Method
MDLM w/ caching (Batch size = 1)
MDLM w/ caching (Batch size = 8)
MDLM w/o caching (Batch size = 16)
SEDD (Batch size = 16)
AR (Batch size = 16)

Generative perplexities across sample times on OpenWebText

Sampling wall clock time (s)

G
en

er
at

iv
e

pe
rp

le
xi

ty

Figure 3: Generative perplexities across wall clock time for generating 64 samples on OWT using a single 32GB A5000 GPU
are compared by varying T ∈{100,500,1000,5000,10000} in the reverse diffusion process. The samples are generated in
mini-batches with a batch size of 16 for AR, SEDD, and MDLM without caching, as it is the largest batch size that fits on this
GPU. For MDLM with caching, we vary the batch size.

I. Experimental details
I.1. Language Modeling

For our forward noise process, we use a log-linear noise schedule similar to Lou et al. (2023).

We detokenize the One Billion Words dataset following Lou et al. (2023), whose code can be found here. We tokenize the
One Billion Words dataset with the bert-base-uncased tokenizer, following He et al. (2022). We pad and truncate
sequences to a length of 128.

We tokenize OpenWebText with the GPT2 tokenizer. We do not pad or truncate sequences – we concatenate and wrap them

19

https://github.com/louaaron/Score-Entropy-Discrete-Diffusion/blob/main/data.py

Title Suppressed Due to Excessive Size

to a length of 1,024. When wrapping, we add the eos token in-between concatenated. We additionally set the first and last
token of every batch to be eos. Since OpenWebText does not have a validation split, we leave the last 100k docs as validation.

We parameterize our autoregressive baselines, SEDD, and MDLM with the transformer architecture from Lou et al. (2023).
We use 12 layers, a hidden dimension of 768, 12 attention heads, and a timestep embedding of 128 when applicable. Word
embeddings are not tied between the input and output.

We use the AdamW optimizer with a batch size of 512, constant learning rate warmup from 0 to a learning rate of 3e-4 for
2,500 steps. We use a constant learning rate for 1M, 5M, or 10M steps on One Billion Words, and 1M steps for OpenWebText.
We use a dropout rate of 0.1.

I.2. Zeroshot Likelihood

We evaluate zeroshot likelihoods by taking the models trained on OpenWebText and evaluating likelihoods on the validation
splits of 7 datasets: Penn Tree Bank (PTB; Marcus et al. (1993)), Wikitext (Merity et al., 2016), One Billion Word Language
Model Benchmark (LM1B; Chelba et al. (2014)), Lambada (Paperno et al., 2016), AG News (Zhang et al., 2015), and
Scientific Papers (Pubmed and Arxiv subsets; Cohan et al. (2018)). We detokenize the datasets following Lou et al. (2023).
For the AG News and Scientific Papers (Pubmed and Arxiv), we apply both the Wikitext and One Billion Words detokenizers.
Since the zeroshot datasets have different conventions for sequence segmentation, we wrap sequences to 1024 and do not
add eos tokens in between sequences.

I.3. Representation Learning

Following Devlin et al. (2018), we evaluate on all GLUE tasks (Wang et al., 2019), but exclude WNLI.

We pre-train a MosaicBERT model on C4 (Raffel et al., 2020) for 70k steps, corresponding to 36B tokens. We pad and
truncate the data to 128 tokens using the bert-base-uncased tokenizer.

MosaicBERT (Portes et al., 2024) has a similar architecture to bert-base-uncased and has 137M parameters, 12 layers,
12 attention heads, a hidden dimension of 768, an intermediate size of 3072, and ALiBi attention bias (Press et al., 2022).

For pre-training, we use the following hyperparameters: A global batch size of 4096 with gradient accumulation, a learning
rate of 5e-4, linear decay to 0.02x of the learning rate with a warmup of 0.06x of the full training duration, and the decoupled
AdamW optimizer with 1e-5 weight decay and betas 0.9 and 0.98.

For diffusion fine-tuning we use AdamW with a warmup of 2,500 steps from a learning rate of 0 to 5e-5, betas 0.95 and 0.999,
and batch size 512. We train for 5k steps total, corresponding to 32M tokens.

For GLUE evaluation, we use the HuggingFace script found here. We use the default parameters for all datasets, except
for a batch size of 16, which we found helped with smaller datasets. This includes the default of 3 epochs for all datasets
and learning rate of 2e-5.

I.4. Diffusion DNA Models

Dataset We pre-train the Caduceus MLM (Schiff et al., 2024) on the HG38 human reference genome (Consortium, 2009).
Following Schiff et al. (2024), we use character- / base pair-level tokenization. The dataset is based on the splits used in Avsec
et al. (2021): the training split comprises of 35 billion tokens covering the human genome. This consists of 34,021 segments
extended to a maximum length of 1,048,576 (220 segments). We maintain a constant 220 tokens per batch. For the Genomics
Benchmark tasks, we use 5-fold cross-validation where we split the training set into 90/10 train/validation splits.

Architecture The Caduceus MLM uses as a backbone a bi-directional variant of the data-dependent SSM Mamba block
proposed in Gu et al. (2021). This architecture is ideal as it contains inductive biases that preserve reverse complement (RC)
equviariance, respecting the inherent symmetry of double-stranded DNA molecules (Mallet & Vert, 2021; Schiff et al., 2024;
Zhou et al., 2022).

Training details All models are pre-trained on 10B tokens (10K steps) and fine-tuned on a generative objective for an
additional 50B tokens (50K steps). We use a global batch size of 1024 for a context length of 1024 tokens. Downstream
task fine-tuning is performed for 16K steps (1B tokens).

20

https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification

Title Suppressed Due to Excessive Size

For performing Caduceus MLM pre-training, we follow Schiff et al. (2024) for the model size configuration, and hyperpa-
rameter selection. For pre-training, we use a fixed 15% mask rate as done in Devlin et al. (2018). Of the ’masked’ tokens,
80% are replaced with [MASK] , 10% are replaced with a random token from the vocabulary, and 10% are left unchanged.

For fine-tuning all Mamba-based models (including Caduceus) on diffusion objectives, we lower the learning rate from 8e-3 to
1e-3. For fine-tuning HyenaDNA (Nguyen et al., 2024), we lower the learning rate from 6e-4 to 5e-5. Similar to Gu et al. (2021);
Schiff et al. (2024), we found that Mamba-based models were robust to higher learning rates. We exclude timestep embeddings
for all Diffusion DNA experiments, as we show it has minimal impact on generative performance (see Table 10, Suppl. C.3).

We perform downstream task fine-tuning on the final hidden state embedding from pre-training. We perform mean pooling
across the sequence length, which may vary from 200 to approximately 2,000 bps. We report the mean and ± on max/min
classification accuracy over 5-fold cross-validation (CV) using different random seeds, with early stopping on validation
accuracy. For each task, we do a hyperparameter sweep over batch size and learning rate and report the values of the 5-fold
CV for the best configuration.

Genomic Benchmark Task Distributions We use a subset of the Genomic Benchmark tasks with an emphasis on tasks
from Human data. The positive samples for each dataset were generated by selecting samples that were annotated, either
computationally or experimentally, in previous work (e.g enhancers, promoters, open chromatin regions (OCR)) (Grešová
et al., 2023). These annotations each correspond to subsets of the genome of varying sizes that may exhibit different
distributions of DNA than those observed globally over the reference genome. Due to this, the observed dataset may have
a different distribution than the data used for pre-training and calculating perplexity. This might in turn lead to a case where
perplexity and downstream performance may not necessarily correlate.

21

	Introduction
	Background
	Diffusion Models
	Discrete Diffusion Models

	Simple Masked Diffusion Models
	Interpolating Discrete Diffusion
	Masked Diffusion
	Forward Masking Process
	Reverse Unmasking Process
	SUBS Parameterization

	Rao-Blackwellized Likelihood Bounds
	Continuous-Time Likelihood Bounds
	Masked Diffusion Language Models
	Efficient Training for Masked Diffusion

	Inference and Sampling in Masked Diffusion Language Models
	Efficient Ancestral Sampling
	Semi-Autoregressive Masked Diffusion Language Models

	Experiments
	Masked Diffusion Language Models
	Masked Diffusion DNA Models
	Ablation Analysis

	Discussion, Prior Work, and Conclusion
	Discrete time ELBO
	Generic case
	Lg
	Lg

	Absorbing state
	Lg
	Lg
	Diffusion Loss

	MDLM: Rao-Blackwelization using SUBS parameterization
	ELBO
	Continous Time ELBO

	Additional Experiments
	LM1B ablations
	Train NLL curves on OWT
	Time-conditioning ablation on OWT

	Noise schedule parameterization
	Likelihood Evaluation
	Avg. Number of Tokens seen
	Low discrepancy sampler
	Faster sampling with caching
	Experimental details
	Language Modeling
	Zeroshot Likelihood
	Representation Learning
	Diffusion DNA Models

