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ABSTRACT

Learning plans from demonstrations has emerged as a valuable paradigm, in which
a robot autonomously completes a task by executing a sequence of actions ac-
cording to a learned plan. Nevertheless, the execution of an action may encounter
failures in the real environment, such as failing to pick up a cup, resulting in plan
execution failure. The execution of a broken plan may damage the environment,
e.g., cooking coffee when a cup is not successfully placed. To avoid such risks,
action failure detection is crucial. However, the action failure within the execution
of task plans is often neglected in existing research. To address the problem, we
propose a framework that learns an executable plan that checks failures of each
action, called failure-aware plan. Our framework employs meta-learning to learn
neural network-based failure-aware task plans. Initially, by using trajectory data
collected from robot randomness execution, the framework pre-trains a model that
discriminatively captures the state features of various actions at different stages.
Utilizing user demonstration trajectories labeled as either success or failure, the
pre-trained model undergoes fine-tuning, which is then employed to determine
the success or failure of an action execution by means of the corresponding state
features. We demonstrate the effectiveness of our approach through experiments
on a robot in a simulation environment. Our approach outperforms the compared
method when only limited demonstration data is available. This work contributes
to enhancing the reliability of plan execution for robot by considering action fail-
ure detection.

1 INTRODUCTION

The use of robots is increasingly prevalent in both everyday life and industrial production (Havoutis
& Calinon, 2019; Hung & Yoshimi, 2017). Learning plans from demonstrations in robotic field is
a paradigm for enabling robots to autonomously perform tasks. For example, consider the com-
mon task of ‘making coffee’, which comprises a series of actions: picking up a cup, positioning it
under the spout, pressing a button, and subsequently retrieving the cup. After formulating a plan,
the subsequent challenge lies in its execution. As actions are carried out in real-world settings in
accordance with a plan, they may encounter failures during plan execution, as highlighted in Kara-
pinar et al. (2012). The failures may arise due to the deviations from expected outcomes of robot
actions, caused by real-world noise. More specifically, when a grasp action is scheduled to executed
during the task of ‘making coffee’, unforeseen scenarios like the object slipping and falling to the
ground may occur. If the plan proceeds with execution, the result may be the spillage of hot coffee,
potentially resulting in a significant safety hazard. Thus, the failure of robot action execution within
a plan can potentially have significant impacts on the environment and may even pose safety risks.
While research exists that focuses on learning plans from demonstrations, such as symbolic repre-
sentations learned for constructing plans (Konidaris et al., 2018; Ames et al., 2018), various robotic
application for task-level planning (Ekvall & Kragic, 2008; Hayes & Scassellati, 2016; Yin et al.,
2019). They generally overlook the consideration of action failure detection during plan execution.

However, this is a challenging task that determines the effect of scheduling action execution status
based on the current environment in which the robot performs actions. Given that the robot’s op-
erational environment is a continuous, high-dimensional space encompasses both the robot’s intro-
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spective states (e.g., force-torque, velocity, and tactile) and environmental states. Existing research
focuses on the assessing the execution of a standalone action instead of a whole plan (Pettersson,
2005), e.g., gearbox failure detection for industrial robots (Vallachira et al., 2019), manipulation
failure detection for robots (Inceoglu et al., 2021; 2023). An inherent challenge lies in the fact that
the effect of each action in a plan execution can vary based on the contextual environment. A solely
learned action failure detector may not achieve successful generalization to the plan. Implementing
failure detection for every action in a plan necessitates the creation of datasets for each task-specific
action, incurring substantial costs. This challenge stems from concerns about the sample efficiency
of robotic manipulation and the reliance on multimodal data from specific sensors or devices.

To address the challenge, we propose a framework which employs meta-learning to learn an exe-
cutable plan that checks failure of each action by learning from few demonstrations, called failure-
aware plan. Our approach follows a two-step methodology to construct executable action sequences
from user demonstrations as depicted in Figure 1. Initially, our framework learns a Action Model
and a pre-trained Detect Model, using trajectory data collecting by robot randomness execution.
In the first step, trajectories obtained from user demonstrations are input to a sequence learning
mechanism with Action Model.T This mechanism is utilized to segment user demonstrations into
individual action fragments. In the second step, the Detect Model is fine-tuned through the cor-
responding action fragments. The fine-tuned model are able to analyze the state features during
execution of actions and is responsible for failure detection for the corresponding action. Simulta-
neously, action controllers are learned from the segmented action fragments for robots to perform a
robotic manipulation. By taking the above steps, we can derive a failure-aware plan in which each
action execution incorporates model-based failure detection.

Figure 1: The overview of our methodology. The end user teleoperates the robot to perform a
task and the demonstration trajectories are recorded. The demonstrations are segmented into action
fragments by Action Model. Detect Model is fine-tuned by meta-learning. Simultaneously, the action
implementations are learned by Dynamic Movement Primitives.

We implement our approach on a ‘Fetch’ robot for a pick-and-place demonstration in a ‘Gazebo’
based simulation environment. Subsequently, we conducted experiments under varying settings to
validate its performance. The case study demonstrates that our approach effectively learns failure-
aware plans, enabling accurate evaluation of robot action execution within task environments. More-
over, our experiments conducted across various settings highlight our approach’s ability to obtain
failure detection of high accuracy. Notably, our approach outperforms an baseline approach, espe-
cially when only a limited number of demonstrations are accessible.

2 RELATED WORK

Learning plans from demonstrations in the robotic field can be summarized as task-level learning
and planning for robotic application (Ekvall & Kragic, 2008; Hayes & Scassellati, 2016; Yin et al.,
2019). Complex task plans contain several subtasks that exhibit specific ordering constraints and
interdependence, which are learned by incremental learning method (Grollman & Jenkins, 2010),
method for learning sequential robot skills through kinesthetic teaching (Manschitz et al., 2014),
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online algorithm for constructing skill trees (Konidaris et al., 2012; Lioutikov et al., 2018), interac-
tion paradigm (Mohseni-Kabir et al., 2019). Nevertheless, the current body of literature neglects the
aspect of identifying action failures that may occur while a plan is being executed.

The failure detection for a standalone action execution of the robot has been studied (Pettersson,
2005; Chalapathy & Chawla). Kalman Filter (Goel et al., 2000), residual based systems Stavrou
et al. (2016) Non-parametric Bayesian models (Zhou et al., 2020) are used for action execution
monitoring in robotics. A multimodal execution monitoring system is proposed for the assistive
feeding task in Park et al. (2018). In Vallachira et al. (2019), introspective data are used to detect
gearbox failures for industrial robots. Multimodal data is also considered in Inceoglu et al. (2021;
2023). Each of the methods relies on a dataset that is meticulously customized to meet its specific
requirements, for which the constructing is costly. Furthermore, the dataset is employed to learn
failure detection model for a standalone action. The context of the environment, where the plan
executes, should be considered when learning the action failure detector. In our approach, we utilize
meta-learning to learn task-relevant failure detection of the action from few user demonstrations,
which improves the efficiency.

3 APPROACH

Our approach is illustrated in Figure 1. The approach comprises three main components: sequence
learning, action controller learning, and failure detection model learning. These components col-
lectively enable the learning of a failure-aware plan from few user demonstrations. The sequence
learning module segments a small number of user demonstration trajectories into action fragments.
These trajectories of the action fragments serve a dual purpose. First, they are used to learn the
controllers for the actions in the plan. An executable plan can be synthesized by combining the
segmented action sequences with their respective controllers. Second, we utilize the segmented data
for fine-tuning, employing meta-learning algorithms to obtain task-relevant action failure detection
models.

3.1 FORMALIZATION

At a high level, a plan with action sequences can be defined as Π = ⟨a1, a2, . . . , aK⟩, where K
is the length of the plan. We define an operator Detectora(s) → {success, failure} as a failure
detector for action a, e.g., it returns success if the state s reflects the correct execution of the action
a. Each action also has an operator Controllera to perform a robotic manipulation. From a low-
level perspective, consider {Xt}t=1:Tm

as a robot execution trajectory where Xt ∈ RD represents a
state of the environment (including the robots) at time point t and T is the length of the trajectory.
Each state Xt is sampled from low-level sensor readings. We assume that the observations of the
execution trajectory of an action reflect the impact on the robot itself and the environment. We denote
the Detect Model fD({Xt}t=i:j) → {1, 0} to model the Detectora(s) in low level. An execution
trajectory is obtained through the execution of a composite set of fundamental robotic controllers,
such as mobile platform movement, rotation, and manipulation of joint angles in the robot arm.
We assume access to a supervisor that assigns complex action labels to the trajectories, resulting in
a set of labeled trajectories DM = {Xm,t, zm,t}m=1:M,t=1:Tm

. The action label zm,t ∈ {1 . . . C}
describes a specific task such as picking or grasping where C is the number of action labels. Without
loss of generality, we drop the indices m to denote a state as Xt and the action label zt for the rest
of the paper.

An execution trajectory for a particular task is defined as Traj = {Xt}t=1:T . First, we seek
to learn an action model fA : Xt → zt based on DM to predict the action label zt given a
subsequence of the trajectory {Xt}t=i:j , where Xt ∈ RD×(j−i+1) and zt ∈ {1 . . . C}. In this
way, a given set of trajectories for a particular task can be segmented into a set of subsequences
DN = {Xn,t, zn,t}n=1:N,t=1:Tn

with N ≪ M . Through a meta-learning approach, the Detect
Model fD is pre-trained by utilizing the dataset DM , subsequently fine-tuned based on the smaller
dataset DN .
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3.2 SEQUENCE LEARNING

We capture the spatio-temporal dependency in the execution trajectories to predict action segments
using a sequence learning approach. We use the Action Model to model the mapping from state ob-
servations to action labels with the probability P (ẑt:t+l | Xt:t+l) using a stride of length l within a
mini-batch. The architecture of the Action Model is a recurrent neural network (RNN) which main-
tains an additional hidden state and uses the previous hidden state and the current input Xt to produce
a new hidden state and the output ẑt. The hidden state preserves the effect of the previous obser-
vation in predicting the current output. We use bidirectional Long Short-Term Memory (LSTM) in
Action Model, which also preserves the effect of future observations within a sequence. We min-
imize the cross-entropy loss between the predicted action label ẑt and the ground truth. We infer
the most likely action fragment ẑi:j by maximizing the probability P (ẑi:j | Xi:j) through sliding a
window of width l along a trajectory. The prediction for each observation fragment is transformed
into prediction for each time point i as follows:

zi = argmax
z

i∑
t=i−l

δ(fA(Xt:t+l), z{1...C}),

where δ is a function used to count the predicted value of each action category. Through the method
of sequence learning, the sequence labels ẑ1:T of an unlabeled trajectory are estimated. The compi-
lation of labeled fragments DN is accomplished by linking the observations from each time point.

3.3 ACTION CONTROLLER LEARNING

We use user demonstrations to learn action controllers to reproducing the robot motion planning.
We apply Dynamic Movement Primitives (DMPs) to encode a movement trajectory in terms of
a dynamics of nonlinear differential equations. Only a small number of parameters are required
to model the demonstration trajectory, through which the operations can be quickly reproduced.
DMPs further facilitate the generalization and modification of the original trajectory by introducing
additional task parameters during the reproduction of the demonstration trajectory, such as changing
the amplitude and frequency of the joint angle curve, changing the starting and target positions of
the end trajectory of the manipulator, etc., The DMPs equations (Park et al., 2008) are defined as
follows :

τ2ÿ = αy(βy(g − y)− τ ẏ) +Kf −Kx(g − y0),

in which the nonlinear item f is defined as:

f(x) =

∑N
i=1 Ψi(x)ωix∑N

i=1 Ψi(x)
,

where the Ψi is Gaussian function and ωi is the corresponding weight. The parameters αy , βy , K,
g, y0 are used to adjust the shape of the trajectory. The canonical system is defined as τ ż = −αzz
with αz is a constant. Based on the DN , we learn the parameters of DMPs for each action label
respectively. Given ydemo, ẏdemo, ÿdemo, we can obtain the nonlinear function that needs to be fitted
as:

ftarget =
τ2ÿdemo − αy(βy(g − ydemo)− τ ẏdemo)

K
+ x(g − y0)

We construct the loss function as follows:

Ji =
∑P

t=1 Ψi(t)(ftarget(t)− ωiξ(t))
2

In this way, DMPs for actions assignments can be learned from DN . They can be formulated as
APIs in more flexible manipulation task.

3.4 FAILURE DETECTION MODEL LEARNING

We employ the Detect Model to check the execution of a specific action by analyzing the corre-
sponding observations. In this study, end users only perform a small amount of demonstrations.
After conducting sequence learning on the trajectories, we obtain a small dataset denoted as DN ,
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which might be insufficient for training the Detect Model. Therefore, we initially pre-train the De-
tect Model utilizing the more extensive dataset DM in a meta-learning manner. Subsequently, we
fine-tune fD using the smaller dataset DN . To capture the features of observations, we employ a
transformer encoder in Detect Model. Transformers have achieved superior performances in many
tasks in the time series data such as forecasting and classification. They possess the capability to
learn long-range dependencies present within execution trajectories. By employing this architecture,
we create specific Detect Models as failure detectors for individual actions.

Essentially, the Detect Model functions as a binary classifier, responsible for determining the success
or failure of a given action execution. The dataset DM is processed to facilitate the sampling of
multiple binary classification tasks for pre-training. The same procedure is followed for the smaller
dataset during the fine-tuning phase. Each sample within DM is divided into three distinct groups.
For example, in the case of the grasp action, the observations are categorized into the start stage,
middle stage, and end stage. These stages correspond to the initiation of the grasping action, the
process of moving the robot arm, and the final state of successfully grasping the object, respectively.
This enables the Detect Model to capture action-specific characteristic from various stages of state
observations. Consequently, we obtain the dataset {Xk,t}t=1:Tk,k=1:C×3. During the pre-training
phase, two categories are randomly chosen from the total of C × 3 categories for each learning
task. Subsequently, these two categories are assigned binary labels to facilitate the pre-training of
the Detect Model. The model weights are updated using second-order differentiation to enhance the
sensitivity of the loss function towards the newly constructed tasks (Finn et al., 2017). In the fine-
tuning stage, the same idea is applied to process the dataset DN into a fine-tuning set. This processed
data can be utilized to fine-tune the Detect Models associated with corresponding actions for failure
detection. For instance, consider the case of learning a failure detector for a grasp action. In this
scenario, the positive samples within the fine-tuning dataset will include observations from the final
stage of the grasp action, where the successful execution of the action is expected. On the other
hand, the remaining data, which encompasses other stages of the grasp action or unrelated actions,
will serve as negative samples. This fine-tuning process enhances the Detect Model’s ability to
accurately identify success or failure in specific action during task executions, catering to the unique
characteristic of each action type. Ultimately, Detectorgrasp(s) is obtained for detecting failures in
the execution.

4 EXPERIMENTS

4.1 ENVIRONMENT SETTINGS

We implement our approach on a ‘Fetch’ robot within the “Gazebo” simulation environment (Koenig
& Howard, 2004). The ‘Fetch’ robot is a commonly employed research platform for validating
techniques in the field of robotics, encompassing a wide range of applications (Liu, 2020; Chen
et al., 2020). A ‘Fetch’ robot is mainly equipped with a mobile base and a robotic arm. The mobile
base comprises two hub motors and four casters, while the arm features a seven-degree-of-freedom
design along with a gripper. Users are provided with a set of fundamental APIs to control the robot’s
movements, including forward and backward motion, rotation of the mobile base, adjustment of the
arm’s joint angles, and manipulation of the gripper’s opening and closing. ‘Gazebo’ provides the
capability to accurately and efficiently simulate groups of robots within intricate indoor and outdoor
environments. We implement our approach within a scenario created in the ‘Gazebo’ environment,
which is known for its high-fidelity simulation capabilities. The execution of actions within the
simulation environment introduces uncertainty stemming from factors such as the physics engine
or probability-based algorithms. For instance, an object may accidentally slip from the robot’s
gripper. Given the high-fidelity nature of the simulator, we maintain confidence that our approach
can be extended to real-world environments featuring physical hardware, even after testing within
the ‘Gazebo’ simulation environment.

We have designed a pick-and-place task scenario comprising four steps. Consider a simulation en-
vironment containing two tables: TableA and TableB, depicted in Figure 2. TableA is positioned
outside a room, and it features a cube placed atop its surface. On the other hand, TableB is located
within the room. The ‘Fetch’ robot is initially directed to approach TableA, after which it is in-
structed to pick up the cube. Subsequently, with the cube in its possession, the robot is guided to
transition to TableB, where it completes the task by placing the cube on the table. An end user is
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Figure 2: The scenario for pick-and-place task in ‘Gazebo’. A start point is the initial position of the
robot. The TableA with a cube on it is placed outside. The TableB is placed inside the room.

equipped with a remote controller for the ‘Fetch’ robot, allowing them to guide the robot through
the task by controlling its movement, rotation, and arm joint angles.

We provide a concrete example to illustrate how our approach learns executable action sequences
with failure detection by learning from a small number of demonstrations. A detailed description is
available in the supplementary material.

4.2 EXPERIMENT SETTINGS

We conduct experiments with multiple different settings to answer the following research questions.

• RQ1. How accurate is our approach when applied to action failure detection?

• RQ2. what is the impact of the number of demonstrations on the accuracy of our approach?

• RQ3. How generalized is our approach when applied in changed scenarios?

In this context, the Detect Model is learned from demonstrations conducted during the experiments.
The evaluation of the action failure detection are categorized into four classifications:

• TP (true positive) denotes a positive evaluation (indicating truth) for an action that is exe-
cuted correctly within ‘Gazebo’.

• TN (true negative) denotes a positive evaluation (indicating falsehood) for an action that
is executed abnormally within ‘Gazebo’. For instance, if the ‘Fetch’ robot drops the cube
while attempting to pick or transport it due to physics engine randomness, the action failure
detection evaluation yields a false value.

• FP (false positive) denotes a negative evaluation (indicating falsehood) for an action that is
successfully completed.

• FN (false negative) stands for a negative evaluation (indicating truth) for an action that is
executed abnormally.

A learned plan is executed for a request that has the same goal as the demonstrations. An execution is
considered a success if the action sequence is executed as expected, with all action failure detections
evaluated to be positive, i.e., all TP. However, an execution failure may be caused by the detection
of an abnormal action (TN), an incorrect evaluation of an abnormal action (FN), or an incorrect
evaluation of a completed action (FP). We consider that TN is desirable in task plan execution
because the execution can be terminated as soon as an action abnormality is detected. FN and FP,
on the other hand, cause errors in dispatching actions at runtime, i.e., executing a subsequent action
that should not be executed, or failing to execute a subsequent action that should be executed.

We count the number of the correctly evaluated failure to compute the accuracy. Suppose cnt is the
total count of action failure detection evaluation performed during the execution in an experiment,
the accuracy is calculated by (#TP+#TN)/cnt, where # means the count.
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4.3 RQ1: ACCURACY OF FAILURE DETECTION

This experiment is used to show the correctness of the action failure detections of the learned plan
towards different task requests. We design two types of requests according to different environment
settings. The variable points in the settings are the changes in the size and position of table(s) and
cube(s) while the room layout remains the same. One setting is to require the robot to perform a task
repeatedly in the same environment as the demonstrations. We name it as stationary-environmental
request (SeR) in which the positions of the tables and the cube on the table are fixed. The other setting
is to require the robot to perform a task repeatedly but in changed environment, i.e., the positions
of the tables and the cube are different for each execution. We name it as variable-environmental
request (VeR). We apply our approach with 5 demonstrations both in SeR and VeR.

Additionally, we carry out an experiment where we omit the fine-tuning process and instead directly
employ the pre-trained Detect Model as a general action failure detector. This serves to substantiate
the necessity of conducting individualized fine-tuning for each action. We consider the approach
from Konidaris et al. (2018) to compare with our approach. The referenced study focuses on cap-
turing the planning domain through large number of demonstrations, wherein the precondition and
postcondition are acquired using a rule-based algorithm. We employ the similar network as our
method to learn action failure detectors by the descriptions of the learned plan. The comparison
aims to demonstrate the effectiveness of our method, which employs a meta-learning algorithm and
learns from only a few demonstrations. More details of the implementation are detailed in the sup-
plementary material. To compare with the model-based action failure detection of our approach,
we evaluate the baseline approach using both 5 and 100 demonstration instances for evaluations
separately.

Table 1 lists the accuracy for evaluating the action failure detection using our approach in typi-
cal demonstration count settings. The ‘baseline (5)’ and ‘baseline (100)’ represent the case of the
baseline approach trained by 5 demonstrations and 100 demonstrations respectively. The symbol
‘Ours (no-ft)’ represent our method without the fine-tuning phase for Detect Model. Each of the ap-
proaches is executed 50 times for SeR and VeR respectively. #ES represents the count of the success
in the 50 executions. #EF represents the count of the failure caused by a TN in the 50 executions.

Our approach achieves high accuracy for both SeR and VeR. In particular, we consider the failure
detectors learned by our approach has adaptability in a unexperienced environment. The accuracy
for VeR is slightly lower than that for SeR. This is because the probability of the incorrect evalua-
tions increases in changed environment settings. Furthermore, 28 out the 50 requests are completed
successfully in SeR while the number declines to 19 in VeR. The decline is reasonable in changed
environment since the probability that all the learned action failure detectors involved are evaluated
correctly becomes smaller.

The accuracy of the rule-based approach for SeR increases with the counts of demonstrations. In
the case of 5 demonstrations, the accuracy is lower than our approach by about 10%. However,
the number of the completed requests (#ES=2) is significantly lower. It means that the rule-based
approach under 5 demonstrations is hardly to deal with the user’s requests. In addition, the accuracy
and #ES are comparable with those by our approach when the rule-based approach is applied based
on 100 demonstrations. It indicates that our approach outperforms the rule-based baseline approach
when only few demonstrations are available.

On the other side, the accuracy of the rule-based approach is quite low for VeR. The reason lies in
that the rule-based approach learns the state characteristic of actions especially related to the demon-
stration trajectories. The characteristic is not generalized for the learned detector when evaluated for
the new requests in different environment settings.

Compared with our approach fine-tuned by 5 demonstrations, our method without fine-tuning phase
(Ours (no-ft)) achieves a low accuracy either in SeR or VeR. Besides, in this case, the value of #ES
is zero both in SeR and VeR. This is because the pre-trained Detect Model is only trained in task-
agnostic offline phase so that it is hard to deal with task related features. This explains why our
approach needs fine-tuning to learn task-related action failure detectors.
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Table 1: Accuracy of evaluating action failure detection of different approaches
cnt #TP #TN #FP #FN Accuracy #ES #EF

baseline SeR 137 95 12 30 0 78.0% 2 14
(5) VeR 79 29 3 47 0 40.5% 0 3

baseline SeR 182 153 12 10 7 90.7% 21 12
(100) VeR 78 32 6 40 0 48.7% 4 6
Ours SeR 121 71 5 42 3 62.8% 0 5

(no-ft) VeR 80 30 8 39 3 47.5% 0 8

Ours (5) SeR 152 130 8 8 6 90.8% 28 8
VeR 151 120 11 15 5 86.8% 19 11

4.4 RQ2: IMPACT OF THE NUMBER OF DEMONSTRATIONS

This experiment evaluates the impact of the number of demonstrations on our approach from two
levels. First, the convergence of fine-tuning of the Detect Model is evaluated under different demon-
stration counts. Second, the accuracy of action failure detection is further evaluated based on dif-
ferent numbers of demonstrations. To this end, we learn from 1, 5, 10 and 20 demonstrations. We
expect to reveal the convergence performance of a Detect Model in each updating step by evaluating
the accuracy of the test set under different demonstration counts.

Figure 3: The convergence of fine-tuning Detect Model under different demonstration counts with
10 random seeds.

Figure 3 visualizes the convergence of the fine-tuning phase of Detect Model. As the number of the
updating steps increases, most of the Detect Models can converge quickly. The Detectormove, the
Detectorpick and the Detectorplace get converged by about 10 gradient descent steps, while the
Detectortransport almost gets converged by 15 steps. It validates the effectiveness of the approach
conducting meta-learning.

The accuracy of the Detectorpick and the Detectorplace reaches approximately 90%. However, the
accuracy of the Detectormove and the Detectortransport is relatively low. We find that the failure
detection of the actions performed by the robotic arm (pick, place) are evaluated better compared
with those performed by the robot’s mobile base (move, transport). We consider the difference
comes from the different number of state features related to an action. The more state features
associated with an action, the better state characteristic of the action can be learned. For example,
the action pick involves more state features than the action move since the robotic arm provides more
features than the mobile base.

In addition, we find that the pre-trained Detect Model fine-tuned by more data can achieve a better ac-
curacy in general. However, the accuracy of Detectormove behaves differently. The Detectormove

fine-tuned by one demonstration and five demonstrations outperforms the network fine-tuned by ten
or twenty demonstrations. The reason is that the small number of state features associated with the
action move makes Detectormove easier to be trained. In this case, the small amount of fine-tuning
data makes Detectormove train faster with few gradient descent steps.

For the second evaluation objective, the failure detectors learned through different counts of demon-
strations are executed 50 times respectively for the task in the stationary environment. Table 2 lists
the accuracy for evaluating results. Overall the accuracy is ascending by the increasing number of
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demonstrations. The counts of TP gradually increases while the count of FP gradually decreases. It
indicates the ability of identifying the correctly completed actions is becoming stronger. Therefore,
the number of the successfully completed requests #ES reasonably increases. Furthermore, the sum
of #FP and #FN decreases roughly. It indirectly indicates the ability of correctly detecting the action
abnormalities gets stronger with the increase of the demonstration counts. In the case of learning
from one demonstration, 40 out of the 50 executions fail. Among the 40 executions, action abnor-
malities in 13 executions are correctly detected, i.e., the probability is 32.5%. Comparatively, in the
case of learning from 20 demonstrations, the correct verdict towards the abnormalities is 15 out of
23 failed executions. The probability increases to 65%.

Table 2: Accuracy of evaluating action failure detection for SeR under different demonstration
counts

#demonstration cnt #TP #TN #FP #FN Accuracy #ES #EF
1 140 100 13 19 8 80.7% 10 13
5 152 130 8 8 6 90.8% 28 8

10 169 148 11 10 0 94.1% 29 11
20 159 136 15 4 4 95.0% 27 15

4.5 RQ3: GENERALIZATION IN EXTENDED SCENARIOS

This experiment aims to evaluate the generalization of our approach when reusing action failure
detectors learned from a basic scenario in a more complex scenario. To this end, we design a more
complicated task which is regarded as an extension of the four-step pick-and-place task. Based on
the same scenario, we set up two cubes on TableA. We instruct the robot to pick up one of the
cube and transport it to TableB. Then the robot needs to move back to TableA again and pick up
another cube and transport is to TableB. We retain the detectors learned in the four-step task by
5 demonstrations. Consequently, they are generalized, i.e., Detectormove1 for action move1 and
move2, Detectorpick1 for action pick1 and pick2. Then, an eight-step task Π can be assembled as
follows: ⟨move1, pick1, transport1, place1,move2, pick2, transport2, place2⟩ With this setting,
the model-based detectors are further used in the eight-step task for evaluating action failure, which
evaluates the generalization of our method. The task is executed for 50 times in SeR setting.

Table 3: Accuracy of evaluating action failure detection generalized in the eight-step task
#demonstration cnt #TP #TN #FP #FN Accuracy #ES #EF

5 259 213 15 14 17 88.0% 4 15

The accuracy for evaluating action failure detection is listed in Table 3. It achieves an accuracy rate
of 88.0% which is almost the same as the case learning from five demonstrations in RQ2. Even if
the trajectory in the eight-step task is equivalent to the trajectory in the four-step task looping twice,
each corresponding segment of trajectory is still somewhat different. Since the Detect Model is not
learned and trained in completely identical demonstrations. This may lead to the slightly drop of
accuracy rate. We also find that the total accuracy rate is not much different, however, the number of
#ES is reduced a lot in 50 executions. This is because the eight-step task can be considered as a long-
horizon task for robotic operations. Since the robot is easily affected by the real environment when
performing tasks, there will be a certain probability of failure. However, based on the accuracy rate,
when transferring from basic scenario to extended scenario, our approach performs well to show
some generalization.

5 CONCLUSION

In this paper, we propose a framework for learning neural network-based failure detection for robot
action execution. Our approach learns the sequenced actions and their corresponding failure de-
tectors, formulating a failure-aware plan. As a result, this mitigates the occurrence of substantial
safety issues during plan execution. The incorporation of meta-learning enhances learning effi-
ciency within a user environment. We conducted various experiments which demonstrates that the
reliability of plan execution for robot is enhanced by considering action failure detection.
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