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Abstract

We test whether adaptive agents, a.k.a. “Smart-Boids” governed by neural net-
works under evolutionary pressure, can generate topologies resembling animal
communication networks. Using Vietoris-Rips filtrations and persistent homol-
ogy, we compare 1000+ empirical networks to simulations via feature-based cor-
relations. Minimal ingredients (fear of isolation, limited perception, inertia, exclu-
sion, noise) reproduce both sparse and small-world topologies observed in diverse
animal systems. Results suggest that ecological constraints, rather than complex
cognition, drive the emergence of communication networks.

1 Introduction

Animal communication networks reveal how collective coordination emerges across species. Clas-
sic self-organization models such as Reynolds’ Boids Reynolds|[|1987] and the Vicsek model |[Vicsek
et al.[[[1995] demonstrated that simple attraction—alignment—repulsion rules can generate coherent
group motion. Later extensions incorporated signaling, information suppression, or evolutionary
adaptation Witkowski and Ikegami| [2016], Mitri et al. [2011} 2009], yet few works have systemat-
ically related such simulations to real animal networks. Meanwhile, empirical tracking now yields
detailed interaction graphs for ants, primates, birds, dolphins, rodents, and other taxa Mersch et al.
[2013]], McGregor [2005]], Reichert et al.| [2024]], but we still lack a unified framework connect-
ing these biological networks to generative swarm models. Here we extract persistent topological
features from Smart-Boid communication graphs and compare them directly to 1,087 empirical net-
works, producing the first large-scale atlas of topological similarity between adaptive swarms and
real animal communication systems.

2 Methodology

2.1 Empirical Datasets

We analyzed 1,087 animal communication and interaction networks from the Animal Social Net-
work Repository (ASNR v3.0)Collier et al.|[2024]. Each dataset represents nodes as individual ani-
mals and edges as observed interactions. They span proximity networks, co-occurrence graphs, and
behavioral interaction networks across taxa; for all datasets we used the curated adjacency matrices
exactly as released by the ASNR team. Typical network sizes range from N = 10-200 individuals.
All empirical networks were preassembled from raw field observations by the curators of the Ani-
mal Social Network Repository (ASNR v3.0). We used these ASNR-provided adjacency matrices
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exactly as released, converting them to weighted undirected graphs with igraph 0.10.12 (R/C++),
preserving all original edge definitions and weights.

2.2 Smart-Boid Model and Simulation Parameters

Smart-Boids are adaptive agents whose motion in a 2D space is governed by a 1-hidden-layer neural
controller evolved under fear-driven selective pressure, wherein agents that, over a 300-step relax-
ation window, remain farther from their nearest neighbors than the population mean are eliminated,
while the closest 20% form the reproducing elite. Offspring are generated via uniform crossover on
neural-network parameters, each gene inherited randomly from either parent with added mutation
noise, producing controllers biased toward maintaining cohesion and avoiding isolation as described
in|Giardini et al.| [2024]. At each timestep, agent ¢ identifies visible neighbors within its field of view
FoV (angular cone), selects its & nearest neighbors (NN), and receives their relative positions as in-
put. The controller outputs a turning increment Af; = 6;(t + 1) — 6;(t) which is applied subject
to a maximum rotational constraint wy,x (max turning angle), with 6; determining the direction of
motion. Motion additionally includes stochastic perturbation £ (communication noise) and hard
volume-exclusion for realism.

In the simulation we systematically vary five parameters: while keeping the number of agents fixed

Parameter Symbol  Values Explored Interpretation
Communication noise 13 0-1.0 (log-spaced) variability in decisions
Field of view FoV w/2, m, 3w/2, 2w  sensory coverage
Max turning angle w /2, ®, 37/2, 2r  maneuverability
Nearest neighbors NN 1-9 interaction range

Duration T 10° timesteps simulation length

at N = 100 agents. This produced 3,200 simulations, one for each parameter combination. For
each simulation we retained the final 1,000 timesteps to compute steady-state structure. At every
timestep we computed pairwise distances and extracted all agent positions for topological analysis.

2.3 Vietoris—Rips Graph Construction

To compare simulations and empirical networks under a unified framework, we constructed Vi-
etoris—Rips (VR) proximity graphs from agent positions. For a radius parameter ¢ > 0, an
edge is added between agents ¢ and j if | x; — x; [|[< . We sweep € across a set of radii
e € 04,0.5,0.5,...,5.0 in increments of 0.1. We perform the full sweep to capture persistent
topological structure. However, when comparing simulations to real animal networks we restrict the
analysis to radii smaller than the distance to the farthest nearest neighbor ¢ < 7y since agents
would not communicate directly beyond this range. Thus the final VR graphs encode only directly
feasible communication links between agents.

2.4 Graph and Topological Feature Extraction

All evolutionary simulations were implemented in Julia, which output Smart-Boid position archives
over the last 10? steps. The archives, processed in Python, had their extracted positions, with which
we constructed Vietoris—Rips graphs over the radius sweep and computed all structural and topo-
logical features. Our analysis pipeline combined custom Python code with NumPy, pandas, and
NetworkX for graph metrics; python-louvain for modularity; and matplotlib/tqdm for visualization
and parallelization. Persistent lifetimes were obtained using our own birth—death detector applied
directly to the radius-indexed feature curves. These Python tools were used only for graph and TDA
analysis; all agent dynamics and evolutionary updates ran exclusively in Julia. For every VR graph
we computed a comprehensive set of 64 graph-theoretic and persistence-derived features, including:

* Degree structure: avg.degree.norm, std.degree.node.norm, CV.degree

* Clustering and motifs: triangles.norm, triangles.density, transitivity

* Weighted connectivity: avg.node.strength.norm, std.node.strength.norm
* Global structure: mean.path.length.norm, network.density, modularity

* Topological invariants: normalized Betti-1 lifetime H1.norm



2.5 Persistence-Guided Feature Selection (80% Rule)

Many graph features vary substantially with € or with sampling noise. To filter out unstable descrip-
tors, we introduced a persistence-guided stability criterion:

A feature f is retained if it is present and stable in at least 80% of replicate simulations. We se-
lected the 80% cutoff at the stability-curve elbow: higher thresholds leave too few descriptors, while
lower ones admit noise-driven features. This cutoff provides a balance between persistency and
discriminability, yielding a stable and informative subset of features for all subsequent comparisons.

2.6 Similarity Computation

For each empirical and simulated network, we created normalized feature vectors (v™¥ and v*™ re-
spectively) of the persistent features of the interaction graphs and calculated their Pearson similarity:
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We computed a full pairwise comparison between all simulated and all empirical networks. Be-
cause feature magnitudes vary across species and simulations, we used a rank-based similarity that
compares the relative prominence of features rather than their scale, something common for high
dimensional spaces. For each empirical network, the simulation with the highest rank-similarity is
reported as its best match.

2.7 Anomaly-Based Cutoff for Correlation Ranking

To identify where similarity rankings become noise-dominated, we compute the rolling z-score of
local slopes in the ordered correlation curve and apply a Shewhart-style threshold (|| z ||> 1). The
first detected anomaly, appearing as an elbow in the correlation-vs-ranking data, defines the cutoff
index. Similarities below this elbow were discarded for two reasons: 1. lower-rank matches are
dominated by noise. 2. absolute magnitudes are unreliable in high-dimensional feature spaces.
Thus only the highest-ranked graphs retained biological meaningfulness.

3 Results

3.1 Collective regimes from Smart-Boid dynamics

Across roughly 3,000 evolutionary simulations, Smart-Boids produced a diverse repertoire of col-
lective states. K-means clustering of structural and dynamical descriptors revealed robust pattern
classes: bands, flocks, swarms, lane formation, and symmetry-broken variants (horizontal vs vertical
lanes) Fig. (Ib). Classification was performed directly on the spatial and topological descriptors of
the final configurations, and k-means consistently returned stable, well-separated formation groups
across random seeds. Fig. (Th) shows the resulting cluster structure and representative examples of
each learned formation type.

3.2 Correlations to real animal graphs

Using the similarity procedure described in Section [2] we generated a ranked list of simula-
tion—empirical matches for every dataset. Table[T|reports the highest-confidence matches, i.e., those
that remain above the stability cutoff identified during ranking, together with the simulation param-
eters most consistently associated with each species’ communication topology.

3.3 Qualitative Discussion

To identify which simulation parameters most strongly explain cross-species differences, we com-
puted a correlation matrix over all parameters appearing in the high-confidence matches of Ta-
ble[T} Each entry reflects how consistently a parameter co-varies with others across the best simula-
tion—empirical pairings. This analysis isolates the parameters that most reliably shape the matched
communication topologies, revealing a small set of dominant behavioral and sensory drivers.
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Figure 1: Phase-space classification and representative simulation outcomes.

Network ID noise_out FoV w NN D Pearson corr.
Vole (Network_1087) 0.0004 471 314 5 1.6 0.9964
Ant (Network _244) 0.001 314 314 8 26 0.9959
Elephant (Network_260) 0.01 1.57 4.71 9 1.1 0.9949
Baboon (Network _263) 0.1 471 157 9 1.1 0.9977
Dolphin (Network_339) 0.1 314 314 6 1.1 0.9938
Raccoon (Network_405) 0.001 3.14 3.14 8 2.5 0.9953
Tortoise (Network_453) 0.2 471 6.28 7 0.8 0.9918
Bat (Network_505) 0.001 314 314 8 25 0.9949
Weaverbird (Network _636) 1.0 6.28 1.57 7 1.6 0.9925
Cricket (Network_666) 0.0001 6.28 157 17 1.1 0.9969
Weevil (Network_669) 0.2 314 628 7 04 0.9972
Macaque (Network_686) 0.003 471 628 4 04 0.9955
Mouse (Network_727) 0.003 3.14 628 2 1.1 0.9986

Table 1: Representative simulation-to-animal matches with parameters, Vietoris-Rips distances, and
Pearson correlations.

Analysis of the top-ranked simulation—animal pairs shows that communication noise (£) and the
maximum turning angle (wp,y) are the primary axes of variation structuring collective topology
across species. These parameters determine how quickly individuals adjust headings, how much
uncertainty they tolerate, and how efficiently local information spreads through the group.

A strong negative correlation between F'oV and wp, (p =~ —0.41) indicates a trade-off between
spatial awareness and maneuverability. Species with broad visual fields (birds, bats, dolphins) dis-
play smoother, anticipatory trajectories, whereas species with narrower Fields-of-View (primates,
rodents) compensate with sharper turns, consistent with sensory ecology.

A second trade-off between wp,, and nearest neighbors (NN) (p ~ —0.49) reflects a balance be-
tween agility and social cohesion. Small, fast species (crickets, weevils, mice) maintain small,
sparse neighbor sets, while slower-moving species (ants, elephants, dolphins) support larger, denser
groups-consistent with established findings that maneuverability scales inversely with group density.

Using a linearity analysis based on the coefficient of determination R? (i.e., fitting the neural-
network—driven turning responses to a linear model), we quantified the extent to which each species’
collective decision dynamics follow a simple reflex-like rule (linear thinking). This showed that wyax
(turning agility, p = 0.51) and NN (social neighborhood size, p = —0.83) are the strongest pre-
dictors of decision linearity: species capable of sharp, agile maneuvers tend to rely on fast, linear
reflex responses (high R?), while species forming larger, cohesive groups integrate multiple cues,
producing more nonlinear (low R?) and context-dependent decision making.



Noise levels further separate taxa: insects, birds, and bats show very low noise, enabling precise
coordination, while larger mammals tolerate moderate noise, reflecting slower dynamics and long-
range acoustic or visual signaling. Terrestrial species (macaques, voles, baboons) tend to exhibit
high wmax for obstacle avoidance, while aerial/aquatic species depend on broad FoV and smooth
trajectories-consistent with flocking/schooling literature.
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Figure 2: Dispersion relations of an ordered regime vs a disordered regime.

4 Conclusion

Fear-driven evolution alone was sufficient to generate a wide repertoire of collective movement
patterns, and the addition of simple sensory constraints (e.g., field of view, turning limits) further
diversified this repertoire by inducing symmetry breaking between otherwise similar groups. By
applying Vietoris—Rips filtrations, we embedded both simulated and empirical interaction networks
into a common persistent-feature manifold, enabling a principled, topology-preserving comparison
of communication structures across taxa and across modeling paradigms.

Focusing on the highest-confidence simulation—animal matches revealed clear, reproducible rela-
tionships between dynamical parameters and biological attributes such as body size, motility, visual
aperture, and turning agility, consistent with established theo on the sensory and ecological de-
terminants of group structure. Dispersion analyses further showed that the emergent formations are
dynamically stable: fear and local interaction rules readily produce distinct attractors, but transitions
between regimes require external drivers such as predation, obstacle pressures, resource availability,
or higher-order cognition.

Finally, several matched species exhibit latent modular or hierarchical social layers that are captured
by the persistent features but not necessarily by raw interaction data alone, layers such as dominance
structure in elephants, grooming-linked food-sharing in bats, or sparse yet functionally cohesive
nest-sharing in weavers. Together, these results establish persistent-feature analysis as a scalable,
domain-agnostic tool for linking generative swarm models to real animal communication networks,
and show that minimal ecological constraints can both generate and help decode the topological
signatures underlying collective behavior.
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A Persistent Feature Stability and VR Filtration

A.1 Birth—death structure of simulated VR filtrations

Figure |3| shows the birth-death structure of a representative simulation as the Vietoris-Rips radius is
increased from 0.4 to 5.0 in increments of 0.1.

Features close to the diagonal correspond to short-lived fluctuations, noise or transient neighbor-
hood reconfigurations, while long-lived features away from the diagonal represent stable structural
elements that repeatedly appear across simulations.

We observe the typical two-regime shape: a dense cloud of short-persistence features followed by
a sparse band of long-persistence features. The transition between these regimes is an empirical
stability elbow, which we use to identify features robust enough to generalize across both artificial
and empirical animal networks.
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Figure 3: Example persistence diagram showing birth and death radii of 3y and 3; features for one
simulated final frame.

A.2  Why the 80% stability cutoff?

When counting how many simulations exhibit a persistent signal for each feature, the stability curve
shows a clear elbow: features that persist in < 80% of simulations sharply decay in frequency
and are dominated by noise-driven fluctuations. Higher thresholds (e.g., 90-95%) leave only 3-5
features, which is insufficient for discriminating between species.

Thus, 80% provides the optimal trade-off between:

* stability across simulations, and

* maintaining a sufficiently expressive feature space for cross-species comparison.



B Rank-Based Anomaly Detection and High-Dimensional Filtering

B.1 Why correlation magnitude is unreliable in high-dimensional spaces

Similarity between empirical and simulated networks is computed in a high-dimensional feature
space (64 graph-theoretic and topological descriptors, counted before the persistency analysis). In
such spaces, pairwise correlations are known to concentrate: unrelated vectors often achieve decep-
tively high values due to the curse of dimensionality. Thus, absolute correlation magnitudes are not
reliable discriminants of genuine structural similarity.

What is reliable is the ordering of correlations. Meaningful matches typically occupy a small region
at the head of the ranking, after which the correlation curve drops sharply once the comparisons enter
the noise regime.

B.2 Rank-ordered correlation curves
For each empirical animal network we:

1. compute Pearson correlations against all ~3000 simulated persistent-feature vectors,
2. sort the correlations in descending order,

3. analyze the sorted curve for structural change points.

Figure [] illustrates a typical case: a smooth high-correlation plateau, followed by a discontinuity
(“first elbow™) where spurious matches begin dominating the rank order.
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B.3 Shewhart-style anomaly detector
Our method is inspired by Shewhart’s change-detection principle, but is adapted to slope irregulari-
ties in a rank-ordered curve rather than raw observations.

Let the sorted correlations be ry > ro > ---. We compute their first-order differences:

A’I’k =Tk — Tk+1-

Because the top of the curve is smooth, Ary, is small and stable. A transition into the noise regime
appears as a sudden increase in Ary—a discontinuity in slope.

We z-score these differences along the rank axis:

Ark — UAr
2k = )
OAr

and declare the first anomaly at the smallest £ such that:

2z > 1.

We use one standard deviation (1o, not the classical 30) because Ary, are differences of ordered
correlations, they are not independent noise but locally correlated slopes. Thus, a 1o threshold is
appropriate for detecting the first structural discontinuity rather than extreme outliers. Also:

* the goal is to detect the first structural change, not an extreme outlier;
* the rank curve exhibits narrow variance near its maximum, making 1o an effective and robust

indicator of discontinuity.

All simulations with ranks above this first anomaly are retained; the remainder are treated as belong-
ing to the high-dimensional noise floor.

B.4 Why this method works
This procedure:

* prevents false positives from the inherent correlation inflation in high dimensions,
* grounds match selection in structural continuity rather than magnitude,

* yields a reliable subset of simulations that genuinely reproduce the empirical network’s topologi-
cal signature.

Although conceptually similar to Shewhart control charts, our detector is specifically designed for
rank-ordered similarity curves and does not assume independent or identically distributed observa-
tions.

C Principal Component Analysis (PCA)

To identify which dynamical ingredients contribute most strongly to the variability in collective
topology across simulations, we performed a principal component analysis (PCA) on the z-scored
simulation parameters:

{FoV, w, &u, NN, motility, max motility, (R?), o(R?)}.

PCA was used solely as an exploratory tool: it reveals how parameters covary and which com-
binations contribute most to the variance in the simulation ensemble. Importantly, no principal
component regression (PCR) was performed; we did not define a response variable nor regress PCs
onto persistent features. The analysis therefore quantifies the intrinsic structure of the parameter
space rather than predicting topological outcomes.

The PCA loadings and explained variances are presented in Table 2] The first four components
explain 96.7% of the total variance, with:



* PC1 (52.3%) — dominated by motility and communication noise, capturing activity-level and
uncertainty-driven variability.

+ PC2 (16.8%) — dominated by decision-linearity metrics ((R?), o(R?)), separating linear vs. non-
linear reasoning regimes.

* PC3 (15.8%) — couples field-of-view and motility, contrasting wide-vision smooth movers with
narrow-vision agile species.

* PC4 (11.9%) — primarily reflects variation in maximum turning angle (w), capturing maneuver-
ability differences.

Table 2: PCA loadings for z-scored simulation parameters. The first four components explain 96.7%
of the variance.

Feature PC1 PC2 PC3 PC4 PCs
fov z-score -0.315 -0.381 0.604 -0.327  0.385
omega z-score -0.334  0.123 -0.049 0.813  0.378
noise_out z-score 0.566  0.233 -0.020 -0.125 0.749
motility z-score 0.447 0.060 0342 0.244 -0.094
max_motility z-score 0.387 -0.012 0.510 0.274 -0.355
mean_R?2 z-score -0.332 0.486 0505 0.010 0.023
std_R2 z-score -0.096 0.738 -0.025 -0.286 -0.113

Explained variance (%) 52.3 16.8 15.8 11.9 2.1

Findings

The PCA identifies several dominant axes of variability that complement the correlation and match-
ing analyses in the main text:

* Agility and communication precision dominate PC1. High loadings from motility, max-
motility, and communication noise (&,,) indicate that activity level and uncertainty strongly shape
the global variation across simulations. These same parameters appear as primary discriminators
across species in Table 1.

* Decision-making complexity forms an independent axis PC2. The strong contributions of ( 2%)
and o(R?) show that linear vs. nonlinear reasoning constitutes a major dimension of variation,
orthogonal to basic kinematic quantities.

* Field-of-view and motility jointly structure PC3. This component separates wide-view species
(birds, dolphins, bats) from narrow-view, highly agile species (primates, rodents), mirroring the
trade-offs described in the Results.

* Turning-angle variability is captured cleanly by PC4. The strong loading of w suggests that
maneuverability forms its own dimension, consistent with the observed negative correlations be-
tween w and both F'oV and NN.

Together, these components reveal that maneuverability, sensory aperture, communication noise,
and reasoning linearity span the principal axes of variation in the Smart-Boid parameter space.
This structure helps explain why specific species map to distinct parameter regions and reinforces
the finding that these few ingredients are sufficient to generate the diversity of real animal commu-
nication topologies.

D Pattern Classification: Feature Vector and Clustering Procedure

Emergent collective-motion patterns were classified using a custom Python pipeline written specif-
ically for this project. The full implementation (over 1,000 lines of feature engineering, PCA
reduction, clustering routines, and faceted visualization tools) is available in the project repos-
itory. The analysis relies on standard scientific Python libraries (numpy, pandas, networkx,
scikit-learn, scipy, matplotlib, and hdbscan/joblib), together with our own feature-
extraction and topology-aware routines tailored to Smart-Boids data.
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Each simulation was converted into a feature vector using the pipeline shown in the code excerpt
below (see project repository for full code):

# Snapshot-only phase clustering for Smart-Boids simulations
requirements: numpy, pandas, networkx, scikit-learn, hdbscan,
matplotlib, scikit-image

The clustering methodology proceeds in three steps:

1. Feature extraction. For each simulation, structural, spatial, and heading-based descriptors were
computed (polar/nematic alignment, milling circulation, kNN-graph connectivity, component
spans, aspect ratio, structure-factor anisotropy, density CV, etc.), then averaged over the last
100 timesteps to capture the steady-state pattern. All features lie in [0, 1] by design.

2. Dimensionality reduction. The feature matrix was z-scored with RobustScaler and projected
onto its leading principal components (6 components retained), suppressing noise while preserv-
ing the dominant geometric degrees of freedom.

3. Unsupervised clustering. K-means was run on the PCA-reduced embedding with
k = 24, n_init = 200.

The large value of k intentionally over-partitions the phase space, allowing finer substructure to
be discovered before small clusters are merged. Clusters containing fewer than three simulations
were removed using a nearest-neighbor reassignment rule.

After filtering, this procedure yielded a figure similar to the 11 stable pattern classes manually
classfied in|Giardini et al. [2024], which are reported in Fig. (Ib) of the main text. These classes in-
clude flocks, milling states, polarized bands, lane formations, stationary swarms, symmetry-broken
flows, and mixed-mode transitions. The agreement between the automated classifier and human vi-
sual categorization confirms that the extracted feature representation reliably captures the qualitative
structure of collective states across the Smart-Boids parameter space.

E Dispersion Relation Analysis

To assess the dynamical stability of the collective patterns observed in Smart-Boid simulations,
we computed dispersion relations from the velocity field. Although commonly used in statistical
physics, dispersion curves serve here as a compact summary of how small perturbations propagate
through a coordinated group.

Construction of the dispersion relation

For each long-run simulation, we sampled agent velocities v;(¢) over time and constructed a coarse-
grained velocity field on a uniform grid. The temporal Fourier transform of each spatial mode,

Vik,w) = 3 D vi(t) e ennmen,
t [

yields a power spectrum S(k,w) = ||[V(k,w)|?. For visualization and analysis, we azimuthally

average the spectrum to obtain a one-dimensional dispersion curve:
S(k,w) = <S(k,w))‘|k”:k.

Interpretation

A dispersion curve reveals which temporal frequencies dominate at each spatial scale. In coordi-
nated groups, a stable formation produces a ridge or band of high spectral intensity, indicating that
perturbations at wavenumber k oscillate at a characteristic frequency w(k). Conversely, a disordered
group yields a broad, diffuse spectrum.

In our simulations, patterns such as flocks, lanes, or laminar flows showed narrow, well-defined
modes, whereas disordered swarms exhibited broadband structure. The presence of sharp modes
indicates that the pattern behaves like a stable dynamical attractor: small disturbances do not grow
or propagate chaotically but decay into the dominant mode.
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Stability of collective states

Across all 3,000 simulations, the dominant modes remained stable for long durations (up to 10°
timesteps), and the linewidths of the spectral peaks remained narrow. This demonstrates that, once
formed, collective states are dynamically rigid: transitioning out of a formation requires a large
perturbation.

This result complements the pattern-matching results in the main text:

* fear-driven cohesion and sensory asymmetries generate the formation;
* but dispersion analysis shows that maintaining or changing formation requires external forcing;

* implying that ecological drivers (predators, resource pulses, leadership events, reproductive state
changes) likely govern transitions between formation types in nature.

Why the dispersion analysis is included here

Because dispersion relations are not standard tools in animal-communication studies, but provide a
rigorous measure of dynamical stability, we include the detailed construction in this appendix rather
than the main text. The qualitative interpretation that after being trained, the Smart-Boid formations
remain stable unless externally disrupted is summarized in the Results section, while this appendix
provides the methodological detail for readers familiar with spectral analysis of dynamical systems.

F Additional Figures
We include additional figures omitted from the 5-page main paper for space reasons:

* Fig. A1 — Full persistence diagram example.
* Fig. B1 — Correlation rank curve and anomaly detection.

We also included the additional principal component analysis table 2} which shows the dimensions
corresponding to highest data variability in the animal vs simulated social networks comparison
dataset.

These provide complete transparency for readers reproducing or extending the analysis.
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