
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EVALUATING AND EXPLAINING THE SEVERITY OF
DISTRIBUTION SHIFTS: ILLUSTRATION WITH TABU-
LAR TEXT CLASSIFICATION

Anonymous authors
Paper under double-blind review

ABSTRACT

After deploying a machine learning model, distribution shifts may emerge in real-
world data. When dealing with unlabeled data, it can be challenging to accurately
assess the impact of these drifts on the model’s performance, for any type and in-
tensity of shift. In that case, decisions such as updating the model for every benign
shift would not be cost-efficient. In this paper, we introduce the Error Classifier,
an error assessment method that addresses two tasks: unsupervised performance
estimation and error detection on out-of-distribution data. The Error Classifier
computes the probability that the model will fail based on detected fault patterns.
Further, we employ a sampling-based approximation of Shapley values, with the
Error Classifier as value function, in order to explain why a shift is predicted as se-
vere, in terms of feature values. As explanation methods can sometimes disagree,
we suggest evaluating the consistency of explanations produced by our technique
and different ones. We focus on classification and illustrate the relevance of our
method in a bimodal context, on tabular datasets with text fields. We measure our
method against a selection of 15 baselines from various domains, on 7 datasets
with a variety of shifts, and 2 multimodal fusion strategies for the classification
models. Lastly, we show the usefulness of our explanation algorithm on instances
affected by various types of shifts.

1 INTRODUCTION

While pretrained language models such as BERT can achieve state-of-the-art performance in vari-
ous tasks such as classification (Devlin et al., 2019), a mismatch between the source (training/fine-
tuning) and target (test) distributions can deteriorate the model’s performance (Yuan et al., 2023).
Once dataset shifts have been detected based on unlabeled data (Rabanser et al., 2019), it is essential
to assess the severity of their impact on the model’s performance in order to make informed deci-
sions. It would be cost-inefficient to update a model or integrate human control of the model’s out-
puts for every benign shift. However, no method may accurately predict out-of-distribution (OOD)
performance for every type and intensity of distribution shifts (Garg et al., 2022). Despite this, it
would be still useful to understand which estimator is more reliable for unsupervised performance
estimation and error detection across a diversity of shifts. Unsupervised performance prediction
aims to evaluate a model based on unlabeled datasets whereas error detection attempts to identify
mispredicted target inputs (Chen et al., 2021a). In that case, it can be valuable to explain why a
shift is evaluated as severe, in terms of feature values. For instance, in medical diagnosis prediction,
subject matter experts might find it useful to understand why a shift could affect the reliability of a
given model’s prediction, and then decide to override the initial outcome.

Here the focus is on multimodal classification tasks based on tabular datasets with text fields in
English. These datasets consist of categorical and numerical features (i.e. the tabular modality) and
fields with free-form text (i.e. the text modality) (Shi et al., 2021). Various critical applications rely
on such datasets. In the medical field, patient characteristics and clinical notes could be employed
for diagnosis prediction. In financial investment, models could make decisions based on time series
(e.g. asset price) and text news for sentiment analysis.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Review
‘Unflattering I purchased the blue with white dots. the 

shape was awful, but looked like a sack – returned’

Class Name Dpt Name Age Pos. Feedback Count
General Dresses 55 0

Review
‘Un flattering I purchased the blue with white dots. the 

shape was awful, but looked like a sack – returned’

Class Name Dpt Name Age Pos. Feedback Count
General Dresses 55 0

Figure 1: Illustration of our method. Left: Original multimodal input (top) with true rating of 2
for a user review regarding clothing items (sentiment analysis with cloth dataset). The classification
model predicts the correct label. EC outputs a probability of error of 44%. Right: Shifted input with
an extra space on the first word of the text field. The classification model overestimates the rating.
EC estimates a probability of error of 63%. The outputs of the explanation algorithm (top 10 feature
contributions with EC as value function) are displayed in each bar plot (bottom).

The tasks of unsupervised performance estimation and error detection are complex to perform across
diverse distribution shifts. Our objective is to evaluate what estimator may perform best on a variety
of distribution shifts that could occur in practice. We highlight the following contributions:

• We introduce the Error Classifier (EC), an error assessment method that can be employed for
OOD performance estimation and error detection. For any new input, EC computes the probability
that the classification model will fail based on fault patterns learned on calibration data.

• We show that EC can be used as value function in a sampling-based algorithm that approximates
Shapley values. Once a shift has been detected and assessed, this turns out to be useful to explain
why it is predicted as potentially harmful (i.e. what feature values contribute to the probability
of error estimated by EC). We evaluate the quality of an explanation by verifying its consistency
across various explanation methods.

• We assess our method by comparing it to 15 baselines from different domains on 7 tabular-text
classification datasets, and 2 multimodal fusion schemes for the classification models. All the
methods are external approaches that can be applied to pretrained networks without modification.

Figure 1 shows an example from a sentiment analysis task, where the original multimodal input (top
left) has been synthetically modified with a typographical error on the first word of the text field (top
right). The classification model predicts the correct rating for the first input, but overestimates it for
the modified input. Our method, EC, estimates that failure is more likely for the second prediction
(63%) than for the first one (44%). Further, our sampling-based algorithm displays the top 10
feature contributions to the probability of failure (bottom). In particular, the bottom right bar plot
displays several positive contributions which highlight the uncertainty caused by the combination of
certain tokens: e.g. "awful" and "flattering" ("flat" + "##tering") appearing in the same text. This
explanation method could be useful in critical applications (e.g. financial or medical field) where
subject matter experts need to understand if and why a prediction is likely to be incorrect.

2 PRIOR WORK

Multimodal fusion. A multimodal model leverages heterogeneous and connected modalities like
audio, image and text as inputs. This approach aims to learn representations of cross-modal inter-
actions by fusing information across diverse modalities (Liang et al., 2022; Xu et al., 2023). With
early fusion, cross-modal interactions happen at an early stage. For a Transformer with early con-
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catenation of two modalities, this means that full pairwise attention will be computed at all layers.
In contrast, late fusion of final representations makes cross-modal interactions occur at a later stage.

Distribution shifts. Dataset shifts appear when the respective source and target joint distributions
p and q are different: p(x, y) ̸= q(x, y) for covariates x and class variable y (Moreno-Torres et al.,
2012). Changes in the distribution of the input variables x are referred to as covariate shifts. Fo-
cusing on text data, Arora et al. (2021) identify two types of OOD texts: the background shift (e.g.
when style of text changes) and semantic shift (e.g. when unseen classes appear at test time). Se-
mantic features are discriminative for the prediction task while background attributes are not. With
regard to multimodal distribution shifts, Qiu et al. (2022) benchmark the robustness of image-text
models under multimodal perturbations.

OOD detection and performance estimation. Two-sample tests metrics can be used to detect
dataset shifts: univariate Jensen-Shannon Distance (Lin, 1991) and multivariate maximum mean
discrepancy (Gretton et al., 2012). The domain classifier (Rabanser et al., 2019) is trained to dis-
criminate between data from source (class 0) and target (class 1) domains. A shift is detected when
this model can easily identify from which domain the samples originate. Distance-based methods,
such as non-parametric deep nearest neighbors (Sun et al., 2022), can leverage feature embeddings
from a model in order to perform OOD detection. With respect to OOD performance estimation, the
Average Thresholded Confidence technique learns a cut-off value on the source validation data so
that the proportion of samples with score (e.g. maximum confidence) above that threshold matches
the accuracy (Garg et al., 2022). The predicted accuracy is estimated as the fraction of target ex-
amples for which the score exceeds that threshold. With the Difference of Confidences approach
(Guillory et al., 2021), the accuracy change between the source and unlabeled target data is assessed
by the difference between the average confidences on these two datasets. With Mandoline, Chen
et al. (2021b) estimate the target error rate by performing importance re-weighting of the 0-1 loss
with slicing functions designed to capture possible axes of distribution shifts. Lastly, Yu et al. (2022)
propose the Projection Norm to predict the OOD test error. First, a new neural network is trained on
the test samples which have been pseudo-labeled by the in-distribution model. Then, the more the
new model’s parameters are different from the original model, the greater the predicted OOD error.

Confidence scores and uncertainty. The maximum softmax probability turns out to be a useful
baseline to estimate confidence under distribution shifts (Hendrycks & Gimpel, 2017). However, as
models such as neural networks can be miscalibrated, techniques such as temperature scaling are
suggested to better calibrate the class probability estimates (Guo et al., 2017a). Liu et al. (2020)
show the relevance of the energy score in OOD detection tasks as it is aligned with the probabil-
ity density of the input. To quantify predictive uncertainty, methods such as conformal prediction
can produce prediction sets based on an expected coverage level (Vovk et al., 2005; Papadopoulos
et al., 2002). In particular, Tibshirani et al. (2019) propose a weighted version of conformal pre-
diction under covariate shift. To estimate predictive uncertainty, Lakshminarayanan et al. (2017)
employ deep ensembles with random parameter initialization for each neural network, along with
random shuffling of the data points. The predictive entropy can be computed after averaging the pre-
dicted probabilities from each network. To avoid the computational cost of Bayesian models, Gal &
Ghahramani (2016) introduce a Bayesian approximation for deep neural networks. When evaluating
the predictive uncertainty for a test input, the Monte Carlo dropout corresponds to performing vari-
ous forward passes with dropout. To evaluate the trustworthiness of predictive uncertainty, Ovadia
et al. (2019) present a benchmark of different methods under dataset shift (e.g. deep ensembles).
To explain uncertainty estimates, Antoran et al. (2021) propose CLUE, a method based on coun-
terfactuals, which identifies which features are responsible for uncertainty in probabilistic models.
This method also makes it possible to distinguish aleatoric uncertainty from epistemic uncertainty.
The second type originates from the model’s parameters being under-specified by the data and in-
creases with OOD inputs. Lastly, Watson et al. (2023) explain predictive uncertainty by adapting
the computation of Shapley values (Shapley, 1953) with the conditional entropy as value function.

Error detection. To detect model failure during inference, Corbière et al. (2019) propose a method
which estimates the true class probability in image classification tasks. Self-training ensembles can
be leveraged for error detection and unsupervised accuracy estimation (Chen et al., 2021a). Con-
cerning explanation methods, Parcalabescu & Frank (2023) introduce MM-SHAP, a multimodality
score based on Shapley values, which helps detect unimodal collapse. However, Krishna et al.
(2022) point out that the outputs of different explanation techniques can disagree with each other,
and suggest various metrics to measure disagreement between top-k features: intersection or rank.
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3 METHODS

Assume we have a C-class classification problem, where each input x = (xtext,xtab) ∈ X contains
text fields and tabular features. The true class is y ∈ Y = {0, 1, . . . , C − 1}. We consider a Source
dataset S = {(xi, yi)}ni=1, which includes n points sampled i.i.d. from distribution p. Further, S
is randomly partitioned into a training dataset Strain and a validation dataset Sval. We consider a
class of hypothesesH mapping X to ∆C−1, where ∆C−1 is the probability simplex over C classes.
Given a classifier π̂ ∈ H fitted on Strain, the predicted label is ŷ = argmaxj∈Y π̂j(x), ∀x ∈ X.
Further, the 0-1 loss is defined as L(π̂(x), y) = 1y ̸=ŷ, where 1condition is 1 if the condition is true,
0 otherwise. To evaluate the performance of π̂, we define the error rate on dataset D, indexed by
set ID, as εD = 1

|ID|
∑

k∈ID
1yk ̸=ŷk

, where |I| denotes the cardinality of a set I. Given π̂ and
unlabeled target dataset T , our objective is to predict the error rate and identify mispredicted inputs.

3.1 THE ERROR CLASSIFIER

3.1.1 DESIGN AND USE

The Error Classifier (EC) estimates the likelihood that π̂ will fail based on detected error patterns.
We first extract the feature embedding z from the model π̂: we have z = ϕ(x), where the mul-
timodal feature encoder ϕ : X → Rd includes a fusion scheme (e.g. late fusion), and d is the
embedding dimension. Then, we construct the label by computing the 0-1 loss for each data point
of Sval, indexed by Ival. Lastly, the EC model f̂ : Rd → ∆1 learns to detect error patterns:
f̂ = C({(zi,L(π̂(xi), yi)) : i ∈ Ival}), where C denotes any classification algorithm that takes in
data indexed by Ival in order to output a classifier fitted on that data, and where zi = ϕ(xi).

For a new input x′, we address the error detection task by computing f̂1(z
′), where z′ = ϕ(x′) and

f̂1(z
′) estimates the probability that the loss equals 1 given z′. Lastly, we address the performance

estimation task on dataset T , indexed by IT , by computing the error rate ε̂T = 1
|IT |

∑
k∈IT

f̂1(zk).

3.1.2 IMPORTANCE WEIGHTING PERSPECTIVE

With importance weighting (Horvitz & Thompson, 1952), it is possible to assess a function h(x, y)
under the target distribution q, given n samples {(xi, yi)}ni=1 drawn from the source distribution p:

Eq[h(x, y)] = Ep[
q(x, y)

p(x, y)
h(x, y)]. We suppose that f̂ is a decision tree classifier (Breiman et al.,

1984). The leaf nodes in a tree form a partition of the feature space; let λ(zk) denote the set of
indices of the points from {(zi,L(π̂(xi), yi)) : i ∈ Ival} that belong to the same leaf node based on
the decision rules (i.e. decision path) fulfilled by zk. For the performance estimation task, we have:

ε̂T =
1

|IT |
∑
k∈IT

f̂1(zk) =
1

|IT |
∑
k∈IT

∑
i∈λ(zk)

L(π̂(xi), yi)

|λ(zk)|
(1)

=
1

|IT |
∑
k∈IT

∑
i∈Ival

L(π̂(xi), yi)

|λ(zk)|
1i∈λ(zk) (2)

=
1

|Ival|
∑

i∈Ival

(∑
k∈IT

1i∈λ(zk)/|IT |
|λ(zk)|/|Ival|

)
L(π̂(xi), yi) (3)

(3) can be interpreted as importance weighting of the 0-1 loss where the numerator in the term in
parenthesis can be seen as a ratio of target and source probability densities. For instance, for a given
i ∈ Ival, if zi and a large proportion of target samples zk follow the same decision path, then sum-
ming all the 1i∈λ(zk)/|IT | over IT will result in a high probability in the numerator, with common
denominator |λ(zk)|/|Ival|. Further, if the related leaf node contains few validation samples, then
the corresponding probability (i.e. |λ(zk)|/|Ival|) will be low. In that case, the corresponding loss
L(π̂(xi), yi) will be assigned an important weight.
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3.1.3 RECALIBRATION PERSPECTIVE

The probability estimates produced by classifiers should be confidence-calibrated in order to reflect
the trustworthiness of the predictions (Guo et al., 2017b). Considering our classifier π̂, perfect
calibration is defined as P[y = argmax

j∈Y
π̂j(x)|max

j∈Y
π̂j(x) = c] = c,∀c ∈ [0, 1].

However, models such as neural networks can be miscalibrated. We assume here that f̂ is a decision
tree classifier and that the extracted feature embedding corresponds to the output of the model π̂ (i.e.
the class probability estimates): zk = π̂(xk) for any target input xk. For a given target input xk,
zk = ϕ(xk) and f̂1(zk) estimates the probability that the model π̂ will fail. Therefore, 1 − f̂1(zk)
is a good candidate to assess the confidence in the model’s prediction:

1− f̂1(zk) = 1−
∑

i∈λ(zk)

L(π̂(xi), yi)

|λ(zk)|
= 1−

∑
i∈λ(zk)

1− 1yi=ŷi

|λ(zk)|
, with ŷi = argmax

j∈Y
π̂j(xi) (4)

1− f̂1(zk) = 1−
∑

i∈λ(zk)

1

|λ(zk)|
+

∑
i∈λ(zk)

1yi=ŷi

|λ(zk)|
=

∑
i∈λ(π̂(xk))

1yi=ŷi

|λ(π̂(xk))|
(5)

The right-hand side in (5) is a weighted accuracy given the decision path fulfilled by π̂(xk). This
can be interpreted as confidence recalibration based on the points from λ(π̂(xk)); that is, they are in
the vicinity of xk in terms of probability estimates π̂(xk) and belong to the same leaf node.

3.2 EXPLAINING THE SEVERITY OF SHIFTS

3.2.1 EXPLANATION ALGORITHM

We present a sampling-based algorithm that aims to explain why a shift is predicted as potentially
harmful for a given prediction, i.e. what feature values contribute to the likelihood of failure assessed
by EC. Our method adapts the algorithm from Štrumbelj & Kononenko (2010), which approximates
Shapley values by randomly and repeatedly selecting a subset of features instead of all possible
coalitions. We make several adaptations to achieve our objective. First, we do not aim to explain
the model’s predictions; our goal is to justify why a model might fail in a context of distribution
shifts. Therefore, we leverage a different kind of value function to estimate the feature contributions.
Secondly, the context is multimodal; in particular, we focus on tabular-text data and models. In a
nutshell, for a new target input x′ (with z′ = ϕ(x′)) and Error Classifier f̂ , we want to understand
what contributes to f̂1(z

′)− Ei∼Ival
[f̂1(zi)], in terms of text and tabular feature values.

The approach is described in Algorithm 1 for a target input x, where we compute the average contri-
bution of a tabular feature with index j or a text feature (i.e. token) with index (i.e. position) j. We
perform M Monte Carlo iterations to approximate the Shapley value. In order to assess the marginal
contribution of a feature value with feature index j, we construct two new instances x+j and x−j

from x by combining the effect of randomness in samples from Sval and in feature indices for tabu-
lar and text modalities. As a value function, the Error Classifier f̂ is used to assess the contribution
of the feature value to the likelihood that π̂ will fail.

3.2.2 MEASURING THE QUALITY OF EXPLANATIONS

To measure the quality of explanations produced by Algorithm 1, we suggest verifying the consis-
tency with outputs generated by other techniques. First, a different value function can be used in
Algorithm 1, in order to assess the feature contributions. For instance, deep ensembles (Lakshmi-
narayanan et al., 2017) can be leveraged to compute the contribution to uncertainty. In that case,
the marginal contribution Φm

j (x) from line 15 in Algorithm 1 equals the difference in predictive
entropies computed with E neural networks pθe with parameters θe: Φm

j (x) = u(z+j)− u(z−j),

where u(z) = −
∑
j∈Y

(
1

E

E∑
e=1

pθe(j|z)

)
log2

(
1

E

E∑
e=1

pθe(j|z)

)
. (6)

Secondly, in Algorithm 1, each perturbation sample (x+j and x−j) can be modified into a vector
v ∈ {0, 1}(|J

tab|+|J text|), where each entry from v equals 1 when the corresponding feature value
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Algorithm 1 Explanation algorithm for one feature
Input: input x from target dataset T , feature index j, index set of tabular features J tab, index set of
text features J text, validation source dataset Sval, Error Classifier f̂ , feature encoder ϕ component
of model π̂, number of iterations M
Output: Shapley value Φj(x) for given feature (contribution to probability of error)

1: for m = 1 to M do
2: Sample x∗ ∼ Sval
3: Select random subset of tabular feature indicesRtab ⊂ J tab\{j}
4: Select random subset of text feature indicesRtext ⊂ J text\{j}
5: Initialize x+j ← x ▷ here, the subscript is related to features
6: Replace all the tabular values in x+j with index inRtab by corresponding values from x∗

7: Replace all the text values in x+j with index in Rtext by [MASK] token when these token
values are not in x∗

8: Initialize x−j ← x+j

9: if j ∈ J tab then
10: Replace the tabular value in x−j with index j by the corresponding value from x∗

11: else
12: Replace the text value in x−j with index j by the [MASK] token when this token value

is not in x∗

13: end if
14: z+j ← ϕ(x+j) and z−j ← ϕ(x−j)

15: Compute marginal contribution Φm
j (x)← f̂1(z+j)− f̂1(z−j)

16: end for

17: Approximated Shapley value Φj(x)←
1

M

M∑
m=1

Φm
j (x)

from x is present and 0 when it is absent. |J tab| and |J text| denote the numbers of tabular features
and text tokens, respectively. If we compute Algorithm 1 for the |J tab| + |J text| features, we
can obtain 2 ×M × (|J tab| + |J text|) instances of v and related f̂1(.) values (i.e. f̂1(z+j) and
f̂1(z−j)). Then, we can compute the Kernel SHAP weights (Lundberg & Lee, 2017) by fitting a
weighted Lasso regression r̂ : {0, 1}(|J tab|+|J text|) → R, where v are the features and f̂1(.) the
response values (or u(.) for deep ensembles). Lastly, the coefficients in this regression function are
the Kernel SHAP feature contributions.

The consistency between the outputs obtained with EC and those generated by each of these alter-
native methods can be assessed, by computing the Pearson correlation coefficients.

4 EXPERIMENTS

We empirically test the relevance of our method on various classification datasets. In the appendix,
we provide further details on the experimental settings and results (e.g. datasets, data preprocessing,
multimodal architectures, baselines, variability in results, ablation studies, computational cost).

4.1 SETTINGS

Datasets. We test the relevance of our method on 7 classification datasets, with a number of classes
ranging from 2 to 100: airbnb, cloth, kick, petfinder, salary, and wine with the 10/100 most frequent
classes (referred to as wine10 and wine100, respectively). These datasets have been tested by (Shi
et al., 2021) and (Gu & Budhkar, 2021).

Architectures. For the multimodal classifier π̂, we employ four different architectures: (1) All-
TextBERT: The tabular features, converted to strings, and the text fields are concatenated and in-
put into BERT-base-uncased (Devlin et al., 2019) as text; (2) LateFuseBERT: A tabular-text dual-
stream model with late concatenation of the [CLS] tokens’ final hidden states extracted from BERT-
base-uncased and a tabular Transformer; (3) AllTextDistilBERT: This architecture is similar to All-

6
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TextBERT, except that we employ DistilBERT-base-uncased (Sanh et al., 2019) instead of BERT; (4)
LateFuseDistilBERT: Similar to LateFuseBERT with DistilBERT-base-uncased for the text stream
instead of BERT. Each pretrained model is fine-tuned on Strain with a batch size of 32, by minimiz-
ing the cross-entropy loss with AdamW algorithm (Loshchilov & Hutter, 2019), with a learning rate
of 5e−5. We use early stopping with patience of 1 for the accuracy on Sval. An exponential learning
rate scheduler with gamma of 0.9 is employed. We keep the best model in terms of epochs, i.e. with
the highest accuracy on Sval. Each use case is run over 5 different random dataset partitions.

Shift type and intensity. We consider various types of shifts affecting the target dataset T :

• Unimodal covariate shifts: These shifts affect the tabular or text inputs. With orderSplit, we sort
the data samples of T by the value of a tabular variable and split the sorted dataset into three
sections: Tlow (first 5% share), Tmid (5-95%), and Thigh (95-100%). The final target dataset is
constructed by randomly sampling (with replacement) from Tlow ∪ Thigh and from Tmid with
distinct rates. emptyCategory randomly replaces the values of categorical variables with empty
values. With typos, we insert random typographical errors into the text field (e.g. swapping,
removing, adding, or replacing characters; adding or removing spaces). With seqLengthSplit,
we sort the data samples of T in ascending or descending order based on the text field length.
We then split the sorted dataset into two sections: T1 (first 10% share) and T2 (90%). The final
target dataset is constructed by randomly sampling (with replacement) from each section with
distinct rates. cutText randomly truncates the text field by removing a part of the end of the text.
Lastly, abbrev randomly replaces words by abbreviations provided by a given list (e.g. especially
becomes esp).

• Multimodal covariate shifts. This is achieved through the combination of shifts affecting the
inputs of both modalities: orderSplit-typos, emptyCategory-typos, orderSplit-seqLengthSplit,
orderSplit-cutText, orderSplit-abbrev.

• Out-of-domain: With newClass, T includes a proportion of samples where the true label is not
one of the C classes. For cloth, pet, and salary, the source dataset is constructed after removing
the samples from the minority class, which are then randomly inserted into T . For wine10 and
wine100, we insert into T samples from unknown classes originating from wine100 and wine200,
respectively.

Further, we implement 3 degrees of shift intensity corresponding to various levels of sampling rates
(orderSplit, seqLengthSplit, newClass), distinct percentages of affected target data rows (emptyCat-
egory, abbrev, cutText), various numbers of shifts (typos), or different proportions of text to remove
(cutText). Lastly, as a reference, we also test the methods on the unchanged target dataset (noShift).

Evaluation. For each experiment, all the methods are calibrated on the validation source data Sval
and evaluated on the same target dataset T with a size of 1000 rows. The final hidden state of
the classification token [CLS] (referred to as zlast

[CLS]) and the softmax output π̂(x) are extracted
from π̂. For LateFuseBERT, zlast

[CLS] is the concatenation of the text and tabular Transformers’ final
hidden states for the [CLS] tokens (i.e. states before the classification head). For EC, we use a
random forest algorithm with the default hyperparameter setting from Scikit-learn Python package
(Pedregosa et al., 2011). zlast

[CLS] and π̂(x) are concatenated and used as features for EC. Our method
is compared to the following baselines previously described in section 2.

15 baselines are used for unsupervised error rate estimation, where the scores are computed for a
given target dataset T : (1) JSD: The Jensen-Shannon Distance between the (validation) source and
target distributions of maximum confidences (i.e. maximum softmax probabilities); (2) AC: One
minus the average maximum confidence over the target dataset; (3) ACSC: One minus the average
maximum confidence after applying temperature scaling to the softmax output; (4) MMD: maximum
mean discrepancy between the source and target samples of zlast

[CLS]; (5) DOC: The error rate estimated
with the Difference Of Confidences between source and target; (6) ATC: The error rate estimated
with the Average Thresholded Confidence; (7) MAND: The error rate estimated with Mandoline;
(8) MCD: With Monte Carlo dropout, the uncertainty is assessed with the average of the predictive
entropies over T , computed after performing 5 forward passes of π̂; (9) DC: The AUROC metric of
the domain classifier trained with zlast

[CLS] as features; (10) CP: The mean prediction set size computed
with the weighted conformal prediction (Tibshirani et al., 2019) based on LAC method (Sadinle
et al., 2019); (11) DNN: The average distance to the k-th neighbor (k = 10) from the source data

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

with the deep nearest neighbors fitted with zlast
[CLS] as features; (12) ENRG: The mean energy score

computed over the target dataset; (13) TCP: One minus the average true class probability estimated
with a neural network trained with zlast

[CLS]; (14) DENS: The uncertainty is assessed with the average
of the predictive entropies over T , after averaging the probabilities from a deep ensemble of 5 neural
networks trained with zlast

[CLS]; (15) PNORM: The distance as the sum of squared differences between
the original and new model’s parameters, after training each model based on zlast

[CLS].

Some methods can exclusively be assessed for OOD performance estimation (e.g. JSD, MMD).
Therefore, only 9 baselines are used for the error detection task, where the scores are computed
for a given target input: (1) AC: One minus the maximum confidence for a given target input; (2)
AC-scaled: One minus the maximum confidence after applying temperature scaling to the softmax
output; (3) MCD: With Monte Carlo dropout, the uncertainty is assessed with the predictive entropy,
after computing 5 forward passes of π̂; (4) DC: The class 1’s predicted probability; (5) CP: The
prediction set size computed with the weighted conformal prediction based on LAC method; (6)
DNN: The distance to the k-th neighbor (k = 10); (7) ENRG: The energy score; (8) TCP: One
minus the true class probability; (9) DENS: The uncertainty is assessed with the predictive entropy.

For a given architecture (e.g. LateFuseBERT), we evaluate how each method performs on unsu-
pervised error rate estimation by computing the Spearman’s rank correlation ρ between the scores
and the actual error rates on the target dataset, over different random dataset partitions (seeds), shift
types and intensities. The performance on error detection is assessed by computing AUROC with all
the target data from different seeds, shift types and intensities: we calculate the scores for accurate
(label 0) and incorrect (label 1) predictions, and quantify how well these two labels are separated for
a range of thresholds. Lastly, we also perform ablation studies to compare the results of EC with (1)
Ablation 1: an Error Classifier using only zlast

[CLS] as features, or (2) Ablation 2: EC leveraging only
the classifier’s output π̂(x). The results of the ablation studies are in appendix I.

Explanation algorithm. We experiment with two different value functions: the Error Classifier and
deep ensembles. In order to accelerate the computation of Shapley values, we stop the iterations
when a convergence criteria is reached. To achieve that, we first compute the maximum absolute
difference between the previous and updated Shapley values, every 10 iterations and for each value
function. We end the process when the maximum of these two values is lower than 0.01.

4.2 RESULTS

Table 1: Evaluation of the methods for LateFuseBERT, computed on the target data for 5 random
seeds, and different shift types and intensities. Error rate estimation is assessed with the Spearman’s
rank correlation (ρ). Error detection is evaluated with AUROC (auc) and is only applicable to EC
and 9 baselines. For a given dataset and task, the best result is in bold (higher is better). The
variability in results is displayed in appendix H.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.412 0.628 0.366 0.744 0.582 0.842 0.102 0.586 0.190 0.639 0.774 0.840 0.767 0.858
ACSC 0.366 0.638 0.375 0.710 0.688 0.842 0.109 0.589 0.417 0.648 0.826 0.841 0.302 0.649
ATC 0.258 0.460 0.728 0.427 0.459 0.864 0.906
CP 0.030 0.625 0.518 0.705 0.676 0.615 0.322 0.573 0.307 0.623 0.751 0.775 0.784 0.849
DC 0.268 0.511 0.429 0.543 0.048 0.489 0.016 0.502 0.154 0.489 0.590 0.609 0.404 0.586

DENS 0.455 0.613 0.584 0.759 0.526 0.863 0.353 0.567 0.213 0.646 0.797 0.840 0.898 0.843
DNN -0.200 0.532 0.166 0.665 -0.233 0.575 -0.293 0.473 0.141 0.530 0.429 0.736 0.531 0.753
DOC 0.289 0.647 0.718 0.554 0.629 0.910 0.916
EC 0.203 0.632 0.804 0.755 0.835 0.885 0.523 0.608 0.450 0.622 0.904 0.843 0.927 0.857

ENRG 0.359 0.620 0.218 0.673 0.485 0.651 -0.000 0.508 -0.038 0.561 0.610 0.793 0.675 0.841
JSD 0.124 0.493 -0.101 -0.112 0.170 0.682 0.497

MAND 0.279 0.634 0.736 0.560 0.600 0.911 0.916
MCD 0.371 0.638 0.452 0.748 0.625 0.842 0.107 0.578 0.164 0.638 0.791 0.830 0.760 0.850
MMD 0.307 0.526 -0.150 -0.122 0.200 0.647 0.459

PNORM -0.227 0.009 -0.394 -0.311 0.168 0.133 0.354
TCP -0.032 0.533 0.240 0.560 0.235 0.585 0.522 0.528 0.008 0.531 -0.002 0.556 0.174 0.562
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Figure 2: From top to bottom , left to right. Score versus true error rate for the task of unsupervised
performance estimation, for MAND, EC, and JSD, on wine100 target data (with LateFuseBERT), by
shift type of various intensities and different seeds. orderSplit1/2/3 correspond to 3 different tabular
features affected by the shift, while seqLengthSplit1/2 correspond to ascending/descending order,
respectively. AUROC curves for a few methods on error detection task, computed on wine100
target data (with LateFuseBERT), across seeds, shift types, and intensities.

Evaluation of the methods. With LateFuseBERT architecture, Table 1 shows that no method sig-
nificantly outperforms the other ones across different datasets, shift types, and intensities. However,
EC achieves a strong performance on both tasks: unsupervised performance estimation (first rank
in 3 use cases) and error detection (first rank in 3 use cases, second rank in 2 use cases). The first
two scatter plots from Figure 2 compare EC with the best baseline for unsupervised performance
estimation (MAND) on wine100 target data. Both methods perform well for most of the shifts,
except newClass. The severity of this out-of-domain shift seems to be more difficult to assess. The
third scatter plot (bottom left) shows that JSD is less appropriate for this use case, as the monotony
is less obvious. The last plot from Figure 2 displays the AUROC curves computed on wine100 for a
few methods assessed on the error detection task. EC almost matches AC which is the best method
in that case. Table 2 for AllTextBERT (and Tables 4 / 5 in appendix G for LateFuseDistilBERT
/ AllTextDistilBERT) confirm that EC achieves solid performance across the various architectures
and tasks. Regarding unsupervised performance estimation, the methods that are specialized in this
task (esp. MAND and DOC) tend to achieve better results than the baselines that produce scores for
both tasks.

Explanation algorithm. Figure 3 (left) shows an example from wine10 where the shift type is
newClass; that is, the instance is from an unknown class. The goal is to predict the variety of
grapes. The plot displays the outputs from the explanation algorithm computed with EC as value
function. The probability of error assessed by EC is 77%, which is significantly higher than the mean
probability of error on Sval (19%). Further, the top 10 feature contributions to the probability of error
are all positive and related to tabular and text features, which evidence that the input is uncommon.
Figure 3 (right) shows the Pearson correlation matrices between the feature contributions computed
with different value functions (EC, DENS) and algorithms (explanation algorithm 1, Kernel SHAP).
The first correlation matrix is related to the shifted instance from Figure 1 (right) and indicates
consistency between all the explanation methods. On the other hand, the second correlation matrix
corresponds to the example from Figure 3 (left). Only the outputs from Algorithm 1 and Kernel
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SHAP computed with EC are consistent, which may be more reliable than the other methods in that
specific case. Other examples are included in appendix K.

Table 2: Evaluation of the methods for AllTextBERT, computed on target data for 5 random
seeds, and different shift types and intensities. Error rate estimation is assessed with the Spearman’s
rank correlation (ρ). Error detection is evaluated with AUROC (auc) and is only applicable to EC
and 9 baselines. The variability in results is displayed in appendix H.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.092 0.603 0.293 0.760 0.350 0.872 0.155 0.553 -0.011 0.643 0.733 0.837 0.783 0.853
ACSC 0.195 0.612 0.366 0.764 0.342 0.872 0.159 0.559 -0.014 0.640 0.466 0.649 0.484 0.734
ATC 0.214 0.538 0.772 0.376 0.305 0.885 0.881
CP 0.295 0.611 0.584 0.711 0.551 0.591 0.319 0.557 0.249 0.618 0.846 0.756 0.744 0.839
DC 0.299 0.510 0.503 0.543 -0.221 0.468 0.253 0.503 0.169 0.502 0.604 0.619 0.416 0.571

DENS 0.124 0.609 0.662 0.761 0.555 0.884 -0.040 0.539 0.257 0.649 0.834 0.828 0.794 0.827
DNN -0.080 0.527 0.268 0.643 0.025 0.493 0.034 0.506 0.264 0.546 0.476 0.764 0.625 0.699
DOC 0.398 0.749 0.760 0.393 0.292 0.906 0.884

EC (ours) 0.425 0.633 0.789 0.756 0.759 0.877 0.360 0.571 0.236 0.615 0.903 0.849 0.907 0.847
ENRG 0.152 0.596 0.292 0.738 0.323 0.759 0.064 0.505 -0.000 0.580 0.553 0.792 0.764 0.842

JSD 0.214 0.656 -0.465 0.290 0.152 0.646 0.430
MAND 0.405 0.746 0.761 0.368 0.297 0.908 0.884
MCD 0.154 0.600 0.372 0.758 0.320 0.873 0.037 0.547 0.013 0.632 0.709 0.827 0.767 0.844
MMD 0.233 0.608 -0.390 0.277 0.247 0.673 0.451

PNORM -0.160 0.288 0.429 0.169 0.291 0.088 0.349
TCP 0.388 0.519 0.050 0.546 -0.043 0.610 0.009 0.510 0.085 0.517 0.213 0.557 0.257 0.586

cloth
Algo 1 

(EC)

Algo 1 

(DENS)

K-SHAP 

(EC)

K-SHAP 

(DENS)
wine10

Algo 1 

(EC)

Algo 1 

(DENS)

K-SHAP 

(EC)

K-SHAP 

(DENS)

Algo 1 

(EC)
1 0.57 0.78 0.5

Algo 1 

(EC)
1 0.1 0.94 -0.29

Algo 1 

(DENS)
0.57 1 0.66 0.84

Algo 1 

(DENS)
0.1 1 0.09 0.31

K-SHAP 

(EC)
0.78 0.66 1 0.81

K-SHAP 

(EC)
0.94 0.09 1 -0.37

K-SHAP 

(DENS)
0.5 0.84 0.81 1

K-SHAP 

(DENS)
-0.29 0.31 -0.37 1

Figure 3: Left: Top 10 feature contributions computed with Algorithm 1 (EC as value function)
for an out-of-domain instance, where the classifier is LateFuseBERT and the dataset is wine10. The
text is "Candied cherry and raspberry aromas are dilute by Mendoza standards. The palate is regular
at best, with juicy generic flavors of plum and raspberry (...)." The tabular variables are country
("Argentina"), year (2010), points (83), price (16.0). EC value: 77%. Right: Pearson correlation
matrices between the outputs of various explanations methods: value functions (EC, DENS), and
algorithms (Algo 1: Algorithm 1, K-SHAP: Kernel SHAP). The first matrix is related to the example
from Figure 1 (right), whereas the second one is related to the example from Figure 3 (left).

5 CONCLUSION

We introduced a method to compute and explain the likelihood of failure in classification tasks and
in OOD contexts. We compared our method to 15 baselines and evidenced that the Error Classifier
can be a useful approach for estimating performance and detecting errors on unlabeled data. The
outputs of the explanation algorithm proposed in this paper can be relevant to locally understand
the source of distribution shifts. The quality of explanations can be assessed by using various value
functions (ex. DENS vs EC) or algorithms (e.g. Kernel SHAP). These results are specific to the
shifts and the classification models tested here. Therefore, it would be useful to experiment with
different settings. Lastly, future work could also address the case of other modalities (e.g. image).
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B DATASETS AND SAMPLING

All the datasets are publicly available with one of these licenses: "CC0: Public Domain", "Compe-
tition Data", or "CC BY-NC-SA 4.0". These datasets can be accessed and used for the purpose of
academic research. The text fields are in English.

In Table 3, we give more details on the datasets:

• airbnb1: the task is to predict the price range of Airbnb listings. The text fields are listing descrip-
tions.

• cloth2: the goal is to classify the sentiment (represented as a class) of user reviews regarding
clothing items. The text fields are customer reviews.

• kick3: the task is to predict whether a proposed project will achieve its funding goal. The text
fields are project descriptions.

• petfinder4: the goal is to predict the speed range at which a pet is adopted. The text fields are
profile write-ups for the pets.

• salary5: the task is to predict the salary range based on data scientist job postings. The text fields
are job descriptions.

• wine6: the goal is to predict the variety of grapes. The text fields are wine tasting descriptions.

For some of the use cases, we employ the original training dataset as the test dataset does not include
the true labels (competition data). In that case, we consider the training dataset as the modeling data
which is then randomly split into training-validation-target subsets. The datasets are partitioned as
follows: (1) The initial dataset is randomly split into two disjoint temporary (80% share) and target
T (20% share) subsets, respectively; (2) The temporary dataset is randomly split into two disjoint
training Strain (80% share) and validation Sval (20% share) subsets, respectively. For the evaluation
of the methods, 1000 rows are randomly extracted from the original target dataset.

Table 3: Information on datasets: number of samples in training dataset, number of numeri-
cal/categorical features, number of classes (before removing classes for the newClass shift).

Dataset # Train # Num # Cat # Class

airbnb 4,372 27 23 10
cloth 13,955 2 3 5
kick 69,194 3 3 2

petfinder 9,324 5 14 5
salary 10,975 1 2 6
wine10 39,320 2 2 10

wine100 65,398 2 2 100

C DATA PREPROCESSING

Feature engineering. When the dataset contains several text fields, these are concatenated in order
to obtain a single field. Rows with missing values are dropped and duplicate rows removed. The list
of final features for each dataset is described below. We also mention here additional features that
were created from the raw dataset.

1https://www.kaggle.com/datasets/tylerx/melbourne-airbnb-open-data
2https://www.kaggle.com/datasets/nicapotato/womens-ecommerce-clothing-reviews
3https://www.kaggle.com/datasets/codename007/funding-successful-projects
4https://www.kaggle.com/competitions/petfinder-adoption-prediction/data
5https://machinehack.com/hackathons/predict_the_data_scientists_salary_

in_india_hackathon/overview
6https://www.kaggle.com/datasets/zynicide/wine-reviews
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• airbnb: for this dataset only, we discretize the target variable by employing quantile binning
(ten intervals with equal share of data). We also create two new features host_since_year and
last_review_year by extracting the year from host_since and last_review respectively. Cat-
egorical variables: host_location, host_since_year, host_is_superhost, host_neighborhood,
host_has_profile_pic, host_identity_verified, neighborhood, city, smart_location, sub-
urb, state, is_location_exact, property_type, room_type, bed_type, instant_bookable,
cancellation_policy, require_guest_profile_picture, require_guest_phone_verification,
host_response_time, calendar_updated, host_verifications, last_review_year; numerical
variables: host_response_rate, latitude, longitude, accommodates, bathrooms, bedrooms,
beds, security_deposit, cleaning_fee, guests_included, extra_people, minimum_nights,
maximum_nights, availability_30, availability_60, availability_90, availability_365, num-
ber_of_reviews, review_scores_rating, review_scores_accuracy, review_scores_cleanliness,
review_scores_checkin, review_scores_communication, review_scores_location, re-
view_scores_value, calculated_host_listings_count, reviews_per_month; text fields: name,
summary, description.

• cloth: categorical variables: Division Name, Department Name, Class Name; numerical variables:
Age, Positive Feedback Count; text fields: Title, Review Text.

• kick: we compute the duration to launch (in days) with deadline and launched_at. We also
log-transform goal. Categorical variables: country, currency, disable_communication; numerical
variables: log_goal, backers_count, duration; text fields: name, desc.

• petfinder: Categorical variables: Type, Breed1, Breed2, Gender, Color1, Color2, Color3, Matu-
ritySize, FurLength, Vaccinated, Dewormed, Sterilized, Health, State; numerical variables: Age,
Quantity, Fee, VideoAmt, PhotoAmt; text field: Description.

• salary: Categorical variables: location, company_name_encoded; numerical variables: experi-
ence_int; text fields: job_description, job_desig, key_skills.

• wine10 and wine100: we extract the year from title. Categorical variables: country, year; numer-
ical variables: points, price; text field: description.

Text preprocessing. We perform the following text preprocessing: we keep words, numbers, and
whitespaces. We then use the BERT-base-uncased or DistilBERT-base-uncased tokenizer based on
WordPiece. For the text sequence length, the value is set to the 0.9 quantile of the text field lengths’
distribution in the source dataset. We then take the minimum of this latter value and 512 as this is the
maximum sequence length for BERT models. We use truncation and padding to the fixed maximum
length.

Attention mask. We use key attention masks in order to specify which text tokens should be ignored
(i.e. "padding") for the purpose of attention.

Class preprocessing. In order to implement out-of-domain shifts, some data points of specific
labels are removed. For cloth, pet, and salary, the training dataset is constructed after removing
the samples from the minority class, which are then randomly inserted into T . For wine10 and
wine100, we insert into T samples from unknown classes originating from wine100 and wine200,
respectively.

D CLASSIFICATION MODEL ARCHITECTURES

LateFuse architecture. The architecture is detailed in Figure 4 (right) with BERT-base-uncased
for the text stream. For numerical features, we first perform standard scaling. Embeddings of the
LateFuse architecture are constructed with linear functions. A linear function applies the follow-
ing transformation to a scalar feature value x ∈ R: x.Wnum + b where Wnum ∈ Rd and the bias
b ∈ Rd. For categorical features, we encode them as category embeddings. In that latter case, the
corresponding embedding is computed as eTWcat where e ∈ Rnc×1 is a one-hot-vector for the as-
sociated categorical feature, nc denote the number of categories for this feature, and Wcat ∈ Rnc×d.
A classification token [CLS] is then added to the beginning of the tabular embedding sequence. The
tabular Transformer with self-attention has the following architecture: 3 layers, 8 attention heads,
feed-forward dimension of 768, embedding dimension of 768. The dropout (rate 0.1) is applied to
the category embeddings, the tabular Transformer (attention, feed-forward networks), and the final
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fully-connected networks. The text and tabular Transformer’s final hidden states of the [CLS] to-
kens are concatenated before being projected through fully-connected layers to produce the logits.
The uniform weight initialization for the category/linear embeddings and the final fully-connected
networks is based on Kaiming (He et al., 2015). The final fully-connected layers can be described
as follows: FC(x) = Linear(Dropout(ReLU(Linear(x)))) where the output has a dimension of C
(number of classes).

AllText architecture. The architecture is detailed in Figure 4 (left) with BERT-base-uncased. The
tabular features, converted to strings, and the text fields are concatenated and input into BERT-base-
uncased as text. The final hidden state of the [CLS] token (i.e. before the classification head) are
projected through fully-connected layers to produce the logits. The uniform weight initialization for
the final fully-connected networks is based on Kaiming. The final fully-connected layers can be de-
scribed as follows: FC(x) = Linear(Dropout(ReLU(Linear(x)))) where the output has a dimension
of C (number of classes). The dropout rate is 0.1 in the final fully-connected networks.

BERT Tokenizer

BERT model
(L layers)

Extract 𝐳[CLS]
last, text

Prepend [𝐶𝐿𝑆]𝑡𝑎𝑏

Tabular 
Transformer

model
(M layers)

Linear
Embeddings

Category
Embeddings

||

𝐭𝐞𝐱𝐭

BERT Tokenizer

BERT model
(L layers)

Extract 𝐳[CLS]
last

Fully Connected

𝐱𝑐𝑎𝑡 𝐱𝑛𝑢𝑚

||

Convert to string

𝐱𝑐𝑎𝑡 𝐱𝑛𝑢𝑚

𝐭𝐞𝐱𝐭

Extract 𝐳[CLS]
last, tab

||

Fully Connected

𝐥𝐨𝐠𝐢𝐭𝐬
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Softmax

Softmax

Figure 4: Classification model architectures. Left: AllTextBERT architecture. Right: LateFuse-
BERT architecture.

E SHIFT GENERATION

We provide further details on the shift generation techniques described in Section 4:

• orderSplit: The three intensities of shift correspond to different levels of sampling rates used to
construct the final target dataset: We sample with a rate of 10%, 50%, or 90% from Tlow ∪ Thigh,
respectively. This shift is applied to a feature selected randomly: e.g. orderSplit1, orderSplit2,
orderSplit3 correspond to 3 different seeds used to select a given variable from the original feature
pool.

• emptyCategory: The three intensities correspond to various percentages of target data affected by
this shift: 10%, 50%, or 90%.

• typos: We use the Python package typo (https://github.com/ranvijaykumar/typo)
in order to generate typographical errors. The three intensities correspond to different numbers of
typos affecting the text field of each target observation: 5, 25, or 50. It is worth noting that, for
AllTextBERT, the typos are applied to the original text fields, i.e. before concatenating tabular
features (converted to strings) and text fields.
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• seqLengthSplit: The three intensities of shift correspond to different levels of sampling rates
used to construct the final target dataset: We sample with a rate of 10%, 50%, or 90% from T1,
respectively. T1 includes either the 10% shortest (scenario 1) or longest (scenario 2) text fields.

• cutText: The three intensities correspond to various proportions of target data affected by this shift
(10%, 50%, or 90%) and different percentage of text to truncate (10%, 50%, or 90%) from the
original text field.

• abbrev: The three intensities correspond to various percentages of target data affected by
this shift : 10%, 50%, or 90%. The abbreviation dataset includes a list of roughly 2000
abbreviations from Oxford English Dictionary (https://www.oed.com/information/
understanding-entries/abbreviations/).

• orderSplit-typos, emptyCategory-typos, orderSplit-seqLengthSplit, orderSplit-cutText, orderSplit-
abbrev: These multimodal shifts are just combinations of unimodal shifts, and follow the same
rules as previously described.

• newClass: The three intensities of shift correspond to different levels of sampling rates used to
construct the final target dataset: We sample with respective rates of 10%, 50%, or 90% from
the new dataset with unknown classes (minority class for cloth, pet, and salary; unknown classes
from wine100 for wine 10; unknown classes from wine200 for wine 100). wine200 is constructed
similarly to wine10 or wine100, it includes the 200 most frequent classes from wine dataset.

F SHIFT EVALUATION: DETAILS ON BASELINES

[CLS] token’s final hidden state as feature. For the methods leveraging the [CLS] tokens’ final
hidden states, it is worth mentioning that when π̂ is based on LateFuse architecture, the text and
tabular hidden states are concatenated (see Figure 4). In that case, the final vector is of dimension
2× 768.

Further details on baselines. We provide further details for some of the methods used to assess
shift severity:

• JSD: The number of bins used to discretize the maximum softmax probability distributions is set
to 10.

• ACSC: Temperature scaling is performed on the source validation dataset (Sval). The temperature
is set by optimizing the Expected Calibration Error (ECE) with the L-BFGS algorithm.

• MMD: The computation is based on the Radial basis function kernel (RBF).
• MAND: The error rate is estimated based on the 0-1 loss error importance re-weighting with one

slice based on the classification model’s maximum confidence.
• MCD: We enable the dropout layers from π̂ during test-time. The dropout probability is set to
0.1. For each target example, we perform P = 5 forwards passes with π̂ and corresponding
parameters θp. Then, we calculate the total uncertainty (entropy) after averaging the predicted
probabilities:

u(x) = −
∑
j∈Y

(
1

P

P∑
p=1

π̂j(x; θp)

)
log2

(
1

P

P∑
p=1

π̂j(x; θp)

)
(7)

• DC: For the domain classifier, we employ a Random Forest with 10 estimators. We divide both
the source data and target data into two halves, using the first half to train a domain classifier to
classify source (class 0) and target (class 1) data. We then apply this model to the second half and
compute the AUROC. We follow the same process by selecting the second half to fit the domain
classifier and computing the AUROC on the first half. Lastly, we average the 2 AUROC values.

• CP: For the weighted conformal prediction, we compute weighted quantiles. Each weight is
computed with the domain classifier as p̂dc(z)/(1− p̂dc(z)), where p̂dc(z) is the probability that
the input is from the target given z. This approach is suggested in (Tibshirani et al., 2019). With
the LAC method, the conformity score corresponds to one minus the probability of the true class.
For this baseline, we set the quantile to 90%, which is the expected coverage.

• DNN: The feature space is normalized with the l2 norm as a pre-requisite, as advised in (Sun
et al., 2022).
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• ENRG: In the energy score formula, we set the temperature to 1.

• TCP: The neural network used to estimate the true class probability has the following architecture:
NN(x) = Linear(Dropout(ReLU(Linear(x)))). The dropout probability is set to 0.1. The (input
shape, output shape) for the first linear layer is compatible with the dimension of z (768 × 768
for the AllText architecture and (2 × 768) × (2 × 768) for LateFuse architecture). As this is a
regression task, the final output has dimension 1. The mean squared error loss is optimized with
Adam (learning rate of 1e− 3) for 10 epochs and batch size of 32.

• DENS: An ensemble of 5 neural networks is trained, where each neural network has the following
architecture: NN(x) = Linear(Dropout(ReLU(Linear(x)))). The dropout probability is set to
0.1. The (input shape, output shape) for the first linear layer is compatible with the dimension of
z (768×768 for the AllText architecture and (2×768)×(2×768) for LateFuse architecture). As
this is a classification task, the final output has dimension C. The cross-entropy loss is optimized
with Adam (learning rate of 1e− 3) for 10 epochs and batch size of 32. For each target example,
we compute the total uncertainty (predictive entropy), after averaging the predicted probabilities
generated by E = 5 neural networks pθe with parameters θe:

u(z) = −
∑
j∈Y

(
1

E

E∑
e=1

pθe(j|z)

)
log2

(
1

E

E∑
e=1

pθe(j|z)

)
(8)

• PNORM: The in-distribution model and the new model have the same architecture:
NN(x) = Linear(Dropout(ReLU(Linear(x)))). The dropout probability is set to 0.1. The (in-
put shape, output shape) for the first linear layer is compatible with the dimension of z (768×768
for the AllText architecture and (2 × 768) × (2 × 768) for LateFuse architecture). As this is a
classification task, the final output has dimension C. The cross-entropy loss is optimized with
Adam (learning rate of 1e− 3) for 10 epochs and batch size of 32.

G RESULTS FOR DISTILBERT

The results for LateFuseDistilBERT architecture are presented in Table 4. The results for All-
TextDistilBERT architecture are presented in Table 5.

Table 4: Evaluation of the methods for LateFuseDistilBERT, computed on target data for 5
random seeds, and different shift types and intensities. Error rate estimation is assessed with the
Spearman’s rank correlation (ρ). Error detection is evaluated with AUROC (auc) and is only appli-
cable to EC and 9 baselines. For a given dataset and task, the best result is in bold (higher is better).
The variability in results is displayed in appendix.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.643 0.620 0.306 0.744 0.397 0.850 0.073 0.572 0.264 0.636 0.635 0.828 0.736 0.857
ACSC 0.628 0.632 0.332 0.751 0.591 0.850 0.114 0.572 0.409 0.642 0.643 0.726 0.818 0.860
ATC 0.501 0.541 0.600 0.187 0.272 0.841 0.876
CP 0.408 0.633 0.821 0.725 0.590 0.602 0.289 0.555 0.344 0.617 0.733 0.766 0.754 0.847
DC 0.189 0.512 0.404 0.547 0.013 0.495 0.062 0.503 0.131 0.487 0.604 0.620 0.438 0.588

DENS 0.604 0.614 0.644 0.764 0.300 0.862 0.096 0.568 0.171 0.643 0.772 0.836 0.808 0.837
DNN -0.562 0.505 0.237 0.649 -0.030 0.631 0.068 0.497 0.198 0.545 0.429 0.747 0.585 0.746
DOC 0.497 0.763 0.621 0.371 0.398 0.841 0.902

EC (ours) 0.468 0.636 0.791 0.761 0.718 0.879 0.390 0.597 0.366 0.618 0.830 0.836 0.912 0.849
ENRG 0.633 0.611 0.142 0.663 0.320 0.624 0.014 0.524 0.201 0.577 0.612 0.791 0.608 0.840

JSD 0.285 0.574 -0.102 0.054 0.128 0.688 0.522
MAND 0.429 0.764 0.620 0.410 0.391 0.852 0.900
MCD 0.637 0.619 0.323 0.752 0.304 0.847 -0.037 0.567 0.382 0.636 0.645 0.816 0.721 0.845
MMD 0.033 0.507 -0.068 0.061 0.168 0.658 0.504

PNORM -0.446 0.180 0.071 -0.034 0.174 0.116 0.321
TCP 0.568 0.558 0.234 0.538 0.145 0.554 0.289 0.518 0.203 0.526 0.154 0.553 0.242 0.608
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Table 5: Evaluation of the methods for AllTextDistilBERT, computed on target data for 5 random
seeds, and different shift types and intensities. Error rate estimation is assessed with the Spearman’s
rank correlation (ρ). Error detection is evaluated with AUROC (auc) and is only applicable to EC
and 9 baselines. For a given dataset and task, the best result is in bold (higher is better). The
variability in results is displayed in appendix.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.711 0.634 0.336 0.760 0.548 0.869 0.135 0.570 0.352 0.654 0.621 0.845 0.765 0.851
ACSC 0.663 0.635 0.477 0.764 0.466 0.869 0.242 0.570 0.359 0.655 0.648 0.847 0.846 0.854
ATC 0.558 0.546 0.641 0.481 0.329 0.807 0.895
CP 0.269 0.612 0.556 0.718 0.667 0.561 0.429 0.565 0.385 0.624 0.740 0.758 0.735 0.839
DC 0.069 0.502 0.368 0.537 -0.264 0.475 0.184 0.504 0.230 0.501 0.539 0.621 0.396 0.578

DENS 0.523 0.605 0.538 0.756 0.658 0.879 0.159 0.544 0.463 0.648 0.660 0.814 0.782 0.820
DNN -0.604 0.543 0.192 0.625 -0.046 0.563 0.033 0.524 -0.014 0.543 0.494 0.786 0.624 0.709
DOC 0.626 0.682 0.710 0.536 0.362 0.816 0.914

EC (ours) 0.676 0.646 0.751 0.753 0.675 0.873 0.434 0.582 0.195 0.614 0.808 0.844 0.922 0.842
ENRG 0.325 0.585 0.345 0.688 0.263 0.740 0.323 0.535 0.174 0.570 0.617 0.814 0.702 0.836

JSD 0.172 0.409 -0.401 0.273 0.146 0.634 0.432
MAND 0.615 0.679 0.714 0.460 0.362 0.819 0.915
MCD 0.708 0.626 0.415 0.758 0.451 0.868 0.185 0.569 0.408 0.647 0.643 0.838 0.746 0.841
MMD 0.085 0.554 -0.476 0.316 0.292 0.621 0.430

PNORM -0.399 0.093 0.311 0.047 -0.064 0.087 0.308
TCP 0.260 0.526 0.134 0.539 -0.141 0.624 0.033 0.503 0.152 0.525 -0.033 0.533 0.098 0.560

H VARIABILITY IN RESULTS

The variability in results for LateFuseBERT architecture is presented in Table 6.

Table 6: Variability in the results for LateFuseBERT: Standard deviation of ρ and auc results,
computed based on 30 bootstraps with fraction 70% from raw table results (i.e. across seeds, shift
types and intensities).

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.079 0.001 0.056 0.001 0.055 0.001 0.061 0.002 0.093 0.002 0.033 0.001 0.039 0.001
ACSC 0.083 0.001 0.065 0.001 0.056 0.001 0.058 0.002 0.097 0.002 0.026 0.001 0.080 0.001
ATC 0.094 0.075 0.068 0.074 0.091 0.022 0.017
CP 0.081 0.001 0.075 0.001 0.057 0.001 0.059 0.002 0.093 0.001 0.036 0.001 0.032 0.001
DC 0.082 0.002 0.068 0.002 0.077 0.002 0.053 0.001 0.077 0.001 0.056 0.002 0.068 0.002

DENS 0.070 0.001 0.057 0.001 0.077 0.001 0.065 0.001 0.074 0.002 0.030 0.001 0.025 0.001
DNN 0.058 0.001 0.067 0.002 0.096 0.002 0.075 0.002 0.076 0.001 0.076 0.001 0.060 0.001
DOC 0.084 0.046 0.062 0.070 0.073 0.017 0.019

EC (ours) 0.067 0.002 0.025 0.001 0.045 0.001 0.052 0.001 0.071 0.001 0.017 0.001 0.018 0.001
ENRG 0.079 0.001 0.070 0.001 0.081 0.002 0.074 0.001 0.077 0.002 0.051 0.002 0.045 0.001

JSD 0.080 0.077 0.066 0.068 0.080 0.039 0.067
MAND 0.082 0.044 0.061 0.071 0.070 0.017 0.018
MCD 0.077 0.001 0.056 0.001 0.055 0.001 0.060 0.002 0.083 0.002 0.032 0.001 0.039 0.001
MMD 0.080 0.064 0.073 0.054 0.082 0.051 0.068

PNORM 0.084 0.070 0.067 0.077 0.075 0.091 0.091
TCP 0.082 0.001 0.061 0.002 0.059 0.002 0.066 0.002 0.086 0.001 0.085 0.002 0.079 0.001
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Table 7: Variability in the results for AllTextBERT: Standard deviation of ρ and auc results,
computed based on 30 bootstraps with fraction 70% from raw table results (i.e. across seeds, shift
types and intensities).

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.080 0.002 0.083 0.001 0.068 0.001 0.062 0.001 0.068 0.001 0.042 0.001 0.032 0.001
ACSC 0.093 0.002 0.081 0.001 0.068 0.001 0.062 0.001 0.056 0.001 0.075 0.001 0.069 0.001
ATC 0.108 0.065 0.040 0.068 0.076 0.029 0.019
CP 0.066 0.002 0.062 0.001 0.076 0.002 0.055 0.001 0.086 0.001 0.030 0.002 0.046 0.001
DC 0.093 0.002 0.057 0.002 0.084 0.002 0.052 0.002 0.089 0.002 0.063 0.001 0.065 0.001

DENS 0.084 0.002 0.046 0.001 0.080 0.001 0.070 0.001 0.073 0.001 0.033 0.001 0.034 0.001
DNN 0.080 0.001 0.076 0.001 0.070 0.002 0.081 0.001 0.056 0.002 0.054 0.001 0.058 0.002
DOC 0.104 0.047 0.044 0.062 0.073 0.022 0.020

EC (ours) 0.094 0.002 0.022 0.001 0.041 0.001 0.055 0.002 0.082 0.002 0.025 0.001 0.021 0.001
ENRG 0.073 0.002 0.065 0.001 0.087 0.001 0.058 0.001 0.069 0.001 0.058 0.001 0.032 0.001

JSD 0.084 0.049 0.085 0.056 0.087 0.055 0.068
MAND 0.104 0.048 0.044 0.067 0.073 0.022 0.020
MCD 0.085 0.002 0.080 0.001 0.070 0.001 0.063 0.001 0.065 0.001 0.048 0.001 0.030 0.001
MMD 0.094 0.055 0.092 0.047 0.081 0.058 0.070

PNORM 0.082 0.068 0.058 0.078 0.068 0.079 0.088
TCP 0.096 0.002 0.066 0.002 0.091 0.002 0.082 0.001 0.085 0.002 0.079 0.002 0.075 0.001

The variability in results for AllTextBERT architecture is presented in Table 7.

Table 8: Variability in the results for LateFuseDistilBERT: Standard deviation of ρ and auc
results, computed based on 30 bootstraps with fraction 70% from raw table results (i.e. across
seeds, shift types and intensities).

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.078 0.002 0.066 0.001 0.086 0.001 0.074 0.002 0.089 0.002 0.046 0.001 0.042 0.001
ACSC 0.078 0.002 0.072 0.001 0.077 0.001 0.075 0.002 0.082 0.002 0.044 0.001 0.034 0.001
ATC 0.089 0.050 0.069 0.074 0.092 0.025 0.021
CP 0.080 0.001 0.030 0.001 0.050 0.002 0.074 0.002 0.086 0.001 0.029 0.002 0.035 0.001
DC 0.076 0.001 0.055 0.001 0.073 0.002 0.070 0.001 0.090 0.001 0.052 0.002 0.061 0.002

DENS 0.066 0.001 0.040 0.001 0.083 0.001 0.070 0.001 0.076 0.001 0.030 0.001 0.033 0.001
DNN 0.085 0.002 0.087 0.002 0.076 0.002 0.082 0.002 0.071 0.002 0.067 0.001 0.067 0.001
DOC 0.075 0.036 0.072 0.072 0.081 0.018 0.016

EC (ours) 0.073 0.001 0.030 0.001 0.056 0.001 0.074 0.002 0.082 0.002 0.019 0.001 0.014 0.001
ENRG 0.079 0.002 0.075 0.001 0.086 0.001 0.094 0.002 0.076 0.001 0.048 0.001 0.067 0.001

JSD 0.083 0.057 0.063 0.081 0.096 0.047 0.078
MAND 0.084 0.035 0.072 0.073 0.082 0.018 0.016
MCD 0.078 0.002 0.065 0.001 0.083 0.001 0.071 0.002 0.082 0.002 0.044 0.001 0.044 0.001
MMD 0.074 0.054 0.071 0.071 0.091 0.048 0.067

PNORM 0.100 0.068 0.092 0.079 0.082 0.082 0.073
TCP 0.083 0.001 0.079 0.001 0.094 0.002 0.059 0.002 0.078 0.001 0.081 0.001 0.072 0.002

The variability in results for LateFuseDistilBERT architecture is presented in Table 8.
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Table 9: Variability in the results for AllTextDistilBERT: Standard deviation of ρ and auc results,
computed based on 30 bootstraps with fraction 70% from raw table results (i.e. across seeds, shift
types and intensities).

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

AC 0.042 0.001 0.092 0.001 0.072 0.001 0.088 0.002 0.064 0.001 0.068 0.001 0.036 0.001
ACSC 0.044 0.001 0.073 0.001 0.071 0.001 0.073 0.002 0.064 0.001 0.065 0.001 0.021 0.001
ATC 0.066 0.051 0.060 0.068 0.081 0.036 0.018
CP 0.074 0.002 0.049 0.001 0.043 0.001 0.057 0.001 0.076 0.001 0.033 0.001 0.054 0.001
DC 0.101 0.001 0.060 0.001 0.076 0.002 0.048 0.001 0.088 0.001 0.054 0.002 0.065 0.002

DENS 0.066 0.002 0.063 0.001 0.056 0.001 0.082 0.002 0.082 0.001 0.044 0.001 0.032 0.001
DNN 0.047 0.002 0.075 0.002 0.072 0.003 0.073 0.002 0.076 0.001 0.053 0.002 0.057 0.002
DOC 0.052 0.045 0.055 0.065 0.072 0.034 0.015

EC (ours) 0.055 0.001 0.030 0.001 0.056 0.001 0.082 0.001 0.074 0.001 0.028 0.001 0.015 0.001
ENRG 0.093 0.002 0.073 0.001 0.075 0.001 0.068 0.002 0.064 0.002 0.058 0.001 0.050 0.001

JSD 0.094 0.066 0.069 0.053 0.095 0.049 0.070
MAND 0.051 0.045 0.055 0.064 0.074 0.034 0.015
MCD 0.050 0.002 0.078 0.001 0.077 0.001 0.083 0.002 0.066 0.001 0.066 0.001 0.039 0.001
MMD 0.100 0.056 0.077 0.050 0.078 0.053 0.068

PNORM 0.086 0.081 0.087 0.095 0.072 0.079 0.060
TCP 0.086 0.002 0.079 0.001 0.090 0.002 0.062 0.002 0.071 0.001 0.065 0.002 0.088 0.001

The variability in results for AllTextDistilBERT architecture is presented in Table 9.

I ABLATION STUDIES

We also perform ablation studies to compare the results of EC with (1) Ablation 1: an Error Clas-
sifier using only the [CLS] tokens’ output embeddings as features, or (2) Ablation 2: EC using
only the classifier’s output π̂(x) as features. The results for LateFuseBERT, AllTextBERT, Late-
FuseDistilBERT, and AllTextDistilBERT architectures are presented in Tables 10, 11, 12, and 13,
respectively. The results show that Ablation 2 performs best for unsupervised performance estima-
tion (first rank in 17 use cases out of 28), whereas EC performs best for error detection (first rank
in 14 use cases out of 28). Further, EC seems to be more stable overall, while Ablation 2’s perfor-
mance is significantly lower for some of the use cases: for example, on cloth for ρ (LateFuseBERT
and AllTextDistilBERT), or on kick for auc (AllTextBERT).

Table 10: Results of the ablation study for LateFuseBERT.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

Ablation 1 0.150 0.625 0.821 0.757 0.850 0.885 0.555 0.611 0.465 0.621 0.890 0.833 0.902 0.834
Ablation 2 0.282 0.641 0.699 0.720 0.753 0.766 0.531 0.552 0.490 0.593 0.915 0.844 0.933 0.858

EC 0.203 0.632 0.804 0.755 0.835 0.885 0.523 0.608 0.450 0.622 0.904 0.843 0.927 0.857

Table 11: Results of the ablation study for AllTextBERT.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

Ablation 1 0.423 0.633 0.794 0.754 0.755 0.877 0.313 0.567 0.237 0.617 0.893 0.840 0.831 0.818
Ablation 2 0.365 0.610 0.747 0.716 0.664 0.782 0.374 0.538 0.273 0.582 0.912 0.844 0.914 0.846

EC 0.425 0.633 0.789 0.756 0.759 0.877 0.360 0.571 0.236 0.615 0.903 0.849 0.907 0.847
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Table 12: Results of the ablation study for LateFuseDistilBERT.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

Ablation 1 0.432 0.626 0.796 0.763 0.740 0.878 0.379 0.594 0.338 0.619 0.773 0.819 0.830 0.821
Ablation 2 0.566 0.633 0.810 0.724 0.688 0.760 0.344 0.534 0.503 0.603 0.851 0.837 0.924 0.850

EC 0.468 0.636 0.791 0.761 0.718 0.879 0.390 0.597 0.366 0.618 0.830 0.836 0.912 0.849

Table 13: Results of the ablation study for AllTextDistilBERT.

Method airbnb cloth kick petfinder salary wine10 wine100
ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc ρ auc

Ablation 1 0.620 0.641 0.748 0.754 0.669 0.874 0.439 0.581 0.200 0.617 0.795 0.830 0.852 0.808
Ablation 2 0.590 0.618 0.640 0.719 0.624 0.778 0.446 0.556 0.343 0.595 0.836 0.843 0.924 0.844

EC 0.676 0.646 0.751 0.753 0.675 0.873 0.434 0.582 0.195 0.614 0.808 0.844 0.922 0.842

J IMPLEMENTATION AND COMPUTATIONAL INFORMATION

Hardware and computational cost. We run the experiments with a Tesla T4 GPU. Table 14 sum-
marizes the average computational cost for each method (EC and all the baselines). The methods
that require performing several forward passes during inference (e.g. MCD), training one or several
models (e.g. DENS, EC), or computing the source error rate (DOC) are less efficient than the other
baselines.

Table 14: Average computation time (in seconds) computed for each method, over various model
architectures, dataset seeds, shift types and intensities.

Method airbnb cloth kick petfinder salary wine10 wine100

AC 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ACSC 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ATC 0.01 0.03 0.03 0.02 0.03 0.03 0.04
CP 0.01 0.01 0.01 0.01 0.01 0.01 0.01
DC 1.98 9.20 4.34 4.29 5.49 5.03 4.69

DENS 3.59 11.03 15.87 7.39 8.67 15.62 15.72
DNN 0.12 0.31 0.42 0.22 0.24 0.45 0.40
DOC 18.99 17.39 12.45 18.90 5.73 16.15 15.87

EC (ours) 4.22 15.83 17.12 9.86 11.41 21.70 25.72
ENRG 0.00 0.00 0.00 0.00 0.00 0.00 0.00

JSD 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MAND 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MCD 88.37 24.92 12.66 40.53 10.71 16.05 15.95
MMD 0.10 0.46 0.81 0.26 0.32 0.82 0.83

PNORM 1.38 2.87 3.84 2.13 2.42 3.80 3.80
TCP 0.76 2.31 3.30 1.54 1.81 3.25 3.24

Python libraries. The implementation is based on Python 3.10 and the following pack-
ages: torch 2.4.0+cu121, transformers 4.42.4, scikit-learn 1.3.2, scipy 1.13.1, pandas 2.1.4,
numpy 1.26.4, ATC (https://github.com/saurabhgarg1996/ATC_code), Mandoline
(https://github.com/HazyResearch/mandoline), typo (https://github.com/
ranvijaykumar/typo), matplotlib 3.7.1, and seaborn 0.13.1. These libraries are publicly avail-
able with "BSD", "MIT", or "Apache Software" licenses.
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K EXPLANATION ALGORITHM: A FEW EXAMPLES

K.1 EXAMPLE 1: TYPOGRAPHICAL ERROR (CLOTH, ALLTEXTDISTILBERT)

The example is the same as the one presented in Figure 1 where LateFuseDistilBERT was the clas-
sification model. The only difference here is that AllTextDistilBERT is used as classification model.
The multimodal input is described below. Unlike AllTextDistilBERT, the model still predicts the
correct label after implementing the shift. The resulting top 10 contributions from Figure 5 (left)
show the uncertainty introduced by the token "flat" (positive contribution to probability of failure).
However, the positive contributions are less important than with LateFuseDistilBERT (Figure 1)
and EC value remains lower too (45% vs 63% with LateFuseDistilBERT). There is no significant
disagreement between the various explanation methods, as demonstrated in Figure 5 (right).

• Dataset: cloth.

• Classification model: AllTextDistilBERT.

• Shift type: typo.

• Shift intensity: 1 typo (’Unflattering’: ’Un flattering’).

• Categorical variables: Division Name (’General’), Department Name (’Dresses’), Class Name
(’Dresses’).

• Numerical variables: Age (55), Positive Feedback Count (0).

• Text field: "Un flattering I purchased the blue with white dots. the shape was awful, but looked
like a sack - returned".

• Text field (after early fusion): "Division Name General Department Name Dresses Class Name
Dresses Age 55 Positive Feedback Count 0 Un flattering I purchased the blue with white dots. the
shape was awful, but looked like a sack - returned".

• True label (rating): 2.

• Predicted label: 2.

• EC value: 45% (31% without typo).

cloth
Algo 1 

(EC)

Algo 1 

(DENS)

K-SHAP 

(EC)

K-SHAP 

(DENS)

Algo 1 

(EC)
1 0.85 0.86 0.78

Algo 1 

(DENS)
0.85 1 0.68 0.96

K-SHAP 

(EC)
0.86 0.68 1 0.67

K-SHAP 

(DENS)
0.78 0.96 0.67 1

Figure 5: Typographical error (cloth, AllTextDistilBERT). Left: Top 10 feature contributions
(Algorithm 1: EC as value function). Right: Pearson correlation matrix between the outputs of
various explanation methods.

K.2 EXAMPLE 2: emptyCategory_typos (WINE10, LATEFUSEBERT)

In this example of multimodal shift, EC predicts a quite high likelihood of error (59%). The ex-
planation (Figure 6 (left)) clearly shows that empty categorical values (country and year) produce
uncertainties. Further, as the typos affect keywords, this makes the classification task more difficult.
Based on the correlation matrix (Figure 6 (right)), the Kernel SHAP algorithm based on EC values
would be more trustworthy.
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• Dataset: wine10.

• Classification model: LateFuseBERT.

• Shift type: emptyCategory_typos.

• Shift intensity: 25 typos, 50% of rows affected by empty categorical values.

• Categorical variables: country (" "), year (" ").

• Numerical variables: points (89), price (35.0).

• Text field: "Made in adrie, leaner adn earthider styl e, w th herb a nd tobacco-nf used lbackberry,
currant and chedryflavors.A touch of etylish oak adds a fisnenote. Not a blockuster, but balaend
and elgeant. Rrink now.".

• True label: "Merlot".

• Predicted label: "Cabernet Sauvignon".

• EC value: 59% (19% is the average on Sval).

wine10
Algo 1 

(EC)

Algo 1 

(DENS)

K-SHAP 

(EC)

K-SHAP 

(DENS)

Algo 1 

(EC)
1 0.28 0.32 0.15

Algo 1 

(DENS)
0.28 1 0.3 0.27

K-SHAP 

(EC)
0.32 0.3 1 0.64

K-SHAP 

(DENS)
0.15 0.27 0.64 1

Figure 6: emphemptyCategory_typos (wine10, LateFuseBERT). Left: Top 10 feature contribu-
tions (Algorithm 1: EC as value function). Right: Pearson correlation matrix between the outputs of
various explanation methods.

K.3 EXAMPLE 3: newClass (PETFINDER, LATEFUSEBERT)

We describe an example of out-of-domain shift. EC predicts a high probability of error (89%) and the
top 10 contributions are all positive (Figure 7). The outputs from Algorithm 1 are in agreement (EC
and DENS as value functions), but they disagree with the outcomes of the Kernel SHAP algorithm.
Therefore, the explanations provided here might be less reliable.

• Dataset: petfinder.

• Classification model: LateFuseBERT.

• Shift type: newClass.

• Categorical variables: Type (1="Dog"), Breed1 (205="Shih Tzu"), Gender (2="Female"), Color1
(3="Golden"), MaturitySize (1="Small"), FurLength (2="Medium") (...).

• Numerical variables: Age (54 months), Quantity (1), Fee (350) (...).

• Text field: "She is very quiet and a very good watch dog she can get along we’ll with other dogs
. Friendly , easy going loves to watch tv send me SMS if u interested pls no calls thank you .
Reason giving away too many dogs at home".

• True label: 0 (Lower is faster).

• Predicted label: 4.

• EC value: 89% (61% is the average on Sval).
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petfinder
Algo 1 

(EC)

Algo 1 

(DENS)

K-SHAP 

(EC)

K-SHAP 

(DENS)

Algo 1 

(EC)
1 0.64 -0.01 0.01

Algo 1 

(DENS)
0.64 1 0.01 -0.02

K-SHAP 

(EC)
-0.01 0.01 1 0.48

K-SHAP 

(DENS)
0.01 -0.02 0.48 1

Figure 7: newClass (petfinder, LateFuseBERT). Left: Top 10 feature contributions (Algorithm 1:
EC as value function). Right: Pearson correlation matrix between the outputs of various explanation
methods.

L EC SCATTER PLOTS FOR LATEFUSEBERT

Figure 8: From top to bottom , left to right. Score versus true error rate for the task of unsupervised
performance estimation, for EC, on airbnb/cloth/kick/petfinder target data (with LateFuseBERT), by
shift type of various intensities and different seeds. orderSplit1/2/3 correspond to 3 different tabular
features affected by the shift, while seqLengthSplit1/2 correspond to ascending/descending order,
respectively.

For the task of unsupervised performance estimation with EC, we display the scatter plots (score
versus true error rate) with LateFuseBERT as classification model on the following target datasets
in Figure 8: airbnb, cloth, kick, petfinder. The performance depends on the use case and type of
shifts. For some of the datasets, the data points related to newClass appear as outliers that are more
difficult to assess.
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Figure 9: From top to bottom , left to right. Score versus true error rate for the task of unsupervised
performance estimation, for EC, on salary/wine10/wine100 target data (with LateFuseBERT), by
shift type of various intensities and different seeds. orderSplit1/2/3 correspond to 3 different tabular
features affected by the shift, while seqLengthSplit1/2 correspond to ascending/descending order,
respectively.

For the task of unsupervised performance estimation with EC, we display the scatter plots (score
versus true error rate) with LateFuseBERT as classification model on the following target datasets in
Figure 9: salary, wine10, wine100. The performance depends on the use case and type of shifts. For
some of the datasets, the data points related to newClass appear as outliers that are more difficult to
assess.
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