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Abstract

Crowd counting is a challenging yet critical task in
computer vision with applications ranging from pub-
lic safety to urban planning. Recent advances using
Convolutional Neural Networks (CNNs) that esti-
mate density maps have shown significant success.
However, accurately counting individuals in highly
congested scenes remains an open problem due to
severe occlusions, scale variations, and perspective
distortions, where people appear at drastically differ-
ent sizes across the image. In this work, we propose
a novel deep learning architecture that effectively
addresses these challenges. Our network integrates
a ResNet-based feature extractor for capturing rich
hierarchical representations, followed by a down-
sampling block employing dilated convolutions to
preserve spatial resolution while expanding the re-
ceptive field. An upsampling block using transposed
convolutions reconstructs the high-resolution den-
sity map. Central to our architecture is a novel
Perspective-aware Aggregation Module (PAM) de-
signed to enhance robustness to scale and perspec-
tive variations by adaptively aggregating multi-scale
contextual information. We detail the training pro-
cedure, including the loss functions and optimization
strategies used. Our method is evaluated on three
widely used benchmark datasets—ShanghaiTech,
UCF-CC-50, and UCF-QNRF—using Mean Abso-
lute Error (MAE) and Mean Squared Error (MSE)
as evaluation metrics. Experimental results demon-
strate that our model achieves superior performance
compared to existing state-of-the-art methods. Ad-
ditionally, we incorporate principled Bayesian in-
ference techniques to provide uncertainty estimates
along with the crowd count predictions, offering a
measure of confidence in the model’s outputs.

1 Introduction

Crowd counting has garnered significant interest in
the computer vision community in recent years due
to its broad range of practical applications. These
include estimating the number of people in polit-
ical rallies, public demonstrations, concerts, reli-
gious gatherings, and sporting events. Moreover,
the underlying methodologies can be adapted to
related tasks such as counting cells in microscopic
images, vehicles in aerial or satellite imagery, and
animals in ecological monitoring. Despite its utility,

crowd counting—particularly in highly congested
scenes—remains a challenging problem. T'wo major
factors contribute to this difficulty: (1) severe occlu-
sions, clutter, and overlaps between individuals, and
(2) large variations in scale and appearance due to
perspective distortion, where individuals closer to
the camera appear much larger than those farther
away.

A wide range of algorithms has been proposed to
address these challenges. The dominant paradigm in
recent years involves the use of Convolutional Neural
Networks (CNNs) combined with density map esti-
mation. These methods predict a continuous density
map over the input image, which, when integrated,
yields the total object count. Training datasets typi-
cally provide only point annotations—often marking
the head center of each individual—rather than full
object labels or bounding boxes. This sparse an-
notation presents additional challenges for model
learning. Earlier approaches to crowd counting re-
lied on object detection or instance segmentation
techniques to identify and count individuals. How-
ever, these methods proved inefficient and inaccu-
rate, particularly in dense crowd scenarios, due to
their high computational cost and poor performance
under occlusion.

To address these limitations, regression-based
methods were introduced. These approaches by-
passed explicit object detection by learning a di-
rect mapping from image features to a global count
value. While this reduced the impact of occlusion
and overlapping individuals, it failed to capture spa-
tial information and struggled with varying object
scales due to perspective effects. The most success-
ful evolution in this field has been the use of density
map estimation techniques. These models generate
a density map that not only encodes the presence
of individuals but also preserves spatial and scale
information. By learning a mapping from the input
image to a corresponding density distribution, these
methods effectively handle both occlusion and scale
variation. As a result, density map-based CNN ap-
proaches have become the state-of-the-art standard
in modern crowd counting.

Bayesian techniques have emerged as powerful
tools in deep learning-based crowd counting, offering
not only accurate predictions but also principled un-
certainty estimation. Unlike traditional determinis-
tic models that provide point estimates, Bayesian ap-
proaches model the predictive distribution, enabling
the quantification of both aleatoric uncertainty (in-
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herent data noise) and epistemic uncertainty (model
uncertainty due to limited data). This is particu-
larly valuable in high-stakes applications such as
surveillance and public safety, where understanding
the confidence of a prediction is as important as
the prediction itself. In the context of crowd count-
ing, Bayesian neural networks can be implemented
using methods such as Monte Carlo Dropout, varia-
tional inference, or deep ensembles to approximate
posterior distributions. These techniques help mit-
igate overfitting, improve generalization, and offer
uncertainty-aware predictions that can be leveraged
for downstream tasks like active learning, anomaly
detection, or dynamic resource allocation in real-
time systems. Incorporating Bayesian inference thus
adds a crucial layer of reliability and interpretability
to modern crowd counting models.

2 Related Work

Several important contributions have advanced the
field of crowd counting using deep learning tech-
niques. One of the pioneering works in this domain
is by [41], which introduced a cross-scene crowd
counting approach using a switchable learning strat-
egy that simultaneously optimized two objectives:
crowd density estimation and overall count regres-
sion. Building on this idea, [25] proposed an end-
to-end trainable switching CNN architecture that
automatically selects the most suitable regressor for
different crowd regions, improving robustness across
varying densities. The concept of using multi-column
architectures to capture features at different recep-
tive fields was popularized by [43], who replaced fully
connected layers with 1 x 1 convolutional layers to
reduce parameters while maintaining spatial resolu-
tion. Similarly, [1] combined deep and shallow CNNs
to capture both low-level and high-level features, en-
hancing performance in scenes with significant scale
variation and occlusion.

[21] introduced an iterative refinement approach
where one CNN estimates a coarse density map,
which is then progressively refined in a second stage.
Meanwhile, [31] proposed a multi-task cascaded
CNN that jointly learns crowd count classification
and density map regression, allowing shared fea-
ture learning and improved generalization. Further
innovations include the multi-scale contextual en-
coding approach of [16], which explicitly models
perspective distortion and demonstrates the benefit
of multi-scale features in handling scale variation.
[42] proposed a scale-adaptive fusion method that
concatenates features extracted at different resolu-
tions, while [27] integrated local and global contex-
tual information for predicting counts at multiple
levels.

To incorporate top-down scene semantics, [24]
employed a feedback mechanism to refine predic-

tions based on global scene context. [29] tackled
the perspective challenge using perspective maps
encoded as adaptive weighting layers to combine
density predictions at multiple scales. [9] further
explored scale adaptation with a multi-scale encoder
and multi-path decoder framework for high-fidelity
density map generation. Hybrid approaches have
also emerged. [14] fused detection and regression
using an attention mechanism to switch between the
two paradigms based on crowd density. [15] intro-
duced a local pattern consistency loss, improving
fine-grained density estimation through region-level
correlation modeling. Attention mechanisms were
also employed in [4] to enable both global and local
scale selection via soft attention.

Semi-supervised and unsupervised learning ap-
proaches have shown promise as well. [26] utilized
an autoencoder to extract transferable features from
unlabeled data, while [3] focused on identifying pixel-
level subregions with high prediction errors to guide
learning. [33] introduced a hierarchical attention
framework, combining spatial and global attention
modules across multiple scales to enhance focus on
relevant crowd regions. Recent research has increas-
ingly focused on integrating uncertainty modeling
into crowd counting. [19] and [17] independently pro-
posed Bayesian formulations for crowd counting that
yield both point estimates and uncertainty quantifi-
cation. Their models are capable of estimating both
epistemic uncertainty (related to model confidence)
and aleatoric uncertainty (inherent data noise), im-
proving reliability in ambiguous or high-density sce-
narios. [8] presented a unified composition loss that
jointly supervises count, density, and localization
tasks, pushing the boundary of multi-task learning
in dense scenes.

We summarize our main contributions as follows:

e We propose a novel deep neural network ar-
chitecture for crowd counting, built upon a
ResNet-based feature extractor. Our model
incorporates a downsampling module using di-
lated convolutions to preserve spatial resolution,
and an upsampling module using transposed
convolutions to reconstruct high-quality density
maps.

e We introduce a novel Perspective-aware Aggre-
gation Module (PAM) that improves robustness
to scale and perspective distortions by adap-
tively fusing multi-resolution features across the
network.

e We provide comprehensive implementation de-
tails, including the network architecture, opti-
mization strategy, loss functions, and the eval-
uation protocol. Our method is evaluated on
three widely used benchmarks—ShanghaiTech,
UCF-CC-50, and UCF-QNRF—using standard
MAE and MSE metrics.
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e Our model achieves state-of-the-art accuracy
while significantly reducing the number of pa-
rameters compared to existing methods. Fur-
thermore, we incorporate principled Bayesian
inference to estimate both epistemic and
aleatoric uncertainties, making our system more
interpretable and reliable for real-world deploy-
ment.

3 Proposed Method

3.1 Dataset

Experimental evaluations are conducted using three
widely used crowd counting datasets: ShanghaiTech
part A and part B, UCF-CC 50, and UCF-QNRF.
These datasets are described as follows:

e ShanghaiTech is made up of two datasets la-
beled as part A and part B. In Part A, there
are 300 images for training and 182 images for
testing, while Part B has 400 training images
and 316 testing images. Most of the images
are of very crowded scenes, such as rallies and
large sporting events. Part A has a significantly
higher density than Part B.

e UCF-CC-50 contains 50 gray images with dif-
ferent resolutions. The average count for each
image is 1,280, and the minimum and maximum
counts are 94 and 4,532, respectively.

e UCF-QNRF is the third dataset used in this
work, which has 1535 images with 1.25 million
point annotations. It is a challenging dataset
because it has a wide range of counts, image
resolutions, light conditions, and viewpoints.
The training set has 1,201 images, and 334
images are used for testing.

3.2 Network Architecture

Our proposed network architecture consists of three
primary modules: a feature extraction block, a re-
construction (upsampling) block, and a multi-head
prediction module for density estimation and uncer-
tainty quantification.

The feature extraction block is built upon a modi-
fied ResNet backbone enhanced with dilated (atrous)
convolutions, which serve as the downsampling mech-
anism. Unlike traditional max-pooling or stride-
based downsampling, dilated convolutions allow the
receptive field to expand without sacrificing spatial
resolution. This design is particularly effective in
crowd-counting scenarios where objects (i.e., peo-
ple) appear at varying scales due to perspective
distortion. By capturing multi-scale contextual in-
formation, the dilated ResNet-based encoder mit-
igates issues related to severe occlusion and scale
variation.

Following the encoder, the reconstruction or up-
sampling block utilizes transposed convolutional lay-
ers (also known as deconvolutions) to progressively
restore the spatial resolution of the feature maps.
To preserve fine-grained details lost during encod-
ing, skip connections are introduced between corre-
sponding encoder and decoder layers. These lateral
connections form a U-Net-like structure, facilitating
efficient gradient flow and enabling the network to
fuse low-level and high-level information.

The final part of the architecture is the multi-head
output module, which consists of three branches:

e The density map head, which produces a high-
resolution density map. When integrated spa-
tially, this map yields the total estimated count
of people in the input image.

e The epistemic uncertainty head, which esti-
mates uncertainty arising from model limita-
tions, is approximated via the Monte Carlo
dropout technique.

e The aleatoric uncertainty head, which models
noise inherent in the input data, is particu-
larly relevant in cluttered or poorly illuminated
scenes.

An overview of the architecture, including the
layer-wise structure, is illustrated in Figure 1.

1x1 conv, 1x1 conv,
1x1 conv, 64‘ ‘ 128 ‘ 256
3x3 conv, 3x3 conv,
3x3 conv, GdH 128 H 256 }—
Input Image r g
1x1 conv, 1x1 cony, 1x1 conv,
256 512 512
h 4 h 4 v
Density 3x3 conv-2, 3x3 conv-2,
Output 256 512
Output Image epistemic 3x3 conv-2, 3x3 conv-2,
uncertainty 128 512
aleatoric 3x3 conv-2, 3x3 conv-2,
uncertainty 64 512

Figure 1. Illustration of our proposed network architec-
ture. In the diagram, 1x1 and 3x3 denote convolutional
filter sizes, 64, 128, 256 indicate the receptive field sizes
(feature channel depths), conv represents dilated con-
volutional layers used in the downsampling path, and
conv-2 denotes transposed convolutional layers used for
upsampling in the reconstruction path.

This carefully designed architecture enables our
model to effectively estimate crowd density while si-
multaneously quantifying uncertainty in a principled
Bayesian framework.
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3.3 Optimization

While training the network, the vanishing gradient
problem showed up, ie weights of the connections
were turning out to be zero. To alleviate this, in-
stance normalization was used after both convolu-
tional and transposed convolutional layers as defined
below:

d
y = ReLU (Z w; - ReLU
i=0
(1)
Where w and b are the weight and bias terms of
the convolution layer, v and 8 are the weight and
bias terms of the Instance Normalization layer, u
and o are the mean and variance of the input.
Previous works have used multi-column architec-
ture [43] to deal with the various scales at which
objects might be present in the image. The problem
with these methods is that the number of columns
gives a direct measure of the scale at which they
can recognize individual objects. To tackle this, we
propose a new technique to aggregate the filters with
sizes 1x1, 3x3, and 5x5. ReLU is applied after ev-
ery convolutional and transposed convolutional layer.
The filter branches make our network robust and can
be extended by using more filters to tackle crowd
counting in dense scenes. Our aggregation modules
stacked on top of each other behave as ensembles,
thus minimizing overfitting, which is a challenge
with deep networks. The novel aggregation module
used in our work is shown in Figure 2:

> Filter Concat <

A

5x5 conv

3x3 conv ‘

1x1 conv ‘
A A K

Previous Layer

Figure 2. Illustration of our aggregation module.

3.4 Loss Function

Most existing work uses pixel-wise Euclidean loss
for training the network. This gives a measure of
estimation error at the pixel level, which is defined
below:

Ly = IF(X.0) - V|2 2)

(W.W%)M)
\VOo; €

where 6 denotes a set of the network parameters,
N is the number of pixels in density maps, X is
the input image and Y is the corresponding ground
truth density map, F(X, ) denotes the estimated
density map.

We also incorporate the SSIM index in our loss
to measure the deviation of the prediction from the
ground truth. The SSIM index is used in image
quality assessment. It computes similarity between
two images from three local statistics, i.e., mean,
variance, and covariance. The range of SSIM values
is from -1 to 1, and the SSIM is equal to 1 when the
two images are identical. The SSIM index is defined
in:

QCurpy + C1) (20ry + C2)

SSIM =
(uF + 13 + C1) (0F + 0% + Cs)

(3)

where C7 and Cy are small constants to avoid
division by zero. The next term of the loss function
can be written by averaging over the integral, as
shown below:

1
Ls = ; SSIM () (4)
Where N is the number of pixels in the density
maps. Lg gives a measure of the difference between
the network predictions and ground truth. The
final loss function, by adding the two terms, can be
written as shown in Equation 5:

(5)

where ap and ag are constants. In our experi-
ments, we set both ag and ag as 0.5 to give equal
weights to both the terms.

Liot = agLg +agLs

3.5 Evaluation Metrics

For crowd counting, the count error is measured by
two metrics, Mean Absolute Error (MAE) and Mean
Squared Error (MSE), which are commonly used for
quantitative comparison. These metrics are defined
as in Equation 6 and Equation 7:

1 N
MAE = 5o (6)

N

¥ 2le-cerf

%

MSE = (7)

Where N is the number of test samples, C; and
CET are the estimated and ground truth count cor-
responding to the i** sample, which is given by the
integration of the density map. MAFE shows the ac-
curacy of the predicted result, while MSE measures
the robustness of the prediction.
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3.6 Uncertainty Estimation

In predictive modeling, especially for safety-critical
tasks like crowd counting in highly congested scenes,
quantifying uncertainty is essential. Uncertainty pro-
vides a measure of confidence in model predictions
and is typically categorized into two main types:
epistemic uncertainty and aleatoric uncertainty.

Epistemic uncertainty (also known as model uncer-
tainty) arises due to the lack of sufficient knowledge
or data. It reflects uncertainty in the model param-
eters and can, in theory, be reduced by collecting
more diverse and representative training data. Epis-
temic uncertainty is especially prominent in regions
of the input space that the model has not seen during
training.

Aleatoric uncertainty (also called data uncer-
tainty) stems from inherent noise in the observa-
tions—for example, occlusion, scale ambiguity, low-
resolution imagery, poor lighting, or clutter. This
form of uncertainty cannot be eliminated by gather-
ing more data, as it is intrinsic to the data-generating
process.

To capture epistemic uncertainty, we leverage
Bayesian Neural Networks (BNNs), where the
weights of the network are treated as distributions
rather than deterministic point estimates. This
is achieved by placing a prior distribution over
the weights and approximating the posterior using
Monte Carlo dropout technique. This probabilistic
treatment allows the model to express uncertainty
in the learned representations, especially useful in
out-of-distribution or ambiguous regions.

On the other hand, aleatoric uncertainty is mod-
eled directly as a learnable component of the net-
work’s output, allowing the model to predict het-
eroscedastic noise—i.e., noise that varies across in-
put samples. To simultaneously learn the predictive
mean and variance, we define a loss function that
captures both types of uncertainty. The loss function
used for training our network is depicted below:

1 1 1 )
£0) = 35 2 gy i —il* + 3 logo” - ®)

where y; is the i*" pixel of the output density y
corresponding to input x and D is the number of
output pixels. Note that the observation noise o2
captures how much noise is present in the outputs,
and it stays constant for all data points.

3.7 Algorithm

Let input images be denoted by {xn}gzl and ground
truth images by {yn}nNzl. The trainable parameters
for the network are denoted by @, ¢, which are ob-
tained from a uniform distribution {1,..., K}. The
model parameters are denoted by 6 for the shared

backbone and ¢ for task-specific heads (density map,
epistemic uncertainty, aleatoric uncertainty). To
capture the predictive uncertainty, we model 6 and
¢ as random variables and approximate their distri-
butions by sampling from a uniform prior over K
different weight samples during training.

The complete algorithm used in our work is shown
below:

Algorithm 1: Bayesian Multi-Scale Neural
Network for Crowd Counting

N
n=1"

1 Require: Input images {x,} GT images

{yn}gzl
2 Initialize parameters 6, ¢
3 for each epoch do
4 for n =1 to N do

5 Sample 6, ¢ ~ Uniform {1,..., K}
6 Compute predictions [y,] = fo, ()
7 Calculate loss:

L(0) = 5 5tz lyi — 9ill” + 4 log o2

8 Update 0, using gradient descent
dL(0k)
dak
9 end
10 end

The uniform sampling from K different parameter-
izations introduces stochasticity to emulate Bayesian
posterior sampling. The loss function jointly mini-
mizes prediction error and learns to predict aleatoric
uncertainty. Epistemic uncertainty is captured
through weight sampling at inference time by aver-
aging multiple forward passes.

4 Experimental Results and
Analysis

4.1 Quantitative Results

To evaluate the effectiveness of our proposed
Bayesian multi-scale network for crowd counting,
we conducted extensive experiments on three bench-
mark datasets: ShanghaiTech, UCF-CC 50, and
UCF-QNRF. Our model consistently achieves the
lowest Mean Absolute Error (MAE) and Mean
Squared Error (MSE) across all datasets, demon-
strating both accuracy and robustness. In addition,
we report the number of trainable parameters to
show that our method is not only accurate but also
highly efficient.

The ShanghaiTech dataset consists of two subsets:
Part A with dense crowd scenes and Part B with
sparse crowds. As shown in Table 1, our method out-
performs most previous state-of-the-art approaches
in terms of both MAE and MSE on both subsets.
Compared to CSRNet, CP-CNN, and Switch-CNN,
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Figure 3. Qualitative results on the ShanghaiTech
dataset. Each row shows: (a) Input image, (b) Ground
truth density map, (c) Predicted density map, (d) Epis-
temic uncertainty, and (e) Aleatoric uncertainty.

our model achieves better accuracy while maintain-
ing a significantly smaller parameter footprint (see
Table 4).

UCF-CC 50 is a highly challenging dataset due
to its extremely limited size (only 50 images) and
wide density variation. Table 2 shows that our
method achieves the lowest MSE while maintain-
ing a competitive MAE, outperforming several high-
capacity models such as SFCN and DUBNet. The
balance between accuracy and generalization under
extreme data scarcity demonstrates the strength of
our Bayesian modeling approach.

UCF-QNREF is one of the largest and most di-
verse crowd counting datasets, with highly congested
scenes and large image resolution. Table 3 highlights
that our method achieves the best MSE performance
and remains competitive in MAE compared to other
strong baselines like DUBNet and CAN. Our im-
proved uncertainty modeling helps in better gener-
alization across such diverse scenes.

Beyond accuracy, our model is designed to be
lightweight and computationally efficient. As shown
in Table 4, our method achieves state-of-the-art per-
formance using only 0.24 million parameters, which
is significantly fewer than even the most compact
prior works like SANet (0.91M). This makes our ar-
chitecture well-suited for deployment on edge devices
and real-time applications.

4.2 Qualitative Results and Uncer-
tainty Analysis

Figures 3 and 4 present qualitative results of our
proposed method on representative samples from
the ShanghaiTech and UCF-QNRF datasets, respec-
tively. Each row displays a crowd image from the
test set alongside five visualizations: the input im-
age, the ground-truth density map, the predicted
density map, and the corresponding epistemic and
aleatoric uncertainty maps.

The epistemic uncertainty reflects the model’s un-
certainty due to limited training data or model capac-
ity. It is learned through multiple stochastic forward
passes and captures the spread of the model’s predic-
tions. On the other hand, the aleatoric uncertainty
represents the inherent noise and ambiguity in the
input data—such as motion blur, low resolution, or

a) 1 b) c) d) e)

Figure 4. Qualitative results on the UCF-QNRF
dataset. Each row shows: (a) Input image, (b) Ground
truth density map, (c) Predicted density map, (d) Epis-
temic uncertainty, and (e) Aleatoric uncertainty.

occlusion—which cannot be reduced even with more
data.
In both datasets, we observe the following:

e Higher uncertainty in regions of dense crowds:
In areas with high object overlap or extreme per-
spective distortion, both epistemic and aleatoric
uncertainty values are notably elevated. This
is expected, as accurately estimating density in
such regions is inherently more difficult.

e Correlation between uncertainties: There is a
visible spatial alignment between regions of high
epistemic and aleatoric uncertainty, indicating
that ambiguous regions in the image (e.g., oc-
cluded or poorly lit people) challenge the model
both from a data and modeling perspective.

e Sharper epistemic patterns in sparse areas: In
low-density regions, the epistemic uncertainty
tends to capture specific regions where the
model is unsure about the existence of crowd
presence, while aleatoric uncertainty remains

low—highlighting model doubt rather than data
ambiguity.
e The color intensity in the uncertainty

maps—particularly the red regions—correlates
with the degree of uncertainty: more red de-
notes higher uncertainty. This visual feedback
can be crucial in real-world applications where
knowing the model’s confidence is as important
as the prediction itself.

In summary, the proposed method not only
provides accurate density maps but also deliv-
ers meaningful uncertainty quantification that
helps interpret the reliability of its outputs, es-
pecially under challenging crowd scenes.

5 Conclusions

In this work, we proposed a novel deep learning
framework for crowd counting that integrates ac-
curate density estimation with robust uncertainty
quantification. The architecture is built upon a
ResNet-based feature extractor, augmented with
dilated convolutions in the downsampling path to
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Table 1. Comparison with state-of-the-art methods on ShanghaiTech dataset (lower is better). Left: Part A,

Right: Part B

Method MAE (A) MSE (A) MAE (B) MSE (B)
Zhang et al. [41] 181.8 277.7 32.0 49.8
MCNN [43] 110.2 173.2 26.4 41.3
Cascaded-MTL [31] 101.3 152.4 20.0 31.1
Switch-CNN [25] 90.4 135.0 21.6 33.4
CP-CNN [32] 73.6 106.4 20.1 30.1
CSRNet [13] 68.2 115.0 10.6 16.0
SANet [2] 67.0 104.5 8.4 13.6
SFCN [38] 64.8 107.5 7.6 13.0
CAN [16] 62.3 100.0 7.8 12.2
DUBNet [19] 64.6 106.8 7.7 12.5
Ours 63.2 95.6 7.3 10.6

Table 2. Comparison with state-of-the-art methods on
UCF-CC 50 dataset (lower is better)

Method MAE MSE
MCNN [40] 377.6  500.1
Cascaded-MTL [31] 322.8 3979
Switch-CNN [25] 3181  439.2
D-ConvNet [30] 288.4  404.7
L2R [37] 9279.6  388.9
CSRNet [13] 266.1  397.5
ic-CNN [21] 260.9  365.5
SANet [2] 258.4  334.9
SFCN [3¢] 214.2 3182
CAN [16] 212.2  243.7
DUBNet [19] 2438 329.3
Ours 216.7  225.1

Table 3. Comparison with state-of-the-art methods on
UCF-QNRF dataset (lower is better)

Method MAE MSE
MCNN [40] 277 426
Cascaded-MTL [31] 252 514
Switch-CNN [25] 228 445
CSRNet [13] 1355  207.4
SFCN [38] 102.0 171.4
CAN [16] 107 183
DUBNet [19] 105.6  180.5
Ours 106.7  165.1

preserve spatial resolution and capture multi-scale
context. The upsampling path leverages transposed
convolutions, while skip connections between cor-
responding encoder and decoder layers promote ef-
fective feature reuse, mitigate vanishing gradients,
and help prevent overfitting. To enhance predic-
tion robustness, we introduced a feature aggrega-
tion module that facilitates rich semantic fusion
across different levels of the network. Furthermore,

the network branches into three output heads: a
density map for crowd count estimation, and two
auxiliary heads to estimate epistemic and aleatoric
uncertainty, thereby making the model’s predictions
more interpretable and trustworthy. We also de-
tailed the Bayesian learning framework employed to
model epistemic uncertainty via variational weight
sampling and used a log-likelihood-based loss func-
tion to capture aleatoric noise. A complete train-
ing algorithm was provided to demonstrate how
uncertainty-aware optimization is implemented end-
to-end. Experimental evaluations on three bench-
mark datasets—ShanghaiTech, UCF-CC 50, and
UCF-QNRF—demonstrate that our model achieves
state-of-the-art performance, consistently outper-
forming prior methods in both MSE and MAE met-
rics. Additionally, our model achieves this with a
significantly lower parameter count, showcasing its
efficiency and scalability. Importantly, the integra-
tion of uncertainty modeling addresses the black-box
nature of traditional deep neural networks by pro-
viding pixel-wise estimates of prediction confidence.
This capability is especially crucial for deployment
in high-stakes real-world applications such as public
safety, event monitoring, and urban planning.
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