

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 WHAT HAPPENS WHEN GENERATIVE AI MODELS TRAIN RECURSIVELY ON EACH OTHER'S OUTPUTS?

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 The internet serves as a common source of training data for generative AI (genAI)
012 models but is increasingly populated with AI-generated content. This duality raises
013 the possibility that future genAI models may be trained on other models' generated
014 outputs. Prior work has studied consequences of models training on their own
015 generated outputs, but limited work has considered what happens if models ingest
016 content produced by other models. Given society's increasing dependence on
017 genAI tools, understanding such data-mediated model interactions is critical. This
018 work provides empirical evidence for how data-mediated interactions might unfold
019 in practice, develops a theoretical model for this interactive training process, and
020 experimentally validates the theory. We find that data-mediated interactions can
021 benefit models by exposing them to novel concepts perhaps missed in original
022 training data, but also can homogenize their performance on shared tasks.

1 INTRODUCTION

025 Since the release of ChatGPT in 2022, generative AI (genAI) models have exploded in popularity.
026 Now capable of generating highly realistic text, images, and videos, these models have been widely
027 adopted for various use cases, from creative idea generation (Ali Elfa & Dawood, 2023) to healthcare
028 support (Reddy, 2024) to national security settings (Harding, 2024; GAO, 2024). Given the significant
029 uptick in genAI use across numerous industries, this technology is clearly here to stay. Consequently,
030 interrogating potential ways genAI models could evolve—in positive or harmful ways—is critical.

031 With few exceptions, today's large-scale genAI models are trained on massive datasets sourced from
032 the internet. Widely-accepted scaling laws for model performance say that training on more data aids
033 learning (Kaplan et al., 2020), and the internet provides a rich, cheap, and ever-evolving source of
034 training data. Although whitepapers for more recent genAI models withhold details about training set
035 composition—potentially due to ongoing litigation about copyright concerns—evidence from earlier
036 whitepapers indicates that scraped data was used to train models like Llama, Gemini, Phi, the GPT
037 series, Claude, and others (Dubey et al., 2024; Achiam et al., 2023; Team et al., 2024a; Jiang et al.,
038 2023; coh, 2024; Anthropic, 2023; Abdin et al., 2024).

039 Beyond privacy and copyright concerns, training on scraped data could have other downsides. Prior
040 work has noted that genAI models trained recursively on their own generated outputs “collapse,”
041 becoming unable to generate meaningful content (Shumailov et al., 2024; Hataya et al., 2023;
042 Martínez et al., 2023; Alejomhammad et al., 2024). This scenario is feasible, since AI-generated
043 content abounds online (Sun et al., 2025) and could be part of future training datasets. However,
044 subsequent work has proposed ways to mitigate collapse via reuse of non-AI-generated data in
045 subsequent training iterations (Dey & Donoho, 2024; Kazdan et al., 2025; Dohmatob et al., 2025;
046 Feng et al., 2024). Model collapse remains an active research area (Schaeffer et al., 2025).

047 Yet, prior work studying the dynamics of model collapse has overlooked another reality: the internet
048 teems with content from *many* genAI models. Today's most popular models have millions of
049 users (Reuters, 2024; Handa et al., 2025; AI, 2024a), who leverage generative AI tools to create
050 online content like web pages and social media posts (gen, 2022). Recent work showed that up
051 to 40% of content on popular sites like Quora is now AI-generated (Sun et al., 2025). Given the
052 increasing availability of these models for a variety of public-facing uses, AI-generated content from
053 many different models will continue to proliferate.

054 The standard practice of training on scraped internet data and the increasing prevalence of AI-
 055 generated content online suggest the strong possibility that *future generative AI models will be trained*
 056 *on other models’ outputs*. Yet, this aspect of model training has received relatively little attention.
 057 Given the widespread adoption of generative AI models in critical settings like healthcare and national
 058 security, this phenomenon ought to be investigated to ensure models remain helpful and trustworthy.
 059

060 **Contributions.** To address this need, this work theoretically derives and experimentally evaluates the
 061 long-term evolutionary behavior of generative models trained on *each other’s* data. Specifically, we

- 062 • Develop a framework describing data-mediated interactions between genAI models.
- 063 • Derive concise formulas describing the dynamics of interactive training under varied regimes.
- 064 • Run experiments on large language models to understand how data-mediated interactions affect
 065 model performance in practice.

066 **Key findings.** Both our theoretical analysis and experiments show that when training with a mixture
 067 of real and synthetic data, the implicit interaction between heterogeneous models and datasets can
 068 have both positive and negative impacts. **Specifically, interactive recursive training can help**
 069 **models learn from each other’s private data but risks homogenization.** At a high level, well
 070 known concepts in statistical learning theory anticipate this: recursive training on the same data is
 071 bad (e.g., overfitting and model “collapse”) but training on novel data, even if synthetic, can boost
 072 performance (e.g., transfer learning). Our experimental results provide concrete evidence that these
 073 phenomena can occur simultaneously. Future work should further study these dynamics.
 074

075 2 RELATED WORK

076 **Model collapse** is a recently observed phenomenon in large-scale generative text and image models. It
 077 referred—in its earliest form—to the phenomenon of models performing much worse after generations
 078 of training on their own generated outputs (Shumailov et al., 2024; Peterson, 2025; Wang et al., 2024;
 079 Alemohammad et al., 2024; Feng et al., 2024; Hataya et al., 2023; Dohmatob et al., 2025; Martínez
 080 et al., 2023). Theoretical and empirical results from these works show that models, if trained on
 081 generated outputs from their prior versions, slowly degrade in performance as generations progress.
 082 One way this manifests is in models forgetting the tails of their original (real) training data, since
 083 generated content tends not to contain rare content from the original training data. Training repeatedly
 084 on truncated, synthetic data leads the model to forget the richness of its original distribution, resulting
 085 in degraded performance (at best) and total failure (at worst).

086 **Mitigating model collapse.** Despite the dire predictions of these papers, subsequent work has
 087 proposed a simple mitigation strategy: instead of discarding all prior (human-generated) training data,
 088 retain some fraction of this while augmenting it with generated data. Numerous works have observed
 089 that this choice to *augment* instead of *discard* the original training dataset results in a bounded error
 090 in future models, avoiding collapse (Kazdan et al., 2025; Gerstgrasser et al., 2024; Marchi et al.,
 091 2024). Although most of these results were discovered on small models, recent work claims that the
 092 observed bound in error $\pi^2/6$ exists for all models (Dey & Donoho, 2024). Further work (Schaeffer
 093 et al., 2025) summarizes current research on collapse.

094 **Transfer learning and other model interactions.** Significant prior work has studied transfer learning,
 095 in which information learned by one model is passed to another, often by reusing the trained weights
 096 of a “teacher” model to initialize a “student” model (Zhuang et al., 2020). Some prior work has
 097 further considered the use of synthetic data in transfer learning (Tian & Shen, 2025; Kim et al., 2022;
 098 Brinner et al., 2025). Our work is distinct from transfer learning due to its focus on *unintentional*
 099 data-mediated interactions between models. Furthermore, limited work has examined long-term
 100 effects of models training on each other’s data. Zhang et al. (2024) consider the setting where a
 101 generative model is trained on data generated by other models, but does not consider long-term effects
 102 of such interactions among multiple models. Jain & Krishnamurthy (2025) study interacting Large
 103 Language Model agents through the lens of Bayesian social learning and microeconomics, but do not
 104 focus specifically on data-mediated interactions between models.

105 3 HOW TODAY’S LARGE-SCALE GENERATIVE AI MODELS ARE TRAINED

106 We first establish *why* we believe that data-mediated interactions between models—e.g. instances of
 107 models training on each other’s generated outputs—are realistic and worthy of study. To do this, we

108
 109 **Table 1: Evidence from LLama, GPT, and Phi suggests reuse of old training and collection of additional**
 110 **data to train new model generations. Datasets reused across models and generations are highlighted. We start**
 111 **with Phi 1.5, the first version of Phi designed for general NLP tasks. Phi 1 was designed for coding tasks.**

Model	v1	v2	v3	v4
Llama	(Touvron et al., 2023a): ArXiv, Books, Common Crawl, C4, Wikipedia, StackExchange	(Touvron et al., 2023b): "A new mix of publicly available online data."	(Dubey et al., 2024): "A variety of data sources containing knowledge until the end of 2023."	(AI, 2025): "A mix of publicly available, licensed data and information from Meta's products and services."
GPT	(Radford et al., 2018): BooksCorpus	(Radford et al., 2019): WebText	(Brown et al., 2020): CommonCrawl, WebText2, Books, Books2, Wikipedia	(Achiam et al., 2023): No info provided
Phi	(Li et al., 2023): The Stack, Stack Overflow, synthetic "textbook" data	(Abdin et al., 2023): The Stack, Stack Overflow, synthetic "textbook" data, filtered Common Crawl	(Abdin et al., 2024): "publicly available web data... and synthetic LLM-generated data"	N/A

120
 121
 122 comb through academic literature and whitepapers describing today’s large-scale genAI models to
 123 understand how models are trained, what data they are trained on, and how data is collected and used
 124 for model updates. This sets the stage for the formalization and experiments in the rest of the paper.

125 We find that most of today’s models follow a 3 step update process. First, models are **pretrained**
 126 on a large corpus of data; then they are **fine-tuned** to teach specific behaviors and/or to align them
 127 with human preferences. Finally, they are later **updated**, either to teach new behaviors or update
 128 knowledge. As we describe these steps in detail below, we highlight specific realities or assumptions
 129 that have been largely overlooked or not made explicit by prior work.

130
 131 **Step 1: Pretraining.** Following well-established scaling laws linking model performance and dataset
 132 size (Kaplan et al., 2020), **large-scale generative AI models are trained on massive, internet-scraped**
 133 **datasets.** Early versions of GPT, Llama, and PaLM all report being trained on scraped datasets
 134 like Common Crawl, ArXiv, Github, Wikipedia, and/or Stack Exchange (Touvron et al., 2023a;
 135 Chowdhery et al., 2023; Brown et al., 2020)—see Table 5 in Appendix for an overview.

136 Another striking fact emerges from the categorization of training data in Table 5: *large-scale model*
 137 *training datasets overlap.* For example, GPT, Jamba, Llama, PaLM, and Phi are all trained on subsets
 138 of CommonCrawl (Crawl, 2025), while GPT, Llama, and PaLM are all trained on Wikipedia and
 139 Books datasets. Several other models have other points of training data overlap.

140
 141 **Step 2: Fine-tuning.** Variously called fine-tuning or alignment, *this phase leverages proprietary*
 142 *methods or data to tweak model behaviors in ways model providers believe are helpful.* For example,
 143 the LLama fine-tuning phase (Dubey et al., 2024) involves many rounds of reinforcement learning
 144 with human feedback (RLHF) to stamp out model negative behaviors, while Phi (Abdin et al., 2024)
 145 was fine-tuned on proprietary synthetic data to patch “gaps” in its mathematical reasoning abilities.

146
 147 **Step 3: Model updates.** A key assumption of prior literature on model collapse is that models are
 148 *updated by training on a mix of fresh and re-used data.* The “replace” update scenario Shumailov
 149 et al. (2024) assumes model trainers train the next generation using only generated data outputted
 150 by the prior version of the model, an interesting but impractical setting Schaeffer et al. (2025). The
 151 “accumulate” update scenario (Gerstgrasser et al., 2024) assumes model trainers augment their original
 152 data at each update step with additional data that may contain AI-generated content. Finally, the
 153 “accumulate and subsample” update scenario (Kazdan et al., 2025) subsamples a fixed-size subset of
 154 original and accumulated data for each update, acknowledging real-world compute limits.

155 We believe that the “accumulate-and-subsample” update paradigm best reflects reality and so we
 156 leverage it in our work. We support this opinion with evidence from three well-documented model
 157 families: Llama, GPT, and Phi. Table 1 records the training data used in publicly disclosed generations
 158 of these models. As the table shows, *trainers re-use some prior training data for model updates,*
 159 *supplementing this with additional web content.* Whitepapers for models published after 2023
 160 generally omit training data information but suggest collection of new online data for updates.

161 Despite these realities, most prior work on model collapse still overlooks a fundamental reality in
 162 model updates: *future models trained on internet-sourced content will be trained on outputs from*
 163 *other generative AI models, not merely their own.* Already, the internet is filled with generated

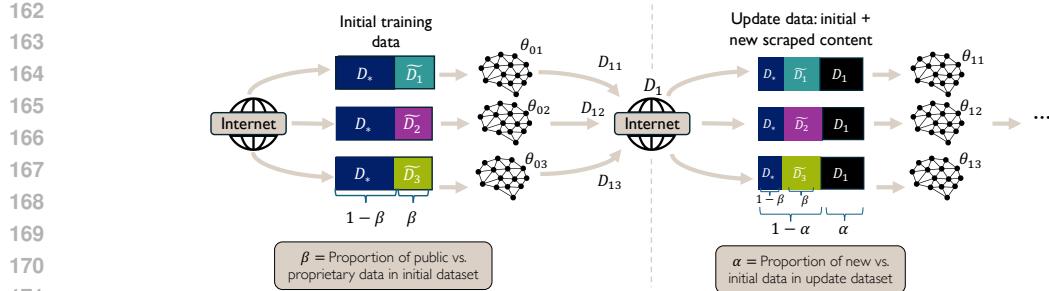


Figure 1: **Our dataset update scheme, parameterized by α and β .** This paradigm best aligns with evidence from the literature given in §3 and strongly indicates that interactions between models, facilitated by training on others’ generated data, are an important consideration for empirical and theoretical work on model evolution.

content from various models (Sun et al., 2025). As model trainers collect new data to facilitate model updates, internet-sourced data will inevitably contain content from other generative models, so:

At each update step, models may be trained on *their own* and on *other models’* generated outputs.

4 FORMALIZING AN ITERATIVE, INTERACTIVE MODEL TRAINING PIPELINE

Section 3 provides empirical evidence for two realities overlooked by prior studies: internet-scraped training datasets used for initial training may have substantial overlap, and models may be updated using *each others’ generated outputs*. To study the effect of these two factors on model evolution, we propose a general workflow in which multiple entities regularly update their models using a mix of private, public, and generated data. Based on §3, we consider three types of training/update data:

- D_* : Public data used during initial training/updates by multiple entities (real data only).
- \tilde{D}_k : Private data used only by entity k for initial training/updates (real data only).
- $D_t = \{D_{t1}, D_{t2}, \dots, D_{tk}\}$: Public data used for updates at time t by multiple entities (synthetic data). D_{tk} is data generated by the k^{th} entity based on model $\theta_{t-1,k}$.

Mapping these to realistic scenarios, D_* could be a public dataset like Common Crawl; \tilde{D}_k could be a private dataset of math problems curated by entity k ; and D_t could be an internet scrape from after initial model training. We weight the relative impact of these data types by the ratios α, β .

- $\beta, 0 \leq \beta \leq 1$ is relative size of the initial public data set D_* compared to the initial private data set \tilde{D}_k . This fraction remains constant if/when initial data is reused for updates.
- $\alpha, 0 \leq \alpha \leq 1$ is the fraction of new data introduced at generation t , relative to the amount of initial data reused (following the “accumulate and subsample” paradigm of Kazdan et al. (2025)).

Interactive training workflow. We consider K entities, each seeking to train or update its own generative AI model. In the initial phase of training, denoted by time $t = 0$, each entity k trains its model based on a combination of a publicly available dataset D_* as well its own private dataset \tilde{D}_k . The trained model is represented generally by a parameter $\hat{\theta}_{t,k}$, i.e., $\hat{\theta}_{0,k} = \Phi_{0,k}(D_*, \tilde{D}_k)$, $k = 1, \dots, K$, where each $\Phi_{0,k}$ represents a generic training algorithm. For model updates at stages $t > 0$, model parameters are updated via:

1. New public data D_t is generated uniformly at random using the most recent version of the models. Specifically, the data are sampled i.i.d. according to the mixture $\frac{1}{K} \sum_{k=1}^K P_{k,\hat{\theta}_{t-1,k}}$ where $P_{k,\theta}$ denotes the generative model used by k -th entity.
2. This data is placed online and collected by entities as training data for the next model update.
3. Each entity composes its training data for the next update, using a mix of the initial dataset (D_* , \tilde{D}_k) and newly collected data D_t . Contributions from each dataset are weighted by α, β .
4. Each entity $k = 1, \dots, K$ updates its model parameters via $\hat{\theta}_{t,k} = \Phi_{t,k}(\hat{\theta}_{t-1,k}, D_*, \tilde{D}_k, D_t)$. Here, $\Phi_{t,k}$ is a training algorithm that depends on the previous model parameter $\hat{\theta}_{k,t-1}$ as well as the data. As before, training may employ subsampling, weighting, and randomization.

In this workflow, entities interact through the release of publicly available synthetic data produced by prior generations of other entities' models. Thus, even though initial private training data are never shared, it could end up positively impacting other entities' models. This potential benefit of synthetic data sharing appears only in this interaction paradigm and has not been recognized in prior work.

5 THEORY

We theoretically analyze the behavior of the interactive workflow. Similar to prior work (Gerstgrasser et al., 2024; Kazdan et al., 2025; Dey & Donoho, 2024; Dohmatob et al., 2025; Barzilai & Shamir, 2025), we focus on the linear regression models where each data point consists of a feature-response pair $(x, y) \in \mathbb{R}^d \times \mathbb{R}$. By the universality results of Dey & Donoho (2024), the analysis of this settings also applies to generalized linear models satisfying appropriate asymptotic normality assumptions.

Notation. For a $p \times q$ matrix A , we use A^+ to denote the Moore-Penrose pseudoinverse and $\text{vec}(A)$ to denote the $pq \times 1$ vector obtained by stacking the columns. \otimes denotes the Kronecker product. For $\alpha, \beta \in [0, 1]$ we set $\bar{\alpha} = 1 - \alpha$ and $\bar{\beta} = 1 - \beta$.

Training Workflow. We follow the training pipeline outlined in Section 4 in which K different models are trained on a mixture of private, public, and generated data. At initialization, each entity $k \in [K]$ combines its private data $\tilde{D}_k = (\tilde{x}_{ki}, \tilde{y}_{ki})_{i=1}^{\tilde{n}_k}$ with public data $D_* = (x_{*i}, y_{*i})_{i=1}^{n_*}$ to produce an estimate $\hat{\theta}_{k0}$ by minimizing the empirical loss

$$\sum_{(x,y) \in \tilde{D}_k} \beta_0 L(x, y, \theta) + \sum_{(x,y) \in D_*} \bar{\beta}_0 L(x, y, \theta)$$

where $L(x, y, \theta) := (y - x^\top \theta)^2$ is the squared error loss and $0 \leq \beta_0 \leq 1$ controls the relative weight placed on the private data. Training then proceeds for generation stages $t = 1, 2, 3, \dots$ as follows:

1. Each entity k uses its most recent parameter estimate $\hat{\theta}_{t-1,k}$ to generate new data $D_{tk} = (x_{tki}, y_{tki})_{i=1}^{n_{tk}}$ according to the Gaussian model $y | x \sim \mathcal{N}(x^\top \hat{\theta}_{t-1,k}, \sigma^2)$. The entire collection of generated samples is combined into a single public data set $D_t = \cup_{k=1}^K D_{tk}$.
2. Each entity k produces a new estimate $\hat{\theta}_{tk}$ by minimizing the empirical loss

$$\sum_{(x,y) \in D_k} \bar{\alpha}_t \beta_t L(x, y, \theta) + \sum_{(x,y) \in D_*} \bar{\alpha}_t \bar{\beta}_t L(x, y, \theta) + \sum_{(x,y) \in D_t} \frac{\alpha_t}{K} L(x, y, \theta)$$

with weights $0 \leq \alpha_t, \beta_t \leq 1$.

We note that our framework could easily be extended to accommodate new, human-generated data at each time step, but we omit this in our formulation for analytic simplicity. Throughout our analysis we assume that all features are deterministic. We represent dataset \tilde{D}_k with $\tilde{n}_k \times d$ matrix $\tilde{X}_k = [\tilde{x}_{k1}, \dots, \tilde{x}_{k\tilde{n}_k}]^\top$ and $\tilde{n}_k \times 1$ vector $\tilde{y}_k = [\tilde{y}_{k1}, \dots, \tilde{y}_{k\tilde{n}_k}]^\top$, and use the same convention for the public data (X_*, y_*) and the generated data (X_{tk}, y_{tk}) . Data across different entities are then combined into “lifted” representations, which are denoted using boldface:

$$\tilde{\mathbf{X}} = \begin{bmatrix} \tilde{X}_1 & & \\ & \ddots & \\ & & \tilde{X}_K \end{bmatrix}, \quad \mathbf{y}_0 = \begin{bmatrix} \tilde{y}_1 \\ \vdots \\ \tilde{y}_K \end{bmatrix}, \quad \mathbf{X}_t = \begin{bmatrix} X_{t1} & & \\ & \ddots & \\ & & X_{tK} \end{bmatrix}, \quad \mathbf{y}_t = \begin{bmatrix} y_{t1} \\ \vdots \\ y_{tK} \end{bmatrix}$$

We note that information about which entity produced which sample is required for the analysis, but is not used during the training, where all data from the same generation are treated interchangeably.

Bias-Variance Decomposition. We derive exact formulas for the mean and variance of the estimators at each stage of the workflow. Given the features $(\tilde{\mathbf{X}}, X_*, \mathbf{X}_t)$ and learning weights (α_t, β_t) define

$$\tilde{\mathbf{S}} = \text{diag}(\tilde{S}_1, \dots, \tilde{S}_k) := \tilde{\mathbf{X}}^\top \tilde{\mathbf{X}}, \quad S_* := X_*^\top X_* \quad \mathbf{S}_t = \text{diag}(S_{t1}, \dots, S_{tk}) := \mathbf{X}_t^\top \mathbf{X}_t$$

$$\mathbf{G}_t := \bar{\alpha}_t \beta_t \tilde{\mathbf{S}} + \bar{\alpha}_t \bar{\beta}_t (\mathbf{I}_K \otimes S_*) + \alpha_t (\mathbf{I}_K \otimes \underline{\mathbf{S}}_t) \quad \underline{\mathbf{S}}_t := \frac{1}{K} \sum_{k=1}^K S_{tk}$$

$$\mathbf{P}_t := \bar{\alpha}_t \mathbf{G}_t^+ [\beta_t \tilde{\mathbf{S}} \quad \bar{\beta}_t (\mathbf{1}_K \otimes S_*)] \quad \mathbf{Q}_t := \alpha_t \mathbf{G}_t^+ \Pi \mathbf{S}_t$$

where $\Pi := \frac{1}{K} (\mathbf{1}_{K \times K} \otimes \mathbf{I}_d)$ is an orthogonal projection matrix and $\alpha_0 \equiv 0$.

270

271

272

273

274

275

276

277

278

279

Theorem 1. *Conditional on the initial data $D_0 := (\tilde{D}_1, \dots, \tilde{D}_K, D_*)$, the estimates $\hat{\theta}_t = \text{vec}(\hat{\theta}_{t1}, \dots, \hat{\theta}_{tK})$ are Gaussian with mean and variance*

$$\mathbb{E}[\hat{\theta}_t | D_0] = \mathbf{M}_t \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ X_*^+ y_* \end{bmatrix}, \quad \text{Cov}(\hat{\theta}_t | D_0) = \mathbf{C}_t$$

where the matrices \mathbf{M}_t and \mathbf{C}_t are defined recursively with $\mathbf{M}_0 = \mathbf{P}_0$ and $\mathbf{C}_0 = \mathbf{0}_{Kd \times Kd}$ and

$$\mathbf{M}_t = \mathbf{P}_t + \mathbf{Q}_t \mathbf{M}_{t-1}, \quad \mathbf{C}_t = \mathbf{Q}_t (\sigma^2 \mathbf{S}_t^+ + \mathbf{C}_{t-1}) \mathbf{Q}_t, \quad t \geq 1.$$

280

281

282

283

284

285

286

Theorem 1 shows that the conditional mean of each estimate $\hat{\theta}_{tk}$ is a linear combination of the individual ordinary least squares (OLS) estimates $\tilde{X}_1^+ \tilde{y}_1, \dots, \tilde{X}_K^+ \tilde{y}_K$ and $X_*^+ y_*$ for the private data and public data, respectively. For each generation t , similarity across entities can be assessed by comparing the rows of the $K \times (K+1)$ block partitioning of \mathbf{M}_t . At initialization, the off-diagonal blocks for the private data are zeroed out, but in later stages, these blocks become nonzero thereby allowing private data to be shared across entities. Homogenization (i.e., shrinkage towards a global consensus) occurs when row blocks are identical, and thus each entity has the same mean.

287

288

289

For our next result we mimic the experimental setup in Section 6 and assume that the initial data are generated from a Gaussian model with a common ground truth parameter and the heterogeneity across datasets arises from the differences in the features, i.e., the matrices $\tilde{S}_1, \dots, \tilde{S}_K$.

290

291

292

293

Theorem 2. *Suppose that the initial data are generated independently according to the model $y | x \sim \mathcal{N}(x^\top \theta, \sigma^2 \mathbf{I}_d)$ where $\theta \in \mathbb{R}^d$ is a fixed parameter. If $\mathbf{G}_1, \dots, \mathbf{G}_t$ are full rank then*

$$\mathbb{E}[\hat{\theta}_t] = (\mathbf{I} - \mathbf{Q}_t \cdots \mathbf{Q}_1 (\mathbf{I} - \mathbf{G}_0 \mathbf{G}_0^+)) (\mathbf{1}_K \otimes \theta), \quad \text{Cov}(\hat{\theta}_t) = \mathbf{M}_t \begin{bmatrix} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_*^+ \end{bmatrix} \mathbf{M}_t^\top + \mathbf{C}_t$$

294

295

296

297

298

299

300

301

To help interpret this result, observe that if \mathbf{G}_0 is full rank, then each initial estimate is unbiased, and unbiasedness persists throughout every stage of training. Conversely, if \mathbf{G}_0 is rank deficient, then at least one (and possibly all) of the initial estimates is biased. Remarkably, Theorem 2 shows that it may still be possible for all entities have vanishing bias, provided that $\mathbf{Q}_t \cdots \mathbf{Q}_s$ converges to zero. Specific conditions under which this occurs are considered in the next section.

302

303

304

305

Asymptotic Variance. To provide a finer analysis of the training dynamics we now suppose that the weights and features satisfy $\alpha_t = \alpha$, $\beta_t = \beta$, and $\mathbf{S}_t = \mathbf{S}$ for $t \geq 1$. Setting $\mathbf{P} = \mathbf{P}_1$ and $\mathbf{Q} = \mathbf{Q}_1$, the matrices \mathbf{M}_t and \mathbf{C}_t defined in Theorem 1 can be expressed explicitly as

$$\mathbf{M}_t = \mathbf{Q}^t \mathbf{P}_0 + \left(\sum_{s=0}^{t-1} \mathbf{Q}^s \right) \mathbf{P}, \quad \mathbf{C}_t = \sigma^2 \sum_{s=1}^t \mathbf{Q}^s \mathbf{S}^+ (\mathbf{Q}^s)^\top \quad (1)$$

306

307

308

309

310

311

312

Classical results in matrix analysis (Higham, 2002) imply that if the spectral radius of \mathbf{Q} is strictly less than one, then these matrices converge to well-defined limits \mathbf{M} and \mathbf{C} satisfying

$$\mathbf{M} := (\mathbf{I} - \mathbf{Q})^{-1} \mathbf{P}, \quad \text{vec}(\mathbf{C}) := \sigma^2 (\mathbf{I} - \mathbf{Q} \otimes \mathbf{Q})^{-1} \text{vec}(\mathbf{Q} \mathbf{S}^+ \mathbf{Q}) \quad (2)$$

313

314

315

316

317

318

319

320

321

322

323

The following result provides a sufficient condition for convergence in terms of the triple $(\tilde{\mathbf{S}}, \mathbf{S}_*, \mathbf{S})$. In particular, if \mathbf{S} is proportional to $\tilde{\mathbf{S}}$ then the condition is satisfied for all $0 \leq \alpha < 1$ and $0 \leq \beta \leq 1$. Note that the boundary case $\alpha = 1$ corresponds to the recursive training setting of Shumailov et al. (2024) where the variance increases linearly across generations, and thus convergence does not occur.

Lemma 1. *Suppose that $\mathbf{S} \propto \lambda \tilde{\mathbf{S}} + (1 - \lambda)(\mathbf{I}_K \otimes \mathbf{S}_*)$ for some $0 < \lambda \leq 1$. Then, the spectral radius of \mathbf{Q} is strictly less than one for all $0 \leq \alpha < 1$ and $0 < \beta \leq 1$.*

We summarize our findings with the following characterization of the asymptotic variance:

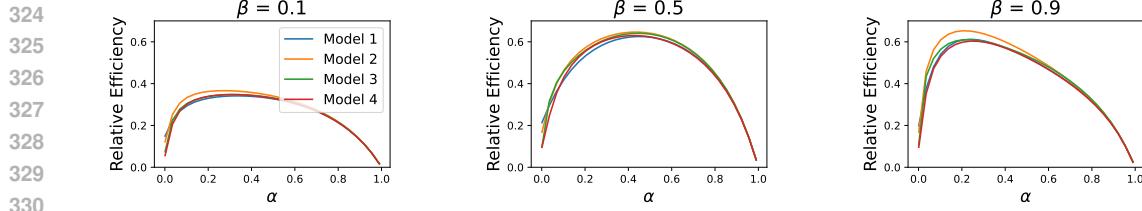


Figure 2: **Predicted relative efficiency across α, β values for a $K = 4$ model system (dimension 15 and rank 5).** Curves show ratio of MSE of the minimum variance unbiased estimator to asymptotic MSE for a given α, β setting obtained from Theorem 3 (1 is optimal). Setting $\alpha = \beta = 0.5$ produces best results across models.

Theorem 3. Consider the setting of Theorem 2 and suppose that $\alpha_t = \alpha$, $\beta_t = \beta$, and $S_t = S$ for $t \geq 1$. If $G = G_1$ has full rank and Q has spectral radius strictly less than one, then

$$\mathbb{E}[\theta_t] \xrightarrow{t \rightarrow \infty} \mathbf{1}_K \otimes \theta, \quad \text{Cov}(\hat{\theta}_t) \xrightarrow{t \rightarrow \infty} \sigma^2 M \begin{bmatrix} \tilde{S}^+ & 0 \\ 0 & S_*^+ \end{bmatrix} M^\top + C$$

where M and C are given by (2).

MSE and relative efficiency. The expression for the mean and variance in Theorems 2 and 3 provide explicit formulas for the mean squared error (MSE) $\mathbb{E}[\|\hat{\theta}_{tk} - \theta\|^2]$ of entity k at each generation t and the mean squared prediction error (MSPE) $\mathbb{E}[\|\tilde{X}_m(\hat{\theta}_{tk} - \theta)\|^2]$ for entity m 's private feature matrix.

We can use this to compute the optimal α, β values for the interactive training setting. Figure 2 compares the asymptotic MSE for a training workflow with given α, β (from Theorem 3) with the MSE of an idealized setting where each entity has access to the entire collection of real data (both private and public). Each curve represents the relative efficiency, i.e., the ratio of optimal MSE to entity-specific workflow MSE, with values close to one indicating near optimality. These results demonstrate that a setting with $\beta = 0.5$ and $\alpha = 0.5$ achieves the best global performance for all models. When β is much larger (0.9), relatively small α values also improve model performance.

Key takeaways. Our theoretical analysis shows that a moderate α/β setting improves convergence. However, homogenization effects increase with α , as models train on more of each others' data. This can be seen in Figure 2 and is substantiated via experiments below.

6 EXPERIMENTAL EVALUATION

To understand how our theoretical predictions bear out in practice, we run experiments on text-generation models. In each, we train K interacting models (per our framework in Figure 1) for several generations and evaluate how their performance changes on their own and other models' tasks. Here, we present the setup and results for a $K = 2$ and $K = 3$ interacting at $\beta = 0.5$ model system. See Appendix for full $K = 2$ results at various beta values.

Table 2: **Change in loss behavior for $K = 2$ interacting models at $\beta = 0.5$.** We show results as *initial* \rightarrow *final* prediction loss values for models on their own and the other models' tasks on their own and the other models' tasks over T generations. For clarity, we colorize loss **increase**, **decrease**, and **constancy** ($\Delta \leq 0.1$).

(a) OPT models ($T=15$)			(b) Llama 3.2 (1B) models ($T=15$)			(c) Llama 3.2 (3B) models ($T=8$)					
	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$		$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$				
Model 1 on Task 1	3.3 \rightarrow 3.3	3.3 \rightarrow 3.3	3.3 \rightarrow 3.5	Model 1 on Task 1	2.8 \rightarrow 2.9	2.8 \rightarrow 2.9	2.8 \rightarrow 3.0	Model 1 on Task 1	2.4 \rightarrow 2.5	2.4 \rightarrow 2.5	2.4 \rightarrow 2.6
Model 2 on Task 2	1.8 \rightarrow 1.7	1.8 \rightarrow 1.7	1.8 \rightarrow 2.2	Model 2 on Task 2	1.2 \rightarrow 1.2	1.2 \rightarrow 1.3	1.2 \rightarrow 1.9	Model 2 on Task 2	1.0 \rightarrow 1.0	1.0 \rightarrow 1.0	1.0 \rightarrow 1.3
Model 1 on Task 2	3.1 \rightarrow 3.5	3.1 \rightarrow 1.8	3.1 \rightarrow 2.2	Model 1 on Task 2	2.0 \rightarrow 2.5	2.0 \rightarrow 1.4	2.0 \rightarrow 1.8	Model 1 on Task 2	1.8 \rightarrow 2.1	1.8 \rightarrow 1.2	1.8 \rightarrow 1.3
Model 2 on Task 1	5.1 \rightarrow 5.1	5.1 \rightarrow 3.5	5.1 \rightarrow 3.5	Model 2 on Task 1	3.7 \rightarrow 4.2	3.7 \rightarrow 3.0	3.7 \rightarrow 3.0	Model 2 on Task 1	3.5 \rightarrow 3.8	3.5 \rightarrow 2.6	3.5 \rightarrow 2.7

Experiment setup. Training large language models from scratch is computationally infeasible for us, so we simulate the initial setup of language models trained on dataset (D_*, \tilde{D}_k) at time $t = 0$ by fine-tuning $K = 2$ instances of a given pre-trained model architecture on carefully chosen D_*, \tilde{D}_k . We experiment with two language model architectures—OPT-350m (Zhang et al., 2022), Llama 3.2 1B (Dubey et al., 2024), and Llama 3.2 3B (Dubey et al., 2024)—to assess how interactive

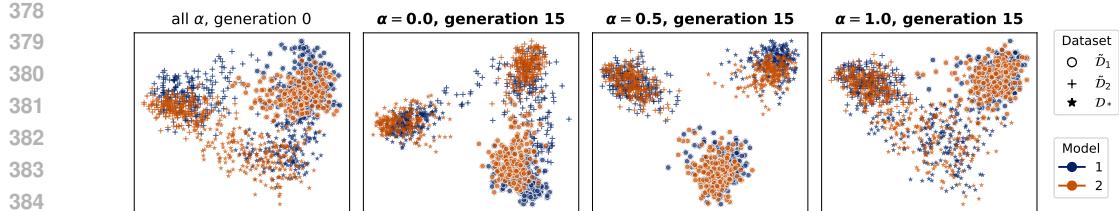


Figure 3: **PCA of embeddings of outputs produced by models θ_{t1} and θ_{t2} on datasets \tilde{D}_1 , \tilde{D}_2 , and \tilde{D}_* .** **Results for $K = 2$ Llama models trained with $\beta = 0.5$ and varying α .** Leftmost plot shows embeddings at generation $t = 0$, which are identical for all α ; while right plots show embeddings at $t = 15$ with different α .

Table 3: **Cosine similarity of embedded output representations for $K = 2$ Llama models at $\beta = 0.5$.** We show initial ($t=0$) \rightarrow final ($t=15$) for \tilde{D}_1 , \tilde{D}_2 , and \tilde{D}_* . We colorize **increase** and **decrease**.

	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$
\tilde{D}_1	0.73 \rightarrow 0.70	0.73 \rightarrow 0.88	0.73 \rightarrow 0.86
\tilde{D}_2	0.88 \rightarrow 0.79	0.88 \rightarrow 0.93	0.88 \rightarrow 0.94
\tilde{D}_*	0.50 \rightarrow 0.59	0.50 \rightarrow 0.64	0.50 \rightarrow 0.58

training scales. Public sources (Touvron et al., 2023a; Zhang et al., 2022) state that both models were pretrained on BookCorpus (Zhu et al., 2015), CC-Stories (Anderson, 2022), the English portion of CommonCrawl, and public Reddit data. We approximate D_* with BookCorpus due to practical constraints. Each model is given its own initial task-specific dataset \tilde{D}_k —SciQ (Johannes Welbl, 2017) (science questions) for the $k = 0$ model; and OpenAI’s GSM8K (Cobbe et al., 2021) (grade school level math problems) for the $k = 1$ model. **When simulating $K = 3$, we assign the third model the AI2 ARC dataset (reasoning questions)** (Clark et al., 2018).

Interactive training proceeds as outlined in Figure 1, with fixed α, β values for each experiment. After training a new model generation $\hat{\theta}_{tk}$, we use $\hat{\theta}_{tk}$ to produce synthetic data $D_{t+1,k}$ that becomes part of the next generation’s training data (if $\alpha > 0$). We produce $D_{t+1,k}$ by randomly sampling prompts from \tilde{D}_k for each of the K models and prompting $\hat{\theta}_{tk}$ to complete the text.

Training and evaluation. We run experiments on $K = 2$ model systems with $\alpha \in \{0, 0.5, 1\}$ and $\beta \in \{0, 0.5, 1\}$, each for $T = 15$ generations of training. At each training generation, models are fine-tuned on datasets of fixed size $n = 12,500$ drawn i.i.d. from the datasets \tilde{D}_k , D_* , D_t with weights $\bar{\alpha}\beta$, $\bar{\alpha}\beta$, and α/K , respectively. This mimics the *accumulate and subsample* setup of Kazdan et al. (2025) with the additional wrinkle of data-mediated model interactions.

We train each model for 100 steps per generation on a single NVIDIA H200 GPU using mixed-precision, the AdamW optimizer with a learning rate of $8e^{-6}$, warmup ratio of 0.025, and gradient accumulation over 2 steps. **A table with training hyperparameters is in the Appendix.** After training each generation, we record token-wise average cross-entropy loss by feeding each model prompts from each test set of private data \tilde{D}_k and evaluating semantic “distance” between predicted and correct answer. We also compute embedded representations of models’ completions of the first 200 elements of each of \tilde{D}_k and D_* , to see how various α, β affect models’ representational spaces. Embeddings are computed via the SentenceTransformers python library. If models produce outputs with similar embeddings (measured via cosine similarity), their feature spaces are more aligned. These two metrics allow us to evaluate how data-mediated interactions affect (1) models’ performance on their own and other models’ tasks and (2) model homogeneity.

Results. As predicted in Figure 2, an $\alpha = 0.5, \beta = 0.5$ setting produces optimal results in terms of model performance across tasks. Table 2 reports the change in models’ loss values between the first and last training generation for the $\beta = 0.5$ setting. When $\alpha = 0$, the same (human-generated) data is used for each training update, resulting in stable or slightly worse performance on different tasks, as models are forced into a local minimum. When $\alpha = 1.0$, models are only trained on generated outputs. They degrade on their original task due to the lack of real data but improve slightly on the other model’s task. However, at $\alpha = 0.5$, models perform well on their own tasks and improve on the other model’s task. **Table 4 shows similar results when we scale up $K = 2 \rightarrow K = 3$, introducing more diversity.** Results for other β and $K = 3$ are in Appendix and echo findings here.

432 While some amount of mixing improves model performance on previously-unseen tasks, homoge-
 433 nization occurs for D_* at all α and for \tilde{D}_k when $\alpha > 0$. These are the settings under which models
 434 share information, either via common dataset D_* or interactive training when $\alpha > 0$. Figure 3 shows
 435 the benefit of interactive training when α, β are reasonable, visualizing PCA-reduced embeddings
 436 from \tilde{D}_1 , \tilde{D}_2 , and D_* for $\beta = 0.5$ and varying α as training progresses. For $\alpha = 0.5$, the PCA shows
 437 clearly separated task clusters, indicating that both models are better tailored to the individual tasks.
 438 In contrast, the lack of well-defined clusters when $\alpha \neq 0.5$ suggests reduced sensitivity to task type,
 439 e.g. generic answers. Yet, in Table 3, we see that when $\alpha = 0$, models homogenize slightly on the
 440 shared task D_* but diverge on model-specific tasks. This makes sense since models the models do
 441 not train on each other’s tasks. Once $\alpha > 0$, homogenization increases for all datasets/tasks.

442 Table 4: **Change in loss behavior for $K = 3$ interacting models at $\beta = 0.5$. We show results as initial \rightarrow**
 443 **final prediction loss values for models on their own and the other models’ tasks over T generations. For**
 444 **clarity, we colorize loss increase, decrease, and constancy** ($\Delta \leq 0.1$).

(a) OPT models ($T=15$)			(b) Llama 3.2 (1B) models ($T=8$)			
	$\alpha = 0$	$\alpha = 0.5$		$\alpha = 0$	$\alpha = 0.5$	
Model 1 on Task 1	3.3 \rightarrow 3.3	3.3 \rightarrow 3.3	3.3 \rightarrow 3.5	2.6 \rightarrow 2.7	2.6 \rightarrow 2.7	2.6 \rightarrow 2.8
Model 2 on Task 2	1.8 \rightarrow 1.7	1.8 \rightarrow 1.7	1.8 \rightarrow 2.3	1.1 \rightarrow 1.1	1.1 \rightarrow 1.2	1.1 \rightarrow 1.4
Model 3 on Task 3	2.8 \rightarrow 2.9	2.8 \rightarrow 2.9	2.8 \rightarrow 3.1	2.3 \rightarrow 2.8	2.3 \rightarrow 2.6	2.3 \rightarrow 2.5
Model 1 on Task 2	3.1 \rightarrow 3.5	3.1 \rightarrow 1.9	3.1 \rightarrow 2.2	2.0 \rightarrow 2.4	2.0 \rightarrow 1.3	2.0 \rightarrow 1.4
Model 2 on Task 3	3.9 \rightarrow 4.2	3.9 \rightarrow 3.1	3.9 \rightarrow 3.1	3.1 \rightarrow 3.4	3.1 \rightarrow 2.5	3.1 \rightarrow 2.5
Model 3 on Task 1	3.7 \rightarrow 3.8	3.7 \rightarrow 3.4	3.7 \rightarrow 3.6	3.1 \rightarrow 3.7	3.1 \rightarrow 3.0	3.1 \rightarrow 2.8
Model 1 on Task 3	3.3 \rightarrow 3.6	3.3 \rightarrow 3.0	3.3 \rightarrow 3.1	2.9 \rightarrow 3.1	2.9 \rightarrow 2.5	2.9 \rightarrow 2.5
Model 2 on Task 1	5.1 \rightarrow 5.1	5.1 \rightarrow 3.5	5.1 \rightarrow 3.5	3.8 \rightarrow 4.2	3.8 \rightarrow 2.8	3.8 \rightarrow 2.8
Model 3 on Task 2	2.9 \rightarrow 2.9	2.9 \rightarrow 1.9	2.9 \rightarrow 2.2	2.0 \rightarrow 2.5	2.0 \rightarrow 1.3	2.0 \rightarrow 1.4

462 7 DISCUSSION

463 **Limitations.** Our work has several limitations. First, our theory considers only linear models, which,
 464 while common in the model collapse literature, may not capture nuances present in larger models.
 465 Second, we run experiments on LLMs in controlled settings, the dynamics of which may differ from
 466 real-world LLMs. Third, arguments against the increasing presence of generated outputs in training
 467 datasets (e.g. (Drayson et al., 2025)) are in Appendix B. Also, our theoretical framework assumes
 468 that new data in model updates is purely synthetic. In reality, if internet scrapes are used to create
 469 model update datasets, they will contain both synthetic and real data. Finally, we assume that model
 470 trainers use new scraped data for each model update but only reuse data from initial training. This
 471 assumption may limit the range of outcomes.

472 **Broader Impacts.** If data-mediated interactions homogenize generative models, causing them to
 473 coalesce on certain viewpoints, this could lead to pervasive bias in AI-generated content. Peterson
 474 (2025) discusses this possibility, while Wenger & Kenett (2025) showed homogeneity across creative
 475 outputs from many LLMs, suggesting these homogenization effects may already be felt. Much future
 476 study is needed to evaluate the extent to which data-mediated interactions fuel homogeneity.

477 **Conclusions and Future Work.** We provide a first look at possible outcomes of genAI models
 478 trained on each others’ data and find mixed effects. Training on other models’ data exposes models
 479 to concepts possibly missed in their own training data, but can homogenize model behaviors. Future
 480 work could consider additional nuances of interactions between models, explore how these interactions
 481 evolve in other modalities like image generation, and investigate whether fixed points (e.g. like the
 482 universal $\pi^2/6$ pathway of (Dey & Donoho, 2024)) exist under this paradigm.

486 REFERENCES
487488 How Generative AI is Changing Creative Work. *Harvard Business Review*, 2022. <https://hbr.org/2022/11/how-generative-ai-is-changing-creative-work>.
489490 Command r and command r plus model card, 2024. <https://docs.cohere.com/docs/responsible-use>.
491492 Marah Abdin, Jyoti Aneja, Sebastien Bubec, Caio César, Teodoro Mendes,
493 Weizhu Chen, et al. Phi-2: The surprising power of small language models,
494 2023. <https://www.microsoft.com/en-us/research/blog/phi-2-the-surprising-power-of-small-language-models/>.
495496 Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
497 Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
498 capable language model locally on your phone. *arXiv preprint arXiv:2404.14219*, 2024.
499500 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
501 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
502 *arXiv preprint arXiv:2303.08774*, 2023.
503504 Meta AI. The Future of AI: Built with LLama, 2024a. <https://ai.meta.com/blog/future-of-ai-built-with-llama/>.
505506 Meta AI. Llama 4 model card, 2025. https://github.com/meta-llama/llama-models/blob/main/models/llama4/MODEL_CARD.md.
507508 Open AI. Understanding the source of what we see
509 and hear online, 2024b. <https://openai.com/index/understanding-the-source-of-what-we-see-and-hear-online/>.
510511 Sina Alejomammad, Josue Casco-Rodriguez, Lorenzo Luzi, Ahmed Intiaz Humayun, Hossein
512 Babaei, Daniel LeJeune, Ali Siahkoohi, and Richard G Baraniuk. Self-consuming generative
513 models go mad. *Proc. of ICLR*, 2024.
514515 Mayssa Ahmad Ali Elfa and Mina Eshaq Tawfils Dawood. Using artificial intelligence for enhancing
516 human creativity. *Journal of Art, Design and Music*, 2(2):3, 2023.
517518 Benjamin Anderson. Cc-stories, 2022. <https://huggingface.co/datasets/andersonbcdefg/cc-stories-parquet/commits/main>.
519520 Anthropic. Dataset card for hh-rlhf. <https://huggingface.co/datasets/Anthropic/hh-rlhf>.
521522 Anthropic. Model card and evaluations for claude models, 2023. <https://www-cdn.anthropic.com/bd2a28d2535bfb0494cc8e2a3bf135d2e7523226/Model-Card-Claude-2.pdf>.
523524 Daniel Barzilai and Ohad Shamir. When models don't collapse: On the consistency of iterative mle.
525 *arXiv preprint arXiv:2505.19046*, 2025.
526527 Marc Brinner, Tarek Al Mustafa, and Sina Zarrieß. Enhancing domain-specific encoder models with
528 llm-generated data: How to leverage ontologies, and how to do without them. *arXiv preprint arXiv:2503.22006*, 2025.
529530 Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, et al. Language models
531 are few-shot learners. *Proc. of NeurIPS*, 2020.
532533 Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
534 Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
535 Scaling language modeling with pathways. *Journal of Machine Learning Research*, 2023.
536537 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
538 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
539 *arXiv:1803.05457v1*, 2018.
540

540 Nick Clegg. Labeling AI-Generated Images on Facebook, Instagram and
 541 Threads. *Meta AI Blog*, 2024. <https://about.fb.com/news/2024/02/labeling-ai-generated-images-on-facebook-instagram-and-threads/>.

542

543 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 544 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 545 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 546 2021.

547

548 Common Crawl. Common Crawl - Open Repository of Web Crawl Data., 2025. <https://commoncrawl.org/>.

549

550 Sumanth Dathathri, Abigail See, Sumedh Ghaisas, Po-Sen Huang, Rob McAdam, Johannes Welbl,
 551 Vandana Bachani, Alex Kaskasoli, Robert Stanforth, Tatiana Matejovicova, et al. Scalable water-
 552 marking for identifying large language model outputs. *Nature*, 634(8035), 2024.

553

554 Apratim Dey and David Donoho. Universality of the $\pi^2/6$ pathway in avoiding model collapse.
 555 *arXiv preprint arXiv:2410.22812*, 2024.

556 Elvis Dohmatob, Yunzhen Feng, and Julia Kempe. Model collapse demystified: The case of regression.
 557 *Proc. of NeurIPS*, 2025.

558

559 George Drayson, Emine Yilmaz, and Vasileios Lampos. Machine-generated text detection prevents
 560 language model collapse. *arXiv preprint arXiv:2502.15654*, 2025.

561 Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, et al. Glam: Efficient
 562 scaling of language models with mixture-of-experts. In *Proc. of ICML*, 2022.

563

564 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 565 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 566 *arXiv preprint arXiv:2407.21783*, 2024.

567

568 Yunzhen Feng, Elvis Dohmatob, Pu Yang, Francois Charton, and Julia Kempe. Beyond model col-
 569 lapse: Scaling up with synthesized data requires reinforcement. In *ICML Workshop on Theoretical
 Foundations of Foundation Models*, 2024.

570

571 US GAO. Science and tech spotlight - generative ai in health care, 2024. GAO-24-107634, <https://www.gao.gov/products/gao-24-107634>.

572

573 Matthias Gerstgrasser, Rylan Schaeffer, Apratim Dey, Rafael Rafailov, et al. Is model collapse
 574 inevitable? breaking the curse of recursion by accumulating real and synthetic data. *Proc. of
 575 COLM*, 2024.

576

577 Kunal Handa, Alex Tamkin, Miles McCain, Saffron Huang, Esin Durmus, Sarah Heck, Jared Mueller,
 578 Jerry Hong, Stuart Ritchie, Tim Belonax, et al. Which Economic Tasks are Performed with AI?
 579 Evidence from Millions of Claude Conversations. *arXiv preprint arXiv:2503.04761*, 2025.

580

581 Emily Harding. 2024 Priorities for the Intelligence Community. *Center for Strat-
 582 egic and International Studies*, 2024. <https://www.csis.org/analysis/2024-priorities-intelligence-community-0>.

583

584 Ryuichiro Hataya, Han Bao, and Hiromi Arai. Will large-scale generative models corrupt future
 585 datasets? In *Proc. of ICCV*, 2023.

586

587 Nicholas J Higham. *Accuracy and stability of numerical algorithms*. SIAM, 2002.

588

589 Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
 590 Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
 591 Training compute-optimal large language models. *Proc. of NeurIPS*, 2022.

592

593 Adit Jain and Vikram Krishnamurthy. Interacting large language model agents. bayesian social
 594 learning based interpretable models. *IEEE Access*, 2025.

AQ Jiang, A Sablayrolles, A Mensch, C Bamford, DS Chaplot, D de las Casas, F Bressand, G Lengyel,
 595 G Lample, L Saulnier, et al. Mistral 7b (2023). *arXiv preprint arXiv:2310.06825*, 2023.

594 Matt Gardner Johannes Welbl, Nelson F. Liu. Crowdsourcing multiple choice science questions.
 595 2017.

596

597 Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
 598 Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
 599 *arXiv preprint arXiv:2001.08361*, 2020.

600 Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L
 601 Donoho, and Sanmi Koyejo. Collapse or thrive? perils and promises of synthetic data in a
 602 self-generating world. *Proc. of ICML*, 2025.

603

604 Yo-when Kim, Samarth Mishra, SouYoung Jin, Rameswar Panda, Hilde Kuehne, Leonid Karlinsky,
 605 Venkatesh Saligrama, Kate Saenko, Aude Oliva, and Rogerio Feris. How transferable are video
 606 representations based on synthetic data? *Proc. of NeurIPS*, 2022.

607 Yuzhong Li, Sébastien Bubeck, Ronen Eldan, Allie Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
 608 Textbooks are all you need ii: phi-1.5 technical report. *arXiv preprint arXiv:2309.05463*, 2023.

609

610 Shayne Longpre, Robert Mahari, Naana Obeng-Marnu, William Brannon, Tobin South, Jad Kabbara,
 611 and Sandy Pentland. Data authenticity, consent, and provenance for ai are all broken: What will it
 612 take to fix them? 2024.

613 Matteo Marchi, Stefano Soatto, Pratik Chaudhari, and Paulo Tabuada. Heat death of generative
 614 models in closed-loop learning. *Proc. of IEEE 63rd Conference on Decision and Control (CDC)*,
 615 2024.

616 Gonzalo Martínez, Lauren Watson, Pedro Reviriego, José Alberto Hernández, Marc Juarez, and Rik
 617 Sarkar. Towards understanding the interplay of generative artificial intelligence and the internet. In
 618 *International Workshop on Epistemic Uncertainty in Artificial Intelligence*. Springer, 2023.

619

620 Hana Matatov, Marianne Aubin Le Quéré, Ofra Amir, and Mor Naaman. Examining the prevalence
 621 and dynamics of ai-generated media in art subreddits. *arXiv preprint arXiv:2410.07302*, 2024.

622 Andrew J Peterson. Ai and the problem of knowledge collapse. *AI & SOCIETY*, pp. 1–21, 2025.

623

624 Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
 625 understanding by generative pre-training. 2018.

626 Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
 627 models are unsupervised multitask learners. *OpenAI blog*, 1(8):9, 2019.

628

629 Sandeep Reddy. Generative ai in healthcare: an implementation science informed translational path
 630 on application, integration and governance. *Implementation Science*, 19(1):27, 2024.

631

632 Reuters. OpenAI says ChatGPT's weekly users have grown to 200 million, 2024.
 633 [https://www.reuters.com/technology/artificial-intelligence/
 634 openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/](https://www.reuters.com/technology/artificial-intelligence/openai-says-chatgpts-weekly-users-have-grown-200-million-2024-08-29/).

635 Vinu Sankar Sadasivan, Aounon Kumar, Sriram Balasubramanian, Wenxiao Wang, and Soheil Feizi.
 636 Can ai-generated text be reliably detected? *arXiv preprint arXiv:2303.11156*, 2023.

637

638 Rylan Schaeffer, Joshua Kazdan, Alvan Caleb Arulandu, and Sanmi Koyejo. Position: Model collapse
 639 does not mean what you think. *arXiv preprint arXiv:2503.03150*, 2025.

640 Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal. Ai
 641 models collapse when trained on recursively generated data. *Nature*, 631(8022):755–759, 2024.

642

643 Zhen Sun, Zongmin Zhang, Xinyue Shen, Ziyi Zhang, Yule Liu, Michael Backes, Yang Zhang, and
 644 Xinlei He. Are We in the AI-Generated Text World Already? Quantifying and Monitoring AIGT
 645 on Social Media. *Proc. of ACL*, 2025.

646 Gemini Team, Petko Georgiev, Ving Ian Lei, Ryan Burnell, Libin Bai, Anmol Gulati, Garrett
 647 Tanzer, Damien Vincent, Zhufeng Pan, Shibo Wang, et al. Gemini 1.5: Unlocking multimodal
 648 understanding across millions of tokens of context. *arXiv preprint arXiv:2403.05530*, 2024a.

648 Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
 649 Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba-1.5: Hybrid transformer-mamba
 650 models at scale. *arXiv preprint arXiv:2408.12570*, 2024b.

651

652 Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
 653 Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
 654 applications. *arXiv preprint arXiv:2201.08239*, 2022.

655 Xinyu Tian and Xiaotong Shen. Generative distribution prediction: A unified approach to multimodal
 656 learning. *arXiv preprint arXiv:2502.07090*, 2025.

657

658 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 659 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambr, Faisal Azhar, et al. Llama: Open and
 660 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

661 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 662 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
 663 and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

664 Ze Wang, Zekun Wu, Jeremy Zhang, Navya Jain, Xin Guan, and Adriano Koshiyama. Bias am-
 665 plification: Language models as increasingly biased media. *arXiv preprint arXiv:2410.15234*,
 666 2024.

667

668 Emily Wenger and Yoed Kenett. We're different, we're the same: Creative homogeneity across llms.
 669 *arXiv preprint arXiv:2501.19361*, 2025. <https://arxiv.org/abs/2501.19361>.

670 xAI. Grok 3 Beta - The Age of Reasoning Agents, 2025. <https://x.ai/news/grok-3>.

671

672 Hanlin Zhang, Benjamin L Edelman, Danilo Francati, Daniele Venturi, Giuseppe Ateniese, and Boaz
 673 Barak. Watermarks in the sand: Impossibility of strong watermarking for generative models. *arXiv*
 674 *preprint arXiv:2311.04378*, 2023.

675 Jinghui Zhang, Dandan Qiao, Mochen Yang, and Qiang Wei. Regurgitative training: The value of
 676 real data in training large language models. *arXiv preprint arXiv:2407.12835*, 2024.

677

678 Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuhui Chen, Christopher
 679 Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
 680 Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
 681 Opt: Open pre-trained transformer language models, 2022.

682 Yukun Zhu, Ryan Kiros, Richard Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
 683 and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by watching
 684 movies and reading books. In *Proceedings of the IEEE International Conference on Computer*
 685 *Vision (ICCV)*, pp. 19–27, Santiago, Chile, 2015.

686

687 Fuzhen Zhuang, Zhijuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and
 688 Qing He. A comprehensive survey on transfer learning. *Proceedings of the IEEE*, 109(1):43–76,
 689 2020.

690 Edward Zitron. There is No AI Revolution, 2025. <https://www.wheresyoured.at/wheres-the-money/>.

691

692

693

694

695

696

697

698

699

700

701

702 **Table 5: Examples of training data listed for prominent language models.** ● = use explicitly stated; ○ =
 703 significant overlap expected (e.g. GLaM (Du et al., 2022) and PaLM (Chowdhery et al., 2023) are trained on
 704 Microsoft’s internal re-creation of WebText (Brown et al., 2020)). We only include models for which training
 705 data sources are explicitly stated. See Table 6 in Appendix for information on other prominent models.

Model	CommonCrawl	WebText	Github	Wikipedia	Books	ArXiv	StackExchange	News
Chinchilla (Hoffmann et al., 2022)	●		●	●	●			●
GLaM (Du et al., 2022)		○		●	●			●
GPT (Radford et al., 2018)								
GPT-2 (Radford et al., 2019)		●						
GPT-3 (Brown et al., 2020)	●	●		●	●			●
LaMDA (Thoppilan et al., 2022)	●			●			○	
Llama 1 (Touvron et al., 2023a)	●		●	●	●	●	●	
PaLM (Chowdhery et al., 2023)	●	○		●	●	●		●
Phi 2 (Abdin et al., 2023)	●			●	●	●		

Appendix

A EXACT TRAINING DATA STATEMENTS FROM LLM PAPERS

721 Table 6 lists statements made about model training and fine-tuning data for large-scale generative AI
 722 models that do not explicitly list training data sources.

Model	Pre-training data	Fine-tuning data
Claude 2 (Anthropic, 2023)	Claude models are trained on a proprietary mix of publicly available information from the Internet, datasets that we license from third party businesses, and data that our users affirmatively share or that crowd workers provide.	Publicly released on HuggingFace (Anthropic).
GPT4+ (Achiam et al., 2023)	No information provided	No information provided
Grok 3 (xAI, 2025)	No information provided	No information provided
Jamba (Team et al., 2024b)	Our pre-training dataset is a mixture of publicly available web documents, code, books and scientific articles.	When performing supervised fine-tuning, we make heavy use of synthetic data.
Llama 3 (Dubey et al., 2024)	We create our dataset for language model pre-training from a variety of data sources containing knowledge until the end of 2023. Much of the data we utilize is obtained from the web	We produce the aligned Llama 3 models by applying several rounds of post-training, or aligning the model with human feedback.
Llama 4 (AI, 2025)	A mix of publicly available, licensed data and information from Meta’s products and services. This includes publicly shared posts from Instagram and Facebook and people’s interactions with Meta AI.	No information provided.
Phi 3 (Abdin et al., 2024)	Our training data of consists of heavily filtered publicly available web data ... from various open internet sources, as well as synthetic LLM-generated data.	[Supervised fine tuning] leverages highly curated high-quality data across diverse domains, e.g., math, coding, reasoning, conversation, model identity, and safety.

740 **Table 6: Exact wording of training and fine-tuning data discussion from whitepapers in which
 741 data sources are not explicitly listed.**

B COUNTERARGUMENTS

747 We argue that AI-generated content from a variety of sources will be increasingly prevalent online,
 748 resulting in future genAI models being regularly trained on each other’s outputs. We believe this
 749 vision of future data-mediated interactions between models is reasonable, based on evidence from
 750 academic literature and corporate reports. However, others may disagree with our argument. Here,
 751 we present possible counterarguments to our view to catalyze future work and discussion.

752 **Can’t we use watermarks to filter AI-generated content from future internet-scraped datasets?**

753 Several companies have publicly stated that they watermark AI-generated content (Dathathri et al.,
 754 2024; AI, 2024b; Clegg, 2024), making this argument plausible. Furthermore, (Drayson et al.,
 755 2025) show that using watermark detection techniques can help avoid model collapse under certain
 circumstances. However, reliance on watermarking has two major issues. First, watermarks are

756 **Table 7: Change in loss behavior for $K = 2$ interacting Llama models at various α, β .** We show
 757 results as *initial* \rightarrow *final* prediction loss values for models on their own and the other models' tasks, at
 758 *initial* = $T = 0$ and *final* = $T = 15$ generations. For clarity, we colorize loss **increase**, **decrease**,
 759 and **constancy** ($\Delta \leq 0.1$).
 760

	$\beta = 0$			$\beta = 0.5$			$\beta = 1.0$		
	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$
Model 1 on Task 1	2.8 \rightarrow 4.5	2.8 \rightarrow 3.2	2.8 \rightarrow 3.1	2.8 \rightarrow 2.9	2.8 \rightarrow 2.9	2.8 \rightarrow 3.0	2.8 \rightarrow 2.8	2.8 \rightarrow 2.8	2.8 \rightarrow 3.2
Model 2 on Task 2	1.2 \rightarrow 2.0	1.2 \rightarrow 1.9	1.2 \rightarrow 1.8	1.2 \rightarrow 1.2	1.2 \rightarrow 1.3	1.2 \rightarrow 1.9	1.2 \rightarrow 1.2	1.2 \rightarrow 1.2	1.2 \rightarrow 1.8
Model 1 on Task 2	2.0 \rightarrow 2.9	2.0 \rightarrow 1.9	2.0 \rightarrow 1.7	2.0 \rightarrow 2.5	2.0 \rightarrow 1.4	2.0 \rightarrow 1.8	2.0 \rightarrow 2.6	2.0 \rightarrow 1.3	2.0 \rightarrow 1.7
Model 2 on Task 1	3.7 \rightarrow 5.0	3.7 \rightarrow 3.1	3.7 \rightarrow 3.1	3.7 \rightarrow 4.2	3.7 \rightarrow 3.0	3.7 \rightarrow 3.0	3.7 \rightarrow 4.4	3.7 \rightarrow 2.9	3.7 \rightarrow 3.1

761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772 difficult to reliably detect and/or easily removed from generated content (Zhang et al., 2023; Longpre
 773 et al., 2024; Sadasivan et al., 2023). Second, detection via watermark requires sharing of watermark
 774 detection information, which is essentially a game-theoretic problem that relies on other companies'
 775 willingness to cooperate. Both issues make watermarks an unreliable mechanism to rid datasets of
 776 AI-generated content.

777 **What if there's less AI-generated online content than we think?** Some work suggests there may
 778 be less AI-generated content online than previously postulated (Matatov et al., 2024). However, other
 779 works consistently point to an uptick in AI-generated content online (Sun et al., 2025). We believe
 780 the widespread adoption and use of generative AI models across industries (AI, 2024a; Handa et al.,
 781 2025; Reuters, 2024), particularly for use in content creation (gen, 2022), provides strong evidence
 782 that AI-generated content will become a regular part of online life. Further empirical work is needed
 783 to vet both claims.

784 **What if one model provider dominates online content?** Although numerous generative AI models
 785 are available online, some evidence suggests that one or two companies may dominate the AI
 786 landscape. A market research firm estimated that in January 2025, Open AI's ChatGPT had 340
 787 million monthly active users, Microsoft Copilot had 11 million, Google Gemini had 80 million,
 788 and Anthropic's Claude had 2 million (Zitron, 2025). If only one model/company dominates, our
 789 paradigm of training on other models' data will no longer be relevant and collapses back to the single
 790 model setting of prior work, e.g. (Shumailov et al., 2024; Kazdan et al., 2025; Dey & Donoho, 2024).
 791 Currently, though, this market research suggests that there are several models used by millions of
 792 users, making our assumptions somewhat reasonable. Future research could analyze market trends in
 793 model use and adoption to determine realistic assumptions.

794 795 C ADDITIONAL RESULTS

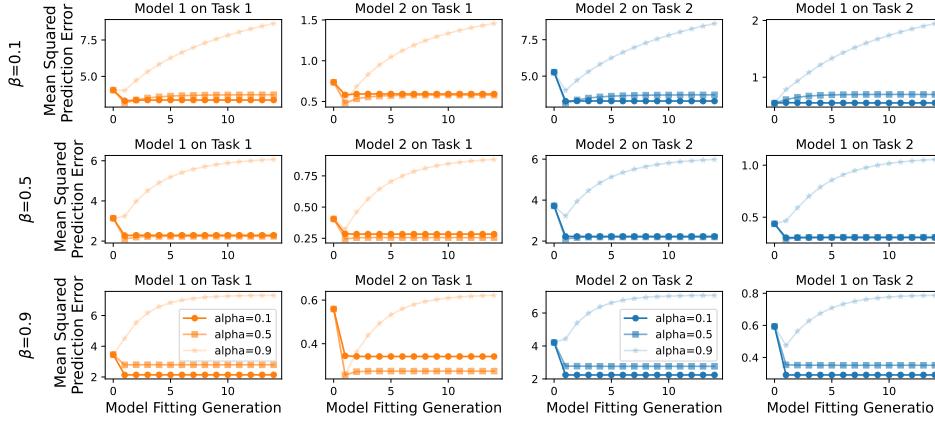
796
 797
 798 Tables 7 and 8 show full results for all tested β, α settings for the $K = 2$ setting across both the Llama
 799 and OPT model architectures. As stated in the main paper body, the $\beta = 0.5$ and $\alpha = 0.5$ settings
 800 perform best. Figures 4, 5, and 6 show loss values at each generation for (1) predicted theoretical
 801 results, (2) OPT $K = 2$ models, and (3) Llama $K = 2$ models. Finally, Figure 7 shows results for a
 802 $K = 3$ system of interacting OPT models.
 803

804 805 D CODE FOR EXPERIMENTS

806
 807
 808 Code to generate the theory and experimental figures shown in the main paper body can be found at:
 809 <https://anonymous.4open.science/r/multi-model-798E>.

810
811 **Table 8: Change in loss behavior for $K = 2$ interacting OPT models at various α, β** We show results
812 as *initial* \rightarrow *final* prediction loss values for models on their own and the other models' tasks, at
813 *initial* = $T = 0$ and *final* = $T = 15$ generations. For clarity, we colorize loss **increase**, **decrease**,
814 and **constancy** ($\Delta \leq 0.1$).

	$\beta = 0$			$\beta = 0.5$			$\beta = 1.0$		
	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1.0$
Model 1 on Task 1	3.3 \rightarrow 4.8	3.3 \rightarrow 3.6	3.3 \rightarrow 3.5	3.3 \rightarrow 3.3	3.3 \rightarrow 3.3	3.3 \rightarrow 3.5	3.3 \rightarrow 3.1	3.3 \rightarrow 3.2	3.3 \rightarrow 3.5
Model 2 on Task 2	1.8 \rightarrow 2.6	1.8 \rightarrow 2.2	1.8 \rightarrow 2.1	1.8 \rightarrow 1.7	1.8 \rightarrow 1.7	1.8 \rightarrow 2.2	1.8 \rightarrow 1.5	1.8 \rightarrow 1.8	1.8 \rightarrow 2.2
Model 1 on Task 2	3.1 \rightarrow 3.7	3.1 \rightarrow 2.2	3.1 \rightarrow 2.2	3.1 \rightarrow 3.5	3.1 \rightarrow 1.8	3.1 \rightarrow 2.2	3.1 \rightarrow 3.4	3.1 \rightarrow 1.8	3.1 \rightarrow 2.2
Model 2 on Task 1	5.1 \rightarrow 5.6	5.1 \rightarrow 3.6	5.1 \rightarrow 3.5	5.1 \rightarrow 5.1	5.1 \rightarrow 3.5	5.1 \rightarrow 3.5	5.1 \rightarrow 5.4	5.1 \rightarrow 3.5	5.1 \rightarrow 3.4

824
825 **Theoretical prediction error across generations for different α, β values, $K=2$** 

839
840 **Figure 4: Predicted behavior over time for a $K = 2$ model system with varying α, β .** We use equations for
841 MSE from theorem 2 and run simulations with $K = 2$, dimension 50, rank 15.

842 E PROOFS FOR RESULTS IN SECTION 5

843 Before diving into the proofs, we recall the workflow setup and provide some preliminary results.
844 The initial data are represented by matrix-vector pairs for the private data $(\tilde{X}_k, \tilde{y}_k), \dots, (\tilde{X}_K, \tilde{y}_K)$
845 and for the public data (X_*, y_*) . At each generation t , the data (X_{tk}, y_{tk}) produced by entity k is
846 given by

$$847 y_{tk} = X_{tk} \hat{\theta}_{t-1,k} + w_{tk}$$

848 where $\hat{\theta}_{t-1,k} \in \mathbb{R}^d$ is the most recent parameter estimate and $w_{tk} \sim N(0, \sigma^2 I)$ is Gaussian noise
849 that is independent across entities and generations. To represent the notation compactly, we use the
850 embedding

$$851 \tilde{X} = \begin{bmatrix} \tilde{X}_1 \\ \ddots \\ \tilde{X}_K \end{bmatrix}, \quad y_0 = \begin{bmatrix} \tilde{y}_1 \\ \vdots \\ \tilde{y}_K \end{bmatrix} \quad X_t = \begin{bmatrix} X_{t1} \\ \ddots \\ X_{tK} \end{bmatrix}, \quad y_t = \begin{bmatrix} y_{t1} \\ \vdots \\ y_{tK} \end{bmatrix}, \quad w_t = \begin{bmatrix} w_{t1} \\ \vdots \\ w_{tK} \end{bmatrix},$$

859 **Linear dynamical system** According to the workflow, each parameter estimate is obtained as the
860 minimizer in $\theta \in \mathbb{R}^d$ of the empirical loss:

$$861 \bar{\alpha}_t \beta_t \|\tilde{y}_k - \tilde{X}_k \theta\|^2 + \bar{\alpha}_t \bar{\beta}_t \|y_* - X_* \theta\|^2 + \frac{\alpha_t}{K} \sum_{j=1}^K \|y_{tj} - X_{tj} \theta\|^2,$$

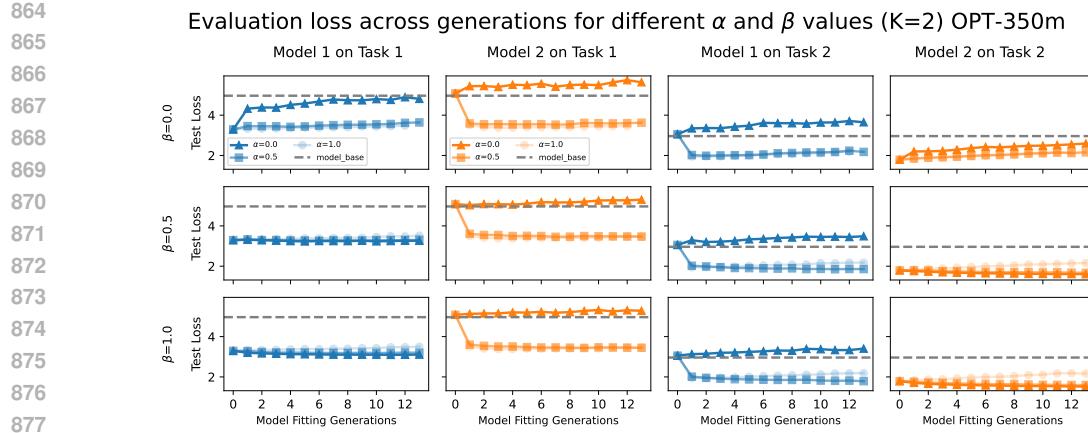


Figure 5: Actual behavior over time for interactions between OPT models ($K = 2$) with varying α, β .

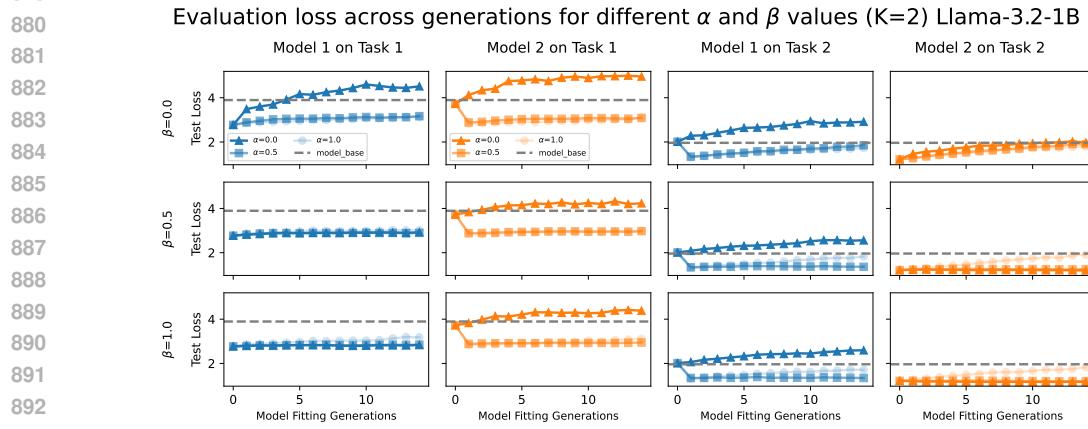


Figure 6: Actual behavior over time for interactions between Llama models ($K = 2$) with varying α, β .

where $\alpha_0 \equiv 0$ and so only the first two terms are present at initialization. The minimum norm solution is given in closed form by

$$\hat{\theta}_{tk} = \left(\bar{\alpha}_t \beta_t \tilde{S}_k + \bar{\alpha}_t \bar{\beta}_t S_*^\top + \frac{\alpha_t}{K} \sum_{j=1}^k S_{tk} \right)^+ \left(\bar{\alpha}_t \beta_t \tilde{X}_k^\top \tilde{y}_t + \bar{\alpha}_t \bar{\beta}_t X_*^\top y_* + \frac{\alpha_t}{K} \sum_{j=1}^k X_{tj}^\top y_{tj} \right)$$

where $\tilde{S}_k = \tilde{X}_t^\top \tilde{X}_k$, $S_* = X_*^\top X_*$, $S_{tk} = X_{tk}^\top X_{tk}$, and $(\cdot)^+$ denotes the Moore-Penrose pseudoinverse. Stacking the estimates into a vector $\hat{\theta} = \text{vec}(\hat{\theta}_1, \dots, \hat{\theta}_K)$ and using the identity $A^\top = A^\top A A^+$, we can express all estimate updates simultaneously as

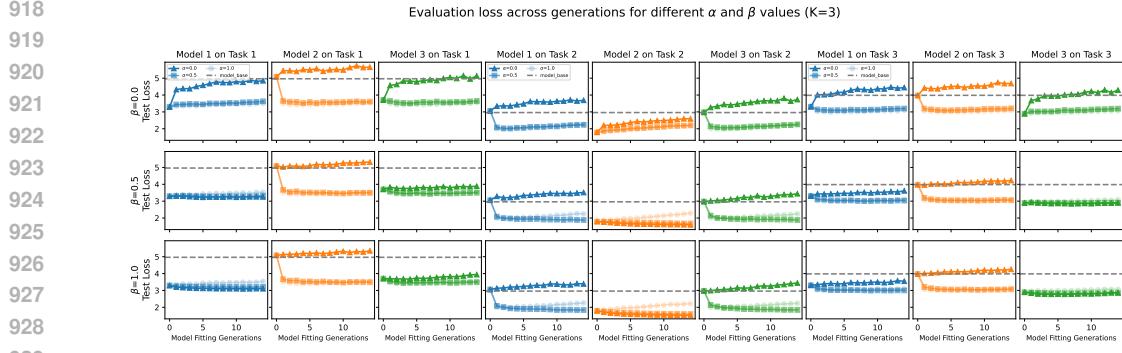
$$\hat{\theta}_t = \mathbf{G}_t^+ \left(\bar{\alpha}_t \beta_t \tilde{\mathbf{S}} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} + \bar{\alpha}_t \bar{\beta}_t (\mathbf{1}_K \otimes S_*) X_*^+ y_* + \frac{\alpha_t}{K} (\mathbf{1}_K \otimes \sum_{j=1}^k S_{tj} X_{tj}^+ y_{tj}) \right), \quad (3)$$

where $\mathbf{1}_K$ denotes the $K \times 1$ vector of ones and \mathbf{G}_t is the block diagonal matrix given by

$$\mathbf{G}_t := \bar{\alpha}_t \beta_t \tilde{\mathbf{S}} + \bar{\alpha}_t \bar{\beta}_t (\mathbf{I}_K \otimes S_*) + \alpha_t (\mathbf{I}_K \otimes \underline{\mathbf{S}}_t), \quad \underline{\mathbf{S}}_t = \frac{1}{K} \sum_{k=1}^K S_{kt}.$$

Defining the orthogonal projection matrix $\Pi = \frac{1}{K} \mathbf{1}_K \mathbf{1}_K^\top \otimes \mathbf{I}_d$ we can write

$$\frac{1}{K}(\mathbf{1}_K \otimes \sum_{j=1}^k S_{tj} X_{tj}^+ y_{tj}) = \Pi S_t \mathbf{X}_t^+ \mathbf{y}_t.$$

Figure 7: Actual behavior over time for interactions between OPT models ($K = 3$) with varying α, β .

Parameter	Value
bf16	True
data_seed	generation
dataloader_num_workers	4
dataset_text_field	input_ids
eval_on_start	True
eval_strategy	steps
eval_steps	100
gradient_accumulation_steps	2
gradient_checkpointing	False
include_num_input_tokens_seen	True
learning_rate	8×10^{-6}
logging_steps	5
lr_scheduler_type	constant_with_warmup
max_seq_length	512
max_steps	100
num_train_epochs	1
optim	adamw_torch
per_device_eval_batch_size	16
per_device_train_batch_size	2 (8 for T=8 experiments)
remove_unused_columns	False
seed	generation
warmup_ratio	0.025
save_strategy	no

Table 9: Fine-tuning hyperparameters used.

Introducing the matrices $\mathbf{P}_t := \bar{\alpha}_t \mathbf{G}_t^+ [\beta_t \tilde{\mathbf{S}} \quad \bar{\beta}_t (\mathbf{1}_K \otimes \mathbf{S}_*)]$ and $\mathbf{Q}_t := \alpha_t \mathbf{G}_t^+ \Pi \mathbf{S}_t$, can express (3) as

$$\hat{\theta}_t = \mathbf{P}_t \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ \mathbf{X}_*^+ y_* \end{bmatrix} + \mathbf{Q}_t \mathbf{X}_t^+ \mathbf{y}_t.$$

Using $\mathbf{y}_t = \mathbf{X}_t \theta_{t-1} + \mathbf{w}_t$ and $\mathbf{Q}_t \mathbf{X}_t^+ \mathbf{X}_t = \mathbf{Q}_t$, we obtain

$$\hat{\theta}_t = \mathbf{P}_t \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ \mathbf{X}_*^+ y_* \end{bmatrix} + \mathbf{Q}_t \hat{\theta}_{t-1} + \mathbf{Q}_t \mathbf{X}_t^+ \mathbf{w}_t. \quad (4)$$

This expression shows that the estimates evolve according to a discrete-time linear dynamical system (also known as a Kalman filter model) with state variable $\hat{\theta}_t$.

E.1 PROOF OF THEOREM 1

We now derive the distribution of $\hat{\theta}_t$ conditional on the initial data D_0 given by $(\tilde{\mathbf{X}}, \tilde{\mathbf{y}})$ and $(\mathbf{X}_*, \mathbf{y}_*)$. Specifically, we show that the estimates are Gaussian with mean and variance

$$\mathbb{E}[\hat{\theta}_t | D_0] = \mathbf{M}_t \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ \mathbf{X}_*^+ y_* \end{bmatrix}, \quad \text{Cov}(\hat{\theta}_t | D_0) = \mathbf{C}_t$$

972 where the matrices \mathbf{M}_t and \mathbf{C}_t are defined recursively with $\mathbf{M}_0 = \mathbf{P}_0$ and $\mathbf{C}_0 = \mathbf{0}_{Kd \times Kd}$ and
 973

$$974 \quad \mathbf{M}_t = \mathbf{P}_t + \mathbf{Q}_t \mathbf{M}_{t-1}, \quad \mathbf{C}_t = \mathbf{Q}_t (\sigma^2 \mathbf{S}_t^+ + \mathbf{C}_{t-1}) \mathbf{Q}_t, \quad t \geq 1.$$

975 The proof is by mathematical induction. For the base case $t = 0$ we invoke (4) along with $\mathbf{Q}_0 = 0$ to
 976 see that $\hat{\theta}_0$ is a deterministic function of the initial data with $\mathbf{M}_0 = \mathbf{P}_0$ and $\mathbf{C}_0 = \mathbf{0}_{Kd \times Kd}$.
 977

978 For the inductive case, assume that the stated distribution holds up to generation $t - 1$. From the
 979 definition of the workflow, (4) holds with $\mathbf{w}_t \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$ independent of everything else. Thus $\hat{\theta}_t$ is
 980 Gaussian with mean

$$981 \quad \mathbb{E}[\hat{\theta}_t | D_0] = \mathbf{P}_t \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ X_*^+ y_* \end{bmatrix} + \mathbf{Q}_t \mathbb{E}[\hat{\theta}_{t-1} | D_0] = \underbrace{(\mathbf{P}_t + \mathbf{Q}_t \mathbf{M}_{t-1})}_{\mathbf{M}_t} \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ X_*^+ y_* \end{bmatrix}$$

984 and covariance
 985

$$986 \quad \text{Cov}(\hat{\theta}_t | D_0) = \text{Cov}(\mathbf{Q}_t \hat{\theta}_{t-1} | D_0) + \text{Cov}(\mathbf{Q}_t \mathbf{X}_t^+ \mathbf{w}) = \underbrace{\mathbf{Q}_t \mathbf{C}_{t-1} \mathbf{Q}_t + \sigma^2 \mathbf{Q}_t \mathbf{S}_t^+ \mathbf{Q}_t}_{\mathbf{C}_t}.$$

988 This concludes the proof of Theorem 1. \square
 989

990 E.2 PROOF OF THEOREM 2

992 Under the assumptions of the theorem, we have that
 993

$$994 \quad \begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ X_*^+ y_* \end{bmatrix} \sim \mathcal{N} \left(\begin{bmatrix} \tilde{\mathbf{S}} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_* S_*^+ \end{bmatrix} (\mathbf{1}_{K+1} \otimes \theta), \sigma^2 \begin{bmatrix} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_*^+ \end{bmatrix} \right). \quad (5)$$

996 The goal for this proof is to verify that if $\mathbf{G}_1, \dots, \mathbf{G}_t$ are full rank then
 997

$$998 \quad \mathbb{E}[\hat{\theta}_t] = (\mathbf{I} - \mathbf{Q}_t \cdots \mathbf{Q}_1 (\mathbf{I} - \mathbf{G}_0 \mathbf{G}_0^+)) (\mathbf{1}_K \otimes \theta), \quad \text{Cov}(\hat{\theta}_t) = \mathbf{M}_t \begin{bmatrix} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_*^+ \end{bmatrix} \mathbf{M}_t^\top + \mathbf{C}_t.$$

1000 We proceed by mathematical induction. Consider the case $t = 0$. By (4) along with $\mathbf{Q}_0 = 0$, the
 1001 mean is
 1002

$$1003 \quad \mathbb{E}[\theta_0] = \mathbf{P}_t \begin{bmatrix} \tilde{\mathbf{S}} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_* S_*^+ \end{bmatrix} (\mathbf{1}_{K+1} \otimes \theta) = \mathbf{G}_0 \mathbf{G}_0^+ (\mathbf{1}_K \otimes \theta).$$

1005 Likewise, recalling that $\mathbf{M}_0 = \mathbf{P}_0$, the variance is
 1006

$$1007 \quad \text{Cov}(\theta_0) = \mathbf{M}_0 \text{Cov} \left(\begin{bmatrix} \tilde{\mathbf{X}}^+ \tilde{\mathbf{y}} \\ X_*^+ y_* \end{bmatrix} \right) \mathbf{M}_0^\top = \sigma^2 \mathbf{M}_0 \begin{bmatrix} \tilde{\mathbf{S}}^+ & 0 \\ 0 & S_*^+ \end{bmatrix} \mathbf{M}_0^\top.$$

1009 Next, suppose that $\mathbf{G}_1, \dots, \mathbf{G}_t$ are full rank and the stated distribution holds up to time $t - 1$. By
 1010 Theorem 1 we know that $\hat{\theta}_t$ is Gaussian and so all that remains is to verify the given expressions for
 1011 the mean and covariance. By the linearity of expectation and (4), the mean satisfies
 1012

$$1013 \quad \mathbb{E}[\hat{\theta}_t] = \mathbf{P}_t \begin{bmatrix} \mathbb{E}[\tilde{\mathbf{X}}^+ \tilde{\mathbf{y}}] \\ \mathbb{E}[X_*^+ y_*] \end{bmatrix} + \mathbf{Q}_t \mathbb{E}[\hat{\theta}_{t-1}]$$

$$1014 \quad = \mathbf{P}_t (\mathbf{I}_{K+1} \otimes \theta) + \mathbf{Q}_t (\mathbf{I}_K \otimes \theta) - \mathbf{Q}_t \mathbf{Q}_{t-1} \cdots \mathbf{Q}_1 (\mathbf{I} - \mathbf{G}_0 \mathbf{G}_0^+) (\mathbf{1}_K \otimes \theta),$$

1017 where the last follows from the inductive assumption applied to $\mathbb{E}[\hat{\theta}_{t-1}]$. Moreover, from the
 1018 definitions of \mathbf{P}_t and \mathbf{Q}_t , we have
 1019

$$1020 \quad \mathbf{P}_t (\mathbf{I}_{K+1} \otimes \theta) + \mathbf{Q}_t (\mathbf{I}_K \otimes \theta) = \mathbf{G}_t^+ \left(\bar{\alpha}_t \beta_t \tilde{\mathbf{S}} + \bar{\alpha}_t \bar{\beta}_t (\mathbf{I}_K \otimes S_*) + \alpha_t \Pi \mathbf{S}_t \right) (\mathbf{I}_K \otimes \theta)$$

$$1021 \quad = \mathbf{G}_t^+ \mathbf{G}_t (\mathbf{I}_K \otimes \theta)$$

$$1022 \quad = \mathbf{I}_K \otimes \theta,$$

1024 where the second line follows from the identity $\Pi \mathbf{S}_t (\mathbf{1}_K \otimes \mathbf{I}_d) = (\mathbf{I}_K \otimes \underline{\mathbf{S}}_t) (\mathbf{1}_K \otimes \mathbf{I}_d)$ and the last
 1025 line holds because \mathbf{G}_t is full rank. Combining the above displays gives the desired expression for the
 1026 mean. The expression for the variance follows directly from (5) and Theorem 1. \square

1026 E.3 PROOF OF THEOREM 3
1027

1028 If the spectral radius of \mathbf{Q} is strictly less than one, then $\mathbf{Q}^t \rightarrow \mathbf{0}$ as $t \rightarrow \infty$, and the Neumann series
1029 in (1) converge to the well-defined limits in (2). These limits can also be seen as the (necessarily
1030 unique) solutions to the fixed point equations

$$1031 \quad \mathbf{M} = \mathbf{P} + \mathbf{M}\mathbf{Q}, \quad \mathbf{C} = \mathbf{Q}(\mathbf{C} + \sigma^2 \mathbf{S}^+) \mathbf{Q}^\top,$$

1033 where the expression for the covariance is known as the discrete time Lyapunov equation. Combining
1034 these convergence results with Theorem 2 completes the proof. \square .
1035

1036 E.4 PROOF OF LEMMA 1
1037

1038 If $\alpha = 0$ or if $\mathbf{S} = \mathbf{0}$ then $\mathbf{Q} = \mathbf{0}$ and so the stated result holds. Henceforth, we assume $0 < \alpha < 1$
1039 and \mathbf{S} is nonzero. Suppose that $\gamma \mathbf{S} = \lambda \tilde{\mathbf{S}} + (1 - \lambda)(\mathbf{I}_K \otimes \mathbf{S}_*)$ for some $0 < \beta \leq \lambda \leq 1$ and $\gamma > 0$.
1040 Then,

$$\begin{aligned} 1041 \quad \mathbf{G} &= \bar{\alpha}\beta\tilde{\mathbf{S}} + \bar{\alpha}\bar{\beta}(\mathbf{I}_K \otimes \mathbf{S}_*) + \alpha(\mathbf{I}_K \otimes \underline{\mathbf{S}}) \\ 1042 \\ 1043 &= \frac{\bar{\alpha}\beta}{\lambda}(\gamma\mathbf{S} - (1 - \lambda)(\mathbf{I}_K \otimes \mathbf{S}_*)) + \bar{\alpha}\bar{\beta}(\mathbf{I}_K \otimes \mathbf{S}_*) + \alpha(\mathbf{I}_K \otimes \underline{\mathbf{S}}) \\ 1044 \\ 1045 &= \frac{\bar{\alpha}\beta\gamma}{\lambda}\mathbf{S} + \bar{\alpha}\left(\frac{\lambda - \beta}{\lambda}\right)(\mathbf{I}_K \otimes \mathbf{S}_*) + \alpha(\mathbf{I}_K \otimes \underline{\mathbf{S}}). \\ 1046 \end{aligned}$$

1047 Hence,

$$1049 \quad \mathbf{Q} = (\delta\mathbf{S} + \mathbf{I}_K \otimes \Delta)^+ \Pi \mathbf{S}, \quad \delta = \frac{\bar{\alpha}\beta\gamma}{\alpha\lambda}, \quad \Delta = \frac{\lambda - \beta}{\alpha\lambda} \mathbf{S}_* + \underline{\mathbf{S}}.$$

1051 To proceed, observe that each diagonal block of $\mathbf{S} = \text{diag}(S_1, \dots, S_K)$ lies in the span of $\underline{\mathbf{S}} =$
1052 $\frac{1}{K} \sum_{k=1}^K S_k$, and thus \mathbf{S} lies in the span of $\mathbf{I}_K \otimes \Delta$. Accordingly, we can write
1053

$$1054 \quad \mathbf{S}(\delta\mathbf{S} + \mathbf{I}_K \otimes \Delta)^+ = (\mathbf{I}_K \otimes \Delta^{1/2})\mathbf{R}(\delta\mathbf{R} + \mathbf{I})^{-1}(\mathbf{I}_K \otimes \Delta^{+1/2}),$$

1056 where $(\cdot)^{1/2}$ denote the symmetric positive semidefinite square root of a positive semidefinite and
1057 $\mathbf{R} := (\mathbf{I}_K \otimes \Delta^{+1/2})\mathbf{S}(\mathbf{I}_K \otimes \Delta^{+1/2})$. To bound the spectral radius, denoted by $\rho(\cdot)$, we use that fact
1058 that the eigenvalues of AB and BA are the same for any square matrices A and B along with that
1059 fact that $\mathbf{I}_K \otimes \Delta$ commutes with Π to write

$$\begin{aligned} 1060 \quad \rho(\mathbf{Q}) &= \rho((\delta\mathbf{S} + \mathbf{I}_K \otimes \Delta)^+ \Pi \mathbf{S}) \\ 1061 \\ 1062 &= \rho(\mathbf{S}(\delta\mathbf{S} + \mathbf{I}_K \otimes \Delta)^+ \Pi) \\ 1063 \\ 1064 &= \rho((\mathbf{I}_K \otimes \Delta^{1/2})\mathbf{R}(\delta\mathbf{R} + \mathbf{I})^{-1}(\mathbf{I}_K \otimes \Delta^{+1/2})\Pi) \\ 1065 \\ 1066 &= \rho(\Pi\mathbf{R}(\delta\mathbf{R} + \mathbf{I})^{-1}\Pi) \\ 1067 \\ 1068 &= \|\Pi\mathbf{R}(\delta\mathbf{R} + \mathbf{I})^{-1}\Pi\|, \\ 1069 \end{aligned}$$

1070 where $\|\cdot\|$ denotes the operator norm and the last equality holds because $\Pi\mathbf{R}(\delta\mathbf{R} + \mathbf{I})^{-1}\Pi$ is
1071 symmetric positive semidefinite. Letting $\epsilon > 0$ denote the smallest nonzero singular value of \mathbf{R} , we
1072 have

$$\begin{aligned} 1073 \quad (1 + \epsilon\delta)\rho(\mathbf{Q}) &\leq \|\Pi\mathbf{R}\Pi\| \\ 1074 \\ 1075 &\stackrel{(a)}{=} \|\Pi(\mathbf{I}_K + \Delta^{+1/2})\mathbf{S}(\mathbf{I}_K \otimes \Delta^{+1/2})\Pi\| \\ 1076 \\ 1077 &\stackrel{(b)}{=} \|(\mathbf{I}_K \otimes \Delta^{+1/2})\Pi\mathbf{S}\Pi(\mathbf{I}_K \otimes \Delta^{+1/2})\| \\ 1078 \\ 1079 &\stackrel{(c)}{=} \|(\mathbf{I}_K \otimes \Delta^{+1/2})(\frac{1}{K}\mathbf{1}_{K \times K} \otimes \underline{\mathbf{S}})(\mathbf{I}_K \otimes \Delta^{+1/2})\| \\ &\stackrel{(d)}{=} \|\frac{1}{K}\mathbf{1}_{K \times K} \otimes \Delta^{+1/2}\underline{\mathbf{S}}\Delta^{+1/2}\| \end{aligned}$$

$$\begin{aligned}
 &\stackrel{(e)}{=} \left\| \frac{1}{K} \mathbf{1}_{K \times K} \right\| \left\| \Delta^{+/-2} \underline{\mathbf{S}} \Delta^{+/-2} \right\| \\
 &\stackrel{(f)}{=} \left\| \Delta^{+/-2} \underline{\mathbf{S}} \Delta^{+/-2} \right\|
 \end{aligned}$$

where (a) is the definition of \mathbf{R} ; (b) follows from the commutativity of Π and $\mathbf{I}_K \otimes \Delta^{+/-2}$; (c) follows from $\Pi S \Pi = \frac{1}{K} \mathbf{1}_{K \times K} \otimes \underline{\mathbf{S}}$; (d) is the mixed-product property of the Kronecker product; (e) is the basic identity $\|A \otimes B\| = \|A\| \|B\|$ for any matrices A and B ; and (f) holds because $\left\| \frac{1}{K} \mathbf{1}_{K \times K} \right\| = 1$. Finally, using that $0 \preceq \underline{\mathbf{S}} \preceq \Delta$, we see that $\left\| \Delta^{+/-2} \underline{\mathbf{S}} \Delta^{+/-2} \right\| \leq \left\| \Delta^{+/-2} \Delta \Delta^{+/-2} \right\| \leq 1$. This verifies that $\rho(\mathbf{Q})$ is strictly less than one. \square

1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133