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ABSTRACT

World models empower embodied exploration by building internal representa-
tions and predicting future states of the environment. Nevertheless, existing ap-
proaches merely rely on dense supervisions such as pixel-level signals, failing
to distinguish task-relevant information from task-irrelevant information during
exploration, where task-relevant information is normally sparse. As such, this
dense-supervision design suffers from suboptimal exploration due to the noisy
task-irrelevant information. To address this issue, in this paper, we propose Em-
bodied Graph, a sparse-supervision design capable of capturing the sparse task-
relevant information for embodied exploration, to the best of our knowledge, for
the first time. However, the proposed Embodied Graph remains unexplored and
imposes three challenges: 1) How to use an embodied graph to model the envi-
ronment dynamics? 2) How to update the embodied graph in a dynamic envi-
ronment? 3) How to define and learn graph-grounded actions and policies dur-
ing explorations? To solve these challenges, we propose to instantiate Embod-
ied Graph as a Relational World Model (RWM) for embodied tasks execution.
Specifically, we first design and formalize the embodied graph, incorporating def-
initions of nodes and edges and extending the concept of interactions. Based on
this formulation, the instantiated RWM is able to serve as a hierarchical archi-
tecture consisting of high-level RWM and low-level RWM. On the one hand, the
high-level RWM includes: (i) an embodied dynamic graph constructor that con-
tinually updates nodes and edges based on reachability and frontier discovery; (ii)
a graph-guided macro-action generator that nominates exploratory macro-action
candidates by jointly balancing exploration gain, operational cost, and potential
risks. On the other hand, the low-level RWM integrates a plug-and-play behav-
ioral model that executes the selected macro-actions. Extensive experiments over
Minecraft and Atari demonstrate the effectiveness of our proposed RWM model
in significantly outperforming the state-of-the-art baseline methods. In particular
for Minecraft, among all the comparative approaches, our proposed RWM is the
only one capable of achieving the final goal within the given budge.

1 INTRODUCTION

Exploration is fundamental for embodied agents to solve tasks in dynamic open environments, such
as manipulation Ferraro et al. (2025); Lin et al. (2025); Noseworthy et al. (2025), navigation Zhi
et al. (2025); Wen et al. (2025); Bar et al. (2025), novel material discovery Reddy & Shojaee (2025);
Shahzad et al. (2024); Wan et al. (2025), etc. By exploration, embodied agents can actively dis-
cover critical environment states and update their strategies, which are essential for accomplishing
tasks with sparse rewards. World model has emerged as a promising approach to achieve effective
exploration by building internal representations and predicting future states of the environment for
decision-making (Li et al., 2025; Hafner et al., 2025; Ren et al., 2025).

Nevertheless, existing world models merely rely on dense supervisions such as pixel-level signals,
failing to distinguish task-relevant information from task-irrelevant information during exploration,
where task-relevant information is normally sparse. This oversight leads to imagination drift, where
prediction errors accumulate over long rollouts due to the noisy task-irrelevant information, progres-
sively corrupting the imagined trajectories and shortening the effective imagination horizon. For in-
stance, as illustrated in Fig.2, minor initial inaccuracies (e.g., smoothing a sandbar) can compound
into severe deviations (e.g., hallucinating an oasis), ultimately leading the agent toward implausible
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states. As such, this dense-supervision design suffers from suboptimal exploration due to the noisy
task-irrelevant information.

To address this issue, we propose Embodied Graph, a novel sparse-supervision design capable of
capturing the sparse task-relevant environmental dynamics information for embodied exploration.
Unlike dense representations, graphs offer a structured and compact abstraction of entities and their
relations, which can naturally filter out irrelevant details and focus on critical interactions. How-
ever, leveraging graph representations for embodied exploration introduces several challenges: (1)
Although graphs can compactly represent entities and their relations, it will be challenging to model
the environment using an embodied graph. (2) Since environments are open and dynamic, entities
and relations may appear, disappear, or alter their attributes, thus it is also challenging to update the
graph structure online while maintaining consistency and stability. (3) Different from the primitive-
level actions used by existing methods, designing macro-actions requires rethinking how actions are
represented and executed so that they remain both expressive and effective for control, therefore it
is challenging to define and learn graph-grounded macro-actions as well.
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Figure 1: Task-irrelevant information in the dense observations will lead to imagination drifts. Minor
initial inaccuracies (e.g., smoothing a sandbar) can compound into severe deviations (e.g., halluci-
nating an oasis), ultimately leading the agent toward implausible states.

To tackle these challenges, we propose to instantiate Embodied Graph as a Relational World
Model (RWM) for embodied tasks execution. Specifically, we first design and formalize the embod-
ied graph, incorporating definitions of nodes and edges and extending the concept of interactions.
Among them, the nodes represent agents and entities; the edges represent node relations to simulate
and learn the intrinsic environmental abstractions; the interactions are the actions from the agents to
their target node. Based on this formulation, the instantiated RWM is able to serve as a hierarchical
architecture consisting of high-level RWM and low-level RWM. On the one hand, the high-level
RWM includes: (i) an embodied dynamic graph constructor that continually updates nodes and
edges based on reachability and frontier discovery; (ii) a graph-guided macro-action generator that
nominates exploratory macro-action candidates by jointly balancing exploration gain, operational
cost, and potential risks. On the other hand, the low-level RWM integrates a plug-and-play be-
havioral model that executes the selected macro-actions. This hierarchical architecture allows the
high-level model to focus on global relational dynamics construction while the low-level model han-
dles local embodied behavior execution, thereby improving the fidelity and horizon of imagination.

Extensive experiments in Minecraft (Hill et al., 2023) and Atari (Bellemare et al., 2013) demonstrate
that our proposed RWM model is able to significantly outperform state-of-the-art baselines, partic-
ularly in tasks requiring long-horizon exploration and sparse reward handling, such as collecting
diamonds. The results validate that our sparse-supervision design effectively mitigates imagination
drift and enhances exploration efficiency. In summary, we make the following contributions:

• To the best of our knowledge, we propose Embodied Graph, the first graph-based paradigm
for modeling environment dynamics in embodied exploration.

• We propose a Relational World Model, a hierarchical framework that integrates a high-
level global relational dynamics construction with a plug-and-play low-level local embod-
ied behavior execution, supported by an online embodied dynamic graph constructor and a
graph-guided macro-action generator.
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Figure 2: The prediction task of the Embodied Graph. With a graph observation, conditioned on an
action of the target node, the Embodied Graph is trying to predict “how will the graph change”.

• We demonstrate through extensive experiments that RWM achieves superior performance
in challenging exploration tasks compared with existing methods.

2 EMBODIED GRAPH

Graph, as an abstract representation of the relational structure, is suitable to represent the environ-
ment and capture the underlying object relations. However, traditional graphs like 3D scene graphs
are static structures, which can’t interact with the agent. For this reason, we propose the Embodied
Graph (EG) as an interactive graph that is able to capture high-level dynamics from real environ-
ments. Formally, we define the embodied graph and the corresponding task as follows.

Embodied Graph Embodied Graph at time t as Gt(Vt, Et, It), where Vt, Et and It are the sets
of nodes, edges, and interactions at timestamp t, respectively. The embodied graph can be expressed
as G(V, E , I) = ({Gt(Vt, Et, It)}Tt=1), where V = ∪T

t=1Vt, E = ∪T
t=1Et, I = ∪T

t=1It.

Node, edge sets Since the agent is a special kind of node, which can actively interact with others.
The nodes contained in embodied graphs are heterogeneous and can be expressed as V = {Va,Vo},
where Va are agent nodes and Vo are object nodes. Furthermore, edges can be classified as object-
object edges, object-agent edges, and agent-agent edges (only exist in multi-agent systems), which
are also heterogeneous and can be denoted as E = {Eoo, Eoa(, Eaa)}. More specifically, both nodes
and edges can involve the corresponding features X = {Xo,Xa} and S = {Soo,Soa(,Saa)}.

Interaction set Different from traditional graphs, embodied graphs involve interactions between
different nodes. Due to the heterogeneity of the nodes, similar to the edges, the interactions can
be divided as I = {Ioo, Ioa(, Iaa)}. The corresponding interaction feature is denoted as R =
{Roo,Roa(,Raa)}.

Prediction Tasks As shown in Fig, 2, the embodied graph is a way to model the environment
and serves to predict future environments based on the interaction of the past environments, i.e.
Gt+1 = fθ(G1:t, it, nt

a), where fθ is the learnable dynamic network to predict the future embodied
graph., it ∈ It, nt

a ∈ Vt is the chosen interaction and the target node with which to interact. An
ego-EG of node v at time t is defined as Gt

v = (N t
v , Et

v, i
t), where N t

v is the L-hop neighbors of node
v at time t, and Et

v involve all edges between nodes in N t
v . The optimization objective of learning

the embodied graph is defined as follows:

min
θ

L(fθ(G1:t
v , it, nt

a),Gt+1
v ). (1)
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3 RELATIONAL WORLD MODEL

Guided by the Embodied Graph paradigm, we propose a Relational World Model (RWM), which
is a hierarchical architecture that coordinates high-level relations with local details to guide explo-
ration. Grid-based environment observations are first transformed into a dynamic graph for the
high-level RWM, whereas the low-level RWM operates directly on raw images. The two tiers learn
complementary aspects of dynamics: abstract, object-centric relations and fine-grained perceptual
detail, respectively. The high-level world model produces plans A via the relation-aware imagi-
nation, and the low-level behavior model executes primitive actions a to achieve the given A. Real
environment feedback is used to train both models. In what follows, we first introduce the high-level
world model (Section 3.1), which comprises two main components, the Dynamic Embodied Graph
Constructor (Section 3.1.1) and the Graph-Guided Macro-Action Generator (Section 3.1.2). The
low-level behavior model is then explained in Section 3.2.

3.1 HIGH-LEVEL WORLD MODEL

Fig.3.1 gives an overall structure of our proposed high-level world model, which comprises two
components: a dynamic embodied graph constructor to dynamically capture a graph for high-level
environment perception, and a graph-guided macro-action generator to nominate feasible yet valu-
able areas to form the macro-action space. Conditioned on the graph perception and macro-action
sets, following the Recurrent State-Space Model architecture Hafner & et al. (2025), we define the
high-level world model training loss as:

L(ϕ) .
= Eqϕ

[
T∑

t=1

(
βpred Lpred(ϕ) + βdyn Ldyn(ϕ) + βrep Lrep(ϕ)

)]
. (2)

Here T is the length of inputs, ϕ are the world model parameters, Lpred, Ldyn, and Lrep are the
prediction loss, dynamics loss and representation loss, respectively. βpred, βdyn, and βrep are the
corresponding coefficients. The prediction loss:

Lpred(ϕ)
.
= Lgraph + Lrew + Lcon, (3)

contains the decoder loss of the graph, the reward and the continuity. Reward and continuity loss
can be easily calculated through MSE loss and binary classification loss. However, the graph loss is
hard to calculate: It is difficult to reconstruct a graph and evaluate the reconstruction effect. For this
reason, we design several metrics to describe the graph and reconstruct these values instead to ensure
that the world model actually understands what it observed. The dynamic loss and the representation
loss can be calculated with the same data but training different aspects of the world model. Given
a sequential model ht = fϕ(ht−1, zt−1, at−1), an encoder zt ∼ qϕ(zt|ht, xt), and a dynamics
predictor ẑt ∼ pϕ(zt|ht), with a stop-gradient operator sg(·) on the representation qϕ(zt|ht, xt), the
dynamic loss is defined as follows:

Ldyn(ϕ)
.
= max

{
1, KL

[
sg
(
qϕ(zt | ht, xt)

) ∥∥ pϕ(zt | ht)
]}

, (4)

minimizes the KL divergence between the predicted feature and the next stochastic representation to
learn the dynamics of the environment. On the other hand, with the sg(·) on the dynamics predictor
pϕ(zt|ht), we define the representation loss:

Lrep(ϕ)
.
= max

{
1, KL

[
qϕ(zt | ht, xt)

∥∥ sg
(
pϕ(zt | ht)

)]}
, (5)

train the encoder to make its representations become more predictable.

3.1.1 DYNAMIC EMBODIED GRAPH CONSTRUCTOR

The high-level world model requires structured data to learn relational dynamics. However, agents’
observations, e.g., images, sensory data, or voxel observations, do not explicitly contain such struc-
tural information. For this reason, with the raw voxel observation, we propose a two-stage graph
construction pipeline: dynamic history fusion and rule-based graph construction. Concretely, to fuse
historical observations, we maintain a cubic region of interest (ROI) with side length S, centered on
the agent. In each step, the voxel observations are fused into a grid map M in the ROI index space.
Instead of treating M as an unstructured array, we derive semantic masks that indicate air (bair),
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Figure 3: The Overall framework of the high-level world model, which consists of an Embodied
Dynamic Graph Constructor to build and update the graph observation, and a Graph-Guided Macro-
Action Generator for nominating an exploratory action set.

liquid (bliq), diggable (bdig), and unbreakable (bunb) voxels. With a Y-up coordinate x, y, z, the
walkable region is derived as:

rwalk
x,y,z = bairx,y,z ∧ bairx,y+1,z ∧ bsolidx,y−1,z (6)

, where bsolid = bdig ∨ bunb, indicating locomotion affordances rather than mere occupancy. Since
the agent is continuously moving, directly calculating rwalk on the whole map is costly and unstable.
Therefore, we propose to maintain an online reachable region St through a T -iteration dilation on a
local walkable region rwalk

loc . At each step t:

St =

T∨
0

(ST
t−1 ∨ (rwalk

loc ∧N6(S
T
t−1)) (7)

, where N6(·) is 6-neighborhood of the region. If the local walkable region has radius ≤ T , St

equals the BFS closure.

To expose relational structure, we form frontiers and dig bands:

frontier = N6(b
unk ∨ bdig) ∧ S0 (8)

digband = N6(S0) ∧ bdig (9)

, then partition the space into three agent-centric y-bands (below/around/above) and Hb horizontal
sectors. To reduce computational cost, each band × sector is compressed in the y direction, and a 3
× 3 propagation is performed to obtain connected components L on the 2-D projection, computing
per-component area AL, boundary contact CL, centroid (x̄L, z̄L), and distance dL from the agent,
we form node’s attributes:

hLn
= [typeLn

, log(1 +ALn
), CLn

, (x̄L, z̄L), dLn
] (10)

Links are generated by star edges (from S0 to each node) and kNN near edges among the nodes,
type and distances are encoded as the edge feature.

3.1.2 GRAPH-GUIDED MACRO-ACTION GENERATOR

Unlike the low-level behavior model, which has a predefined primitive action space, the action on
the Embodied Graph is defined as the interaction between the agent and other nodes. Therefore,

5
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the action space can be simply defined as the node set on the embodied graph except the agent
itself, or formally: At = Vt ∧ ¬a. However, there are two problems: i) Not all of the nodes
are easy to reach, and the agent may perform badly on some very difficult actions; ii) the agent
cannot learn meaningful actions on such a continuously changing action space. For these reasons,
we propose a graph-guided macro-action generator to nominate an exploratory action space based
on the geometrical availability. For each node n, contact length cn with the St, node volume Vn,
distance from the agent dn, and the node’s type are used as the geometrical attributes, and the
availability score can be calculated as:

sn =

αfc cn + αfv vn − αfd dn, tn = frontier,

αdc cn + αdv vn − αdd dn + αdy d
↓
y, tn = digband.

(11)

αs are the corresponding coefficients to balance their importance, and we provide d↓y to encourage
downward digging. To promote spatial dispersion, the nodes are binned into the aforementioned Hb

sectors. Within each type and sector, we keep the top K candidates by sn, and padding is applied if
needed. The nominated nodes and their geometrical attribute will be provided to serve as the action
space. Importantly, there is no candidate information during the imagination phase, so we train an
action space proposer to “imagine” the current action space for the agent to interact with.

3.2 LOW-LEVEL BEHAVIOR MODEL

Different from the sparsity requirement of the high-level world model, the low-level behavior model
is an independent module that takes dense observations and interacts directly with the environment.
According to our design, the low-level behavior model could be any of the existing policy models.
Be aware that neither the observation space nor the action space of the low-level behavior model is
influenced by the high-level world model, which yields strong modularity: the low-level behavior
model can be developed, verified, and tuned independently, while the high-level world model can
plug in and play with any of the low-level components.

4 EXPERIMENTS

In this section, we conduct extensive experiments to verify that our proposed Relational World
Model can effectively learn the abstract relational dynamics of the environment and help the agent
explore efficiently. This section is organized as follows: we introduce our experiment setup in
Section 4.1, and quantitative and qualitative comparisons with baselines are given in Section 4.2.

4.1 EXPERIMENT SETUP

Simulators Minecraft (Hill et al., 2023) is one of the world’s most-played games, drawing its
players into a procedurally generated 3D sandbox. Players traverse varied biomes and cave sys-
tems, breaking blocks, managing health and hunger, and fighting hostile mobs while advancing
gear. Among resources, diamond is pivotal for enabling powerful upgrades (enchanted tools/armor,
obsidian mining), which makes it a central objective for most players, especially in the early-to-mid
game. We also test the cross-environment generalization of our method in the Atair simulator. Atari
(Bellemare et al., 2013) is a cutting-edge, high-fidelity simulation environment for multi-physics
analysis and hardware-in-the-loop testing in aerospace and robotics.

Task Collecting diamonds in the open-world game Minecraft is a big challenge in artificial intel-
ligence. Every episode in this game is a completely new 3D world, where the player needs to find
and craft diamonds from scratch. We follow prior work (Hafner & et al., 2025) to increase the speed
at which blocks break. To simplify the task, the agent is born with the tools to craft diamonds, so
they can focus on exploring the world and finding the targets without worrying about the tools. To
further validate the performance of our proposed RWM model, we performed experiments on the
Atari-100k benchmark (Kaiser et al., 2020), a sample-efficiency suite built from the Atari Learn-
ing Environment (ALE). It contains 26 Atari 2600 games covering diverse dynamics (navigation,
shooting, puzzle-like planning).

6
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Table 1: Experimental results in Minecraft. Metrics: success rate (SR↑, %), success length (SL↓,
steps), and survival rate (SVR↑, %). The best results are highlighted in bold and the second best are
set in underline.

Steps Model Stone Iron Gold Diamond
SR SL SVR SR SL SVR SR SL SVR SR SL SVR

1M

PPO 76.34 436 31.87 0 – 33.54 0 – 26.88 0 – 29.31
IMPALA 23.24 1384 11.43 2.56 8643 16.22 0 – 10.02 0 – 13.22
Rainbow 0 – 0.17 0 – 0.24 0 – 0.12 0 – 0.22

DreamerV3 97.83 282 38.67 24.44 1515 35.80 0 – 40.85 0 – 33.33
Ours 91.89 846 43.28 36.54 2179 43.28 1.59 1592 48.33 0 – 44.77

2M

PPO 81.39 558 20.74 0 – 18.37 0 – 23.39 0 – 25.47
IMPALA 25.33 1497 12.21 1.7 8643 13.21 0 – 10.37 0 – 17.86
Rainbow 1.22 577 0.37 0 – 0.73 0 – 0.12 0 – 0.21

DreamerV3 98.11 185 15.43 32.04 1467 21.43 2.53 13011 23.57 0 – 20.71
Ours 94.67 863 24.29 39.64 2333 29.73 3.28 2694 30.56 1.49 4586 27.05

3M

PPO 79.21 342 12.86 0 – 16.61 0 – 22.24 0 – 19.22
IMPALA 27.05 1370 13.67 0.82 8643 14.42 0 – 12.75 0 – 14.33
Rainbow 1.43 1248 0.94 0 – 0.86 0 – 0.33 0 – 0.59

DreamerV3 9.88 161 10.39 37.27 1652 16.41 0.14 13011 17.37 0 – 15.63
Ours 98.22 544 17.53 41.57 2386 26.54 2.87 2654 26.90 4.10 4516 24.39

4M

PPO 82.26 357 13.64 0 – 15.32 0 – 21.47 0 – 15.99
IMPALA 34.17 1208 13.38 1.36 6960 13.33 0 – 14.93 0 – 15.52
Rainbow 0.76 1563 1.24 0 – 0.77 0 – 0.54 0 – 0.88

DreamerV3 98.70 145 8.61 41.53 1968 15.29 1.04 13011 13.58 0 – 12.90
Ours 98.64 550 15.23 45.54 2421 22.71 4.87 3516 22.17 3.05 4077 25.60

5M

PPO 83.26 446 14.33 0 – 13.33 0 – 15.52 0 – 17.32
IMPALA 42.15 1292 12.52 1.1 6960 10.21 0 – 13.31 0 – 13.33
Rainbow 1.01 1487 1.32 0 – 1.12 0 – 0.67 0 – 0.53

DreamerV3 98.70 125 7.23 41.45 2218 12.58 1.79 13663 11.04 0 – 10.77
Ours 99.23 498 14.09 44.69 2282 19.29 4.81 3902 22.53 3.38 3902 25.51

Baselines As our baseline, we adopt DreamerV3 (Hafner & et al., 2025), a state-of-the-art
model-based reinforcement learning agent. DreamerV3 learns a latent dynamics model from high-
dimensional observations and optimizes policies by imagining trajectories in the latent space, which
substantially improves sample efficiency. It is also the first agent to learn to obtain diamonds
in Minecraft, without human demonstrations or handcrafted curricula. This milestone highlights
DreamerV3’s ability to handle extremely sparse rewards and long-horizon exploration, making it a
particularly strong and relevant baseline for our study. For a fair comparison, we also adopt Dream-
erV3 as our low-level behavior model and keep the same model size. What’s more, we also include
PPO(Schulman et al., 2017), IMPALA(Espeholt et al., 2018), Rainbow(Hessel et al., 2018) as our
baselines to ensure fair, protocol-aligned comparison against widely used model-free and model-
based approaches.

Evaluation Metrics To evaluate agents’ performance, we choose to use the average Success Rate
(SR), average Success Length (SL), and average Survival Rate (SVR) as our evaluation metrics. In
particular, SR and SVR are the number of successful/surviving agents divided by the total number
of agents, and SL is the earliest time that an agent finds its target. As for the Atari-100k benchmark,
we report the score per game.

4.2 EXPERIMENT RESULTS

The experimental results are reported in Table 1. We have the following observations.

Our proposed RWM method consistently and significantly outperforms the DreamerV3 Hafner &
et al. (2025) backbone. During training, both agents gradually improve their ability to collect target
materials, as indicated by the increasing success rate. For relatively simple tasks, such as collecting
stone and iron, their performances remain similar, since these tasks can be solved through simple
random exploration without requiring a deep understanding of environment dynamics. However,
the average success length reveals that RWM, by leveraging relational understanding of the environ-
ment, can locate target materials more efficiently. The performance gap becomes more pronounced
on more challenging tasks, such as collecting gold and diamonds. These materials are buried deeper

7
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Table 2: Atari-100k (400K environment steps) scores. The best results are highlighted in bold.
Task PPO (400K) DreamerV3 (400K) RWM (400K)
Alien 276 1118 1244
Amidar 26 97 101
Assault 327 683 675
Asterix 292 1062 1079
Bank Heist 14 398 388
Battle Zone 2233 20300 22950
Boxing 3 82 74
Breakout 3 10 9
Chopper Command 1005 2222 2487
Crazy Climber 14675 86225 89132
Demon Attack 160 577 601
Freeway 2 0 0
Frostbite 127 3377 3592
Gopher 368 2160 2271
Hero 2596 13354 15310
Jamesbond 41 540 550
Kangaroo 55 2643 2896
Krull 3222 8171 8731
Kung Fu Master 2090 25900 27100
Ms Pacman 366 1521 1740
Pong -20 -4 -6
Private Eye 100 3238 3120
Qbert 317 2921 3020
Road Runner 602 19230 21826
Seaquest 305 962 1103
Up N Down 1502 46910 50021

and associated with sparse rewards. DreamerV3 often fails to acquire useful knowledge to reach
them, even if it happens to encounter them occasionally. In contrast, our proposed RWM captures
abstract object relations and utilizes sparse rewards more effectively. As a result, it continues to
improve its ability to discover difficult targets, a trend further corroborated by the shorter average
success lengths.
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Figure 4: Comparison of the survival rate (SVR)
between DreamerV3 and RWM. RWM increases
its survival rate markedly after ∼1.2M steps and
continues to improve, whereas DreamerV3 shows
only minor gains and remains below 0.015 across
0–5M steps. This suggests that structured world
modeling helps the agent avoid risks and remain
alive in dynamic environments.

Exploration in open-world environments is in-
herently risky, as agents may encounter haz-
ardous situations, e.g., lava, hostile mobs, etc.
Thus, beyond the objective of obtaining dia-
monds, it is equally critical for an agent to
maintain survival throughout its exploration.
To assess this, we further evaluate the agent’s
survival rate (SVR) during exploration, provid-
ing a complementary perspective on its overall
effectiveness. Experiment results are given in
Fig.4. Red and blue lines represent the sur-
vival rate of DreamerV3 and RWM, respec-
tively. During the training process, the sur-
vival ratio continuously increases, indicating
that both agents gradually learn strategies to
avoid hazardous situations and maintain longer
interactions. Notably, RWM achieves a much
higher survival rate throughout training, sug-
gesting that by incorporating structured world
modeling, the agent is able to distinguish the hazard environment and avoid it, which enhances
robustness to environmental risks.

To further assess the generality of our approach beyond Minecraft, we evaluate RWM on the Atari-
100k benchmark. Across 26 games, RWM achieves consistently higher human-normalized scores
than strong model-free baselines (e.g., PPO) and the model-based DreamerV3, with the largest gains
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on long-horizon, multi-goal tasks such as Crazy Climber, Road Runner, Up N Down, Battle Zone,
and Hero. These results indicate that structured world modeling on object relations enables sample-
efficient exploration and risk-aware decision making. We also find that, on games requiring fast
reactions, like Freeway, our method is not able to perform a good result because of the simple
dynamics.

5 RELATED WORK

World Models. World models empower embodied AI by building internal representations (Bruce
et al., 2024; Chen et al., 2022; Robine et al., 2023; Wang et al., 2024) and making future predictions
(Hafner et al., 2020; Hafner & et al., 2021; Okada & Taniguchi, 2022; Wu et al., 2022) of the external
world. pixel-level and latent-level dynamics models provide a powerful tool for reasoning through
imagination. The early world models (Ha & Schmidhuber, 2018) use a generative RNN to simulate
future frames in a latent space. More recent work has extended world models with greater capacity
and generalization. PWM (Georgiev et al., 2024) scales policy learning with large pre-trained world
models across a diverse range of continuous control tasks, achieving strong performance without
requiring online planning. STORM (Zhang et al., 2023) integrates stochastic latent dynamics with a
transformer architecture, enhancing multi-step prediction and achieving human-level scores on Atari
benchmarks. Dreamer and its successors (Hafner et al., 2020; Hafner & et al., 2021; 2025) enable
agents to plan and learn from imagined trajectories, significantly improving sample efficiency and
enabling long-term credit assignment. DreamerV3 notably solved the challenging ”obtain diamond”
task in Minecraft using pure model-based learning. However, current world model methods focus
on local details while do not have high-level abstract world understanding, the dense pixel-level
or latent-level observation limit their imagination length, which directly influence their exploration
efficiently.

Graphs in Embodied AI. Due to their sparsity and superior abstraction ability, graphs have been in-
creasingly adopted in embodied AI, providing structured inductive biases for reasoning and decision-
making. Graph neural networks enable agents to encode relational information among entities and
objects in the environment (Scarselli et al., 2008; Kipf & Welling, 2017; Wu et al., 2021). In embod-
ied tasks, graph-based representations have been used to capture object-centric relations and spatial
dependencies (Shen et al., 2021; Huang et al., 2022), allowing agents to generalize beyond pixel-
level perception. Neural-SLAM methods (Zhang et al., 2017; Chaplot et al., 2020) combine graph
structures with mapping and navigation, where nodes represent places or objects, and edges capture
connectivity. Scene graph approaches (Huang et al., 2022; Wu et al., 2023) provide higher-level se-
mantic abstraction, improving embodied agents’ navigation and planning capabilities. Knowledge
graphs further enhance embodied agents by injecting commonsense and affordance priors, enabling
reasoning about object functionality and improving generalization to unseen scenarios (Yang et al.,
2018; Wang et al., 2021; Li et al., 2024). More recent work combines transformers with graph
encodings (Wu et al., 2023; Li et al., 2023), scaling relational reasoning and enabling multi-step
planning in complex 3D environments. Despite their advantages, existing approaches are typically
grounded in scene graphs or knowledge graphs, which only statically capture semantic or relational
structures, without modeling how such attributes and relations evolve through agent–environment
interaction. This limitation restricts embodied agents to passive reasoning, reducing their effective-
ness in dynamic open environments.

6 CONCLUSION

In this paper, we propose Embodied Graph, which is a paradigm of using graph in modeling ab-
stracted environment dynamics. Based on this paradigm, we further propose the Relational World
Model (RWM), a hierarchical architecture to combine high-level relational environment dynamics
and complete it with low-level details to increase agents’ exploration efficiency. We first propose
an embodied dynamic graph constructor to build and update a graph online to preserve rich context
information of the environment. Then we develop a graph-guided macro-action generator to use ge-
ometrical information to form an exploratory action space. Finally, conditioned on the constructed
graph and the candidate action space, our proposed model is able to learn abstract environment dy-
namics to help agents explore efficiently. Extensive experiments in Minecraft and Atari validate the
great performance of RWM and the effectiveness of our design.
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ETHICS STATEMENT

This study relies solely on the publicly released Minecraft environment and assets; no human sub-
jects, user-generated data, or personal identifiers are involved. We audited the game content and our
experimental setup for ethical risks (e.g., biased or offensive material) and found none relevant to
our tasks. Accordingly, we assess the risk of societal harm or unintended bias to be minimal. The
work follows standard research-ethics practices and is designed to align with these principles.

REPRODUCIBILITY STATEMENT

To help with the reproducibility, we will release our code at the publication time.

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs as general-purpose assist tools. Specifically:

• Code debugging and tooling: LLMs were consulted to diagnose implementation issues
(e.g., log parsing, plotting, and minor refactoring) and propose alternative snippets. All
changes were reviewed, tested, and integrated by the authors.

• Writing support: LLMs suggested phrasing improvements and helped polish drafts (e.g.,
reorganizing paragraphs, clarifying definitions, and refining figure captions). Substantive
claims, citations, and reported results were authored and verified by the authors.

LLMs did not generate experimental results, design the core method, or serve as authors. The authors
take full responsibility for all content, including any LLM-assisted text, and verified the accuracy of
all citations and empirical results.
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A APPENDIX

A.1 NOTATIONS

Parameters

K The size of the action space

S Side length of the cubic region of interest (ROI)

L Number of hops for ego-graph neighborhood

T Length of input sequence or total timesteps

Hb Number of sectors for spatial binning

Sets and Space

Gt Embodied graph at time t

Vt Set of nodes at time t

Et Set of edges at time t

It Set of interactions at time t

Va Set of agent nodes

Vo Set of object nodes

Eoo Object-object edges

Eoa Object-agent edges

Eaa Agent-agent edges (multi-agent)

Ioo Object-object interactions

Ioa Object-agent interactions

Iaa Agent-agent interactions

Xo,Xa Node features for objects and agents

Soo,Soa,Saa Edge features

Roo,Roa,Raa Interaction features

N t
v L-hop neighbors of node v at time t

Gt
v Ego-embodied graph of node v at time t

M Grid map in ROI index space

Functions and Models

fθ Learnable dynamics network

qϕ Encoder in world model

pϕ Dynamics predictor

sg(·) Stop-gradient operator

rwalk
x,y,z Walkable region condition

Losses and Objectives
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L(ϕ) Total high-level world model loss

Lpred Prediction loss

Ldyn Dynamics loss

Lrep Representation loss

Lgraph Graph reconstruction loss

Lrew Reward prediction loss

Lcon Continuity loss

βpred, βdyn, βrep Loss coefficients

Metrics

SR Success Rate

SL Success Length

SVR Survival Rate

Indices and Variables

t Time step

v, n Node index

x, y, z Spatial coordinates

cn Contact length of node n

Vn Volume of node n

dn Distance from agent to node n

d1y Vertical depth term for digging

sn Availability score of node n

tn Type of node n (frontier or digband)

bair, bliq, bdiq, bunk Voxel type indicators

Miscellaneous

A Macro-action plan

a Primitive action

ht Hidden state at time t

zt Latent state at time t
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