Towards Siloed LLM-based Systems for Mission-critical Planning

Tyler D. Comisky', Leslie N. Smith?, Mark Roberts?, Joshua Lovejoy>, Avni Garg*, Luke Nam?,
Adrian Li*, Leora Samuels’
'NAWCAD Lakehurst
INCARALI, US Naval Research Laboratory, Washington, DC
SNREIP Intern at the US Naval Research Laboratory, Washington, DC
4 SEAP Intern at the US Naval Research Laboratory, Washington, DC
tyler.d.comisky.civ@us.navy.mil, leslie.n.smith20.civ@us.navy.mil

Abstract

Adoption of Large Language Models (LLMs) is occurring
at an accelerated pace. One area where LLMs currently fall
short is in reliable and verifiable outputs. This makes it chal-
lenging to deploy LLMs to mission-critical environments,
where reliability is required. Additional challenges occur
when the environment must remain air-gapped, being entirely
disconnected from the internet. We propose a framework
for deploying siloed LLMs to these mission-critical environ-
ments using tools and verifiers. First, we demonstrate this
framework’s feasibility using commercial LLMs for travel
planning. Then, we use this framework for the mission-
critical application of generating aerial refueling schedules
with air-gapped, open-source LLMs.

1 Introduction

Mission-critical applications represent some of the most de-
manding and consequential use cases for advanced software
systems. These applications, ranging from healthcare deci-
sion support to financial trading systems and military op-
erations, require flawless execution and absolute reliability.
Failure is not an option when human lives, national security,
or massive financial assets are at stake. However, the com-
plexity of these domains, compounded by their often confi-
dential nature, presents unique challenges for the develop-
ment of software systems capable of meeting such stringent
requirements.

Mission-critical systems, particularly those involving sen-
sitive data, are frequently siloed to prevent data leakage. For
instance, healthcare systems must protect patient informa-
tion, financial institutions guard trading algorithms, and mil-
itary operations shield their strategies from adversaries. This
necessitates the use of open-source large language mod-
els (LLMs) implemented on secure, self-hosted hardware to
meet both performance and confidentiality demands. Nev-
ertheless, achieving 100% reliability remains a significant
hurdle for such closed systems.

The emergence of LLMs and LLM-based agent systems
offers new potential to enhance the effectiveness of mission-
critical planning but deploying LLMs in mission-critical en-
vironments brings its own set of challenges. Despite their
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flexibility and scalability, LLMs can lack the precision, con-
sistency, and accountability required in scenarios where ev-
ery decision could have life-altering consequences.

This paper addresses these challenges by designing an
LLM-based agent system specifically tailored for sensi-
tive military air combat mission planning. We examine the
strengths and limitations of existing LLM technology, pin-
point gaps in reliability, and propose methods to mitigate
risks in this mission-critical environment. Our research aims
to bring LLM-based systems closer to the robustness neces-
sary for deployment in all high-stakes scenarios where reli-
ability, privacy, and performance intersect.

Our paper is divided into two parts. In the first part, we
investigate the TravelPlanner benchmark dataset (Xie et al.
2024), where we explore attaining high reliability with-
out the requirement of keeping data siloed. By addressing
these issues, we improved the reliability and performance of
LLMs in complex planning tasks using ChatGPT where the
data isn’t kept private.

In the second part, we introduce a framework for plan-
ning assisted by siloed open-source LLMs for solving aerial
refueling, which is a sub-component of air combat mission
planning. For this task, we demonstrate our framework us-
ing Llama 3 70B. We demonstrate that by providing tools to
the LLM that can algorithmically generate a plan, we mit-
igate the risk of hallucinations. First, the task of translat-
ing natural language to a structured format is less prone to
hallucinations than generating a plan on its own. Second,
if the LLM does hallucinate, since we expect a structured
output, we can validate it more easily than an entire plan.
Finally, most of the reasoning required to generate a plan is
now outsourced to the tool, which is programmed to handle
the complex tasks that LLMs are currently unable to reliably
complete.

2 Related Works

Using LLMs to plan: Hao, et al. (Hao et al. 2024)
present a novel LLM-based planning framework that for-
malizes complex multi-constraint planning problems as con-
strained satisfiability problems, achieving high success rates
and strong zero-shot generalizability in real-world planning
tasks. In our efforts to replicate this work, we found that a
portion of the expertise needed to obtain high performance



with the TravelPlanner dataset was hand coded into the sys-
tem, reducing its generalizability.

”Can We Rely on LLM Agents to Draft Long-Horizon
Plans? Let’s Take TravelPlanner as an Example” Chen et
al. (Chen et al. 2024) investigate the reliability of LLM
agents in drafting long-horizon plans, using the TravelPlan-
ner benchmark to evaluate their performance and explore
potential improvements. They found that LLM agents strug-
gle with lengthy and noisy contexts, often missing crucial
information. Our work follows along similar lines but we are
able to demonstrate greater improvements in performance.

A position paper (Kambhampati et al. 2024) argues that
Large Language Models (LLMs) cannot perform planning
or self-verification tasks independently but can significantly
contribute to planning and reasoning tasks in LLM-Modulo
frameworks as universal approximate knowledge sources.
Key insights include the potential misconceptions about
LLMs’ capabilities in planning and reasoning and the pro-
posal of a more nuanced role for LLMs in these tasks. Based
on the content, novel future research directions could in-
clude: 1) Developing and evaluating specific LLM-Modulo
frameworks for various planning and reasoning tasks, 2) In-
vestigating the impact of different LLM architectures and
training methods on their performance in LLM-Modulo
frameworks, and 3) Exploring the integration of LLMs with
other Al techniques, such as reinforcement learning or evo-
lutionary algorithms, in planning and reasoning tasks.

The LLM-Module paper (Gundawar et al. 2024) provides
a test of their proposed LLM-Modulo framework, where an
LLM is paired with a complete set of sound verifiers that
validate its output, re-prompting it if it fails. Valmeekam et
al. (Valmeekam et al. 2024) evaluates and improves the plan-
ning and scheduling capabilities of OpenAI’s Large Reason-
ing Models (LRMs), specifically ol-preview and ol-mini,
demonstrating their superiority over autoregressive LLMs
but highlighting high inference costs and lack of guarantees.

LLM Tool Use: There has been substantial work on de-
veloping frameworks and interfaces for integrating tools
with LLMs, as described in some recent survey papers (Qu
et al. 2024; Wang et al. 2024b). Tools are a way for LLMs
to call external functions that provide additional capabili-
ties to LLMs in performing a wider variety of tasks (Shen
2024). These tools can be Python functions whose purpose
is passed to the LLM via prompt, and can then be called by
the LLM with the appropriate parameters passed to it. The
ReAct framework (Yao et al. 2023) proposes an interface
that enables reasoning and acting in LLLMs, enabling seam-
less integration of multiple tools. Their framework demon-
strates improved performance and flexibility across various
tasks.

Deploying LLMs: There has been some research
into deploying LLMs in sectors such as health-
care (Thirunavukarasu et al. 2023; Yang et al. 2023),
where the accuracy of the LLM is critical to its use. Outside
of healthcare, there are limited studies of deploying LLMs
in mission critical environments (Esposito et al. 2024),
where its failure would result in severe consequences.
One of the traits of a mission critical system is its ability

to be vigorously tested to ensure its reliability under all
conditions. LLMs are inherently unreliable, due to their
nondeterministic structure. As such, LLMs must be used in
a way such that their outputs can be easily and automatically
verifiable. Our proposed framework enables this verification
by forcing the LLM to output to a Pydantic model, which is
a format whose structure can be enforced.

Automated Fuel Planning: Previous work in aerial refu-
eling planning has been conducted for various applications
for military and civilian use (Huang et al. 2024; Panos 2007).
Organizations such as MITRE and Kessel Run have built
tools such as JIGSAW for the US Air Force to aid in build-
ing refueling schedules (Altner et al. 2024). An earlier iter-
ation of MITRE’s JIGSAW implementation used linear pro-
gramming techniques, but they have recently moved over
to neighborhood search methods, as we describe. However,
similar to other solutions, their algorithm assigns tankers to
pre-defined refueling requests. We allow the refueling re-
quests to be dynamically generated to optimize for fuel con-
sumption. Our method provides the unique ability to use nat-
ural language as input, which makes using our tool much
easier than its predecessors.

3 TravelPlanner

TravelPlanner (Xie et al. 2024) is a benchmark for creat-
ing travel itineraries provided a start city, destination city/c-
ities, number of days, number of travelers, and various other
constraints (e.g., cuisines, pets, minimum nights). However,
even the most sophisticated LLMs at the time of the paper’s
publication had trouble getting even modest performance on
the benchmark, as the highest pass rate was gpt-4 at 0.6%.
Furthermore, mission planning is substantially more com-
plex than the travel itineraries in TravelPlanner so we con-
sider this only a first step towards achieving reliable mission
planning.

We aimed to increase the accuracy of TravelPlanner using
a combination of the two following approaches:

1. Prompt engineering methods for better parsing argu-
ments and guiding future LLM actions

2. Callable helper functions that reason for the LLM and
output observations

In our experiments we found that the LLM-based system
demonstrated several specific failings when attempting to
make travel plans. In this section we describe the limitations
and the solutions we found to fix the specific problems we
encountered.

Running Over Budget

Problem: LLMs have trouble with numerical reasoning,
especially when it comes to large numbers or keeping track
of the current day of a trip that spans multiple days (Ahn
et al. 2024). In one test case, we asked for a 3-day itinerary
from St. Petersburg to Appleton within a $1,200 budget, the
LLM generated a plan that ran over budget and was too
short. Other 3-day itinerary requests, with different cities
and new budgets, produced similarly expensive and short
itineraries. Often, the LLM would state that a plan costs X



dollars, and when calculating manually would reveal that it
costs Y dollars, where X < Y.

Solution: We developed a hybrid approach combining
prompt engineering and helper functions which provided
the most effective solution to address the LLM’s inabil-
ity to accurately calculate costs. Initially, the CostEn-
quiry[SUBPLAN] function processes a JavaScript Object
Notation (JSON) subplan to calculate the itinerary cost. This
cost is then sent to the LLM, which is supposed to compare
it with the budget specified in the input prompt. However, at
this stage, the LLM consistently failed to recognize when it
exceeded the budget.

To resolve this issue, we implemented a crucial modifica-
tion: instead of relying on the LLM to compare numbers, we
enhanced the CostEnquiry function to perform the compari-
son between the output cost and budget. Following this com-
parison, CostEnquiry sends an observation message (as part
of the ReAct framework) to inform the LLM whether it has
stayed within budget. This modification dramatically im-
proved the LLM’s performance, virtually eliminating mis-
calculations in travel plans.

In edge cases where no travel itinerary exists within the
given budget constraints, the LLM occasionally stated that
an over-budget plan fits within the budget, then proceeding
to call the Finish function to send its final plan to the user.
However, in the majority of cases, the enhanced CostEn-
quiry function proved highly effective. Furthermore, by
carefully engineering the observation message’s prompt, we
encouraged the LLM to explore more cost-effective alter-
natives in subsequent iterations. Overall, this hybrid ap-
proach, combining prompt engineering with algorithmic
helper functions, successfully addressed this challenge.

Following these improvements, we shifted our focus to
simplified 1-day plans for the majority of our tests, depart-
ing from the easy (3-day), medium (5-day), and hard (7-day)
tests outlined in the original TravelPlanner paper (Xie et al.
2024). This decision was motivated by the observation that
LLMs plan travel itineraries iteratively on a day-by-day ba-
sis. For instance, when creating a 5-day plan, the LLM as-
signs events to Day 1, then proceeds to Day 2 only after
confirming that the first day’s events are valid and within the
given constraints. However, due to their limitations in for-
mulating long-term, multi-step plans, LLMs often lose track
of the current day they are planning, leading to the prema-
ture output of faulty plans.

By focusing on 1-day plans, we could more effectively
evaluate the performance of our helper functions, as this ap-
proach eliminates the possibility of the LLM forgetting the
current day and consequently producing an erroneous plan.
It is worth noting that decomposing long-term plans into
smaller subplans is a well-documented approach, featured in
other LLM-based planners such as DELTA (Liu et al. 2024)
and RobLM (Chalvatzaki et al. 2023), which have demon-
strated significant improvements. For future work on longer
travel itineraries, further exploration of these task decompo-
sition frameworks could prove valuable in preventing tem-
poral hallucinations. One such example is TwoStep, which
uses two LLM agents to decompose tasks by approximat-

ing human intuition. (Singh, Traum, and Thomason 2024).
The remainder of this section will concentrate on the bene-
fits of prompt engineering and helper functions, rather than
looking into the implementation of these broader task de-
composition frameworks.

The Cheapest Option Cannot Be Found

Problem: Sticking with the previous example of a 1-day,
1-person itinerary from St. Petersburg to Appleton, it is pos-
sible to create an itinerary under $656, which is almost the
cheapest plan that either a human or an LLM planner can
make. This test case was meant to evaluate the LLM’s abil-
ity to find the cheapest amenity (e.g., accommodation, flight,
restaurant) that meets all the input constraints.

Unfortunately, the LLM instead decided to increase the
subplan’s cost, suggesting that the LLM cannot identify the
cheapest accommodation from the input prompt.

Solution: One prompt engineering method that showed
mixed results was keeping track of the cheapest plan that
the LLM had generated so far. For certain trials, when the
LLM could not generate a plan that fit the budget constraint,
it would output the best plan it was able to make.

This was a significant change from previous trials. When
the LLM failed to find a plan that met the budget constraint,
it would output a random plan generated without any con-
sideration of its previous thoughts. These plans would also
often be much pricier than the budget. For this reason, this
approach of keeping the “cheapest plan so far” would still
run over budget, but not at a ludicrously large scale.

The best approach for finding the cheapest option from a
list, however, is to prompt the LLM to call a helper function
to find the cheapest amenity in a city within the provided
constraints.

Premature Option Exhaustion

Problem Similar to the previous issue of LLMs being un-
able to find the cheapest option that satisfies all constraints
from the input, LLMs would also incorrectly declare that
they have searched and ‘“exhausted all possible options”
from the input JSON data. The LLM would proceed to out-
put a finalized plan that fails to meet constraints and stated
that no plan could possibly satisfy them. However, upon
planning by hand, we know that it is possible to create a
travel plan that meets all the given constraints.

Solution: ExpeL (Zhao et al. 2023) is a framework built
on ReAct (Yao et al. 2023) that gathers “experiences” from
test cases and extracts “insights” from them. Consequently,
when running new test cases that the ExpelAgent has never
seen before, it draws insights from its previous experiences
to solve the presented question.

The HotpotQA benchmark (Yang et al. 2018) evaluates an
LLM agent’s ability to answer questions given a selection of
Wikipedia articles. The ReAct Agent incorrectly found no
answers from its selection of Wikipedia articles when one
does exist, similar to the TravelPlanner test cases where an
optimal accommodation exists. On the other hand, the Ex-
pelAgent learned from past experiences that the answer may



already be “in the observations already made”, and manages
to find the answer afterwards.

An Algorithmic Approach

Problem: As covered in the previous sections, using the
LLM to manage planning is highly inaccurate, even with the
help of tools. LLMs hallucinate frequently, exhaust options
prematurely, and ignore instructions. Attempts to plan travel
itineraries using an LLM as a planner are extremely inaccu-
rate, which is an observation consistent with other research
papers (Stechly, Valmeekam, and Kambhampati 2024).

Solution: Owing to its poor performance, we repurposed
the LLM as a natural language interface, and we instead im-
plemented a hard-coded algorithm for creating a plan that
follows all the constraints. This two-step approach of com-
bining an LLM with a traditional algorithm has been cred-
ited with improving plan outputs for LLM-based planners.
For some agents, LLMs convert natural language to PDDL
domains and actions (Guan et al. 2023; Oswald et al. 2024;
Silver et al. 2023). Beyond PDDL, LL.Ms can convert natural
language to Python (Wang et al. 2024a), JavaScript (Schifer
et al. 2023), mathematical notation (Li et al. 2024), and other
custom languages (Ji et al. 2024).

For our algorithmic approach, the LLM is tasked with
generating an input configuration in the form of a JSON file.
The planning algorithm proceeds to use this JSON file as its
input. To plan trips, the algorithm must first select which
cities to visit in the case of multi-city trips. It will then
look at every city within a state, and determine the cost to
visit that city taking into consideration the constraints given.
Some cities can be impossible to reach by other cities on cer-
tain days, so the algorithm would choose the cheapest cities
that can satisfy a round trip.

To choose accommodations, restaurants, attractions, and
transportation options, the algorithm uses a simple brute-
force search. For accommodations, restaurants, and attrac-
tions, the algorithm searches through all accommodation-
s/restaurants/attractions in the city and finds the cheapest
one that fits all constraints. For planning transportation, the
algorithm chooses the cheaper option between self-driving
and a combination of flights and taxis.

The algorithmic approach increased accuracy to 90%, a
major improvement from the original paper’s 0.6% accu-
racy (Xie et al. 2024). The LLM still has trouble generat-
ing the input JSON file from natural language due to er-
rors in the benchmark construction, either outputting a blank
response or formatting the input incorrectly, both of which
would cause the algorithm to be unable to create any travel
plan. The algorithm itself also is not perfect, as it can have
trouble finding enough valid cities or keeping its plan within
the provided budget. Despite these flaws, the high success
rate serves as a baseline as to what an LLM-based planner
should be able to achieve. In the long term, LLM-assisted
planning applications should implement a similar approach
to what is described here: using an LLM to parse natural lan-
guage into an input configuration for a traditional algorithm.

TravelPlanner Summary

In the process of using LLMs to devise travel itineraries,
we encountered several challenges, particularly in relation
to numerical reasoning and keeping track of the current day
for multi-day trips. The LLM often generated plans that ex-
ceeded the budget or were too short, and it struggled to ac-
curately calculate costs. In addition, we encountered several
challenges in relation to the LLM incorrectly declaring that
it has exhausted all possible options from the input JSON
data and failing to meet constraints. Additionally, we found
that using LLMs to manage planning is highly inaccurate
due to their frequent hallucinations, premature option ex-
haustion, and disregard for instructions.

To address these issues, we pushed numerical tasks to
the tools and implemented an algorithmic approach that pri-
marily used the LLLM as a natural language interface. The
LLM generates an input configuration in the form of a JSON
file, which is then used as input for the planning algorithm.
The algorithm selects cities to visit, determines the cost to
visit each city, and uses a search to choose accommodations,
restaurants, attractions, and transportation options. This al-
gorithmic approach significantly improved the accuracy of
the travel itineraries, increasing it to 90% from the original
paper’s 0.6% accuracy.

The lessons learned from these experiments and experi-
ences include the importance of using a hybrid approach
combining prompt engineering and algorithmic helper func-
tions to address the LLM’s limitations in numerical rea-
soning and keeping track of the current day for multi-
day trips. Additionally, decomposing long-term plans into
smaller subplans proved to be a valuable strategy for im-
proving the performance of LLM-based planners. This work
lays the foundation for deploying LLMs into mission-critical
environments, where accuracy is essential for its adoption.

4 Aerial Refuel Planning

Our next step is to apply the lessons learned from Trav-
elPlanner to the automated generation of aerial refueling
schedules, which is one potential application of using LLMs
as a planner in mission-critical applications. Aerial refuel-
ing scheduling is the process of allotting groups of receivers
(i.e., aircraft) to tankers to ensure all receivers land with a
certain amount of fuel while satisfying additional time and
weight constraints. These schedules have traditionally been
drafted by hand, a process which could take hours (Altner
et al. 2024).

Our goal in this work was to achieve a highly reliable fuel
planning application that can run confidentially with open
source LLMs on our own air-gapped servers. This applica-
tion aims to shorten the mission planning time and optimize
fuel consumption for jets and tankers in air combat missions.
It leverages LLMs to process natural language scenarios,
generating an optimized refueling plan with enhanced effi-
ciency and accuracy.

Architecture

The architecture of our system is made up of the input, out-
put, and agent framework. Figure 1 displays the pipeline of
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Figure 1: Pipeline for the aerial refueling planning tool.

the components, which is described in the following sec-
tions.

Input: The input component provides not only input from
the user but also additional information such as the system
prompt and chat history. First, the input from the human is a
natural language description of the information required to
generate a refueling schedule. Examples of this can be found
in Appendix A. The system prompt contains a description of
the LLM task and describes how the LLM should respond
using the ReAct method (Yao et al. 2023). This prompt can
also be found in Appendix A. Finally, the chat history is
added to provide the LLM with previous steps it has already
taken, and any additional information from the user.

Agent-based planning framework: We developed an
LLM agent to serve as an interface between the user and
scheduling algorithm. Its purpose is to translate a natural
language scenario description to a structured input config-
uration, that will then be passed to the scheduling algorithm
as a set of parameters. This LLM agent is able to use any lo-
cally hosted model. We used Llama 3 70B to test this frame-
work. To develop this agent, we used the Llamalndex frame-
work because it provides several components, such as chat
history, output parsers, and a ReAct agent (Liu 2022).

Pydantic is a data validation library for Python. It allows
users to define the structure of an object using a BaseModel.
The LLM populates all the fields it can from the given sce-
nario. The output parser is able to determine if fields are
missing, and will prompt the user for more information if
it finds out that is the case. However, the output parser is
not able to determine whether populated fields are semanti-
cally correct. So, after the output parser, we call a manually
written validation function that checks if all locations and re-
ceivers/tankers are actually valid. In theory, if the generated
configuration is not valid on the first try, by giving the LLM
specific messages as to why the configuration is not valid so
it would be able to correct itself. If the LLM is still unable
to correct the error, the human is then given the option to
manually fill in the erroneous fields.

Prior methods have shown that LLMs are better at solv-
ing reasoning tasks when they separate the task in several

Constantine
ZOBESlo &k

Sétif OEEH 55:
Cadas | AinBeidac 40400,

Figure 2: Example aerial refueling plan (receivers =
2,tankers = 2) generated by neighborhood search.

smaller subtasks, with one such method being ReAct. (Yao
et al. 2023) Using this method, we prompt the LLM to
identify the aircrafts, origins, destinations, and several fuel-
related constraints that the plan must adhere to. Instead of
trying to take all of this information and translate into a
structured format in a single step, the LLM iteratively iden-
tifies each item individually, and adds it to the output. This
provides a result that is much less prone to hallucinations.

Output: The final result of the LLM’s output is a Python
script which was generated using a Pydantic model. This
model contains classes for every object that is required for
each plan, including the Trip, Receiving Aircraft, Tanker
Aircraft, and Constraints. Each class contains fields specific
to that object. This ensures that when the LLM is creating
these classes, it is being provided with the correct fields. If
the LLM fails to create a class, then the error output by the
Python program is passed back into the LLM, and it tries
again. By structuring the output of the LLM in a Pydantic
model, we are able to validate the LLM’s output at each step
of the process, and conduct a final verification once the en-
tire Pydantic model is completed to ensure all of the neces-
sary information for a plan is included. This is a necessary
step to enable the deployment of LLMs to mission-critical
environments, because it allows for an automatic verficia-
tion of the LLMs output. As a last resort, there is an option
for a human to manually review the Pydantic model before
it is passed to the planning algorithm.

Planning Algorithm (The Tool)

We developed this agentic planning framework to assist in
the creation of aerial refueling schedules. This problem is
a variation on the vehicle routing problem (Funke, Griinert,
and Irnich 2005). Neighborhood search is the optimization
technique typically used to solve such problems. It relies on
starting with some initial solution which may or may not
be feasible, and iteratively transforming it to minimize cost.
The cost is determined with an objective function which in-
cludes penalties for infeasible solutions.

In our approach, we introduce the concept of a Receiver-
Group (RG), which consists of one type of receiver, the
quantity of that receiver type, the path the receiver follows



including an ID, start coordinate, and end coordinate, and
the time the group will take off from the starting base. Ad-
ditionally, there is the option to change the distance between
the waypoints that will be generated along the specified path,
where waypoints are the refueling points at which the tanker
intercepts the receiver groups. The waypoints generated by
the ReceiverGroup are created as a LinkedList to easily ac-
cess neighboring waypoints and are stored in a dictionary,
indexed in order by time. Each receiver type contains spec-
ifications and the calculated starting and ending fuel to per-
form required missions.

Once the algorithm is complete, it produces a CSV file
containing the time and distance of each refueling point
along with the corresponding tanker and receiver aircraft.
Then we take this data and display it on a map for easy visu-
alization (see Figure 2). This acts as a final sanity check to
ensure the plan makes sense before it is implemented.

The initial algorithm we developed scheduled receiver re-
fuelings one at a time, starting from the end fuel level and
ending at the start fuel level. This brute force method had
several limitations. The main limitation is that we assume
the same tanker escorts a RG from origin to destination,
which is most likely not the case in real-world scenarios. In
order to fix this, we developed an algorithm in which tankers
can start at a distinct location from other tankers and RGs,
meet a RG at a rendezvous point along the RG path, per-
form the refueling, and either return to its base or perform
another refueling, depending on which saves more fuel. This
algorithm employs a neighborhood search described below.

Another limitation of this backwards iterative approach is
that there are various edge cases to consider when attempt-
ing to find the intersection between the forward burning line
and the backward refueling line. Sometimes, the window
might be too small and not able to fit all receivers in the RG.
In order to fix this, we would need to decrease an offload
somewhere else. In the end, we were not able to achieve
100% correctness, and decided to focus our efforts on devel-
oping the much more robust neighborhood search algorithm.

Fuel Planning with Neighborhood Search

Our previous approach for fuel planning was limited be-
cause it required the tanker to escort the receiver groups
from start to end. Many times, tankers are located at dif-
ferent locations than receiver groups and will fly to meet
them at scheduled refueling points. Our goal was to develop
a more robust algorithm that planned these various refuel-
ing stations, providing greater flexibility when making these
refueling schedules.

To integrate scheduling receivers and tankers from multi-
ple locations, multiple changes had to be made to the pro-
gram. These multi-input configurations consist of locations,
tankers, and receiver groups: groups of the same type of re-
ceiver traveling from one location to another. New tools had
to be made so the ReAct agent could initialize these loca-
tions, receiver groups, and tankers. Additionally, an input
configuration class had to be made to represent these mis-
sions. This input configuration would be used to create a
scenario Pydantic model Python file, which contained all the
information necessary to run the program.

ReAct Agent Integration: To address the challenge of ac-
curately extracting data from natural language inputs, a Re-
Act Agent class was created utilizing the ReAct framework
(Yao et al. 2023) and a set of tools to iteratively build the
configuration. This new class demonstrated superior perfor-
mance in processing natural language input and accurately
filling out data for each constraint compared to the original
Agent class.

Compared to the original Agent, the ReAct Agent dis-
played improved performance in extracting correct numbers
even when the scenario was worded differently. This effec-
tively solved the issue of constraint inaccuracies and im-
proved the mission planning process within the fuel planning
project. The ReAct Agent’s success in correctly interpreting
data significantly improved the efficiency and accuracy of
aerial refueling schedules, contributing to enhanced mission
outcomes and resource management.

Fuel Planning Summary

We developed a framework that uses state-of-the-art open-
source LLMs to extract relevant information from natural
language and generate a structured configuration object, us-
ing a Pydantic-defined JSON schema and a ReAct Agent.
Additionally, we designed a neighborhood search algorithm
that will not only create a feasible plan but also an optimal
plan with the goal of minimizing the amount of fuel used.
The proposed framework brings us one step closer to safely
deploying LLMs in mission-critical environments.

5 Conclusions

We explored the use of Generative Al and LLMs in creating
travel itineraries and aerial refueling schedules, highlight-
ing both their potential and limitations. Through a series of
experiments and case studies, we have demonstrated that
LLMs can be used as a natural language interface, with a
traditional algorithm employed for planning purposes. This
hybrid approach has shown significant improvements in the
accuracy of travel itineraries, increasing it from the original
0.6% accuracy to 90%. However, LLMs still face challenges
in generating input JSON files from natural language and
in creating perfect plans due to difficulties in finding valid
cities or keeping within budget constraints.

In the context of a mission-critical application such as
aerial refueling planning, we have developed an LLM agent
framework using Llamalndex, which enables the translation
of natural language descriptions into structured input config-
urations. This framework leverages Pydantic models and a
ReAct-based agent to minimize hallucinations, reduce their
impact, and improve the accuracy of the generated configu-
rations. The output of the LLM is a Python script contain-
ing classes for each object required for the plan, ensuring
that the LLM populates the correct fields. Further validation
and verification were conducted to ensure the accuracy and
completeness of the generated configuration. All of this was
performed on a siloed server, ensuring no data leakage.

In summary, we first demonstrated a dramatic increase in
accuracy is possible with a commercial LLM by employ-
ing careful prompt engineering and a hybrid system that in-
cludes software tools and verification functions. While we



did not achieve the 100% accuracy required of mission-
critical applications, our work demonstrated a path forward.
Second, we demonstrated a siloed mission-critical applica-
tion of aerial fuel planning with open-source LLMs on our
air-gapped servers. Our progress illustrates a means for cre-
ating LLM-based hybrid systems for any mission-critical ap-
plication where data security is paramount.
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A Fuel Planner LLM Prompts
System Prompts

Here is the system prompt being used for the ReAct-based
LLM agent:

You are a large language model designed to answer ques-
tions for aerial refuel scheduling based on a scenario (pro-
vided in subsequent prompts) and chat history.

Tools You have access to a wide variety of tools. You are
responsible for using the tools in any sequence you deem
appropriate to complete the task at hand. This may require
breaking the task into subtasks and using different tools to
complete each subtask.

You have access to the following tools: tool_desc

Output Format To answer the question, please use the
following format.

““ Thought: I need to use a tool to help me answer the
question. Action: tool name (one of tool_names) if using
a tool. Action Input: the input to the tool, in a JSON for-
mat representing the kwargs (e.g. “input”: “hello world”,
“num_beams”: 5) “*

Please ALWAYS start with a Thought.

Please use a valid JSON format for the Action Input. Do
NOT do this *input’: "hello world’, 'num_beams’: 5.

If this format is used, the user will respond in the follow-
ing format:

“* Observation: tool response ““*

You should keep repeating the above format until you
have enough information to answer the question without us-
ing any more tools. At that point, you MUST respond in the
one of the following two formats:

““ Thought: I can answer without using any more tools.
Answer: [your answer here] “*

“‘ Thought: I cannot answer the question with the pro-
vided tools. Answer: Sorry, I cannot answer your query. ““

Additional Rules - The answer MUST contain a se-
quence of bullet points that explain how you arrived at the
answer. This can include aspects of the previous conversa-
tion history. - You MUST obey the function signature of
each tool. Do NOT pass in no arguments if the function ex-
pects arguments. - You do not need to use the tools if they
are not needed to answer the question. Only use the tools
provided, and no other. - If the answer is not provided in the
given scenerio, prompt the user for more information.

Additional information - Rendezvous occurs at time t
= 0. Therefore, if something must occur within the first x
minutes of rendezvous, the time range will be [0, x]. - If

something must occur within x nautical miles of the destina-
tion and the total distance is d, then the distance range will
be start_distance = 0 and end_distance = d - x. - All units of
time must be in minutes. For example, if a jet burns fuel at b
Ibs/hour, you must list this as (b / 60) 1bs/min.

Current Conversation Below is the current conversation
consisting of interleaving human and assistant messages.

Example Scenarios

Single Origin and Destination Scenario: Three F-35C
fighter jets (Grizzly 11, 12, and 13) are flying from Oak
Harbor, WA, to Honolulu. Each jet starts with 18,000 Ibs
of fuel and has a maximum fuel capacity of 22,000 Ibs.
The total distance is 2,700 nm. Jets must maintain a mini-
mum of 13,000 Ibs of fuel until within 450 nm of Honolulu.
Upon landing, each jet needs at least 5,000 Ibs of fuel. Jets
burn fuel at 6,800 lbs/hour while cruising at 410 knots. A
KC-135R tanker (Texaco 21) carries 80,000 Ibs of fuel and
can refuel one jet at a time. Refueling takes 15 minutes for
11,000 1bs of fuel. During refueling, jets burn fuel at 1,900
Ibs/15 minutes. There’s a 3-minute transition between refu-
eling different jets. Each jet must test refueling by taking on
at least 1,000 1bs of fuel from Texaco 21 within the first 30
minutes after rendezvous.

Multiple Origins, Single Destination Scenario: The lo-
cations for the mission are sigonella at 37.405 N 14.922 E,
cvn75 at 38.822 N 6.044 E, naples at 40.836 N 14.249 E,
and pantelleria at 36.831 N 11.945 E. The mission ends at
34.812 N 20.867 E. There are tanker bases at naples and
pantelleria. There is a receiver group of 1 f-22a going from
sigonella to the end, and another receiver group of 2 f-35¢
receivers going from cvn75 to the end. There is a kc-135r
tanker at naples and a kc-46 tanker at pantelleria.



