
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

WHAT HAPPENS WHEN GENERATIVE AI MODELS TRAIN
RECURSIVELY ON EACH OTHER’S OUTPUTS?

Anonymous authors
Paper under double-blind review

ABSTRACT

The internet serves as a common source of training data for generative AI (genAI)
models but is increasingly populated with AI-generated content. This duality raises
the possibility that future genAI models may be trained on other models’ generated
outputs. Prior work has studied consequences of models training on their own
generated outputs, but limited work has considered what happens if models ingest
content produced by other models. Given society’s increasing dependence on
genAI tools, understanding such data-mediated model interactions is critical. This
work provides empirical evidence for how data-mediated interactions might unfold
in practice, develops a theoretical model for this interactive training process, and
experimentally validates the theory. We find that data-mediated interactions can
benefit models by exposing them to novel concepts perhaps missed in original
training data, but also can homogenize their performance on shared tasks.

1 INTRODUCTION

Since the release of ChatGPT in 2022, generative AI (genAI) models have exploded in popularity.
Now capable of generating highly realistic text, images, and videos, these models have been widely
adopted for various use cases, from creative idea generation (Ali Elfa & Dawood, 2023) to healthcare
support (Reddy, 2024) to national security settings (Harding, 2024; GAO, 2024). Given the significant
uptick in genAI use across numerous industries, this technology is clearly here to stay. Consequently,
interrogating potential ways genAI models could evolve—in positive or harmful ways—is critical.

With few exceptions, today’s large-scale genAI models are trained on massive datasets sourced from
the internet. Widely-accepted scaling laws for model performance say that training on more data aids
learning (Kaplan et al., 2020), and the internet provides a rich, cheap, and ever-evolving source of
training data. Although whitepapers for more recent genAI models withhold details about training set
composition—potentially due to ongoing litigation about copyright concerns—evidence from earlier
whitepapers indicates that scraped data was used to train models like Llama, Gemini, Phi, the GPT
series, Claude, and others (Dubey et al., 2024; Achiam et al., 2023; Team et al., 2024a; Jiang et al.,
2023; coh, 2024; Anthropic, 2023; Abdin et al., 2024).

Beyond privacy and copyright concerns, training on scraped data could have other downsides. Prior
work has noted that genAI models trained recursively on their own generated outputs “collapse,”
becoming unable to generate meaningful content (Shumailov et al., 2024; Hataya et al., 2023;
Martínez et al., 2023; Alemohammad et al., 2024). This scenario is feasible, since AI-generated
content abounds online (Sun et al., 2025) and could be part of future training datasets. However,
subsequent work has proposed ways to mitigate collapse via reuse of non-AI-generated data in
subsequent training iterations (Dey & Donoho, 2024; Kazdan et al., 2025; Dohmatob et al., 2025;
Feng et al., 2024). Model collapse remains an activate research area (Schaeffer et al., 2025).

Yet, prior work studying the dynamics of model collapse has overlooked another reality: the internet
teems with content from many genAI models. Today’s most popular models have millions of
users (Reuters, 2024; Handa et al., 2025; AI, 2024a), who leverage generative AI tools to create
online content like web pages and social media posts (gen, 2022). Recent work showed that up
to 40% of content on popular sites like Quora is now AI-generated (Sun et al., 2025). Given the
increasing availability of these models for a variety of public-facing uses, AI-generated content from
many different models will continue to proliferate.
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The standard practice of training on scraped internet data and the increasing prevalence of AI-
generated content online suggest the strong possibility that future generative AI models will be trained
on other models’ outputs. Yet, this aspect of model training has received relatively little attention.
Given the widespread adoption of generative AI models in critical settings like healthcare and national
security, this phenomenon ought to be investigated to ensure models remain helpful and trustworthy.

Contributions. To address this need, this work theoretically derives and experimentally evaluates the
long-term evolutionary behavior of generative models trained on each other’s data. Specifically, we

• Develop a framework describing data-mediated interactions between genAI models.
• Derive concise formulas describing the dynamics of interactive training under varied regimes.
• Run experiments on large language models to understand how data-mediated interactions affect

model performance in practice.

Key findings. Both our theoretical analysis and experiments show that when training with a mixture
of real and synthetic data, the implicit interaction between heterogeneous models and datasets can
have both positive and negative impacts. Specifically, interactive recursive training can help
models learn from each other’s private data but risks homogenization. At a high level, well
known concepts in statistical learning theory anticipate this: recursive training on the same data is
bad (e.g., overfitting and model “collapse”) but training on novel data, even if synthetic, can boost
performance (e.g., transfer learning). Our experimental results provide concrete evidence that these
phenomena can occur simultaneously. Future work should further study these dynamics.

2 RELATED WORK

Model collapse is a recently observed phenomenon in large-scale generative text and image models. It
referred—in its earliest form—to the phenomenon of models performing much worse after generations
of training on their own generated outputs (Shumailov et al., 2024; Peterson, 2025; Wang et al., 2024;
Alemohammad et al., 2024; Feng et al., 2024; Hataya et al., 2023; Dohmatob et al., 2025; Martínez
et al., 2023). Theoretical and empirical results from these works show that models, if trained on
generated outputs from their prior versions, slowly degrade in performance as generations progress.
One way this manifests is in models forgetting the tails of their original (real) training data, since
generated content tends not to contain rare content from the original training data. Training repeatedly
on truncated, synthetic data leads the model to forget the richness of its original distribution, resulting
in degraded performance (at best) and total failure (at worst).

Mitigating model collapse. Despite the dire predictions of these papers, subsequent work has
proposed a simple mitigation strategy: instead of discarding all prior (human-generated) training data,
retain some fraction of this while augmenting it with generated data. Numerous works have observed
that this choice to augment instead of discard the original training dataset results in a bounded error
in future models, avoiding collapse (Kazdan et al., 2025; Gerstgrasser et al., 2024; Marchi et al.,
2024). Although most of these results were discovered on small models, recent work claims that the
observed bound in error π2/6 exists for all models (Dey & Donoho, 2024). Further work (Schaeffer
et al., 2025) summarizes current research on collapse.

Transfer learning and other model interactions. Significant prior work has studied transfer learning,
in which information learned by one model is passed to another, often by reusing the trained weights
of a “teacher” model to initialize a “student” model (Zhuang et al., 2020). Some prior work has
further considered the use of synthetic data in transfer learning (Tian & Shen, 2025; Kim et al., 2022;
Brinner et al., 2025). Our work is distinct from transfer learning due to its focus on unintentional
data-mediated interactions between models. Furthermore, limited work has examined long-term
effects of models training on each other’s data. Zhang et al. (2024) consider the setting where a
generative model is trained on data generated by other models, but does not consider long-term effects
of such interactions among multiple models. Jain & Krishnamurthy (2025) study interacting Large
Language Model agents through the lens of Bayesian social learning and microeconomics, but do not
focus specifically on data-mediated interactions between models.

3 HOW TODAY’S LARGE-SCALE GENERATIVE AI MODELS ARE TRAINED

We first establish why we believe that data-mediated interactions between models—e.g. instances of
models training on each other’s generated outputs—are realistic and worthy of study. To do this, we
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Table 1: Evidence from LLama, GPT, and Phi suggests reuse of old training and collection of additional
data to train new model generations. Datasets reused across models and generations are highlighted. We start
with Phi 1.5, the first version of Phi designed for general NLP tasks. Phi 1 was designed for coding tasks.

Model v1 v2 v3 v4

Llama
(Touvron et al., 2023a):

ArXiv, Books , Common Crawl ,
C4, Wikipedia, StackExchange

(Touvron et al., 2023b):
"A new mix of publicly
available online data."

(Dubey et al., 2024):
"A variety of data sources containing

knowledge until the end of 2023."

(AI, 2025):
"A mix of publicly available,

licensed data and information from
Meta’s products and services."

GPT
(Radford et al., 2018):

BooksCorpus
(Radford et al., 2019):

WebText

(Brown et al., 2020):
CommonCrawl , WebText2 ,
Books, Books2 , Wikipedia

(Achiam et al., 2023): No info
provided

Phi
(Li et al., 2023):

The Stack , Stack Overflow ,
synthetic “textbook” data

(Abdin et al., 2023):
The Stack , Stack Overflow ,

synthetic “textbook” data,
filtered Commmon Crawl

(Abdin et al., 2024):
"publicly available web data. . .

and synthetic LLM-generated data"
N/A

comb through academic literature and whitepapers describing today’s large-scale genAI models to
understand how models are trained, what data they are trained on, and how data is collected and used
for model updates. This sets the stage for the formalization and experiments in the rest of the paper.

We find that most of today’s models follow a 3 step update process. First, models are pretrained
on a large corpus of data; then they are fine-tuned to teach specific behaviors and/or to align them
with human preferences. Finally, they are later updated, either to teach new behaviors or update
knowledge. As we describe these steps in detail below, we highlight specific realities or assumptions
that have been largely overlooked or not made explicit by prior work.

Step 1: Pretraining. Following well-established scaling laws linking model performance and dataset
size (Kaplan et al., 2020), large-scale generative AI models are trained on massive, internet-scraped
datasets. Early versions of GPT, Llama, and PaLM all report being trained on scraped datasets
like Common Crawl, ArXiv, Github, Wikipedia, and/or Stack Exchange (Touvron et al., 2023a;
Chowdhery et al., 2023; Brown et al., 2020)—see Table 5 in Appendix for an overview.

Another striking fact emerges from the categorization of training data in Table 5: large-scale model
training datasets overlap. For example, GPT, Jamba, Llama, PaLM, and Phi are all trained on subsets
of CommonCrawl (Crawl, 2025), while GPT, Llama, and PaLM are all trained on Wikipedia and
Books datasets. Several other models have other points of training data overlap.

Step 2: Fine-tuning. Variously called fine-tuning or alignment, this phase leverages proprietary
methods or data to tweak model behaviors in ways model providers believe are helpful. For example,
the LLama fine-tuning phase (Dubey et al., 2024) involves many rounds of reinforcement learning
with human feedback (RLHF) to stamp out model negative behaviors, while Phi (Abdin et al., 2024)
was fine-tuned on proprietary synthetic data to patch “gaps” in its mathematical reasoning abilities.

Step 3: Model updates. A key assumption of prior literature on model collapse is that models are
updated by training on a mix of fresh and re-used data. The “replace" update scenario Shumailov
et al. (2024) assumes model trainers train the next generation using only generated data outputted
by the prior version of the model, an interesting but impractical setting Schaeffer et al. (2025). The
“accumulate" update scenario (Gerstgrasser et al., 2024) assumes model trainers augment their original
data at each update step with additional data that may contain AI-generated content. Finally, the
“accumulate and subsample" update scenario (Kazdan et al., 2025) subsamples a fixed-size subset of
original and accumulated data for each update, acknowledging real-world compute limits.

We believe that the “accumulate-and-subsample" update paradigm best reflects reality and so we
leverage it in our work. We support this opinion with evidence from three well-documented model
families: Llama, GPT, and Phi. Table 1 records the training data used in publicly disclosed generations
of these models. As the table shows, trainers re-use some prior training data for model updates,
supplementing this with additional web content. Whitepapers for models published after 2023
generally omit training data information but suggest collection of new online data for updates.

Despite these realities, most prior work on model collapse still overlooks a fundamental reality in
model updates: future models trained on internet-sourced content will be trained on outputs from
other generative AI models, not merely their own. Already, the internet is filled with generated
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Figure 1: Our dataset update scheme, parameterized by α and β. This paradigm best aligns with evidence
from the literature given in §3 and strongly indicates that interactions between models, facilitated by training on
others’ generated data, are an important consideration for empirical and theoretical work on model evolution.

content from various models (Sun et al., 2025). As model trainers collect new data to facilitate model
updates, internet-sourced data will inevitably contain content from other generative models, so:

At each update step, models may be trained on their own and on other models’ generated outputs.

4 FORMALIZING AN ITERATIVE, INTERACTIVE MODEL TRAINING PIPELINE

Section 3 provides empirical evidence for two realities overlooked by prior studies: internet-scraped
training datasets used for initial training may have substantial overlap, and models may be updated
using each others’ generated outputs. To study the effect of these two factors on model evolution, we
propose a general workflow in which multiple entities regularly update their models using a mix of
private, public, and generated data. Based on §3, we consider three types of training/update data:

• D∗: Public data used during initial training/updates by multiple entities (real data only).
• D̃k: Private data used only by entity k for initial training/updates (real data only).
• Dt = {Dt1, Dt2, . . . Dtk}: Public data used for updates at time t by multiple entities (synthetic

data). Dtk is data generated by the kth entity based on model θt−1,k.

Mapping these to realistic scenarios, D∗ could be a public dataset like Common Crawl; D̃k could be
a private dataset of math problems curated by entity k; and Dt could be an internet scrape from after
initial model training. We weight the relative impact of these data types by the ratios α, β.

• β, 0 ≤ β ≤ 1, is relative size of the initial public data set D∗ compared to the initial private data
set D̃k. This fraction remains constant if/when initial data is reused for updates.

• α, 0 ≤ α ≤ 1 is the fraction of new data introduced at generation t, relative to the amount of initial
data reused (following the “accumulate and subsample” paradigm of Kazdan et al. (2025)).

Interactive training workflow. We consider K entities, each seeking to train or update its own
generative AI model. In the initial phase of training, denoted by time t = 0, each entity k trains
its model based on a combination of a publicly available dataset D∗ as well its own private dataset
D̃k. The trained model is represented generally by a parameter θ̂t,k, i.e., θ̂0,k = Φ0,k(D∗, D̃k),
k = 1, . . . ,K. where each Φ0,k represents a generic training algorithm. For model updates at stages
t > 0, model parameters are updated via:

1. New public data Dt is generated uniformly at random using the most recent version of the
models. Specifically, the data are sampled i.i.d. according to the mixture 1

K

∑K
k=1 Pk,θ̂t−1,k

where Pk,θ denotes the generative model used by k-th entity.
2. This data is placed online and collected by entities as training data for the next model update.
3. Each entity composes its training data for the next update, using a mix of the initial dataset

(D∗, D̃k) and newly collected data Dt. Contributions from each dataset are weighted by α, β.
4. Each entity k = 1, . . . ,K updates it model parameters via θ̂t,k = Φt,k(θ̂t−1,k, D∗, D̃k, Dt).

Here, Φ0,k is a training algorithm that depends on the previous model parameter θ̂k,t−1 as well
as the data. As before, training may employ subsampling, weighting, and randomization.

4
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In this workflow, entities interact through the release of publicly available synthetic data produced by
prior generations of other entities’ models. Thus, even though initial private training data are never
shared, it could end up positively impacting other entities’ models. This potential benefit of synthetic
data sharing appears only in this interaction paradigm and has not been recognized in prior work.

5 THEORY

We theoretically analyze the behavior of the interactive workflow. Similar to prior work (Gerstgrasser
et al., 2024; Kazdan et al., 2025; Dey & Donoho, 2024; Dohmatob et al., 2025; Barzilai & Shamir,
2025), we focus on the linear regression models where each data point consists of a feature-response
pair (x, y) ∈ Rd×R. By the universality results of Dey & Donoho (2024), the analysis of this settings
also applies to generalized linear models satisfying appropriate asymptotic normality assumptions.

Notation. For a p× q matrix A, we use A+ to denote the Moore-Penrose pseudoinverse and vec(A)
to denote the pq × 1 vector obtained by stacking the columns. ⊗ denotes the Kronecker product. For
α, β ∈ [0, 1] we set ᾱ = 1− α and β̄ = 1− β.

Training Workflow. We follow the training pipeline outlined in Section 4 in which K different
models are trained on a mixture of private, public, and generated data. At initialization, each entity
k ∈ [K] combines its private data D̃k = (x̃ki, ỹki)

ñk
i=1 with public data D∗ = (x∗i, y∗i)

n∗
i=1 to

produce an estimate θ̂k0 by minimizing the empirical loss∑
(x,y)∈D̃k

β0L(x, y, θ) +
∑

(x,y)∈D̃∗
β̄0L(x, y, θ)

where L(x, y, θ) := (y− x⊤θ)2 is the squared error loss and 0 ≤ β0 ≤ 1 controls the relative weight
placed on the private data. Training then proceeds for generation stages t = 1, 2, 3, . . . as follows:

1. Each entity k uses its most recent parameter estimate θ̂t−1,k to generate new data Dtk =
(xtki, ytki)

ntk
i=1 according to the Gaussian model y | x ∼ N(x⊤θt−1,k, σ

2). The entire collection
of generated samples is combined into a single public data set Dt = ∪K

k=1Dtk.
2. Each entity k produces a new estimate θ̂tk by minimizing the empirical loss∑

(x,y)∈Dk
ᾱtβtL(x, y, θ) +

∑
(x,y)∈D∗

ᾱtβ̄tL(x, y, θ) +
∑

(x,y)∈Dt

αt

K L(x, y, θ)

with weights 0 ≤ αt, βt ≤ 1.

We note that our framework could easily be extended to accommodate new, human-generated data
at each time step, but we omit this in our formulation for analytic simplicity. Throughout our
analysis we assume that all features are deterministic. We represent dataset D̃k with ñk × d matrix
X̃k = [x̃k1, . . . , x̃kñk

]⊤ and ñk × 1 vector ỹk = [ỹk1, . . . , ykñk
]⊤, and use the same convention for

the public data (X∗, y∗) and the generated data (Xtk, ytk). Data across different entities are then
combined into “lifted” representations, which are denoted using boldface:

X̃ =

[
X̃1

. . .
X̃K

]
, y0 =

[
ỹ1

...
ỹK

]
, Xt =

[
Xt1

. . .
XtK

]
, yt =

[ yt1

...
ytK

]

We note that information about which entity produced which sample is required for the analysis, but
is not used during the training, where all data from the same generation are treated interchangeably.

Bias-Variance Decomposition. We derive exact formulas for the mean and variance of the estimators
at each stage of the workflow. Given the features (X̃, X∗,Xt) and learning weights (αt, βt) define

S̃ = diag(S̃1, . . . , S̃k) := X̃⊤X̃, S∗ := X⊤
∗ X∗ St = diag(St1, . . . , Stk) := X⊤

t Xt

Gt := ᾱtβtS̃ + ᾱtβ̄t(IK ⊗ S∗) + αt(IK ⊗ St) St :=
1
K

∑K
k=1 Stk

Pt := ᾱtG
+
t

[
βtS̃ β̄t(1K ⊗ S∗)

]
Qt := αtG

+
t ΠSt

where Π := 1
K (1K×K ⊗ Id) is an orthogonal projection matrix and α0 ≡ 0.

5
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Theorem 1. Conditional on the initial data D0 := (D̃1, . . . , D̃K , D∗), the estimates θ̂t =

vec(θ̂t1, . . . , θ̂tK) are Gaussian with mean and variance

E[θ̂t | D0] = Mt

[
X̃+ỹ
X+

∗ y∗

]
, Cov(θ̂t | D0) = Ct

where the matrices Mt and Ct are defined recursively with M0 = P0 and C0 = 0Kd×Kd and

Mt = Pt +QtMt−1, Ct = Qt(σ
2S+

t +Ct−1)Qt, t ≥ 1.

Theorem 1 shows that the conditional mean of each estimate θ̂tk is a linear combination of the
individual ordinary least squares (OLS) estimates X̃+

1 ỹ1, . . . , X̃
+
K ỹK and X+

∗ y∗ for the private data
and public data, respectively. For each generation t, similarity across entities can be assessed by
comparing the rows of the K × (K + 1) block partitioning of Mt. At initialization, the off-diagonal
blocks for the private data are zeroed out, but in later stages, these blocks become nonzero thereby
allowing private data to be shared across entities. Homogenization (i.e., shrinkage towards a global
consensus) occurs when row blocks are identical, and thus each entity has the same mean.

For our next result we mimic the experimental setup in Section 6 and assume that the initial data
are generated from a Gaussian model with a common ground truth parameter and the heterogeneity
across datasets arises from the differences in the features, i.e., the matrices S̃1, . . . , S̃K .

Theorem 2. Suppose that the initial data are generated independently according to the model
y | x ∼ N(x⊤θ, σ2Id) where θ ∈ Rd is a fixed parameter. If G1, . . . ,Gt are full rank then

E[θ̂t] =
(
I−Qt · · ·Q1(I−G0G

+
0 )

)
(1K ⊗ θ), Cov(θ̂t) = Mt

[
S̃+ 0
0 S+

∗

]
M⊤

t +Ct

To help interpret this result, observe that if G0 is full rank, then each initial estimate is unbiased, and
unbiasedness persists throughout every stage of training. Conversely, if G0 is rank deficient, then at
least one (and possibly all) of the initial estimates is biased. Remarkably, Theorem 2 shows that it
may still be possible for all entities have vanishing bias, provided that Qt · · ·Qs converges to zero.
Specific conditions under which this occurs are considered in the next section.

Asymptotic Variance. To provide a finer analysis of the training dynamics we now suppose that the
weights and features satisfy αt = α, βt = β, and St = S for t ≥ 1. Setting P = P1 and Q = Q1,
the matrices Mt and Ct defined in Theorem 1 can be expressed explicitly as

Mt = QtP0 +
( t−1∑

s=0

Qs
)
P , Ct = σ2

t∑
s=1

QsS+
(
Qs

)⊤
(1)

Classical results in matrix analysis (Higham, 2002) imply that if the spectral radius of Q is strictly
less than one, then these matrices converge to well-defined limits M and C satisfying

M := (I−Q)−1P , vec(C) := σ2(I−Q⊗Q)−1 vec(QS+Q) (2)

The following result provides a sufficient condition for convergence in terms of the triple (S̃, S∗,S).
In particular, if S is proportional to S̃ then the condition is satisfied for all 0 ≤ α < 1 and 0 ≤ β ≤ 1.
Note that the boundary case α = 1 corresponds to the recursive training setting of Shumailov et al.
(2024) where the variance increases linearly across generations, and thus convergence does not occur.

Lemma 1. Suppose that S ∝ λS̃ + (1 − λ)(IK ⊗ S∗) for some 0 < λ ≤ 1. Then, the spectral
radius of Q is strictly less than one for all 0 ≤ α < 1 and 0 < β ≤ λ.

We summarize our findings with the following characterization of the asymptotic variance:

6
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Figure 2: Predicted relative efficiency across α, β values for a K = 4 model system (dimension 15 and
rank 5). Curves show ratio of MSE of the minimum variance unbiased estimator to asymptotic MSE for a given
α, β setting obtained from Theorem 3 (1 is optimal). Setting α = β = 0.5 produces best results across models.

Theorem 3. Consider the setting of Theorem 2 and suppose that αt = α, βt = β, and St = S
for t ≥ 1. If G = G1 has full rank and Q has spectral radius strictly less than one, then

E[θt]
t→∞−−−→ 1K ⊗ θ, Cov(θ̂t)

t→∞−−−→ σ2M

[
S̃+ 0
0 S+

∗

]
M⊤ +C

where M and C are given by (2).

MSE and relative efficiency. The expression for the mean and variance in Theorems 2 and 3 provide
explicit formulas for the mean squared error (MSE) E[∥θ̂tk − θ∥2] of entity k at each generation t and
the mean squared prediction error (MSPE) E[∥X̃m(θ̂tk − θ)∥2] for entity m’s private feature matrix.

We can use this to compute the optimal α, β values for the interactive training setting. Figure 2
compares the asymptotic MSE for a training workflow with given α, β (from Theorem 3) with the
MSE of an idealized setting where each entity has access to the entire collection of real data (both
private and public). Each curve represents the relative efficiency, i.e., the ratio of optimal MSE to
entity-specific workflow MSE, with values close to one indicating near optimality. These results
demonstrate that a setting with β = 0.5 and α = 0.5 achieves the best global performance for all
models. When β is much larger (0.9), relatively small α values also improve model performance.

Key takeaways. Our theoretical analysis shows that a moderate α/β setting improves convergence.
However, homogenization effects increase with α, as models train on more of each others’ data. This
can be seen in Figure 2 and is substantiated via experiments below.

6 EXPERIMENTAL EVALUATION

To understand how our theoretical predictions bear out in practice, we run experiments on text-
generation models. In each, we train K interacting models (per our framework in Figure 1) for several
generations and evaluate how their performance changes on their own and other models’ tasks. Here,
we present the setup and results for a K = 2 and K = 3 interacting at β = 0.5 model system. See
Appendix for full K = 2 results at various beta values.

Table 2: Change in loss behavior for K = 2 interacting models at β = 0.5. We show results as initial →
final prediction loss values for models on their own and the other models’ tasks on their own and the
other models’ tasks over T generations. For clarity, we colorize loss increase , decrease , and constancy
(∆ ≤ 0.1).

(a) OPT models (T=15)

α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 3.3 → 3.3 3.3 → 3.3 3.3 → 3.5

Model 2
on Task 2 1.8 → 1.7 1.8 → 1.7 1.8 → 2.2

Model 1
on Task 2 3.1 → 3.5 3.1 → 1.8 3.1 → 2.2

Model 2
on Task 1 5.1 → 5.1 5.1 → 3.5 5.1 → 3.5

(b) Llama 3.2 (1B) models (T=15)

α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 2.8 → 2.9 2.8 → 2.9 2.8 → 3.0

Model 2
on Task 2 1.2 → 1.2 1.2 → 1.3 1.2 → 1.9

Model 1
on Task 2 2.0 → 2.5 2.0 → 1.4 2.0 → 1.8

Model 2
on Task 1 3.7 → 4.2 3.7 → 3.0 3.7 → 3.0

(c) Llama 3.2 (3B) models (T=8)

α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 2.4 → 2.5 2.4 → 2.5 2.4 → 2.6

Model 2
on Task 2 1.0 → 1.0 1.0 → 1.0 1.0 → 1.3

Model 1
on Task 2 1.8 → 2.1 1.8 → 1.2 1.8 → 1.3

Model 2
on Task 1 3.5 → 3.8 3.5 → 2.6 3.5 → 2.7

Experiment setup. Training large language models from scratch is computationally infeasible for
us, so we simulate the initial setup of language models trained on dataset (D∗, D̃k) at time t = 0 by
fine-tuning K = 2 instances of a given pre-trained model architecture on carefully chosen D∗, D̃k.
We experiment with two language model architectures—OPT-350m (Zhang et al., 2022), Llama
3.2 1B (Dubey et al., 2024), and Llama 3.2 3B (Dubey et al., 2024)—to assess how interactive
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all , generation 0 = 0.0, generation 15 = 0.5, generation 15 = 1.0, generation 15

Model
1
2

Dataset
1

2

*

Figure 3: PCA of embeddings of outputs produced by models θt1 and θt2 on datasets D̃1, D̃2, and D̃∗.
Results for K = 2 Llama models trained with β = 0.5 and varying α. Leftmost plot shows embeddings at
generation t = 0, which are identical for all α; while right plots show embeddings at t = 15 with different α.

Table 3: Cosine similarity of embedded output representations for K = 2 Llama models at β = 0.5. We
show initial(t=0) → final(t=15) for D̃1 D̃2, and D∗. We colorize increase and decrease .

α = 0 α = 0.5 α = 1.0

D̃1 0.73 → 0.70 0.73 → 0.88 0.73 → 0.86

D̃2 0.88 → 0.79 0.88 → 0.93 0.88 → 0.94

D∗ 0.50 → 0.59 0.50 → 0.64 0.50 → 0.58

training scales. Public sources (Touvron et al., 2023a; Zhang et al., 2022) state that both models
were pretrained on BookCorpus (Zhu et al., 2015), CC-Stories (Anderson, 2022), the English portion
of CommonCrawl, and public Reddit data. We approximate D∗ with BookCorpus due to practical
constraints. Each model is given its own initial task-specific dataset D̃k —SciQ (Johannes Welbl,
2017) (science questions) for the k = 0 model; and OpenAI’s GSM8K (Cobbe et al., 2021) (grade
school level math problems) for the k = 1 model. When simulating K = 3, we assign the third
model the AI2 ARC dataset (reasoning questions) (Clark et al., 2018).

Interactive training proceeds as outlined in Figure 1, with fixed α, β values for each experiment.
After training a new model generation θ̂tk, we use θ̂tk to produce synthetic data Dt+1,k that becomes
part of the next generation’s training data (if α > 0). We produce Dt+1,k by randomly sampling
prompts from D̃k for each of the K models and prompting θ̂tk to complete the text.

Training and evaluation. We run experiments on K = 2 model systems with α ∈ {0, 0.5, 1} and
β ∈ {0, 0.5, 1}, each for T = 15 generations of training. At each training generation, models are
fine-tuned on datasets of fixed size n = 12, 500 drawn i.i.d. from the datasets D̃k, D∗, Dt with
weights ᾱβ, ᾱβ̄, and α/K, respectively. This mimics the accumulate and subsample setup of Kazdan
et al. (2025) with the additional wrinkle of data-mediated model interactions.

We train each model for 100 steps per generation on a single NVIDIA H200 GPU using mixed-
precision, the AdamW optimizer with a learning rate of 8e−6, warmup ratio of 0.025, and gradient
accumulation over 2 steps. A table with training hyperparameters is in the Appendix. After training
each generation, we record token-wise average cross-entropy loss by feeding each model prompts
from each test set of private data D̃k and evaluating semantic “distance” between predicted and
correct answer. We also compute embedded representations of models’ completions of the first 200
elements of each of D̃k and D∗, to see how various α, β affect models’ representational spaces.
Embeddings are computed via the SentenceTransformers python library. If models produce
outputs with similar embeddings (measured via cosine similarity), their feature spaces are more
aligned. These two metrics allow us to evaluate how data-mediated interactions affect (1) models’
performance on their own and other models’ tasks and (2) model homogeneity.

Results. As predicted in Figure 2, an α = 0.5, β = 0.5 setting produces optimal results in terms of
model performance across tasks. Table 2 reports the change in models’ loss values between the first
and last training generation for the β = 0.5 setting. When α = 0, the same (human-generated) data
is used for each training update, resulting in stable or slightly worse performance on different tasks,
as models are forced into a local minimum. When α = 1.0, models are only trained on generated
outputs. They degrade on their original task due to the lack of real data but improve slightly on the
other model’s task. However, at α = 0.5, models perform well on their own tasks and improve on the
other model’s task. Table 4 shows similar results when we scale up K = 2 → K = 3, introducing
more diversity. Results for other β and K = 3 are in Appendix and echo findings here.
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While some amount of mixing improves model performance on previously-unseen tasks, homoge-
nization occurs for D∗ at all α and for D̃k when α > 0. These are the settings under which models
share information, either via common dataset D∗ or interactive training when α > 0. Figure 3 shows
the benefit of interactive training when α, β are reasonable, visualizing PCA-reduced embeddings
from D̃1, D̃2, and D∗ for β = 0.5 and varying α as training progresses For α = 0.5, the PCA shows
clearly separated task clusters, indicating that both models are better tailored to the individual tasks.
In contrast, the lack of well-defined clusters when α ̸= 0.5 suggests reduced sensitivity to task type,
e.g. generic answers. Yet, in Table 3, we see that when α = 0, models homogenize slightly on the
shared task D∗ but diverge on model-specific tasks. This makes sense since models the models do
not train on each other’s tasks. Once α > 0, homogenization increases for all datasets/tasks.

Table 4: Change in loss behavior for K = 3 interacting models at β = 0.5. We show results as initial →
final prediction loss values for models on their own and the other models’ tasks over T generations. For
clarity, we colorize loss increase , decrease , and constancy (∆ ≤ 0.1).

(a) OPT models (T=15)

α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 3.3 → 3.3 3.3 → 3.3 3.3 → 3.5

Model 2
on Task 2 1.8 → 1.7 1.8 → 1.7 1.8 → 2.3

Model 3
on Task 3 2.8 → 2.9 2.8 → 2.9 2.8 → 3.1

Model 1
on Task 2 3.1 → 3.5 3.1 → 1.9 3.1 → 2.2

Model 2
on Task 3 3.9 → 4.2 3.9 → 3.1 3.9 → 3.1

Model 3
on Task 1 3.7 → 3.8 3.7 → 3.4 3.7 → 3.6

Model 1
on Task 3 3.3 → 3.6 3.3 → 3.0 3.3 → 3.1

Model 2
on Task 1 5.1 → 5.1 5.1 → 3.5 5.1 → 3.5

Model 3
on Task 2 2.9 → 2.9 2.9 → 1.9 2.9 → 2.2

(b) Llama 3.2 (1B) models (T=8)

α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 2.6 → 2.7 2.6 → 2.7 2.6 → 2.8

Model 2
on Task 2 1.1 → 1.1 1.1 → 1.2 1.1 → 1.4

Model 3
on Task 3 2.3 → 2.8 2.3 → 2.6 2.3 → 2.5

Model 1
on Task 2 2.0 → 2.4 2.0 → 1.3 2.0 → 1.4

Model 2
on Task 3 3.1 → 3.4 3.1 → 2.5 3.1 → 2.5

Model 3
on Task 1 3.1 → 3.7 3.1 → 3.0 3.1 → 2.8

Model 1
on Task 3 2.9 → 3.1 2.9 → 2.5 2.9 → 2.5

Model 2
on Task 1 3.8 → 4.2 3.8 → 2.8 3.8 → 2.8

Model 3
on Task 2 2.0 → 2.5 2.0 → 1.3 2.0 → 1.4

7 DISCUSSION

Limitations. Our work has several limitations. First, our theory considers only linear models, which,
while common in the model collapse literature, may not capture nuances present in larger models.
Second, we run experiments on LLMs in controlled settings, the dynamics of which may differ from
real-world LLMs. Third, arguments against the increasing presence of generated outputs in training
datasets (e.g. (Drayson et al., 2025)) are in Appendix B. Also, our theoretical framework assumes
that new data in model updates is purely synthetic. In reality, if internet scrapes are used to create
model update datasets, they will contain both synthetic and real data. Finally, we assume that model
trainers use new scraped data for each model update but only reuse data from initial training. This
assumption may limit the range of outcomes.

Broader Impacts. If data-mediated interactions homogenize generative models, causing them to
coalesce on certain viewpoints, this could lead to pervasive bias in AI-generated content. Peterson
(2025) discusses this possibility, while Wenger & Kenett (2025) showed homogeneity across creative
outputs from many LLMs, suggesting these homogenization effects may already be felt. Much future
study is needed to evaluate the extent to which data-mediated interactions fuel homogeneity.

Conclusions and Future Work. We provide a first look at possible outcomes of genAI models
trained on each others’ data and find mixed effects. Training on other models’ data exposes models
to concepts possibly missed in their own training data, but can homogenize model behaviors. Future
work could consider additional nuances of interactions between models, explore how these interactions
evolve in other modalities like image generation, and investigate whether fixed points (e.g. like the
universal π2/6 pathway of (Dey & Donoho, 2024)) exist under this paradigm.
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Table 5: Examples of training data listed for prominent language models. = use explicitly stated; =
significant overlap expected (e.g. GLaM (Du et al., 2022) and PaLM (Chowdhery et al., 2023) are trained on
Microsoft’s internal re-creation of WebText (Brown et al., 2020)). We only include models for which training
data sources are explicitly stated. See Table 6 in Appendix for information on other prominent models.

Model CommonCrawl WebText Github Wikipedia Books ArXiv StackExchange News

Chinchilla (Hoffmann et al., 2022)
GLaM (Du et al., 2022)

GPT (Radford et al., 2018)
GPT-2 (Radford et al., 2019)
GPT-3 (Brown et al., 2020)

LaMDA (Thoppilan et al., 2022)
Llama 1 (Touvron et al., 2023a)
PaLM (Chowdhery et al., 2023)

Phi 2 (Abdin et al., 2023)

Appendix

A EXACT TRAINING DATA STATEMENTS FROM LLM PAPERS

Table 6 lists statements made about model training and fine-tuning data for large-scale generative AI
models that do not explicitly list training data sources.

Model Pre-training data Fine-tuning data

Claude 2 (Anthropic, 2023)

Claude models are trained on a proprietary mix
of publicly available information from the Internet,
datasets that we license from third party businesses,

and data that our users affirmatively share
or that crowd workers provide.

Publicly released on HuggingFace (Anthropic).

GPT4+ (Achiam et al., 2023) No information provided No information provided

Grok 3 (xAI, 2025) No information provided No information provided

Jamba (Team et al., 2024b)
Our pre-training dataset is a mixture of

publicly available web documents,
code, books and scientific articles.

When performing supervised fine-tuning,
we make heavy use of synthetic data.

Llama 3 (Dubey et al., 2024)

We create our dataset for language model pre-training
from a variety of data sources containing knowledge

until the end of 2023. Much of the data we utilize
is obtained from the web

We produce the aligned Llama 3 models by
applying several rounds of post-training, or aligning

the model with human feedback.

Llama 4 (AI, 2025)

A mix of publicly available, licensed data
and information from Meta’s products and services.

This includes publicly shared posts from Instagram and
Facebook and people’s interactions with Meta AI.

No information provided.

Phi 3 (Abdin et al., 2024)

Our training data of consists of
heavily filtered publicly available

web data . . . from various open internet sources,
as well as synthetic LLM-generated data.

[Supervised fine tuning] leverages highly
curated high-quality data across

diverse domains, e.g., math, coding,
reasoning, conversation, model identity, and safety.

Table 6: Exact wording of training and fine-tuning data discussion from whitepapers in which
data sources are not explicitly listed.

B COUNTERARGUMENTS

We argue that AI-generated content from a variety of sources will be increasingly prevalent online,
resulting in future genAI models being regularly trained on each other’s outputs. We believe this
vision of future data-mediated interactions between models is reasonable, based on evidence from
academic literature and corporate reports. However, others may disagree with our argument. Here,
we present possible counterarguments to our view to catalyze future work and discussion.

Can’t we use watermarks to filter AI-generated content from future internet-scraped datasets?
Several companies have publicly stated that they watermark AI-generated content (Dathathri et al.,
2024; AI, 2024b; Clegg, 2024), making this argument plausible. Furthermore, (Drayson et al.,
2025) show that using watermark detection techniques can help avoid model collapse under certain
circumstances. However, reliance on watermarking has two major issues. First, watermarks are
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Table 7: Change in loss behavior for K = 2 interacting LLama models at various α, β. We show
results as initial → final prediction loss values for models on their own and the other models’ tasks, at
initial = T = 0 and final = T = 15 generations. For clarity, we colorize loss increase , decrease ,
and constancy (∆ ≤ 0.1).

β = 0 β = 0.5 β = 1.0

α = 0 α = 0.5 α = 1.0 α = 0 α = 0.5 α = 1.0 α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 2.8 → 4.5 2.8 → 3.2 2.8 → 3.1 2.8 → 2.9 2.8 → 2.9 2.8 → 3.0 2.8 → 2.8 2.8 → 2.8 2.8 → 3.2

Model 2
on Task 2 1.2 → 2.0 1.2 → 1.9 1.2 → 1.8 1.2 → 1.2 1.2 → 1.3 1.2 → 1.9 1.2 → 1.2 1.2 → 1.2 1.2 → 1.8

Model 1
on Task 2 2.0 → 2.9 2.0 → 1.9 2.0 → 1.7 2.0 → 2.5 2.0 → 1.4 2.0 → 1.8 2.0 → 2.6 2.0 → 1.3 2.0 → 1.7

Model 2
on Task 1 3.7 → 5.0 3.7 → 3.1 3.7 → 3.1 3.7 → 4.2 3.7 → 3.0 3.7 → 3.0 3.7 → 4.4 3.7 → 2.9 3.7 → 3.1

difficult to reliably detect and/or easily removed from generated content (Zhang et al., 2023; Longpre
et al., 2024; Sadasivan et al., 2023). Second, detection via watermark requires sharing of watermark
detection information, which is essentially a game-theoretic problem that relies on other companies’
willingness to cooperate. Both issues make watermarks an unreliable mechanism to rid datasets of
AI-generated content.

What if there’s less AI-generated online content than we think? Some work suggests there may
be less AI-generated content online than previously postulated (Matatov et al., 2024). However, other
works consistently point to an uptick in AI-generated content online (Sun et al., 2025). We believe
the widespread adoption and use of generative AI models across industries (AI, 2024a; Handa et al.,
2025; Reuters, 2024), particularly for use in content creation (gen, 2022), provides strong evidence
that AI-generated content will become a regular part of online life. Further empirical work is needed
to vet both claims.

What if one model provider dominates online content? Although numerous generative AI models
are available online, some evidence suggests that one or two companies may dominate the AI
landscape. A market research firm estimated that in January 2025, Open AI’s ChatGPT had 340
million monthly active users, Microsoft Copilot had 11 million, Google Gemini had 80 million,
and Anthropic’s Claude had 2 million (Zitron, 2025). If only one model/company dominates, our
paradigm of training on other models’ data will no longer be relevant and collapses back to the single
model setting of prior work, e.g. (Shumailov et al., 2024; Kazdan et al., 2025; Dey & Donoho, 2024).
Currently, though, this market research suggests that there are several models used by millions of
users, making our assumptions somewhat reasonable. Future research could analyze market trends in
model use and adoption to determine realistic assumptions.

C ADDITIONAL RESULTS

Tables 7 and 8 show full results for all tested β, α settings for the K = 2 setting across both the Llama
and OPT model architectures. As stated in the main paper body, the β = 0.5 and α = 0.5 settings
perform best. Figures 4, 5, and 6 show loss values at each generation for (1) predicted theoretical
results, (2) OPT K = 2 models, and (3) Llama K = 2 models. Finally, Figure 7 shows results for a
K = 3 system of interacting OPT models.

D CODE FOR EXPERIMENTS

Code to generate the theory and experimental figures shown in the main paper body can be found at:
https://anonymous.4open.science/r/multi-model-798E.
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Table 8: Change in loss behavior for K = 2 interacting OPT models at various α, β We show results
as initial → final prediction loss values for models on their own and the other models’ tasks, at
initial = T = 0 and final = T = 15 generations. For clarity, we colorize loss increase , decrease ,
and constancy (∆ ≤ 0.1).

β = 0 β = 0.5 β = 1.0

α = 0 α = 0.5 α = 1.0 α = 0 α = 0.5 α = 1.0 α = 0 α = 0.5 α = 1.0

Model 1
on Task 1 3.3 → 4.8 3.3 → 3.6 3.3 → 3.5 3.3 → 3.3 3.3 → 3.3 3.3 → 3.5 3.3 → 3.1 3.3 → 3.2 3.3 → 3.5

Model 2
on Task 2 1.8 → 2.6 1.8 → 2.2 1.8 → 2.1 1.8 → 1.7 1.8 → 1.7 1.8 → 2.2 1.8 → 1.5 1.8 → 1.8 1.8 → 2.2

Model 1
on Task 2 3.1 → 3.7 3.1 → 2.2 3.1 → 2.2 3.1 → 3.5 3.1 → 1.8 3.1 → 2.2 3.1 → 3.4 3.1 → 1.8 3.1 → 2.2

Model 2
on Task 1 5.1 → 5.6 5.1 → 3.6 5.1 → 3.5 5.1 → 5.1 5.1 → 3.5 5.1 → 3.5 5.1 → 5.4 5.1 → 3.5 5.1 → 3.4
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Figure 4: Predicted behavior over time for a K = 2 model system with varying α, β. We use equations for
MSE from theorem 2 and run simulations with K = 2, dimension 50, rank 15.

E PROOFS FOR RESULTS IN SECTION 5

Before diving into the proofs, we recall the workflow setup and provide some preliminary results.
The initial data are represented by matrix-vector pairs for the private data (X̃k, ỹk), . . . , (X̃K , ỹK)
and for the public data (X∗, y∗). At each generation t, the data (Xtk, ytk) produced by entity k is
given by

ytk = Xtkθ̂t−1,k + wtk

where θ̂t−1,k ∈ Rd is the most recent parameter estimate and wtk ∼ N(0, σ2I) is Gaussian noise
that is independent across entities and generations. To represent the notation compactly, we use the
embedding

X̃ =

[
X̃1

. . .
X̃K

]
, y0 =

[
ỹ1

...
ỹK

]
Xt =

[
Xt1

. . .
XtK

]
, yt =

[ yt1

...
ytK

]
, wt =

[
wt1

...
wtK

]
,

Linear dynamical system According to the workflow, each parameter estimate is obtained as the
minimizer in θ ∈ Rd of the empirical loss:

ᾱtβt∥ỹk − X̃kθ∥2 + ᾱtβ̄t∥y∗ −X∗θ∥2 +
αt

K

K∑
j=1

∥ytj −Xtjθ∥2,
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Figure 5: Actual behavior over time for interactions between OPT models (K = 2) with varying α, β.
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Figure 6: Actual behavior over time for interactions between Llama models (K = 2) with varying α, β.

where α0 ≡ 0 and so only the first two terms are present at initialization. The minimum norm solution
is given in closed form by

θ̂tk =
(
ᾱtβtS̃k + ᾱtβ̄tS

⊤
∗ +

αt

K

k∑
j=1

Stk

)+(
ᾱtβtX̃

⊤
k ỹt + ᾱtβ̄tX

⊤
∗ y∗ +

αt

K

k∑
j=1

X⊤
tjytj

)
where S̃k = X̃⊤

t X̃k, S∗ = X⊤
∗ X∗, Stk = X⊤

tkXtk, and (·)+ denotes the Moore-Penrose pseu-
doinverse. Stacking the estimates into a vector θ̂ = vec(θ̂1, . . . , θ̂K) and using the identity
A⊤ = A⊤AA+, we can express all estimate updates simultaneously as

θ̂t = G+
t

(
ᾱtβtS̃X̃

+ỹ + ᾱtβ̄t(1K ⊗ S∗)X
+
∗ y∗ +

αt

K
(1K ⊗

k∑
j=1

StjX
+
tjytj)

)
, (3)

where 1K denotes the K × 1 vector of ones and Gt is the block diagonal matrix given by

Gt := ᾱtβtS̃ + ᾱtβ̄t(IK ⊗ S∗) + αt(IK ⊗ St), St =
1

K

K∑
k=1

Skt.

Defining the orthogonal projection matrix Π = 1
K1K1⊤

K ⊗ Id we can write

1

K
(1K ⊗

k∑
j=1

StjX
+
tjytj) = ΠStX

+
t yt.
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Figure 7: Actual behavior over time for interactions between OPT models (K = 3) with varying α, β.

Parameter Value
bf16 True
data_seed generation
dataloader_num_workers 4
dataset_text_field input_ids
eval_on_start True
eval_strategy steps
eval_steps 100
gradient_accumulation_steps 2
gradient_checkpointing False
include_num_input_tokens_seen True
learning_rate 8× 10−6

logging_steps 5
lr_scheduler_type constant_with_warmup
max_seq_length 512
max_steps 100
num_train_epochs 1
optim adamw_torch
per_device_eval_batch_size 16
per_device_train_batch_size 2 (8 for T=8 experiments)
remove_unused_columns False
seed generation
warmup_ratio 0.025
save_strategy no

Table 9: Fine-tuning hyperparameters used.

Introducing the matrices Pt := ᾱtG
+
t

[
βtS̃ β̄t(1K ⊗ S∗)

]
and Qt := αtG

+
t ΠSt, can express (3)

as

θ̂t = Pt

[
X̃+ỹ
X+

∗ y∗

]
+QtX

+
t yt.

Using yt = Xtθt−1 +wt and QtX
+
t Xt = Qt, we obtain

θ̂t = Pt

[
X̃+ỹ
X+

∗ y∗

]
+Qtθ̂t−1 +QtX

+
t wt. (4)

This expression shows that the estimates evolve according to a discrete-time linear dynamical system
(also known as a Kalman filter model) with state variable θ̂t.

E.1 PROOF OF THEOREM 1

We now derive the distribution of θ̂t conditional on the initial data D0 given by (X̃, ỹ) and (X∗, y∗).
Specifically, we show that the estimates are Gaussian with mean and variance

E[θ̂t | D0] = Mt

[
X̃+ỹ
X+

∗ y∗

]
, Cov(θ̂t | D0) = Ct
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where the matrices Mt and Ct are defined recursively with M0 = P0 and C0 = 0Kd×Kd and

Mt = Pt +QtMt−1, Ct = Qt(σ
2S+

t +Ct−1)Qt, t ≥ 1.

The proof is by mathematical induction. For the base case t = 0 we invoke (4) along with Q0 = 0 to
see that θ̂0 is a deterministic function of the initial data with M0 = P0 and C0 = 0Kd×Kd.

For the inductive case, assume that the stated distribution holds up to generation t − 1. From the
definition of the workflow, (4) holds with wt ∼ N(0, σ2I) independent of everything else. Thus θ̂t is
Gaussian with mean

E[θ̂t | D0] = Pt

[
X̃+ỹ
X+

∗ y∗

]
+QtE[θ̂t−1 | D0] = (Pt +QtMt−1)︸ ︷︷ ︸

Mt

[
X̃+ỹ
X+

∗ y∗

]
and covariance

Cov(θ̂t | D0) = Cov(Qtθ̂t−1 | D0) + Cov(QtX
+
t w) = QtCt−1Qt + σ2QtS

+
t Qt︸ ︷︷ ︸

Ct

.

This concludes the proof of Theorem 1.

E.2 PROOF OF THEOREM 2

Under the assumptions of the theorem, we have that[
X̃+ỹ
X+

∗ y∗

]
∼ N

([
S̃S̃+ 0
0 S∗S

+
∗

]
(1K+1 ⊗ θ), σ2

[
S̃+ 0
0 S+

∗

])
. (5)

The goal for this proof is to verify that if G1, . . . ,Gt are full rank then

E[θ̂t] =
(
I−Qt · · ·Q1(I−G0G

+
0 )

)
(1K ⊗ θ), Cov(θ̂t) = Mt

[
S̃+ 0
0 S+

∗

]
M⊤

t +Ct.

We proceed by mathematical induction. Consider the case t = 0. By (4) along with Q0 = 0, the
mean is

E[θ0] = Pt

[
S̃S̃+ 0
0 S∗S

+
∗

]
(1K+1 ⊗ θ) = G0G

+
0 (1K ⊗ θ).

Likewise, recalling that M0 = P0, the variance is

Cov(θ0) = M0 Cov

([
X̃+ỹ
X+

∗ y∗

])
M⊤

0 = σ2M0

[
S̃+ 0
0 S+

∗

]
M⊤

0 .

Next, suppose that G1, . . . ,Gt are full rank and the stated distribution holds up to time t− 1. By
Theorem 1 we know that θ̂t is Gaussian and so all that remains is to verify the given expressions for
the mean and covariance. By the linearity of expectation and (4), the mean satisfies

E[θ̂t] = Pt

[
E[X̃+ỹ]
E[X+

∗ y∗]

]
+QtE[θ̂t−1]

= Pt(IK+1 ⊗ θ) +Qt(IK ⊗ θ)−QtQt−1 · · ·Q1(I−G0G
+
0 )(1K ⊗ θ),

where the last follows from the inductive assumption applied to E[θ̂t−1]. Moreover, from the
definitions of Pt and Qt, we have

Pt(IK+1 ⊗ θ) +Qt(IK ⊗ θ) = G+
t

(
ᾱtβtS̃ + ᾱtβ̄t(IK ⊗ S∗)) + αtΠSt

)
(IK ⊗ θ)

= G+
t Gt(IK ⊗ θ)

= IK ⊗ θ,

where the second line follows from the identity ΠSt(1K ⊗ Id) = (IK ⊗ St)(1K ⊗ Id) and the last
line holds because Gt is full rank. Combining the above displays gives the desired expression for the
mean. The expression for the variance follows directly from (5) and Theorem 1.
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E.3 PROOF OF THEOREM 3

If the spectral radius of Q is strictly less than one, then Qt → 0 as t → ∞, and the Neumann series
in (1) converge to the well-defined limits in (2). These limits can also be seen as the (necessarily
unique) solutions to the fixed point equations

M = P +MQ, C = Q(C + σ2S+)Q⊤,

where the expression for the covariance is known as the discrete time Lyapunov equation. Combining
these convergence results with Theorem 2 completes the proof. .

E.4 PROOF OF LEMMA 1

If α = 0 or if S = 0 then Q = 0 and so the stated result holds. Henceforth, we assume 0 < α < 1
and S is nonzero. Suppose that γS = λS̃ + (1− λ)(IK ⊗ S∗) for some 0 < β ≤ λ ≤ 1 and γ > 0.
Then,

G = ᾱβS̃ + ᾱβ̄(IK ⊗ S∗) + α(IK ⊗ S)

=
ᾱβ

λ
(γS − (1− λ)(IK ⊗ S∗)) + ᾱβ̄(IK ⊗ S∗) + α(IK ⊗ S)

=
ᾱβγ

λ
S + ᾱ

(
λ− β

λ

)
(IK ⊗ S∗) + α(IK ⊗ S).

Hence,

Q =
(
δS + IK ⊗∆

)+
ΠS, δ =

ᾱβγ

αλ
, ∆ =

λ− β

αλ
S∗ + S.

To proceed, observe that each diagonal block of S = diag(S1, . . . , SK) lies in the span of S =
1
K

∑K
k=1 Sk, and thus S lies in the span of IK ⊗∆. Accordingly, we can write

S
(
δS + IK ⊗∆

)+
= (IK ⊗∆1/2)R

(
δR+ I

)−1
(IK ⊗∆+/2),

where (·)1/2 denote the symmetric positive semidefinite square root of a positive semidefinite and
R := (IK ⊗∆+/2)S(IK ⊗∆+/2). To bound the spectral radius, denoted by ρ(·), we use that fact
that the eigenvalues of AB and BA are the same for any square matrices A and B along with that
fact that IK ⊗∆ commutes with Π to write

ρ(Q) = ρ
((

δS + IK ⊗∆
)+

ΠS
)

= ρ
(
S
(
δS + IK ⊗∆

)+
Π
)

= ρ
(
(IK ⊗∆1/2)R

(
δR+ I

)−1
(IK ⊗∆+/2)Π

)
= ρ

(
ΠR

(
δR+ I

)−1
Π
)

= ∥ΠR
(
δR+ I

)−1
Π∥,

where ∥ · ∥ denotes the operator norm and the last equality holds because ΠR
(
δR + I

)−1
Π is

symmetric positive semidefinite. Letting ϵ > 0 denote the smallest nonzero singular value of R, we
have

(1 + ϵδ)ρ(Q) ≤ ∥ΠRΠ∥
(a)
= ∥Π(IK +∆+/2)S(IK ⊗∆+/2)Π∥
(b)
= ∥(IK ⊗∆+/2)ΠSΠ(IK ⊗∆+/2)∥
(c)
= ∥(IK ⊗∆+/2)( 1

K1K×K ⊗ S)(IK ⊗∆+/2)∥
(d)
= ∥ 1

K1K×K ⊗∆+/2S∆+/2∥
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(e)
= ∥ 1

K1K×K∥∥∆+/2S∆+/2∥
(f)
= ∥∆+/2S∆+/2∥

where (a) is the definition of R; (b) follows from the commutativity of Π and IK ⊗∆+/2; (c) follows
from ΠSΠ = 1

K1K×K ⊗ S; (d) is the mixed-product property of the Kronneker product; (e) is the
basic identity ∥A⊗B∥ = ∥A∥∥B∥ for any matrices A and B; and (f) holds because ∥ 1

K1K×K∥ = 1.
Finally, using that 0 ⪯ S ⪯ ∆, we see that ∥∆+/2S∆+/2∥ ≤ ∥∆+/2∆∆+/2∥ ≤ 1. This verifies
that ρ(Q) is strictly less than one.
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