
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CRITIC-COT: BOOSTING THE REASONING ABILI-
TIES OF LARGE LANGUAGE MODEL VIA CHAIN-OF-
THOUGHT CRITIC

Anonymous authors
Paper under double-blind review

ABSTRACT

Self-critic has become a crucial mechanism for enhancing the reasoning perfor-
mance of LLMs. However, current approaches mainly involve basic prompts for
intuitive instance-level feedback, which resembles System-1 processes and lim-
its the reasoning capabilities. Moreover, there is a lack of in-depth investigations
into the relationship between LLM’s ability to criticize and its task-solving per-
formance. To address these issues, we propose Critic-CoT, a novel framework
that pushes LLMs toward System-2-like critic capability. Through a step-wise
CoT reasoning paradigm and the automatic construction of weak-supervision data
without human annotation, Critic-CoT enables LLMs to engage in slow, analytic
self-critique and refinement, thereby improving their reasoning abilities. Experi-
ments on GSM8K and MATH demonstrate that our enhanced model significantly
boosts task-solving performance by filtering out invalid solutions or iterative re-
finement. Furthermore, we investigate the intrinsic correlation between critique
and task-solving abilities within LLMs, discovering that these abilities can mutu-
ally reinforce each other rather than conflict.

1 INTRODUCTION

Enhancing the reasoning abilities of large language models is essential for creating more intelli-
gent and reliable AI systems, which has drawn extensive attention from researchers (Chollet, 2019;
Bubeck et al., 2023; Morris et al., 2024). From a cognitive perspective, the procedure of human
reasoning involves constant reflection and revision (Hegel et al., 1991; Kierkegaard, 1989; Popper,
1934), which has inspired increasing focus on integrating self-critic mechanisms in the reasoning
process of large-scale models (Kim et al., 2023; Shinn et al., 2023; Madaan et al., 2023). This in-
volves iteratively allowing the model to generate feedback on its own responses and then refining
its reasoning based on the feedback. Compared with traditional critic methods that depend on feed-
back from external sources (Saunders et al., 2022; McAleese et al., 2024), self-critic relies solely
on the model’s internal capabilities, thus reducing the high cost of additional human annotation, and
serving as a promising potential solution to scalable oversight (Leike et al., 2018; Burns et al., 2023;
Cao et al., 2024).

However, current studies primarily focus on utilizing LLMs’ critique abilities to enhance their per-
formance. Yet, relatively little attention has been given to the investigation and development of the
critique ability itself. Firstly, existing critique methods are often overly simplistic, typically relying
on a basic prompt to directly point out the error, without stepwise Chain-of-Thought examination
or training procedure, which leads to relatively poor self-critic accuracy (Luo et al., 2023; West
et al., 2024). Specifically, proposing a valid critique is a complicated task that requires a thorough
understanding of statements and precise negativity. However, current LLMs are normally not ex-
plicitly trained for critic capability. Therefore, these simple approaches usually tend to “criticize”
like System-1, which is more intuitive and likely to make mistakes, rather than more rigorous and
deliberate System-2 (Kahneman, 2011; Yu et al., 2024), while shifting LLMs from System-1 to-
ward System-2 emerges as a promising approach for improving the reasoning capability (OpenAI,
2024). This limitation diminishes the effectiveness of self-critic and, further, self-correct (Huang
et al., 2024). Secondly, the capabilities of task-solving and self-critic are both dependent on the
model’s inherent knowledge, while there is currently a lack of in-depth exploration regarding the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Previous Critic：Fast, Direct Error Identification Without Prior Analysis

Upon reviewing my previous answer, I

recognize a mistake. I incorrectly

identified 216 as ...

Step 1: Let the three consecutive

integers be x-1, x, and x+1 ...

Step 2: Since we are looking for a

perfect cube, let's express 3x ...

Step 3: However, n itself must also

be divisible by 3, since …

Step 4: The smallest integer

divisible by 3 is 6, for 6 ^ 3 …

Answer: 216

CriticizeInput Problem

What is the smallest positive

perfect cube that can be written as

the sum of three consecutive

integers?

(Reference: 7 + 8 + 9 = 3 ^ 3 = 27)

Generate Solution

Traditional Critique

Step 1: The sum of these three ...

Step 1 is correct.

Step 2: Expressing 3x as a cube ...

Step 2 is correct.

Step 3: The claim that n must be ...

Step 3 is incorrect.

Our CoT Critique

Refine

Step 3: Since we are looking for the ...

Step 4: The smallest perfect cubes are ...

Answer: 27

Step 1: To solve the problem of finding the ...
Step 2: We are given that this sum must be ...
Step 3: To ensure n is an integer, K^3 must ...

Step 4: We need to find the that the small …

Answer: 54

Traditional Refine

Our Refine

Critic-CoT：Slow, Chain-of-Thought Examination Step-By-Step

Figure 1: Illustration of Critic-CoT: Previous instance-level critic methods attempt to identify errors
directly without any prior analysis, and restart from the beginning during refinement. In contrast,
our proposed Critic-CoT framework performs a step-wise examination using the Chain-of-Thought
approach. When refining, rather than starting from scratch, our method makes the correction from
the specific problematic step with the help of the corresponding critique.

correlation between these two capabilities within LLMs. In that case, it’s challenging to balance
the task-solving and the self-critic capabilities of the model within the self-critic framework, which
poses a significant obstacle to the subsequent development in this direction.

To this end, this paper is devoted to diving into the following critical research questions:

• How can we enhance a model’s critique ability, pushing it toward System 2 reasoning?

• What is the relationship between a model’s critique ability and its task-solving capability?

To answer the above questions, as shown in Figure 1, we propose Critic-CoT, a novel framework
designed to enhance LLMs’ reasoning abilities. Through step-wise Chain-of-Thought critique for-
mat and weak supervision, our method is able to strengthen System-2-like critic ability, without the
intensive cost of human annotation. Specifically, during training, we let LLMs criticize and refine
their solutions in a complete CoT way, and collect successful pairs that convert wrong solutions into
correct ones, or affirm the validity of original right solutions. After supervised fine-tuning on the
obtained step-wise critic-refine data, we enable the target LLM to analyze and criticize each step of
its generated reasoning procedure, so that it can filter out wrong attempts and preserve the correct
ones with greater precision. During inference, to leverage the model’s abilities of CoT-critique and
refinement, we employ two strategies: (1) majority vote filtering involves using the critic model
to evaluate multiple generated solutions and filter out those incorrect; and (2) iterative refinement,
on the other hand, involves repeatedly critiquing and refining a solution until no further error is
detected.

Through a series of experiments on the dataset of GSM8K (Cobbe et al., 2021a) and MATH
(Hendrycks et al., 2021), we found that our trained critic model can fairly distinguish incorrect
solutions from correct ones, and improve the reasoning accuracy via iterative refinement or critic
filtering. These results demonstrate the helpfulness and effectiveness of our proposed method. Ad-
ditionally, we observed that our critic model already exhibits noticeable performance improvements
in task-solving, even in the absence of additional critique steps during the decoding phase. Such
findings reveal that strengthening the ability to critique and refinement would not compromise the
task-solving performance, but improve it. This also suggests the presence of an intrinsic mechanism
by which critique ability and task-solving capability mutually reinforce one another.

We summarize our main contributions as follows:

• We propose Critic-CoT, which pushes the critic paradigm of LLMs from System-1-like
incentive “thinking” toward System-2-like deliberate “reasoning”.

• Through experiments, we find that Critic-CoT can effectively teach the model to criticize
and refine its own output step by step, thus noticeably improving the reasoning perfor-
mance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Moreover, we find that for LLMs, the ability of critique and refinement could mutually
reinforce, which may shed light on designing more advanced self-critic framework designs
in future work.

2 RELATED WORKS

2.1 DISCRIMINATIVE VERIFIER FOR MATHEMATICS

To further improve the reasoning ability of Large language models, one applicable approach is
through the use of reward models, which can either be used in reinforcement learning during train-
ing (Ouyang et al., 2022) or rejection sampling at test time (Cobbe et al., 2021b). While outcome-
supervised reward models (ORMs) allow for the automatic collection of training data based on the
signal of the gold answer, process-supervised reward models (PRMs) would be more advantageous
for more precise feedback, better interpretability and stronger alignment (Lightman et al., 2024).

To reduce the considerable human labeling cost and difficulty for dense annotation, a series of works
based on automatic approaches have been proposed (Wang et al., 2023a; Chen et al., 2024b; Luo
et al., 2024; Snell et al., 2024), all under the heuristic that for an incorrect solution, the first error step
is where the continuation of previous step would lead to a correct answer. This may bring noise into
training data due to false positives and negatives (Luo et al., 2024). Moreover, annotation based on
the implicit solution continuation alone does not leverage LLM’s emerging ability of critic, which
is in a more explicit and analytic way and brings better explainability (Saunders et al., 2022; Yuan
et al., 2024; Luo et al., 2023; McAleese et al., 2024). Additionally, binary 0/1 discrimination alone,
whether outcome-based or process-based, remains more similar to System-1 reasoning rather than
the desirable System-2, thus may not fully leverage the computation power support by empirically
successful Chain-of-Thought prompting (Feng et al., 2023; Li et al., 2024).

2.2 CRITIC MODEL

Learning from natural language feedback could be beneficial (Chen et al., 2024a). With the devel-
opment of LLM, whether it can discriminate and criticize its own output in a text-generation manner
becomes an interesting topic (Luo et al., 2023; Zeng et al., 2023), with doubts at least on off-the-
shelf LLMs that are not specially trained for such task (Huang et al., 2024; West et al., 2024; Liu
et al., 2024). Later, several works are proposed to improve self-reflection via a carefully designed
prompting pipeline (Zhang et al., 2024b; Yan et al., 2024; Wu et al., 2024). Current applications,
such as response evaluation, heavily rely on the reference (Zheng et al., 2023). Therefore, given
the limited critic ability of current LLMs, how to train a robust and applicable critic model is worth
investigating. Concurrently, Zhang et al. (2024a) trained a generative reward model on the outcome
level rather than the process level but did not incorporate refinement into the schema.

From the perspective of recursive reward modeling (Leike et al., 2018; Saunders et al., 2022) and
scalable oversight (Burns et al., 2023), McAleese et al. (2024) recently trained “CriticGPT” to assist
human labelers, which aims to improve the ability of human rather than the base model, i.e. improve
the overall recall of error detection, rather than precision. While in this paper, we try to explore
whether improving the reasoning ability of LLM without costly human annotation is applicable.

3 METHOD

To equip LLMs with the ability to criticize and refine themselves step-by-step, we propose Critic
CoT. As shown in Figure 2, it consists of two modules, including weak-supervision-based auto-train
and self-check at inference-time. First, we introduce the weak-supervision principles in Section 3.1,
followed by the training process in Section 3.1, and finally, the inference strategies in 3.3.

3.1 CHAIN-OF-THOUGHT CRITIQUE

In this work, we utilize a step-wise chain-of-thought critique, which makes the critique-refine pro-
cess both controllable and formalizable, thereby facilitating the collection of weak supervision data.
Formally, given the question Q and the corresponding gold answer Ans, we have the n-step attempt

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Step 3: …
 Answer

Filter
Error

Positive
Critique

Step i: …
Step i is wrong

Step-wise Feedback

Negative
Critique

As
Generator

As
Critic

Correct
Solution

Step 1 is correct
Step 2 is correct
Step 3 is correct

Positive Critique

Step 1 is correct
Step 2 is wrong

Failed Critique

Refine

Success Refinement

Failed Refinement

Step 1 is correct
Step 2 is wrong

Negative Critique
Step 1 is correct
Step 2 is correct
Step 3 is correct

Failed Critique

Step 3: …
 Answer

(a) Auto-Train: Training data construction of Critic-CoT (b) Self-Check: Inference process of Iterative Refine
and Critic As Filter

Iterative Refine

Critic As Filter

As
Generator

As
Critic

Wrong
Solution

Input
Query

Input
Query

Critic-CoT
Train Data

As
Generator

As
Critic

Sampled
Solution

Input
Query

Output
Answer

As
Generator

As
Critic

Sampled
Solutions

Input
Query

Filter
Solutions

Majority
Vote

Output
Answer

Weak Supervision

Figure 2: The Process of Critic-CoT during training (a) and inference (b). For training, we collect
the critic-refine data on the generator’s samples via weak supervision (Section 3.1). Through fine-
tuning, we enable the target model to criticize and refine its own reasoning process. Then, during
inference, we can leverage the capabilities via Iterative Refine or Critic As Filter (Section 3.3).

Att = [s1, ..., sn] with predicted answer Pred sampled by generator G. The corresponding critique
Cri then can be represented as L = [l1, ..., ln], where the step label li = +1 indicates that step i is
predicted to be correct, and li = −1 to be incorrect. Then the refinement Att′ = [s′i, ..., s

′
n′] is start

from the first incorrect step i with new answer Pred′. To automatically annotate the process label
for the attempts, we assume that (1) If the final answer is wrong, then there is one earliest mistake,
and by refining from this mistake, we could reach a correct answer; (2) If the final answer is correct,
then all the intermediate steps are correct. Thus, we enumerate the following cases:

• Pred ̸= Ans,−1 /∈ L: The attempt is wrong, yet the critique did not discover any error
step. Thus the critique itself is problematic, and we need to sample another critique.

• Pred ̸= Ans,−1 ∈ L,Pred′ ̸= Ans: The attempt is wrong, and the critique found an
error, but still, the refinement is not correct. There could be two cases for this situation: (1)
the refinement is unsuccessful; (2) the critique did not detect an earlier mistake. We simply
sample another critique and corresponding refinement for this situation.

• Pred ̸= Ans,−1 ∈ L,Pred′ = Ans: Not only did the critique point out the er-
ror, but also the refinement reached the correct answer. We then believe the critique is
valid, and collect the critique data instance C = (Q,Att, Cri) and the refinement data
R = (Q,Att, Cri−1, Att′), where Cri−1 is the critique of last step, since explaining why
previous steps are correct may not be helpful for refinement.

• Pred = Ans,−1 /∈ L: The attempt is correct, and the critique believes it is correct. So we
can collect the positive critique data instance C = (Q,Att, Cri).

• Pred = Ans,−1 ∈ L: The attempt reached the correct answer, yet the critique found an
error. Then, the critique could be wrong, and we need to sample another critique.

3.2 AUTO TRAIN: TWO-STAGE TRAINING

To enable the model to acquire self-critiquing and refining capabilities, we first need to provide it
with basic critiquing abilities, followed by self-critique for further enhancement. The overall training
procedure is divided into two stages.

Stage 1 In the first step, we collect high-quality critique data to provide the model’s basic cri-
tiquing ability. Specifically, we first sample both positive and negative solutions from a representa-
tive instruction-following model MG on the dataset D. Then, we utilize SOTA LLMs like GPT4-
Turbo to serve as critic model MC . For each generated attempt Att, the critic model will retry at
most k times to produce a valid critique until it reaches one of the weak supervision constraints.
This will form the critic-refine dataset D1 = {(Q,Att, Cri)}

⋃
{(Q,Att, Cri−1, Att′)} for fine-

tuning the initial model M0 into the critic model M1. Note that in this process, we actually distill

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Pass1@N of the teacher model MC into Top1@N of the student model. So, the theoretical upper
bound of the student model is not necessarily limited by the teacher model’s performance.

Stage 2 In the second step, we leverage the model’s self-critique to enhance its critiquing and
refining capabilities further. Namely, we let the learned critic model M1 criticize and refine its
own output. We first sample M correct-answer solutions and M incorrect-answer solutions for each
question Q in the original dataset D. Then, for each attempt Att, we employ M1 to repeatedly
criticize and refine at most k times. In case the model fails to successfully critique even after k
times, we fall back on the critique from a stronger yet frozen model MC as the final choice. Finally,
we collect dataset D2 = {(Q,Att, Cri)}

⋃
{(Q,Att, Cri−1, Att′)} and use D1

⋃
D2 to train the

initial model M0 into the final critic model M2, which is similar to Wang et al. (2024). This
procedure helps the model to learn to criticize and refine its own reasoning outputs better.

3.3 INFERENCE: SELF-CHECK

To leverage our learned abilities of critique and refinement for more precise reasoning, we employ
two different inference strategies: “iterative refine” and “critic as filter”.

Iterative Refine One single-turn refinement, which consists of multiple steps, may still contain
errors. Therefore, we could iteratively inspect the refined solution, and re-refine once the critique
found a mistake, and only output the final solution if it’s convincing for the critic, or if it reached
the maximum retry. To avoid de-generation after too many refinements, we set the maximum refine
depth d = 8, and restart from the initial solution after d unsuccessful refinement at most n = 8
times. Figure 3 presents a single successful round of critique and refinement.

Critic As Filter Self-consistency is an effective way to reduce variance and improve accuracy.
With the ability to critique, we can filter out predict-to-be-wrong answers to further boost the per-
formance. Specifically, for the m attempts S = {(Att, Pred)}, we first let our model M check
each attempt and obtain the stepwise label, which is Sc = {(Att, Pred, L)}. And then those which
detect the error at some step are filtered out and reach S′

c = {(Att, Pred, L)| − 1 /∈ L}. Finally, we
perform the majority vote to get the answer.

4 EXPERIMENT

We apply the Critic-CoT training process on the dataset of GSM8K and MATH (Section 4.1), and ob-
serve a noticeable performance improvement in our trained model (Section 4.3), and out-of-domain
evaluations on AGIEval and StrategyQA further exhibits the generalization of our trained critic abil-
ity (Section 4.4). We also conduct a series of ablation studies to demonstrate the effectiveness of our
proposed Critic-CoT method (Section 4.5). For more analysis on the critique and refinement during
test time, see Appendix A.1, and the prompt is presented in Appendix A.6.

4.1 SETUP

4.1.1 MODEL

We fine-tune the critic-refine model on Llama-3-70B-Instruct (Dubey et al., 2024),
which was pre-trained on more than 15 Trillion tokens and has a context length of 8,192.
For critique / refinement sampling, we use GPT4-Turbo (OpenAI, 2023) of the version
gpt-4-0125-preview. We use the Huggingface Transformers (Wolf et al., 2020), DeepSpeed
(Rajbhandari et al., 2021) and FastChat (Zheng et al., 2023) libraries for training. We use vLLM
library (Kwon et al., 2023) for model inference, adapting top-p sampling of p = 0.95, with tem-
perature 0.7 for solution sampling, which follows Cobbe et al. (2021a), and 0.5 for critique and
refinement. All inferences are zero-shot.

4.1.2 DATASET

Train & In-Domain Eval Separately, we train our model on the problem of GSM8K (Cobbe et al.,
2021a) and MATH (Hendrycks et al., 2021). GSM8K is a grade-school-level math word problem

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Question:
What is the smallest positive perfect cube that can be written as the sum of three consecutive integers?

Model Attempt:
Step 1: Let the three consecutive integers be x − 1, x, and x + 1. The sum of these three integers is 3x.
Step 2: Since we are looking for a perfect cube, let’s express 3x as a cube of some integer n, where n3 = 3x.
Step 3: To find the smallest such n, we need to minimize x. However, since n3 must be divisible by 3, and x is an integer, n itself must also be
divisible by 3.
Step 4: The smallest integer n that is divisible by 3 and gives us a perfect cube when cubed is n = 6, because 63 = 216.

Step 5: Substituting n = 6 into n3 = 3x, we get 216 = 3x, which simplifies to x = 72.

Step 6: Therefore, the smallest positive perfect cube that can be written as the sum of three consecutive integers is 216 .

Model Critique:
Step 1: Let the three consecutive integers be x − 1, x, and x + 1. The sum of these three integers is indeed 3x.
Conclusion: Step 1 is correct.

Step 2: Expressing 3x as a cube of some integer n, where n3 = 3x, correctly sets up the equation needed to solve the problem. This step
accurately translates the problem statement into a mathematical expression.
Conclusion: Step 2 is correct.

Step 3: The claim that n must be divisible by 3 because n3 must be divisible by 3 is a misunderstanding. In reality, n3 being divisible by
3 does not imply that n itself must be divisible by 3; rather, it simply means that n3 will always be divisible by 3 regardless of whether n is divisible by
3. This step introduces an unnecessary restriction on n.
Conclusion: Step 3 is incorrect.

Model Refinement:
Step 3 (Corrected): Since we are looking for the smallest positive perfect cube that can be expressed as 3x, we should start by identifying the smallest
perfect cubes and checking if any of them can be represented in this form.
Step 4: The smallest perfect cubes are 13 = 1, 23 = 8, 33 = 27, 43 = 64, 53 = 125, 63 = 216, and so on. Among these, 27 is the first
number that can be expressed as 3x, where x is an integer (x = 9).

Step 5: Therefore, the smallest positive perfect cube that can be written as the sum of three consecutive integers is 27 .

Figure 3: Criticize and refine a problem in the MATH test set. In the attempt, the model made
a hallucination in Step 3, then through stepwise CoT critique, the model detected this error, and
accordingly refined the solution starting from Step 3 successfully.

dataset, with 7,473 training instances and 1,319 test instances. MATH is a challenging high school
math competition dataset, which consists of 7,500 training problems and 5,000 test problems. For
the MATH dataset, we also follow the data split of Lightman et al. (2024), which adds 4,500 test
problems into a training set and, therefore, contains 12,000 training instances and 500 representative
test instances.

4.2 METRIC

Solution For the evaluation of the solution, we compute the metrics of Top-1 Accuracy Acc and
Refine Accuracy Refine-Acc, in which the original Top-1 predict-answer is replaced with a re-
fined one if the critic model found an error and made iterative refinement (Section 3.3). We also
compute Majority Vote Accuracy Maj1@N (Wang et al., 2023b) and Majority Vote Accuracy After
Critique Critic + Maj1@N (Section 3.3), which is to select the most frequent answer among
N samples, i.e. argmaxa

∑N
i=1 1 (ai = a). Following Liu et al. (2023); Havrilla et al. (2024),

we compute Pass@N, which select the gold answer g among the N predictions if present, i.e.
argmaxa 1 (g = a).

Critique For the “evaluation of evaluation”, we compute Precision, Recall and F1 for error detec-
tion. Also, we compute Critic Accuracy, where the critique should find the error in wrong answer
solutions and pass the correct answer solution:

P =
{|Predi ̸= Ansi ∧ −1 ∈ Li|}

|{−1 ∈ Li}|
, R =

{|Predi ̸= Ansi ∧ −1 ∈ Li|}
|{Predi ̸= Ansi}|

, F1 =
2 ∗ P ∗R
P +R

CriticAcc =

∑N
i=1(Predi = Ansi ∧ −1 /∈ Li) ∨ (Predi ̸= Ansi ∧ −1 ∈ Li)

N

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Out-of-Domain Eval To further evaluate our critic model’s generalization capabilities beyond
mathematical tasks, we assess its performance on reasoning tasks using the StrategyQA and
AGIEval datasets, which cover different domains. StrategyQA (Geva et al., 2021) is a multi-step rea-
soning task constructed from Wikipedia, with binary answers indicating either true or false. AGIEval
(Zhong et al., 2023) comprises standardized exam questions from various fields, including college
entrance exams, law school admission tests, math competitions, and lawyer qualification tests. Given
the overlap with the MATH dataset, we evaluated our model using the original 7,500/5,000 training
and validation split from MATH, rather than the extended 12,000/500 split.

4.2.1 CRITIC DATA CONSTRUCTION

GSM8K On GSM8K, since GPT-4 already got 92.0% accuracy on the test set (OpenAI, 2023),
which makes it hard to obtain negative data, we use GPT-3.5-Turbo-0125 instead to sample
10 solutions for each question in the training set. Then, we use GPT-4-Turbo as the critic-refine
model to criticize the solutions (Table 10), with K = 16 retry. We obtain 63,485 cases, with 49,832
positive examples and 13,653 negative examples.

In the second stage of GSM8K critique construction, we use the learned critic model to repeatedly
sample until we obtain at most 5 positive and 5 negative solutions. For strong LLMs like LLaMA-3,
it’s challenging to get enough negative solutions even among 512 samples, so the size of negative
data would be slightly smaller. Then, we use the learned critic model to criticize itself, also with
K = 16 retry. In stage two, we obtain 62,877 instances, with 39,654 positive and 26,001 negative.
Among the two stages, we got 126,362 instances, with 86,708 positive and 39,654 negative.

MATH On MATH, in the first stage, we directly use the 90,074 GPT-4 generated solutions of
PRM800K Dataset (Lightman et al., 2024), with 11,665 positive instances which all the step labels
are correct, and 78,409 negative instances which one step label is incorrect. Since the MATH dataset
is challenging, in order to reduce retry of GPT-4-Turbo and avoid not getting valid critique, for the
critique of the negative solution, we additionally append reference solution in the input prompt, and
hint it might contain mistakes, as suggested in prior work (Zelikman et al., 2022); for the positive
solution, we simply hint it’s correct. After obtaining the initial critique, we use GPT-4-Turbo
again to remove hint phrases like “According to the reference” or “Given the hint” since we do not
have any hint or reference during the test time. In stage one, we obtain 1,606 positive cases and
69,775 negative cases.

Similarly, in the second stage of MATH, we use the learned critic model to sample at most 5 positive
and negative solutions. Then, we first use the critic model itself to critic its solutions, and without
any hints, under K = 16 retry, and use GPT-4-Turbo to retry another K = 16 times with hint
if failed. We construct 51,618 positive cases and 65,456 negative cases. Among the two stages, we
got 188,455 cases, with 53,224 positive and 135,231 negative.

4.3 MAIN RESULTS

GSM8K The results of the GSM8K dataset highlight the effectiveness of the Critic-CoT approach
in enhancing the solution accuracy. Initially, our trained model’s top-1 accuracy increases from
89.6% to 91.7%, and the iterative refine strategy further enhances the accuracy to 93.3%. Addition-
ally, the Maj1@96 method combined with the critic’s filter achieves the highest accuracy of 95.4%,
which is an improvement of 0.6% over the non-critic-assisted Maj1@96 approach. These results
suggest that the Critic-CoT method, under relatively easy task where baseline solving accuracy is
already high, can still boost performance, via critic-refine training and filtering out invalid solutions
or making corrections at test time. For a concrete example of a single-turn refinement, please refer
to Appendix A.5.

MATH As presented in Table 3, on the test set of MATH500, the baseline performance of Llama-
3-70B-Instruct stands at 50.4% accuracy and Tong et al. (2024) reaches 56.1% with difficulty-
aware rejection tuning, while our Critic-CoT approach initially improves the model’s performance
to 57.6%, with a slight increase to 57.8% through Iterative Refine. Figure 3 presents a concrete
example of step-wise CoT critique, which detects an error in problem understanding in Step 3 and a
successful refinement that fixes the error in Step 3 and reaches the correct answer. Compared with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Model Sampling Method Acc.

Llama-3-70B-Instruct (Dubey et al., 2024) - 89.6
Maj1@96 94.1

Llama-3.1-70B-Instruct (Dubey et al., 2024) - 94.5
GPT4-0314 (OpenAI, 2023) - 92.0
DeepSeek-V2 Chat-236B (DeepSeek-AI et al., 2024) - 92.2
Qwen2-72B (Yang et al., 2024) - 93.2

Mistral-7B: MetaMATH (Gao et al., 2024) PRM+Maj1@256 87.8
InternLM-MATH-20B (Ying et al., 2024) PRM Best-of-100 89.3
DART-Math-Llama3-70B (Tong et al., 2024) - 89.6
DeepSeek-67B: MetaMATH (Wang et al., 2023a) PRM+Maj1@256 92.5

Critic-CoT, Llama-3-70B-Instruct (Ours) - 91.7
Iterative Refine 93.3 ↑ 1.6
Maj1@96 94.8
Critic + Maj1@96 95.4 ↑ 0.6

Table 1: Solution Accuracy of GSM8K. The top-1 accuracy of our trained model improves from
89.6% to 91,7%, while iterative refinement further improves the score to 93.3%, and the critic filter
increases the performance from 94.8% to 95.4%.

Model Sampling Method Acc.

Llama-3-70B-Instruct (Dubey et al., 2024) - 51.0
Maj1@96 63.5
Maj1@512 64.3

Llama-3.1-70B-Instruct (Dubey et al., 2024) - 68.0
DeepSeek-V2 Chat-236B (DeepSeek-AI et al., 2024) - 53.9
Qwen2-72B (Yang et al., 2024) - 69.0
GPT4-0314 (OpenAI, 2023) - 42.5
GPT4-Turbo - 72.6

Critic-CoT, Llama-3-70B-Instruct (Ours) - 56.2
Iterative Refine 56.6 ↑ 0.4
Maj1@96 64.2
Critic + Maj1@96 65.0 ↑ 0.8
Maj1@512 64.4
Critic + Maj1@512 66.4 ↑ 2.0

Table 2: Solution Accuracy of MATH. The top-1 accuracy of our method increases from 51.0% to
56.2%, and the effect of iterative refinement is moderate but positive improvement of 0.4%, while
the performance gain of the critic filter is larger.

GSM8K, gaining from refinement is much harder. However, critic filtering still provides a notable
improvement, which could be slightly easier than refinement: the accuracy rises from 64.6% with
Maj1@96 to 66.6% when Critic filtering is applied, marking a 2.0% improvement. Furthermore, for
Maj1@512, the accuracy rises to 68.4% after Critic filtering, showing an increase of 3.0%. While
the close-source model GPT-4-MathMix achieves the highest accuracy of 78.2% with extensive
sampling of 1860, the Critic-CoT approach on the open-source model can still significantly enhance
the accuracy of the base model, particularly through effective error detection. The trend remains
consistent with the original 7,500/5,000 split setting (Table 2). Overall, the result demonstrates the
effectiveness of our method in training reasonable-level critic-refine capabilities on the challenging
MATH dataset. More detailed analysis on GSM8K and MATH500 is in Appendix A.1.

4.4 OUT-OF-DOMAIN RESULTS

For the StrategyQA dataset, our critic models trained on two datasets show a positive performance
increase when applying iterative refine and majority vote with the critic filter. On the more chal-
lenging AGIEval dataset, the critic model trained on GSM8K improves with iterative refinement,
but slightly hurts the performance when filtering samples, indicating the limitations of the grade-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Model Sampling Method Acc.

Llama-3-70B-Instruct - 50.4
Maj1@96 62.2
Maj1@512 63.4

Mistral-7B: MetaMATH (Gao et al., 2024) PRM+Maj1@256 38.6
DeepSeek-67B: MetaMATH (Wang et al., 2023a) PRM+Maj1@256 48.1
InternLM-MATH-20B (Ying et al., 2024) PRM Best-of-100 50.0
DART-Math-Llama3-70B (Tong et al., 2024) - 56.1
GPT-4-MathMix (Lightman et al., 2024) PRM Best-of-100 74.5

PRM Best-of-1860 78.2

Critic-CoT, Llama-3-70B-Instruct (Ours) - 57.6
Iterative Refine 57.8 ↑ 0.2
Maj1@96 64.6
Critic + Maj1@96 66.6 ↑ 2.0
Maj1@512 65.4
Critic + Maj1@512 68.4 ↑ 3.0

Table 3: Solution Accuracy of MATH500. The trend is similar to the result on MATH, with a
noticeable increase in top-1 accuracy and critic filtering, and a minor increase in iterative refinement.

Model Acc.

Llama-3-70B-Instruct 56.6
Llama-3.1-70B-Instruct 61.8
DeepSeek-V2 Chat-236B 61.4
GPT4o 65.2

Critic-CoT, GSM8K 54.7
- Iterative Refine 55.6 ↑ 0.8
- Maj1@96 60.7
- Critic + Maj1@96 60.3 ↓ 0.4
Critic-CoT, MATH 59.8
- Iterative Refine 63.7 ↑ 3.9
- Maj1@96 61.0
- Critic + Maj1@96 61.2 ↑ 0.2

(a) AGIEval

Model Acc.

Llama-3-70B-Instruct 76.2
Llama-3.1-70B-Instruct 84.3
DeepSeek-V2 Chat-236B 75.6
GPT4-0314 83.6

Critic-CoT, GSM8K 77.5
- Iterative Refine 78.8 ↑ 1.3
- Maj1@96 78.7
- Critic + Maj1@96 80.5 ↑ 1.8
Critic-CoT, MATH 78.0
- Iterative Refine 80.1 ↑ 2.1
- Maj1@96 78.3
- Critic + Maj1@96 79.7 ↑ 1.4

(b) StrategyQA

Table 4: Solution Accuracy of AGIEval (4a) and StrategyQA (4b). Our models generally show ro-
bust generalization on out-of-domain test sets, with the exception of critic filtering by model trained
on GSM8K, as the dataset is much simpler.

level critic model in handling more complex, multi-domain tasks. Conversely, the Critic-CoT model
trained on MATH shows significant improvements in iterative refinement, and the method of major-
ity vote after criticizing does not negatively impact the performance.

Overall, the results illustrate that our critic models generalize to other domains, and achieve per-
formance improvements. This underscores the potential of our proposed critic-refine method in
improving reasoning accuracy in diverse and challenging tasks beyond the training domain of math.

4.5 ABLATION STUDY

The results of the ablation study are shown in Table 5a and 5b, demonstrating the effectiveness of our
Critic-CoT design. At the level of critique output, to assess the necessity of our proposed step-wise
CoT critic, we first remove the CoT mechanism, and only train the critic model to directly predict
if each step is correct (Process Label), for example, “Step 1 is correct. Step 2 is incorrect.”. Then,
we remove further remove the step-wise label, and let the critic model predict if the entire solution
is correct, without printing anything else (Outcome Label), for example, “Some step from Step 1
to Step 4 is incorrect.” or “Each step from Step 1 to Step 4 is correct.”. We find that removing the
Chain-of-Thought intermediate output and further step-wise labels, which fall back toward System-

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Model Critic Refine Majority Vote

P R F1 Acc. Init. Acc Ref. Acc. Pass1@N Maj1@N +Critic

Outcome Label 95.5 28.9 44.4 88.0 87.7 89.7 99.0 93.6 93.7
Process Label 67.9 22.8 34.1 89.5 88.0 89.2 99.0 93.0 93.0

Only Refine 30.0 11.4 16.6 90.8 92.0 88.2 98.9 95.2 95.2
Only Critic 57.1 31.0 40.2 91.9 91.2 91.4 98.9 94.4 94.5

Stage 1 42.5 41.5 42.0 89.3 90.7 91.1 98.9 93.6 94.2
Stage 2 50.0 25.0 33.3 85.5 90.5 91.3 99.0 94.4 94.4

Critic-CoT 53.3 58.2 55.7 92.3 91.7 93.3 99.1 94.8 95.4

(a) GSM8K

Model Critic Refine Majority Vote

P R F1 Acc. Init. Acc Ref. Acc. Pass1@N Maj1@N +Critic

Outcome Label 84.4 39.0 53.3 63.0 51.8 53.6 84.0 56.2 56.2
Process Label 80.2 35.9 49.6 63.8 50.4 52.6 78.6 49.4 50.8

Only Refine 62.3 60.1 61.2 66.0 55.4 49.8 90.4 63.0 62.8
Only Critic 67.9 75.4 71.5 71.6 52.8 55.8 89.0 60.6 60.6

Stage 1 64.6 93.7 76.5 69.0 53.2 41.2 90.4 63.4 63.0
Stage 2 79.7 45.8 58.2 71.8 57.2 57.4 90.4 64.6 65.0

Critic-CoT 66.1 73.7 69.7 72.2 57.6 57.8 89.2 64.6 66.6

(b) MATH500

Table 5: Ablation Study on GSM8K and MATH500. We use the metrics from three aspects: critic,
including precision, recall, f1-score and accuracy; Iterative Refine, including accuracy before and
after the refinement; and Critic As Filter, including Pass1@96, Maj1@96, and Critic+Maj1@96.
The ablation study demonstrates the effectiveness of our Critic-CoT design.

1 reasoning, negatively impacts the recall metric. Consequently, the critic model fails to detect more
errors, resulting in a significantly lower critic accuracy, despite its tendency to more easily pass
correct solutions.

At the training data level, to evaluate the effect of different data types, we remove the second-stage
data, only use the critique and refinement produced by GPT, or remove the first-stage data and only
use the critiques and refinements of self-sampled solutions. In addition, we conducted a vertical
ablation by removing either the critic data or the refinement data across both stages. From the
results, we find that regarding the roles of critic and refine, it is suggested that refinement contributes
more to policy improvement, which echoes the finding of An et al. (2024). Yet only by combining
critique and refinement during training can we enhance the policy while leveraging the critic’s ability
for further performance gains. Finally, training on the critique of GPT models proves better at
identifying faults, but at the cost of precision. In contrast, using only the critique of itself is less
effective than simply utilizing data from both stages.

5 CONCLUSION

In this paper, we introduced the Critic-CoT paradigm to enhance the reasoning abilities of Large
Language Models, through a more System-2-like, step-by-step Chain-of-Thought critique. Our ap-
proach leverages weak supervision to construct training data for critiques and refinements, thereby
reducing the reliance on extensive human annotation. We demonstrated the effectiveness of our
method through substantial improvements across the dataset of GSM8K and MATH. Additionally,
our results present that training on the capabilities of critique and refinement alone improves task-
solving performance, which indicates a mutual-reinforce mechanism within the LLMs. We hope our
work may inspire further investigations into the advancement of the self-critic framework and the
transition toward System-2 reasoning.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes llm better reasoner, 2024. URL https://arxiv.org/abs/2310.
20689.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece
Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid Palangi,
Marco Tulio Ribeiro, and Yi Zhang. Sparks of artificial general intelligence: Early experiments
with gpt-4, 2023. URL https://arxiv.org/abs/2303.12712.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschen-
brenner, Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu.
Weak-to-strong generalization: Eliciting strong capabilities with weak supervision, 2023. URL
https://arxiv.org/abs/2312.09390.

Boxi Cao, Keming Lu, Xinyu Lu, Jiawei Chen, Mengjie Ren, Hao Xiang, Peilin Liu, Yaojie Lu, Ben
He, Xianpei Han, Le Sun, Hongyu Lin, and Bowen Yu. Towards scalable automated alignment
of llms: A survey, 2024. URL https://arxiv.org/abs/2406.01252.

Angelica Chen, Jérémy Scheurer, Jon Ander Campos, Tomasz Korbak, Jun Shern Chan, Samuel R.
Bowman, Kyunghyun Cho, and Ethan Perez. Learning from natural language feedback. Transac-
tions on Machine Learning Research, 2024a. ISSN 2835-8856. URL https://openreview.
net/forum?id=xo3hI5MwvU.

Guoxin Chen, Minpeng Liao, Chengxi Li, and Kai Fan. Alphamath almost zero: process supervi-
sion without process. CoRR, abs/2405.03553, 2024b. doi: 10.48550/ARXIV.2405.03553. URL
https://doi.org/10.48550/arXiv.2405.03553.

François Chollet. On the measure of intelligence, 2019. URL https://arxiv.org/abs/
1911.01547.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021a. URL
https://arxiv.org/abs/2110.14168.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021b. URL https://arxiv.
org/abs/2110.14168.

DeepSeek-AI, Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, and et al. Deepseek-v2:
A strong, economical, and efficient mixture-of-experts language model. CoRR, abs/2405.04434,
2024. doi: 10.48550/ARXIV.2405.04434. URL https://doi.org/10.48550/arXiv.
2405.04434.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, and et al. The llama 3 herd of models, 2024. URL
https://arxiv.org/abs/2407.21783.

Guhao Feng, Bohang Zhang, Yuntian Gu, Haotian Ye, Di He, and Liwei Wang. Towards revealing
the mystery behind chain of thought: A theoretical perspective. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=qHrADgAdYu.

Bofei Gao, Zefan Cai, Runxin Xu, Peiyi Wang, Ce Zheng, Runji Lin, Keming Lu, Junyang Lin,
Chang Zhou, Wen Xiao, Junjie Hu, Tianyu Liu, and Baobao Chang. LLM critics help catch bugs
in mathematics: Towards a better mathematical verifier with natural language feedback. CoRR,
abs/2406.14024, 2024. doi: 10.48550/ARXIV.2406.14024. URL https://doi.org/10.
48550/arXiv.2406.14024.

11

https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2310.20689
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2312.09390
https://arxiv.org/abs/2406.01252
https://openreview.net/forum?id=xo3hI5MwvU
https://openreview.net/forum?id=xo3hI5MwvU
https://doi.org/10.48550/arXiv.2405.03553
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/1911.01547
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://doi.org/10.48550/arXiv.2405.04434
https://doi.org/10.48550/arXiv.2405.04434
https://arxiv.org/abs/2407.21783
https://openreview.net/forum?id=qHrADgAdYu
https://openreview.net/forum?id=qHrADgAdYu
https://doi.org/10.48550/arXiv.2406.14024
https://doi.org/10.48550/arXiv.2406.14024

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot, Dan Roth, and Jonathan Berant. Did aristotle
use a laptop? a question answering benchmark with implicit reasoning strategies. Transactions
of the Association for Computational Linguistics, 9:346–361, 2021. doi: 10.1162/tacl a 00370.
URL https://aclanthology.org/2021.tacl-1.21.

Alexander Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-
Yu, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large language models
to reason with reinforcement learning. In AI for Math Workshop @ ICML 2024, 2024. URL
https://openreview.net/forum?id=mjqoceuMnI.

G.W.F. Hegel, T.F. Geraets, W.A. Suchting, and H.S. Harris. The Encyclopaedia Logic, with the
Zustze: Part I of the Encyclopaedia of Philosophical Sciences with the Zusatze. Hackett Classics
Series. Hackett, 1991. ISBN 9780872200708. URL https://books.google.ca/books?
id=4BNUFZ_hQ1wC.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=IkmD3fKBPQ.

Daniel Kahneman. Thinking Fast and Slow. Farrar, Straus and Giroux, 2011.

Søren Kierkegaard. Kierkegaard’s Writings, II, Volume 2: The Concept of Irony, with Continual
Reference to Socrates/Notes of Schelling’s Berlin Lectures. Princeton University Press, 1989.
ISBN 9780691073545. URL http://www.jstor.org/stable/j.ctt24hr3n.

Geunwoo Kim, Pierre Baldi, and Stephen Marcus McAleer. Language models can solve computer
tasks. In Thirty-seventh Conference on Neural Information Processing Systems, 2023. URL
https://openreview.net/forum?id=M6OmjAZ4CX.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language
model serving with pagedattention. In Proceedings of the 29th Symposium on Operating Sys-
tems Principles, SOSP ’23, pp. 611–626, New York, NY, USA, 2023. Association for Com-
puting Machinery. ISBN 9798400702297. doi: 10.1145/3600006.3613165. URL https:
//doi.org/10.1145/3600006.3613165.

Jan Leike, David Krueger, Tom Everitt, Miljan Martic, Vishal Maini, and Shane Legg. Scalable
agent alignment via reward modeling: a research direction, 2018. URL https://arxiv.
org/abs/1811.07871.

Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
solve inherently serial problems. In The Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/forum?id=3EWTEy9MTM.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=v8L0pN6EOi.

Zicheng Lin, Zhibin Gou, Tian Liang, Ruilin Luo, Haowei Liu, and Yujiu Yang. CriticBench:
Benchmarking LLMs for critique-correct reasoning. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Findings of the Association for Computational Linguistics: ACL 2024,
pp. 1552–1587, Bangkok, Thailand, August 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.findings-acl.91. URL https://aclanthology.org/2024.
findings-acl.91.

12

https://aclanthology.org/2021.tacl-1.21
https://openreview.net/forum?id=mjqoceuMnI
https://books.google.ca/books?id=4BNUFZ_hQ1wC
https://books.google.ca/books?id=4BNUFZ_hQ1wC
https://openreview.net/forum?id=7Bywt2mQsCe
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
http://www.jstor.org/stable/j.ctt24hr3n
https://openreview.net/forum?id=M6OmjAZ4CX
https://doi.org/10.1145/3600006.3613165
https://doi.org/10.1145/3600006.3613165
https://arxiv.org/abs/1811.07871
https://arxiv.org/abs/1811.07871
https://openreview.net/forum?id=3EWTEy9MTM
https://openreview.net/forum?id=v8L0pN6EOi
https://openreview.net/forum?id=v8L0pN6EOi
https://aclanthology.org/2024.findings-acl.91
https://aclanthology.org/2024.findings-acl.91

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir Zaki, Bedoor AlShebli, and Talal Rahwan.
Self-reflection outcome is sensitive to prompt construction, 2024. URL https://arxiv.
org/abs/2406.10400.

Yixin Liu, Avi Singh, C. Daniel Freeman, John D. Co-Reyes, and Peter J. Liu. Improving large
language model fine-tuning for solving math problems. CoRR, abs/2310.10047, 2023. doi: 10.
48550/ARXIV.2310.10047. URL https://doi.org/10.48550/arXiv.2310.10047.

Liangchen Luo, Zi Lin, Yinxiao Liu, Lei Shu, Yun Zhu, Jingbo Shang, and Lei Meng. Critique
ability of large language models, 2023. URL https://arxiv.org/abs/2310.04815.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun
Zhu, Lei Meng, Jiao Sun, and Abhinav Rastogi. Improve mathematical reasoning in language
models by automated process supervision, 2024. URL https://arxiv.org/abs/2406.
06592.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, Shashank Gupta, Bodhisattwa Prasad
Majumder, Katherine Hermann, Sean Welleck, Amir Yazdanbakhsh, and Peter Clark. Self-refine:
Iterative refinement with self-feedback. In Thirty-seventh Conference on Neural Information Pro-
cessing Systems, 2023. URL https://openreview.net/forum?id=S37hOerQLB.

Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja Tre-
bacz, and Jan Leike. Llm critics help catch llm bugs, 2024. URL https://arxiv.org/
abs/2407.00215.

Meredith Ringel Morris, Jascha Sohl-Dickstein, Noah Fiedel, Tris Warkentin, Allan Dafoe, Alek-
sandra Faust, Clement Farabet, and Shane Legg. Position: Levels of AGI for operationalizing
progress on the path to AGI. In Forty-first International Conference on Machine Learning, 2024.
URL https://openreview.net/forum?id=0ofzEysK2D.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

OpenAI. Openai o1 system card. 2024. URL https://assets.
ctfassets.net/kftzwdyauwt9/67qJD51Aur3eIc96iOfeOP/
71551c3d223cd97e591aa89567306912/o1_system_card.pdf.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kel-
ton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Christiano, Jan Leike,
and Ryan Lowe. Training language models to follow instructions with human feedback. In
S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh (eds.), Advances in
Neural Information Processing Systems, volume 35, pp. 27730–27744. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Karl Raimund Popper. The Logic of Scientific Discovery. Routledge, New York, 1934.

Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-infinity:
breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and Analysis, SC ’21,
New York, NY, USA, 2021. Association for Computing Machinery. ISBN 9781450384421. doi:
10.1145/3458817.3476205. URL https://doi.org/10.1145/3458817.3476205.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators, 2022. URL https://arxiv.
org/abs/2206.05802.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. Re-
flexion: language agents with verbal reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=vAElhFcKW6.

13

https://arxiv.org/abs/2406.10400
https://arxiv.org/abs/2406.10400
https://doi.org/10.48550/arXiv.2310.10047
https://arxiv.org/abs/2310.04815
https://arxiv.org/abs/2406.06592
https://arxiv.org/abs/2406.06592
https://openreview.net/forum?id=S37hOerQLB
https://arxiv.org/abs/2407.00215
https://arxiv.org/abs/2407.00215
https://openreview.net/forum?id=0ofzEysK2D
https://doi.org/10.48550/arXiv.2303.08774
https://assets.ctfassets.net/kftzwdyauwt9/67qJD51Aur3eIc96iOfeOP/71551c3d223cd97e591aa89567306912/o1_system_card.pdf
https://assets.ctfassets.net/kftzwdyauwt9/67qJD51Aur3eIc96iOfeOP/71551c3d223cd97e591aa89567306912/o1_system_card.pdf
https://assets.ctfassets.net/kftzwdyauwt9/67qJD51Aur3eIc96iOfeOP/71551c3d223cd97e591aa89567306912/o1_system_card.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://doi.org/10.1145/3458817.3476205
https://arxiv.org/abs/2206.05802
https://arxiv.org/abs/2206.05802
https://openreview.net/forum?id=vAElhFcKW6
https://openreview.net/forum?id=vAElhFcKW6

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters, 2024. URL https://arxiv.org/
abs/2408.03314.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu, and Junxian He. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving, 2024. URL https://arxiv.org/abs/
2407.13690.

Peiyi Wang, Lei Li, Zhihong Shao, R. X. Xu, Damai Dai, Yifei Li, Deli Chen, Y. Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. CoRR,
abs/2312.08935, 2023a. doi: 10.48550/ARXIV.2312.08935. URL https://doi.org/10.
48550/arXiv.2312.08935.

Tianlu Wang, Ilia Kulikov, Olga Golovneva, Ping Yu, Weizhe Yuan, Jane Dwivedi-Yu,
Richard Yuanzhe Pang, Maryam Fazel-Zarandi, Jason Weston, and Xian Li. Self-taught eval-
uators, 2024. URL https://arxiv.org/abs/2408.02666.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023b. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Peter West, Ximing Lu, Nouha Dziri, Faeze Brahman, Linjie Li, Jena D. Hwang, Liwei Jiang, Jillian
Fisher, Abhilasha Ravichander, Khyathi Chandu, Benjamin Newman, Pang Wei Koh, Allyson
Ettinger, and Yejin Choi. The generative AI paradox: “what it can create, it may not understand”.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=CF8H8MS5P8.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick
von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gug-
ger, Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art
natural language processing. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pp. 38–45, Online, October 2020. As-
sociation for Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.emnlp-demos.6.

Zhenyu Wu, Qingkai Zeng, Zhihan Zhang, Zhaoxuan Tan, Chao Shen, and Meng Jiang. Large
language models can self-correct with key condition verification. In Yaser Al-Onaizan, Mohit
Bansal, and Yun-Nung Chen (eds.), Proceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 12846–12867, Miami, Florida, USA, November 2024.
Association for Computational Linguistics. URL https://aclanthology.org/2024.
emnlp-main.714.

Hanqi Yan, Qinglin Zhu, Xinyu Wang, Lin Gui, and Yulan He. Mirror: Multiple-perspective
self-reflection method for knowledge-rich reasoning. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 7086–7103, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.382. URL
https://aclanthology.org/2024.acl-long.382.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, and et al. Qwen2
technical report, 2024. URL https://arxiv.org/abs/2407.10671.

Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
Jiawei Hong, Kuikun Liu, Ziyi Wang, Yudong Wang, Zijian Wu, Shuaibin Li, Fengzhe Zhou,
Hongwei Liu, Songyang Zhang, Wenwei Zhang, Hang Yan, Xipeng Qiu, Jiayu Wang, Kai Chen,
and Dahua Lin. Internlm-math: Open math large language models toward verifiable reasoning.
CoRR, abs/2402.06332, 2024. doi: 10.48550/ARXIV.2402.06332. URL https://doi.org/
10.48550/arXiv.2402.06332.

Ping Yu, Jing Xu, Jason Weston, and Ilia Kulikov. Distilling system 2 into system 1, 2024. URL
https://arxiv.org/abs/2407.06023.

14

https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2408.03314
https://arxiv.org/abs/2407.13690
https://arxiv.org/abs/2407.13690
https://doi.org/10.48550/arXiv.2312.08935
https://doi.org/10.48550/arXiv.2312.08935
https://arxiv.org/abs/2408.02666
https://openreview.net/forum?id=1PL1NIMMrw
https://openreview.net/forum?id=CF8H8MS5P8
https://openreview.net/forum?id=CF8H8MS5P8
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://aclanthology.org/2024.emnlp-main.714
https://aclanthology.org/2024.emnlp-main.714
https://aclanthology.org/2024.acl-long.382
https://arxiv.org/abs/2407.10671
https://doi.org/10.48550/arXiv.2402.06332
https://doi.org/10.48550/arXiv.2402.06332
https://arxiv.org/abs/2407.06023

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing Xu,
and Jason E Weston. Self-rewarding language models. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=0NphYCmgua.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_3ELRdg2sgI.

Zhongshen Zeng, Pengguang Chen, Shu Liu, Haiyun Jiang, and Jiaya Jia. Mr-gsm8k: A meta-
reasoning benchmark for large language model evaluation. CoRR, abs/2312.17080, 2023. doi: 10.
48550/ARXIV.2312.17080. URL https://doi.org/10.48550/arXiv.2312.17080.

Lunjun Zhang, Arian Hosseini, Hritik Bansal, Mehran Kazemi, Aviral Kumar, and Rishabh Agar-
wal. Generative verifiers: Reward modeling as next-token prediction, 2024a. URL https:
//arxiv.org/abs/2408.15240.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying Peng, Jun Wang, Yueting Zhuang, and Weim-
ing Lu. Self-contrast: Better reflection through inconsistent solving perspectives. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 3602–3622, Bangkok,
Thailand, August 2024b. Association for Computational Linguistics. doi: 10.18653/v1/2024.
acl-long.197. URL https://aclanthology.org/2024.acl-long.197.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion Sto-
ica. Judging llm-as-a-judge with mt-bench and chatbot arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural Informa-
tion Processing Systems, volume 36, pp. 46595–46623. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.
pdf.

Wanjun Zhong, Ruixiang Cui, Yiduo Guo, Yaobo Liang, Shuai Lu, Yanlin Wang, Amin Saied,
Weizhu Chen, and Nan Duan. Agieval: A human-centric benchmark for evaluating foundation
models, 2023. URL https://arxiv.org/abs/2304.06364.

A APPENDIX

A.1 ANALYSIS

A.1.1 CRITIC PERFORMANCE

For both datasets, the critic model’s accuracy continues to grow as the sample size N increases,
ultimately surpassing the performance of the majority vote, which gradually converges. Specifi-
cally, in the MATH dataset, the critic model achieves substantially higher accuracy than the solution
accuracy, consistently outperforming the naive majority vote due to the critic filter’s superior perfor-
mance. This stark contrast highlights the critic model’s effectiveness in identifying and promoting
correct answers. In the GSM8K dataset, despite having a critic accuracy of only 92.3%, the critic
model still manages to deliver higher accuracy gains. This outcome suggests that the critic model
successfully filters answers to increase the density of correct answers and decrease the density of
wrong answers, compared to the normal answer distribution. The overall results demonstrate the
critic model’s robust capability to enhance accuracy across different datasets, validating its practical
utility in improving prediction outcomes.

A.1.2 INSPECT ON ITERATIVE REFINE

The iterative refinement process for the GSM8K and MATH datasets demonstrates different levels of
effectiveness due to their complexity, as shown in Table 6. GSM8K, being simpler, shows a higher
success rate in refinement. For effective refinement, the number of false answers corrected (False

15

https://openreview.net/forum?id=0NphYCmgua
https://openreview.net/forum?id=_3ELRdg2sgI
https://openreview.net/forum?id=_3ELRdg2sgI
https://doi.org/10.48550/arXiv.2312.17080
https://arxiv.org/abs/2408.15240
https://arxiv.org/abs/2408.15240
https://aclanthology.org/2024.acl-long.197
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/91f18a1287b398d378ef22505bf41832-Paper-Datasets_and_Benchmarks.pdf
https://arxiv.org/abs/2304.06364

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

20 23 24 25 26

N

91.5

92.0

92.5

93.0

93.5

94.0

94.5

95.0

95.5

Ac
cu

ra
cy

 (%
)

GSM8K
Maj1@N
Critic + Maj1@N

20 23 24 25 26 27 28 29

N

58

60

62

64

66

68

Ac
cu

ra
cy

 (%
)

MATH
Maj1@N
Critic + Maj1@N

Figure 4: Performance of majority vote on GSM8K and MATH500 Datasets

Round Refine Acc. True →
True

False →
True

0 91.7 - -
1 91.7 48.2 45.3
2 92.6 78.6 37.5
3 92.7 64.3 53.1
4 93.0 73.2 50.0
5 93.2 75.0 53.1
6 93.2 76.8 53.1
7 93.3 80.4 50.0
8 93.3 80.4 50.0

(a) GSM8K

Round Refine Acc. True →
True

False →
True

0 57.6 - -
1 53.4 29.0 17.7
2 57.2 65.7 13.9
3 55.2 48.6 15.2
4 57.2 60.9 15.9
5 57.4 60.0 17.1
6 57.6 61.4 17.1
7 57.8 60.0 18.4
8 57.8 62.9 16.5

(b) MATH500

Table 6: Iterative Refine on GSM8K (6a) and MATH500 (6b).

→ True) must exceed the number of true answers incorrectly changed (True → False). Despite
occasional mistakes by the critic, correct answers are not always altered incorrectly.

For GSM8K (Table 6a), accuracy improves from 91.7% initially to 93.3% by the seventh round,
with significant gains in both true-to-true and false-to-true transformations. In contrast, MATH
(Table 6b) starts at 57.6% accuracy, reaching 57.8% by the seventh round. The iterative refinement
process tends to converge, which is expected.

A.1.3 GROUP BY DIFFICULTY LEVEL

For the MATH dataset, the difficulty level is given from 1 to 5. For the GSM8K dataset, we set
the difficulty level according to the number of expressions n that appeared in the reference solution,
i.e., max(1,min(5, n)). As illustrated in Figure 5, the performance on the GSM8K dataset shows a
gradual decline as the difficulty level increases. This trend is accompanied by the emerging effects
of the critic and refine stages, which become more prominent at higher difficulty levels. In contrast,
the accuracy on the MATH dataset declines sharply as the problems become more challenging.
Generally, the refine stage proves effective across all levels, while the critic stage is beneficial at
most levels, with some minor exceptions. These observations suggest potential areas for further
improvements in the critic mechanism.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

1 2 3 4 5
Level

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

GSM8K

1 2 3 4 5
Level

0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e

MATH
Category

Initial
Refine
Maj1@N
Critic + Maj1@N

Figure 5: Performance group by difficulty level, on GSM8K and MATH500 Datasets

A.2 DISCUSSION

A.2.1 DIFFERENCES BETWEEN CRITIC-COT AND REFLEXION

We adopt a similar approach to Relexion (Shinn et al., 2023), which leverages natural language
critique to facilitate refinement, but our method diverges in the following ways:

Step-wise CoT Critique Reflexion translates and augments the binary reward signal from the
environment to natural language, but on an instance level. Instead, fine-grained Chain-of-Thought
analysis at the step level, which is more systematic, and enables us to locate the error and start
refinement from a specific step, rather than refine the whole attempt.

Enhanced Critic ability While Relexion proposed an in-context learning pipeline for policy op-
timization under the oracle success/fail binary feedback signal, Huang et al. (2024) showed that
without external feedback, vanilla LLMs cannot self-correct effectively due to limited critique abil-
ity. Therefore, to teach the LLMs the ability of intrinsic self-critique, our approach tries to learn the
critique ability itself, through Critic-CoT training, and can apply it to test-time situations where the
oracle feedback signal is not available.

A.2.2 SOURCE OF IMPROVEMENT

As discussed in Sections 4.3 and 4.5, the improvements can be attributed to two key factors: training
with critique and refinement, and application of critique and refinement at test time.

• Strengthening the ability to critique and refinement would not compromise the task-solving
performance, but improve it. Therefore, our critic model already exhibits noticeable per-
formance improvements in task-solving, even in the absence of additional critique steps
during the inference phase.

• At the inference phase, we can actively leverage the model’s ability to reflect on its rea-
soning and correct mistakes via Critic As Filter and Iterative Refinement, which leads to
additional improvements.

A.2.3 COMPARISON BETWEEN INFERENCE METHODS

As the results in Table 1, 2, 3 shows, the performance of majority vote and Critic As Filter surpass
Iterative Refinement. We believe it’s due to the intrinsic challenges of refinement and the relatively
limited search space.

On the one hand, for Iterative Refinement to work properly, it requires the model to 1) Detect errors
on an attempt; 2) Refine the mistakes; 3) Exit if no further errors are detected. This pipeline could be
more sensitive to error accumulation. Moreover, it only edits on a single example and has a limited
retry, which is sample-efficient, but may not explore the solution space more actively, as majority
vote does. Specifically on the dataset of GSM8K, the invocation statistics are as follows:

• Majority vote: 1319 * 96 = 126,624

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• Iterative Refinement: among 1319 test cases, our Critic-CoT model predicts 274 problem-
atic instances and iterates 1627 times (on average 5.94 rounds for each wrong case), which
makes in total 1319 * 2 + 1627 * 2 = 5892 invocations, which is 21.5 times fewer than
Majority Vote calls.

On the other hand, majority vote is a strong baseline, as it requires massive sampling. It leverages
diverse reasoning paths and tries to mitigate the stochastic of a single sample. But under the method
of Critic As Filter, we actively filter out problematic attempts and perform the majority vote on the
more reasonable candidates, rather than equally account for all the predicted answers as the vanilla
majority vote does, which further increases performance. This in turn demonstrates our model’s
strong ability to critique.

A.2.4 SELF-REFLECTION

Besides the main results, through out-of-domain evaluation in Table 4, we find our model demon-
strates generalized ability to critique and refine. While the ability of LLMs to self-reflect still re-
mains an open question, and we hope our work as a valuable exploration could shed light on future
studies in this area.

Moreover, as long as we adequately improve the models’ ability to critique, we could achieve test-
time performance increase in the form of ”self-reflection”. As the experiment results present, after
Critic-CoT training, the ability to critique and generate both improves, though they are not exactly
identical. Notably, the critique ability can surpass the task-solving ability, allowing the model to
detect errors even when it has a low probability of generating a valid solution, as prior works (Saun-
ders et al., 2022; Lin et al., 2024) also suggest. This indicates that by strengthening the model’s CoT
critique ability beyond its generation capability, we can leverage this discriminative power to reject
imperfect responses and achieve positive performance gains.

A.3 MANUAL EVALUATION ON CONSTRUCTED DATA

Process Correctness of Correct Answer Attempt We each sample 100 correct answer solutions,
on GSM8K by GPT-3.5-Turbo and GPT-4-Turbo, and MATH by GPT-4-Turbo, and manually check
if all intermediate steps are correct. The results are demonstrated in Table 7. We find that in general,
the correct final answer is a good indicator of correct intermediate steps. Also, from GSM8K to
MATH, as the reasoning traces become longer and more complicated, the percentage of correct
answer but with wrong intermediate steps increases.

Data Model Intermediate Accuracy of Correct Answer Attempt
GSM8K GPT-3.5-Turbo 97%
GSM8K GPT-4-Turbo 99%
MATH GPT-4-Turbo 93%

Table 7: Human Evaluation on the Intermediate Steps of Attempts with Correct Answer

Quality of Critique and Refinement in Training Data We sampled 100 entries (50 with the
correct answer and 50 with the wrong answer) each from the critic-cot data on GSM8K and MATH,
and conducted a manual verification to verify the accuracy of the step-wise critiques. For the critique
of the correct answer attempt, it is valid if there is indeed no error in all the intermediate steps; for
the critique of the wrong attempt, it is valid if the first error step and the reason for the error are both
identified. A refinement is correct, if the continuation steps are flawless.

The results of manual verification are demonstrated in Table 8, and we find that the data we auto-
matically constructed maintains a high level of accuracy at the step level, which can well support
the critique training process.

A.4 ANSWER EXTRACTION

We let the model print the answer in the format \boxed{answer}. The model generates the
answer following this pattern. We then extract the regular expression \boxed{.*} from the model

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Data Critique of Refinement of Critique of
Wrong Attempt Wrong Attempt Correct Answer Attempt

GSM8K 86% 96% 100%
MATH 84% 96% 94%

Table 8: Human Evaluation on the critique and refinement of Critic-CoT Training Data

output, and obtain the valid answer expression with matched parenthesis. The Python code for
answer extraction is shown in Table 9.

import re

def extract boxed expressions custom(text):
stack = []
current expr = ""
i = 0
while i < len(text):
if text[i:i+7] == r"\boxed{":

if stack:
current expr += text[i]

stack.append("{")
i += 7

elif text[i] == "{" and stack:
stack.append("{")
current expr += text[i]
i += 1

elif text[i] == "}" and stack:
stack.pop()
if stack:

current expr += text[i]
else:

current expr = re.split(’=’, current expr)[-1]
return current expr

i += 1
elif stack:

current expr += text[i]
i += 1

else:
i += 1

return ’’

def extract answer(text):
predict answer span = re.findall(r’(\boxed{.*})’, text, re.DOTALL)[-1]
predict answer = extract boxed expressions custom(predict answer span)
return predict answer

Table 9: Python code for extracting the boxed answer.

A.5 AN EXAMPLE OF REFINEMENT ON GSM8K

As presented in Figure 6, the model forgot to add one year at Step 3; then, through CoT critique, the
model found that while Step 1 and Step 2 are correct, Step 3 contains this ignorance error. Finally,
guided by the critique of Step 3, the model made a correction and reach the gold answer of 13.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.6 PROMPTS

Table 10, Table 13, and Table 11 presents the prompt for critic-refine data collection using GPT4-
Turbo, with Table 12 for removing the hint phrases (Section 3.2). Table 14, Table 15, and Table
16 shows the prompt of trained model for solving, critique, and refinement during stage-2-training
(Section 3.2) and inference (Section 3.3). Table 17, Table 18 and Table 19 present the prompts and
responses of a single turn critique-refinement, under Critic-CoT, Step-wise Label Critic and Final
Label Critic respectively.

Question:
Carlos is planting a lemon tree. The tree will cost $90 to plant. Each year it will grow 7 lemons, which
he can sell for $1.5 each. It costs $3 a year to water and feed the tree. How many years will it take
before he starts earning money on the lemon tree?

Model Attempt:
Step 1: Calculate the annual income from selling lemons. This is done by multiplying the number of
lemons grown per year (7) by the price per lemon ($1.5). So, 7 * $1.5 = $10.50.
Step 2: Subtract the annual cost of watering and feeding the tree ($3) from the annual income from
selling lemons ($10.50). So, $10.50 - $3 = $7.50. This is the net income per year after expenses.
Step 3: Determine when Carlos will start earning money back. This is done by dividing the initial cost
of planting the tree ($90) by the net income per year ($7.50). So, $90 / $7.50 = 12 years.
Therefore, it will take Carlos 12 years before he starts earning money on the lemon tree.

Model Critique:
Step 1: The attempt calculates the annual income from selling lemons by multiplying the number of
lemons grown per year (7) by the price per lemon ($1.5), resulting in $10.50.
Conclusion: Step 1 is correct.

Step 2: The attempt subtracts the annual cost of watering and feeding the tree ($3) from the
annual income from selling lemons ($10.50), resulting in a net income per year of $7.50.
Conclusion: Step 2 is correct.

Step 3: The attempt divides the initial cost of planting the tree ($90) by the net income per
year ($7.50), resulting in 12 years. However, this calculation does not account for the fact that Carlos
will start earning money back in the first year, even though he won’t break even until the 13th year.
Conclusion: Step 3 is incorrect.

Model Refinement:
Step 3 (Corrected): Determine when Carlos will start earning money back. This is done by dividing
the initial cost of planting the tree ($90) by the net income per year ($7.50). So, $90 / $7.50 = 12 years.
However, since Carlos will start earning money back in the first year, we need to add one more year to
this calculation. Therefore, it will take Carlos 13 years before he starts earning money on the lemon
tree.

Figure 6: Criticize and refine a problem in the GSM8K test set.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Prompt
How do you evaluate the following attempt with respect to the problem?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

Notes:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted
assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the
format ”Conclusion: Step [i] is correct” or ”Conclusion: Step [i] is incorrect”. Words like
”partially correct” are prohibited.
- You shall not evaluate multiple steps at a time, so words like ”Step 7 to Step 24:” or ”Step 4
through 6” are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should
be a single number, in the form \boxed{}, at the final step.

Table 10: The prompt for the collection of critique and refinement on GSM8K, using GPT4-Turbo.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Prompt
How do you evaluate the following attempt with respect to the problem, with the help of refer-
ence solution?
Hint: There could be a mistake.

<problem>
{problem}
</problem>

<reference solution>
{reference solution}
</reference solution>

<attempt>
{attempt}
</attempt>

Notes:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted
assertions.
- Please ensure that the output text does not include phrases implying the use of a reference
solution or hint, even though these resources are being utilized.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the
format ”Conclusion: Step [i] is correct” or ”Conclusion: Step [i] is incorrect”. Words like
”partially correct” are prohibited.
- You shall not evaluate multiple steps at a time, so words like ”Step 7 to Step 24:” or ”Step 4
through 6” are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should
be in the form \boxed{}, at the final step.

Table 11: The prompt for the collection of critique and refinement on MATH incorrect attempt,
using GPT4-Turbo.

Prompt
For the following text, remove any phrases like ”reference solution” or ”hint”, and keep all the
other content. Do not miss the ”<correction>” and ”</correction>” labels that exist
in the text. Do not respond to anything else.

{critique refinement}

Table 12: The prompt for removing the hint of critique and refinement on MATH, using GPT4-
Turbo.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Prompt
How do you evaluate the following attempt with respect to the problem?
Hint: All the steps are correct, and the attempt reached a correct answer.

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

Notes:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted
assertions.
- Please ensure that the output text does not include phrases implying the use of a reference
solution or hint, even though these resources are being utilized.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the
format ”Conclusion: Step [i] is correct” or ”Conclusion: Step [i] is incorrect”. Words like
”partially correct” are prohibited.
- You shall not evaluate multiple steps at a time, so words like ”Step 7 to Step 24:” or ”Step 4
through 6” are forbidden.
- Once a mistake is identified and stated, stop the evaluation, and enumerate the corrected steps
starting from the step where the mistake was detected, and label this part of your response with
<correction> at the start and </correction> at the end. Also, the final answer should
be in the form \boxed{}, at the final step.

Table 13: The prompt for the collection of critique on MATH correct attempt, using GPT4-Turbo.

Prompt
Problem
{problem}

Solve the problem step by step, marking each step as ”Step [i]:”.
Your final answer should be in the form \boxed{answer}, at the end of your response.

Table 14: The prompt for solution sampling.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Prompt
How do you evaluate the following attempt with respect to the problem?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

Notes:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted
assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the
format ”Conclusion: Step [i] is correct” or ”Conclusion: Step [i] is incorrect”. Words like
”partially correct” are prohibited.

Table 15: The prompt for critique.

Prompt
How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
{problem}
</problem>

<attempt>
{attempt}
</attempt>

<criticism>
{wrong step criticism}
</criticism>

Table 16: The prompt for refinement.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Prompt of Critique under Critic-CoT
How do you evaluate the following attempt with respect to the problem?

<problem>
Consider the geometric sequence 125

9 , 25
3 , 5, 3, What is the eighth term of the sequence?

Express your answer as a common fraction.
</problem>

<attempt>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9
Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125

Calculating the right-hand side:

=
25 · 9
3 · 125

=
225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5

Thus, the common ratio is:

r =
3

5
Step 3: Use the formula for the n-th term of a geometric sequence.
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7
.

Calculating
(
3
5

)7
: (

3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125
Step 7: Multiply the fractions.
To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Prompt of Critique under Critic-CoT
Calculating the numerator:

125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: First, calculate the GCD of the numerator and denominator. We can find that both
273375 and 703125 are divisible by 135.
Calculating:

273375÷ 135

703125÷ 135
=

2025

5205

Continuing to simplify, both 2025 and 5205 are divisible by 15:

2025÷ 15

5205÷ 15
=

135

347

This is now fully simplified because 135 and 347 have no common factors.
Final Answer:
Thus, the eighth term of the sequence is:

135

347

</attempt>

Notes:
- Please think step by step.
- Your reasoning should precede any claims or conclusions you make to avoid unwarranted
assertions.
- At the end of the evaluation for each step, YOU MUST articulate the conclusion using the
format ”Conclusion: Step [i] is correct” or ”Conclusion: Step [i] is incorrect”. Words like
”partially correct” are prohibited.

Response of Critique under Critic-CoT

Step 1: The first term a1 = 125
9 is identified correctly.

Conclusion: Step 1 is correct.
Step 2: The common ratio r is calculated as:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125
=

225

375
=

3

5

This calculation is correct.
Conclusion: Step 2 is correct.
Step 3: The formula for the n-th term is correctly stated as:

an = a1 · rn−1

Conclusion: Step 3 is correct.
Step 4: The eighth term is computed as:

a8 =
125

9
·
(
3

5

)7

This is correct.
Conclusion: Step 4 is correct.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Response of Critique under Critic-CoT

Step 5: Calculating
(
3
5

)7
: (

3

5

)7

=
2187

78125

This calculation is correct.
Conclusion: Step 5 is correct.
Step 6: Substituting back:

a8 =
125

9
· 2187

78125
This is correct.
Conclusion: Step 6 is correct.
Step 7: Multiplying the fractions:

a8 =
125 · 2187
9 · 78125

The denominator calculation is correct:

9 · 78125 = 703125

However, for the numerator:
125 · 2187 = 273375

This is also correct.
Conclusion: Step 7 is correct.
Step 8: The goal is to simplify the fraction 273375

703125 . The attempt made to find the GCD and
simplify. To simplify the fraction, we need to find the greatest common divisor (GCD) of
273375 and 703125.
The standard approach involves either prime factorization or using the Euclidean algorithm.
Prime Factorization:
- 273375:
- Dividing by 5: 273375÷ 5 = 54675
- Dividing by 5 again: 54675÷ 5 = 10935
- Dividing by 5 again: 10935÷ 5 = 2187
- The number 2187 is 37.
- Therefore, 273375 = 53 · 37.

- 703125:
- Dividing by 5: 703125÷ 5 = 140625
- Dividing by 5 again: 140625÷ 5 = 28125
- Dividing by 5 again: 28125÷ 5 = 5625
- Dividing by 5 again: 5625÷ 5 = 1125
- Dividing by 5 again: 1125÷ 5 = 225
- Dividing by 5 again: 225÷ 5 = 45
- Finally, 45 = 32 · 51.
- Therefore, 703125 = 56 · 32.

The GCD can now be derived from the lowest powers of the common factors:
- For 5: 53

- For 3: 32
Thus, the GCD is:

53 · 32

Therefore, 273375 and 703125 are not divisible by 135.
Conclusion: Step 8 is incorrect.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Prompt of Refinement under Critic-CoT
How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
Consider the geometric sequence 125

9 , 25
3 , 5, 3, What is the eighth term of the sequence?

Express your answer as a common fraction.
</problem>

<attempt>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9
Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125

Calculating the right-hand side:

=
25 · 9
3 · 125

=
225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5

Thus, the common ratio is:

r =
3

5
Step 3: Use the formula for the n-th term of a geometric sequence.
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7
.

Calculating
(
3
5

)7
: (

3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125
Step 7: Multiply the fractions.
To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

Calculating the numerator:

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Prompt of Refinement under Critic-CoT

125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: First, calculate the GCD of the numerator and denominator. We can find that both
273375 and 703125 are divisible by 135.
Calculating:

273375÷ 135

703125÷ 135
=

2025

5205

Continuing to simplify, both 2025 and 5205 are divisible by 15:

2025÷ 15

5205÷ 15
=

135

347

This is now fully simplified because 135 and 347 have no common factors.
Final Answer:
Thus, the eighth term of the sequence is:

135

347

</attempt>

<criticism>
Step 8: The goal is to simplify the fraction 273375

703125 . The attempt made to find the GCD and
simplify. To simplify the fraction, we need to find the greatest common divisor (GCD) of
273375 and 703125.
The standard approach involves either prime factorization or using the Euclidean algorithm.
Prime Factorization:
- 273375:
- Dividing by 5: 273375÷ 5 = 54675
- Dividing by 5 again: 54675÷ 5 = 10935
- Dividing by 5 again: 10935÷ 5 = 2187
- The number 2187 is 37.
- Therefore, 273375 = 53 · 37.

- 703125:
- Dividing by 5: 703125÷ 5 = 140625
- Dividing by 5 again: 140625÷ 5 = 28125
- Dividing by 5 again: 28125÷ 5 = 5625
- Dividing by 5 again: 5625÷ 5 = 1125
- Dividing by 5 again: 1125÷ 5 = 225
- Dividing by 5 again: 225÷ 5 = 45
- Finally, 45 = 32 · 51.
- Therefore, 703125 = 56 · 32.

The GCD can now be derived from the lowest powers of the common factors:
- For 5: 53

- For 3: 32
Thus, the GCD is:

53 · 32

Therefore, 273375 and 703125 are not divisible by 135.
Conclusion: Step 8 is incorrect.
</criticism>

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Prompt of Refinement under Critic-CoT
<correction>
Step 8: Simplify 273375

703125 . First, we divide it by 375.
Calculating:

273375÷ 375

703125÷ 375
=

729

1875

Step 9: Further simplify 729
1875 . The numerator 729 is 36 and the denominator 1875 is 3 · 625.

The GCD is 3.
Calculating:

729÷ 3

1875÷ 3
=

243

625

This fraction is fully simplified.
Final Answer: Thus, the eighth term of the sequence is:

243

625

</correction>

Table 17: Full example of Critic-CoT. The model got the wrong common factor in Step 8, and
through CoT critique, identified this mistake, then took the refinement and reached the correct an-
swer.

Prompt of Critique under Step-wise Label Critic
How do you evaluate the following attempt with respect to the problem?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

Notes:
- For each step, you only need to output ”Step [i] is correct” if right, or ”Step [i] is incorrect” if
wrong. Do not provide anything else in your output.

Response of Critique under Step-wise Label Critic
Step 1 is correct.
Step 2 is correct.
Step 3 is correct.
Step 4 is correct.
Step 5 is incorrect.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

Prompt of Refinement under Step-wise Label Critic
How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

<criticism>
Step 5 is incorrect.
</criticism>

Response of Refinement under Step-wise Label Critic
<correction>

Step 5: Calculate
(
3
5

)7
. (

3

5

)7

=
37

57
=

2187

78125
(correct)

Step 6: Substitute back into the expression for a8.

a8 =
125

9
· 2187

78125

Step 7: Multiply the fractions. Calculating the numerator:

125 · 2187 = 273375 (correct)

Calculating the denominator:

9 · 78125 = 703125 (correct)

Step 8: Simplify the fraction 273375
703125 . To simplify: Calculating the GCD shows that both 273375

and 703125 are divisible by 675, so:

273375÷ 675

703125÷ 675
=

405

1045

Continuing to simplify, both 405 and 1045 are divisible by 5:

405÷ 5

1045÷ 5
=

81

209

Thus, the final answer is:
81

209

</correction>

Table 18: Full example of Step-wise Label Critic. The problem and the attempt are the same in Table
17, so we skip them. Without CoT critique, the model incorrectly believed that Step 5 is wrong, then
made the refinement starting from Step 5, which is unsuccessful.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Prompt of Critique under Outcome Label Critic
How do you evaluate the following attempt with respect to the problem?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

Notes:
- For the whole attempt, you only need to output ”Each step from Step 1 to Step 8 is correct.” if
right, or ”Some step from Step 1 to Step 8 is incorrect” if wrong. Do not provide anything else
in your output.

Response of Critique under Outcome Label Critic
Some step from Step 1 to Step 8 is incorrect.

Prompt of Refinement under Outcome Label Critic
How do you refine the following attempt with respect to the problem, given the criticism?

<problem>
[...]
</problem>

<attempt>
[...]
</attempt>

<criticism>
Some step from Step 1 to Step 8 is incorrect.
</criticism>

Response of Refinement under Outcome Label Critic
<correction>
Step 1: Identify the first term of the sequence.
The first term a1 is:

a1 =
125

9
Step 2: Calculate the common ratio r.
The common ratio r can be found by dividing the second term a2 by the first term a1:

r =
a2
a1

=
25
3

125
9

=
25

3
× 9

125
=

225

375

Now simplify 225
375 :

=
225÷ 75

375÷ 75
=

3

5

Thus, the common ratio is:

r =
3

5
Step 3: Use the formula for the n-th term of a geometric sequence.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Response of Refinement under Outcome Label Critic
The n-th term of a geometric sequence can be calculated using the formula:

an = a1 · rn−1

Step 4: Calculate the eighth term a8.
Substituting n = 8 into the formula:

a8 = a1 · r8−1 =
125

9
·
(
3

5

)7

Step 5: Calculate
(
3
5

)7
.

Calculating
(
3
5

)7
: (

3

5

)7

=
37

57
=

2187

78125

Step 6: Substitute back into the expression for a8.
Now we compute:

a8 =
125

9
· 2187

78125
Step 7: Multiply the fractions.
To multiply:

a8 =
125 · 2187
9 · 78125

Calculating the denominator:
9 · 78125 = 703125

Calculating the numerator:
125 · 2187 = 273375

Thus:
a8 =

273375

703125

Step 8: Simplify the fraction 273375
703125 .

To simplify: Finding the GCD, both 273375 and 703125 are divisible by 675:

273375÷ 675

703125÷ 675
=

405

1042

Now we check if 405
1042 can be simplified further. Both numbers do not have common factors.

Final Answer:
Thus, the eighth term of the sequence is:

405

1042

</correction>

Table 19: Full example of Final Label Critic. The problem and the attempt are also the same in
Table 17. With only the outcome label, the model managed to detect the attempt was incorrect, then
made the refinement starting from the first step, which was unsuccessful.

33

	Introduction
	Related Works
	Discriminative Verifier for Mathematics
	Critic Model

	Method
	Chain-of-Thought Critique
	Auto Train: Two-Stage Training
	Inference: Self-Check

	Experiment
	Setup
	Model
	Dataset

	Metric
	Critic Data Construction

	Main Results
	Out-of-Domain Results
	Ablation Study

	Conclusion
	Appendix
	Analysis
	Critic Performance
	Inspect on Iterative Refine
	Group By Difficulty Level

	Discussion
	Differences Between Critic-CoT and Reflexion
	Source of Improvement
	Comparison Between Inference Methods
	Self-Reflection

	Manual Evaluation on Constructed Data
	Answer Extraction
	An Example of Refinement on GSM8K
	Prompts

