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ABSTRACT

Flow models exhibit an extraordinary ability to generalize, generating realistic
samples far beyond the training data. This phenomenon lacks a simple explana-
tion. We argue that the key mechanism is not the accurate solution of a continuous-
time ODE, but rather the error introduced by its discretization. To isolate this
effect within the flow matching framework, we introduce the Empirical Velocity
Field (EVF), a non-parametric estimator of the conditional velocity field derived
by replacing the target distribution with its empirical measure. The exact ODE
flow driven by the EVF turns out to be uninteresting, yielding a kernel density
estimate that collapses onto the training data. However, its discretization is re-
markably powerful. We show that even a single Euler step induces a projection-
like effect, concentrating samples on the underlying data manifold and creating
diverse, high-quality samples. We support this with extensive empirical evidence
and provide a theoretical analysis of the one-step estimator that quantifies this
projection, offering a rigorous foundation for how discretization generates struc-
tured samples. Our findings argue that the generative success of flow matching is
fundamentally driven by the implicit bias of numerical ODE solvers.

1 INTRODUCTION

Flow-based generative models exhibit an extraordinary ability to generalize, creating realistic and
diverse samples that appear to be drawn from the same underlying distribution as the training data,
yet are entirely novel. This phenomenon, central to their success in domains like image synthesis,
lacks a simple, satisfying explanation. While theories based on statistical minimax optimality es-
tablish their prowess in density estimation (Gao et al., 2024), they fail to explain why flow models
dramatically outperform other optimal estimators like Kernel Density Estimates (KDE) (Tsybakov,
2008). Sampling from a KDE, after all, amounts to selecting a training example and adding noise—a
procedure that fails to produce the rich, structured novelty characteristic of modern generative mod-
els. What, then, is the fundamental mechanism driving their generative power?

In this paper, we argue that the key to this generalization is not the accurate solution of a continuous-
time Ordinary Differential Equation (ODE), but rather the implicit bias introduced by its numerical
discretization. This is a deeply counter-intuitive claim: discretization error is typically viewed as
a nuisance to be minimized, not a feature to be embraced. We argue, however, that this “error” is
precisely what transforms a simple interpolative procedure into a powerful generative one.

To isolate and study this effect, we strip away the complexities of neural network approximation
and introduce the Empirical Velocity Field (EVF). The EVF is a non-parametric estimator of the
conditional velocity field, derived by replacing the unknown target distribution with the empirical
measure of the training data. This provides a closed-form expression for the velocity field, allowing
us to cleanly separate the properties of the flow itself from the effects of numerical integration.

The EVF serves as a powerful analytical tool. When we consider the exact, continuous-time ODE
flow driven by the EVF, the outcome is uninteresting for generation: it yields a variant of a KDE
that, as time t → 1, simply collapses onto the training samples. This confirms that the underlying
continuous dynamics offer no mechanism for creating novel samples beyond the training set.

The magic happens upon discretization. We show that even a single step, at time t near 1, of a nu-
merical solver, like the Euler method, dramatically alters the outcome. This single discretized step
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(a) Traing data. (b) Exact ODE (c) Discretized ODE

Figure 1: Two moons and two circles data. (a) n = 50 samples from the target distribution used for
training. (b) The exact ODE solution for EVF at t = 0.95. (c) The discretized ODE solution, 10
steps, using 2nd order Runge–Kutta method, with final field evaluation at the same value of t = 0.95.
For each of cases (b) and (c) 4096 new samples are generated. See Section 3.1 for more details.

induces a powerful projection-like effect, taking points from a diffuse, off-manifold distribution and
concentrating them onto or near the underlying data manifold. As illustrated in Figure 1, this pro-
cess fills gaps between training examples, generating diverse, high-quality samples that respect the
intrinsic structure of the data. We provide a theoretical analysis of this one-step generator that quan-
tifies this projection effect, offering a rigorous foundation for how discretization error manufactures
structured novelty.

Our contributions are three fold:

1. We introduce the Empirical Velocity Field (EVF) as a powerful tool for analyzing flow
matching and as a simple, effective method for unconditional generation.

2. We present the central thesis that the generative power of flow models stems from the
implicit bias of numerical ODE solvers, contrasting the generative failure of the exact ODE
flow (a KDE) with the success of its discretized counterpart.

3. We support this thesis with extensive empirical evidence on toy and image datasets, using
standard and novel evaluation metrics, and provide a theoretical analysis that formalizes
the projection-like behavior of the discretization.

Our findings suggest a paradigm shift in understanding and developing flow-based models. The goal
may not be to find ever-more-accurate ODE solvers, but to design numerical integration schemes
whose biases are intentionally structured to promote generalization and sample quality.

1.1 RELATED WORK

Flow-based neural ODE generators trained via simulation-free regression have evolved along related
lines. Flow matching Lipman et al. (2023) learns a time-dependent velocity field by supervised re-
gression to analytically defined targets along simple interpolation paths in data space. Training
and sampling can be moved to the latent space of a pretrained autoencoder Dao et al. (2023) for
efficiency and scalability. A recurring aim is to ‘straighten’ probability paths to reduce curvature
and stiffness (Kornilov et al., 2024), simplifying training and accelerating ODE sampling: multi-
sample couplings straighten flows and improve sample efficiency Pooladian et al. (2023); rectified
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flow Liu et al. (2023) makes trajectories near-linear for faster, more stable training and sampling; and
large transformer backbones have been scaled for rectified-flow models to achieve state-of-the-art
high-resolution synthesis with few function evaluations Esser et al. (2024). Coupling and condi-
tioning have also advanced the field: minibatch optimal transport improves source–target pairings,
stabilizing training and inference Tong et al. (2023a); and conditional flow matching (CFM) learns
condition-dependent velocity fields for flexible conditional generation without stochastic simulation
or likelihood-based training Tong et al. (2023b). Our focus is orthogonal: we study how discretiza-
tion improves image generation quality and explain why flow-matching methods work well, rather
than competing with these approaches.

This work studies generation by interpolation through the lens of stochastic interpolants Albergo
et al. (2023), which provide closed-form expressions for time-dependent distributions and veloc-
ity fields induced by chosen interpolations, unifying score-based diffusion, probability flow ODEs,
and flow-matching-style training. While the analysis in Albergo et al. (2023) focuses on settings
where the target distribution ρ1 is modeled as a Gaussian mixture, our setting considers an empir-
ical distribution of Y in ρ1. Moreover, the proposed empirical velocity field (EVF) directly uses
the closed-form velocity as the training target and also as the deployed velocity field, which, to our
knowledge, was not explored in Albergo et al. (2023).

Our work relates to the manifold learning literature, which has been extensively studied in machine
learning and statistics Ma & Fu (2012). Our setting is simpler than denoising observations from
an unknown manifold. We observe that, for xt near the manifold, Euler’s method behaves like a
weighted average of nearby samples, effectively projecting xt onto the manifold. This differs from
the local PCA approach of Lin & Zha (2008), yet still recovers samples close to the manifold.

2 FLOW MATCHING AND THE EMPIRICAL VELOCITY FIELD

To isolate the effect of discretization, we first need a precise, analytic form for the velocity field,
free from the confounding effects of neural network approximation. We achieve this by developing
the Empirical Velocity Field (EVF), a non-parametric estimator derived directly from the principles
of flow matching.

2.1 BACKGROUND: CONDITIONAL FLOW MATCHING

Flow models aim to transport samples from a simple prior distribution P0 (e.g., a standard Gaussian
Z ∼ N(0, Id)) to a complex target distribution P1 (e.g., of data Y ) by integrating an Ordinary
Differential Equation (ODE):

dXt

dt
= v(t,Xt), X0 = Z, (1)

where v(t, x) is a time-dependent velocity field. The core idea of flow matching Lipman et al.
(2023) is to define a probability path Pt that interpolates between P0 and P1, and then find the
unique velocity field v(t, x) that induces this path.

A common choice is the linear interpolation path Albergo & Vanden-Eijnden (2023), where the
random variable Xt at time t has the same distribution as It(X0, X1) := (1 − t)X0 + tX1. The
corresponding velocity field is given by the conditional expectation of the path’s velocity:

v(t, x) := E
[
∂tIt(X0, X1) |Xt = x

]
= E[X1 −X0 |Xt = x]. (2)

In practice, v(t, x) is approximated by a neural network vθ(t, x), which is trained via regression by
minimizing a loss like Et,X0,X1

[∥vθ(t,Xt)−(X1−X0)∥2]. This training process, however, is noisy
and its regularizing effects are intertwined with those of the subsequent ODE solve.

2.2 THE EMPIRICAL VELOCITY FIELD: A NON-PARAMETRIC ALTERNATIVE

To disentangle these effects, we consider a direct, non-parametric estimator for the velocity field.
First, we rewrite the conditional velocity field in a more convenient form:

v(t, x) =
1

1− t

(
E[X1|Xt = x]− x

)
, (3)
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which follows from the linearity of expectation and the relation X0 = (Xt − tX1)/(1− t).

Now, instead of learning a parametric approximation, we construct the Empirical Velocity Field
(EVF) by replacing the true target distribution P1 with the empirical distribution of the training data
{y1, . . . , yn}, denoted Pn := n−1

∑n
i=1 δyi . This plug-in approach yields a closed-form expression

for the velocity field.

Proposition 1. Let the prior P0 be a distribution with density fZ , and the target P1 be the empir-
ical distribution Pn. For the linear interpolation path, the velocity field vEVF(t, x) and the density
ρEVF(t, x) of the exact ODE solution Xt are given by:

vEVF(t, x) =
1

1− t

(∑n
i=1 yifZ(

x−tyi

1−t )∑n
i=1 fZ(

x−tyi

1−t )
− x

)
, (4)

ρEVF(t, x) =
1

n

n∑
i=1

1

(1− t)D
fZ

(
x− tyi
1− t

)
. (5)

The proof is provided in the Appendix B. The expression for ρEVF(t, x) is particularly revealing. It
is precisely the density of a Kernel Density Estimate (KDE) of the scaled data {tyi}ni=1, using the
prior density fZ as a kernel with bandwidth h = 1− t.

This leads to a crucial insight: as t → 1, the bandwidth h → 0, and the distribution of the exact ODE
solution Xt converges to the empirical distribution Pn. Consequently, solving the continuous-time
ODE driven by the EVF is generatively uninteresting. It is equivalent to sampling from a KDE
that sharpens to eventually just return the training samples themselves. It provides no mechanism
for creating novel samples that intelligently fill the gaps between training data. The remarkable
generative power of flow matching must, therefore, originate from another source.

2.3 EVF AS A STRONG VELOCITY FIELD ESTIMATOR

Before proceeding, we briefly establish that the EVF is not merely a theoretical construct, but a
powerful and sample-efficient estimator in its own right. We compare the generative performance of
an ODE solver driven by our EVF against one driven by a standard Neural Network Velocity Field
(NNVF), trained on the same data. Figure 2 shows this comparison.

For the NNVF, we adopt the architecture and training setup from the first example in Lipman et al.
(2024). The network is a multi-layer perceptron (MLP) with three hidden layers of 64 units each and
the ELU activation function. We train it for 10,000 steps using the Adam optimizer with a learning
rate of 10−2 and a batch size of 256. While the original example samples fresh data for each batch
(hence seeing a total of 10000 × 256 training samples), we constrain the training to a fixed dataset
of n = 1024 samples to simulate a realistic, data-limited setting. Both the EVF and the trained
NNVF are then used to generate samples via a discretized ODE solver (specifically, a 2nd-order
Runge-Kutta method with 10 steps).

The results in Figure 2 are striking. The discretized ODE using the EVF generates samples that are
much more clearly structured and faithful to the underlying manifold than those generated using the
trained NNVF. This superior sample efficiency validates the EVF as a high-quality field estimator
and confirms that by using it, we are not losing fidelity compared to the standard neural network
approach. Its strength allows us to confidently use it as a tool to isolate the role of the numerical
solver. Having established that the exact, continuous-time EVF flow fails to generalize, we now
investigate the impact of its discretization.

3 DISCRETIZATION BIAS AS A GENERATIVE MECHANISM

We have established that the exact, continuous-time flow driven by the EVF is equivalent to a Kernel
Density Estimate (KDE), which fails to produce novel, structured samples. We now demonstrate that
the numerical discretization of this very same ODE is a powerful generative process. The “error”
introduced by the solver is, in fact, the source of generalization.
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(a) EVF (b) NNVF

Figure 2: Comparison of discretized ODE (D-ODE) samples generated using the Empirical Velocity
Field (EVF) versus a trained Neural Network Velocity Field (NNVF). Both are based on the same
n = 1024 training samples. The EVF produces samples that are more tightly concentrated on the
true data manifolds.

3.1 THE STARK CONTRAST: EXACT VS. DISCRETIZED FLOWS

The difference between the exact and discretized solutions is not subtle; it is a dramatic qualitative
shift. Figure 1 provides a clear visualization of this phenomenon. We start with a sparse training set
of n = 50 samples from two synthetic manifolds.

The Exact ODE Solution (Fig. 1b), corresponding to sampling from the density ρEVF(t, x) at
t = 0.95, behaves exactly as our theory predicts. The samples form diffuse clouds around the
original training points. This is classic KDE behavior: it smoothes the empirical measure but does
not “understand” the underlying manifold structure to fill in the large gaps between training points.

The Discretized ODE Solution (Fig. 1c), generated by integrating the EVF with a standard 10-step
numerical solver, is completely different. The samples are sharply concentrated on the true data
manifold, perfectly interpolating the gaps in the training data. This process generates entirely new
points that are nevertheless highly plausible, demonstrating true generalization.

This stark contrast makes our central hypothesis tangible: the discretization scheme is not merely
approximating the continuous flow; it is introducing a strong inductive bias that favors on-manifold
solutions.

3.2 ANALYSIS OF THE ONE-STEP GENERATOR: A PROJECTION EFFECT

To understand how discretization achieves this, we can analyze its effect in the simplest non-trivial
case: a single Euler step from a time t very close to 1, to the final time t = 1. Let xt be a point
sampled from the exact KDE-like distribution ρEVF(t, x). The one-step Euler update is:

x1 = xt + (1− t) · vEVF(t, xt) (6)

= xt + (1− t) · 1

1− t

(∑n
i=1 yifZ(

xt−tyi

1−t )∑n
i=1 fZ(

xt−tyi

1−t )
− xt

)
(7)

=

∑n
i=1 yifZ(

xt−tyi

1−t )∑n
i=1 fZ(

xt−tyi

1−t )
. (8)

This final expression is a Nadaraya-Watson kernel regression estimator. It estimates the value of a
function at xt by taking a weighted average of the “target values” yi. The weights are determined by
the kernel fZ , centered at each tyi. Intuitively, the estimator pulls the point xt towards a weighted
average of the nearby training samples {yi}.

When the data {yi} lie on or near a low-dimensional manifold M, this averaging process has a pow-
erful geometric consequence: it acts like a projection. If xt is close to a region of the manifold, the
kernel fZ(·) will assign significant weight only to the training points yi in that local neighborhood.
Because the manifold is locally flat, this weighted average of nearby on-manifold points will lie very
close to the manifold itself—much closer, in fact, than the original point xt.
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We formalize this intuition in the following theorem, which shows that the distance of the generated
point to the manifold shrinks quadratically with the step size h = 1− t. For simplicity, the theorem
analyzes a slightly modified estimator where the kernel is centered on yi instead of tyi, which is a
very accurate approximation for t ≈ 1.
Theorem 1 (Projection Effect). Let the training data {yi}ni=1 lie on a smooth manifold M. Consider
the one-step generator

ŷ =

n∑
i=1

wiyi, where wi =
fZ((x− yi)/h)∑n
j=1 fZ((x− yj)/h)

, (9)

for some point x and bandwidth h. Assume:

(i) Density fZ has compact support on a ball of radius r, Br(0).

(ii) The manifold M is sufficiently smooth: Denoting the affine tangent space at u as Tu =
u + TuM, there exists κ,R > 0, such that for any u, v ∈ M, if ∥u − v∥ ≤ R, then
∥v − PTu(v)∥ ≤ κ∥PTuM(u− v)∥2.

Let π(ŷ) be the unique closest-point projection of ŷ onto M, and let h := 1 − t. If 4rh ≤ R, then
the distance of the generated sample to the manifold is bounded by:

∥ŷ − π(ŷ)∥ ≤ 4κr2h2.

The proof is provided in the Appendix C. This result rigorously shows that the one-step generator
projects points towards the manifold. For bandwidth h = 1 − t, the sample of x has a average
distance h

√
d by the formula ρEVF derived in (5). This theorem shows the discretization can reduce

that dramatically to O(h2). The quadratic dependence on h implies that even for a moderately small
step size (i.e., t close to 1), the generated points will be extremely close to M. This explains the
sharp, on-manifold samples seen in Figure 1c. The discretization bias is not random noise; it is a
structured mechanism that enforces the manifold hypothesis, effectively learning the geometry of
the data from the training samples. This single step is so powerful that it motivates a highly efficient
generative algorithm, which we call Euler-1, consisting of sampling xt and applying a single update.

While Theorem 1 establishes the fidelity of the generated samples (they are close to the manifold), it
does not guarantee diversity (they cover the manifold). A second result confirms that our generator
can indeed produce a rich variety of samples. It shows that any point u on the manifold can be
generated, provided it is “reachable” by the generator from some point x in the input space. Since
the input distribution ρEVF(t, x) is diffuse, it is highly likely that such points x will be sampled,
leading to broad coverage of the manifold. We state this formally as Theorem 2 (see Appendix D
for proof), which ensures that the support of the generated distribution is not arbitrarily constrained.
Theorem 2 (Diversity). We assume fZ is continuous. For u ∈ M, suppose there exists x ∈ RD,
such that

(i) x is an interior point of the support of its density function.

(ii) u = π(ŷ(x)) with ŷ(x) = ŷ in (9).

then the random variable π(ŷ) has positive density value at u for a continuous density function.

Assumption (ii) is easy to satisfy in practice: u lies on a d-dimensional manifold, while x can be
chosen in the higher-dimensional ambient space RD, offering enough degrees of freedom to ensure
u = π(ŷ(x)) for at least one x.

4 EXPERIMENTAL FRAMEWORK

To empirically validate our thesis, we need metrics that can distinguish between mere memorization
and true generalization. While standard precision and recall are useful, they can be misleadingly high
for a model that simply reproduces the training data. We therefore introduce a novel, conditioned
version of these metrics designed specifically to measure the ability to generate high-quality samples
away from the training set.
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4.1 STANDARD PRECISION AND RECALL

We first build on the non-parametric precision and recall metrics of Kynkäänniemi et al. (2019).
Given a set of real samples Sreal ∼ Preal and a set of generated samples Sgen ∼ Pgen, we estimate the
support of their respective distributions by constructing manifolds, M̂real and M̂gen. Specifically, for
any set S = {xi}, the manifold estimate is the union of hyperspheres around each point: M̂(S) =⋃

xi∈S B(xi, ri), where the radius ri is the distance to the k-th nearest neighbor of xi within S.
Following common practice, we use k = 3.

Precision and recall are then defined as the fraction of samples from one distribution that fall within
the estimated manifold of the other:

Precision = P (Xgen ∈ M̂real) Recall = P (Xreal ∈ M̂gen) (10)

Precision measures fidelity (are generated samples realistic?), while recall measures diversity (does
the generator cover the full variety of real data?).

4.2 NOVELTY-CONDITIONED PRECISION AND RECALL (NCPR)

A key limitation of the standard metrics is that a generator that only memorizes the training set,
Strain, can achieve (near) perfect precision and recall, when training set is large enough, without
demonstrating true generalization. To specifically assess a model’s ability to generalize, we intro-
duce Novelty-Conditioned Precision and Recall (NcPR).

The core idea is to restrict the evaluation to samples that are demonstrably “novel” with respect
to the training set. We quantify novelty by the Euclidean distance to the nearest training sample:
d(x, Strain) = minz∈Strain ∥x − z∥2. We then filter the real and generated sample sets to retain only
those points that are furthest from the training data.

Let Sgen(pg) be the subset of Sgen containing the (1−pg) fraction of samples with the largest distance
to Strain (i.e., the top (1−pg) quantile of novelty). Similarly, let Sreal(pr) be the corresponding novel
subset of real data. We then construct manifolds using only these novel subsets:

M̂gen(pg) = M̂(Sgen(pg)) and M̂real(pr) = M̂(Sreal(pr)). (11)

The NcPR metrics are then defined by evaluating precision and recall on these conditioned sets:

NcP(pg, pr) = P (Xgen ∈ M̂real(pr) | Xgen ∈ Sgen(pg)) (12)

NcR(pg, pr) = P (Xreal ∈ M̂gen(pg) | Xreal ∈ Sreal(pr)) (13)

In practice, we estimate these by computing standard precision and recall but using the filtered sets
Sgen(pg) and Sreal(pr). By setting pg > 0 and pr > 0, we explicitly ask: “Among the most novel
generated samples, what fraction are realistic? And do these novel samples cover the most novel
real data?” This provides a direct measure of generalization, heavily penalizing models that simply
stay close to their training data. Setting pg = pr = 0 recovers the standard metrics.
Remark 1. For image experiments, direct pixel-wise comparison is not meaningful. We follow
standard practice and first map all images into a pre-trained feature space (in our case, the pool3
layer of Inception-v3 (Szegedy et al., 2016)) before computing distances and applying the metrics.

5 EXPERIMENTS AND RESULTS

We now present empirical results across a range of datasets to demonstrate the generative power of
discretization bias. We compare three generators based on the EVF, contrasting the exact solution
with its discretized counterparts, and use our Novelty-Conditioned Precision and Recall (NcPR)
metric to quantify true generalization.

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our methods on two synthetic datasets and two standard image benchmarks:

• Two Moons: A classic 2D manifold problem, allowing for direct visualization.

7
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• Variable Circles: A synthetic 32×32 grayscale image dataset we introduce, where each
image contains a circular ring with a random center and radius. This provides a controllable
image manifold to test generalization beyond the specific circles seen during training.

• MNIST (28×28) Deng (2012) and CIFAR-10 (32×32) Krizhevsky et al. (2009).

For Two Moons, we use a small training set of ntrain = 50. For all image datasets, we use
ntrain = 1024 samples. Evaluation is performed against a held-out test set of 2048 samples. More
experiments, including high-dimensional synthetic data can be found in the appendix.

Methods Compared. We evaluate three generators derived from the EVF, plus a baseline:

• Exact-xt: Samples are drawn directly from the analytical density ρEVF(t, x). This rep-
resents the exact ODE solution at time t and is equivalent to a KDE. We vary the time
parameter t ∈ [0, 1).

• Euler-1: Our proposed one-step generator. We first sample xt ∼ ρEVF(t, x) and then apply
a single forward Euler step to evolve the sample to t = 1, as described in Section 3.2. We
vary the starting time t.

• D-ODE (rk2): A multi-step discretized ODE solver. We integrate the EVF from t = 0 to
t = 1 using a 2nd-order Runge-Kutta (rk2) method with a varying number of steps, s.

• Train: A baseline “generator” that simply consists of the training set itself. This helps
calibrate our NcPR metric, as it represents a case of pure memorization with zero novelty.

Metrics. As defined in Section 4, we report standard Precision/Recall (PR) and Novelty-
Conditioned PR (NcPR). For NcPR, we use thresholds of (pg, pr) = (0.95, 0.5), meaning we eval-
uate the precision of the 5% most novel generated samples against the manifold formed by the 50%
most novel real samples, and vice versa for recall. This stringent condition on generated samples
(pg = 0.95) focuses the evaluation squarely on the model’s ability to extrapolate.

5.2 RESULTS

Figure 3 summarizes our findings across all datasets. Each curve shows how a method’s PR/NcPR
trade-off evolves as its main parameter (t or s) is varied. The top row shows standard PR, while the
bottom row shows NcPR. Real images generated by these methods appear in Appendix A.

Discretization is the Key Generative Step. In both standard and novelty-conditioned evaluations,
the Exact-xt generator (blue curves) consistently exhibits poor performance: Either low recall or
low precision, often both.

In sharp contrast, both the Euler-1 (green) and D-ODE (red) generators achieve significantly higher
precision and recall, forming tight clusters in the desirable top-right corner of the plots. This estab-
lishes that numerical discretization is the critical element that transforms the generatively weak EVF
flow into a high-fidelity generative process.

NcPR Confirms Generalization is the Driving Force. The NcPR plots (bottom row) provide a
deeper insight, revealing that this performance gain is driven by true generalization. By focusing the
evaluation on novel samples, NcPR amplifies the performance gap. While the discretized methods
maintain their excellent scores, the performance of Exact-xt remains poor. The discretized methods,
however, excel at creating samples that are simultaneously novel and realistic (see also Appendix A).

The Train baseline (gray marker) further calibrates this interpretation. In the low-sample regime of
Two Moons (n = 50), its NcP drops to nearly zero, as expected for a method with no novelty, while
both discretized generators achieve a significantly higher NcP. This perfectly captures the intuitive
contrast between panels (a) and (c) of Figure 1. On the denser image datasets, Train retains a higher
NcP, showing that designing a novelty-conditioned metric is harder for larger training sets.

In summary, the empirical results are unequivocal. The continuous-time flow defined by the EVF
is a poor generator. However, its numerical discretization, even with a single step, introduces a
powerful generative bias that produces diverse, high-quality samples lying on the data manifold, far
from the training examples. Discretization is not a bug; it is the engine of generalization.
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Standard PR

(a) CIFAR-10 (b) MNIST (c) Variable Circles (d) Two Moons

NcPR (pg, pr) = (0.95, 0.5)

(e) CIFAR-10 (f) MNIST (g) Variable Circles (h) Two Moons

Figure 3: Precision–Recall (PR) comparison across the four datasets. Columns correspond to
datasets; the top row shows standard PR, and the bottom row shows Novelty-Conditioned PR (NcPR)
with novelty thresholds (pg, pr) = (0.95, 0.5) (see Section 4). Each point summarizes a genera-
tor/solver setting; gray markers show training baselines. See appendix for larger versions.

6 CONCLUSION

The remarkable generalization capability of flow-based models has been a puzzle. In this work,
we have argued that the solution lies not in the fidelity of the continuous ODE approximation, but
in the implicit bias of the numerical solvers used to integrate it. We isolated this phenomenon by
introducing the Empirical Velocity Field (EVF), a non-parametric estimator that allowed us to study
the flow dynamics without the confounding effects of neural network training.

Our analysis revealed a stark dichotomy. The exact ODE flow driven by the EVF is generatively
powerless, producing samples equivalent to a Kernel Density Estimate that collapses onto the train-
ing data. In contrast, its numerical discretization, even with a single Euler step, acts as a powerful
generative mechanism. We provided a theoretical analysis showing that this discretization has a
projection-like effect, concentrating samples onto the underlying data manifold. This explains how
flow models create novel, high-fidelity samples that intelligently fill the gaps in the training set. Ex-
tensive experiments, evaluated with our proposed Novelty-Conditioned Precision and Recall (NcPR)
metric, provided unequivocal empirical support for this conclusion.

This finding challenges the conventional wisdom that discretization error is something to be mini-
mized. For generative modeling with flows, it appears to be the very source of generalization. This
perspective opens up exciting new avenues for future research. Instead of focusing solely on more
accurate ODE solvers, perhaps we should be designing and analyzing numerical integration schemes
specifically for their generative properties. Understanding and controlling the implicit bias of differ-
ent solvers could be the key to developing a new generation of more efficient, more powerful, and
better-understood generative models.
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A GENERATED IMAGES

Figure 4: From top to bottom, they are generated by Exact-xt for t = 0.8, D-ODE(rk2) with 8 steps,
and Euler-1 with t = 0.8.
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B PROOF OF PROPOSITION 1

We derive the closed-form expressions for the density ρEVF(t, x) and the velocity field vEVF(t, x).
Let Xt = (1− t)Z + tY , where Z ∼ fZ and Y ∼ Pn = 1

n

∑n
i=1 δyi

are independent.

Density ρEVF(t, x). The density of Xt is the convolution of the densities of (1− t)Z and tY . The
density of (1 − t)Z is 1

(1−t)D
fZ(

·
1−t ). The ”density” of tY is 1

n

∑n
i=1 δtyi

(·). The convolution
gives:

ρEVF(t, x) =

∫
1

(1− t)D
fZ

(
x− z′

1− t

)(
1

n

n∑
i=1

δtyi
(z′)

)
dz′

=
1

n

n∑
i=1

1

(1− t)D
fZ

(
x− tyi
1− t

)
.

This is the expression for the density of Xt, which is a KDE of the scaled data {tyi}.

Velocity Field vEVF(t, x). The velocity field is defined as v(t, x) = 1
1−t (E[Y |Xt = x] − x). We

need to compute the conditional expectation E[Y |Xt = x]. Using Bayes’ rule for hybrid discrete-
continuous distributions:

P (Y = yi|Xt = x) =
fXt|Y (x|yi)P (Y = yi)∑n

j=1 fXt|Y (x|yj)P (Y = yj)
.

Given Y = yi, Xt = (1 − t)Z + tyi. The conditional density of Xt is therefore fXt|Y (x|yi) =
1

(1−t)D
fZ(

x−tyi

1−t ). Since P (Y = yi) = 1/n for all i, these terms cancel, and we get:

P (Y = yi|Xt = x) =

1
(1−t)D

fZ(
x−tyi

1−t )∑n
j=1

1
(1−t)D

fZ(
x−tyj

1−t )
=

fZ(
x−tyi

1−t )∑n
j=1 fZ(

x−tyj

1−t )
.

The conditional expectation is then:

E[Y |Xt = x] =

n∑
i=1

yiP (Y = yi|Xt = x) =

∑n
i=1 yifZ(

x−tyi

1−t )∑n
j=1 fZ(

x−tyj

1−t )
.

Substituting this into the formula for v(t, x) gives the desired result for vEVF(t, x).

C PROOF OF THEOREM 1 (PROJECTION EFFECT)

We first state and prove a standard result about nearest-point projections onto smooth manifolds.

Lemma 1 (Orthogonality of Projection). Let M be a C1 manifold in RD. Let y ∈ RD be a point
that admits a unique nearest-point projection π(y) ∈ M. Then the vector y − π(y) is orthogonal to
the tangent space of M at π(y), denoted Tπ(y)M.

Proof. Let u = π(y). Let γ : (−ϵ, ϵ) → M be any smooth curve on the manifold passing through
u at t = 0, i.e., γ(0) = u. The vector γ′(0) is a tangent vector in TuM. Since u is the point on M
that minimizes the distance to y, the function f(t) = ∥y − γ(t)∥2 must have a minimum at t = 0.
Its derivative must therefore be zero at t = 0:

d

dt
f(t)

∣∣∣
t=0

=
d

dt
⟨y − γ(t), y − γ(t)⟩

∣∣∣
t=0

= −2⟨γ′(0), y − γ(0)⟩ = −2⟨γ′(0), y − u⟩ = 0.

This holds for any tangent vector γ′(0) ∈ TuM. Therefore, the vector y − u is orthogonal to the
entire tangent space TuM.
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Proof of Theorem 1. Let ŷ =
∑n

i=1 wiyi be the generated point, where wi > 0 only if ∥x−yi∥ ≤ rh
due to the compact support assumption on fZ . Since ŷ is a convex combination of these “active” yi,
it must lie within their convex hull. Thus, ∥x − ŷ∥ ≤ rh. By the triangle inequality, for any active
training point yi:

∥yi − ŷ∥ ≤ ∥yi − x∥+ ∥x− ŷ∥ ≤ rh+ rh = 2rh.

Let u0 = π(ŷ) be the projection of ŷ onto M. The affine tangent space at u0 is Tu0
= u0 + Tu0

M.
By Lemma 1, the vector ŷ − u0 is orthogonal to the tangent space Tu0M. This implies that the
projection of ŷ onto the affine space Tu0 is u0 itself, i.e., PTu0

(ŷ) = u0.

Now, for any active yi, we have ∥u0 − yi∥ ≤ ∥u0 − ŷ∥+ ∥ŷ − yi∥. Because u0 is the closest point
on M to ŷ, ∥u0 − ŷ∥ ≤ ∥yi − ŷ∥, which gives ∥u0 − yi∥ ≤ 2∥ŷ − yi∥ ≤ 4rh. We can now apply
Assumption (ii) of the theorem with u = u0 and v = yi:

∥yi − PTu0
(yi)∥ ≤ κ∥PTu0M(yi − u0)∥2

= κ∥PTu0M(yi − ŷ + ŷ − u0)∥2

= κ∥PTu0
M(yi − ŷ)∥2 (Since ŷ − u0 ⊥ Tu0

M)

≤ κ∥yi − ŷ∥2 ≤ κ(2rh)2 = 4κr2h2.

Finally, consider the error vector ŷ − π(ŷ):

ŷ − π(ŷ) = ŷ − u0 = ŷ − PTu0
(ŷ)

=

n∑
i=1

wiyi − PTu0

(
n∑

i=1

wiyi

)

=

n∑
i=1

wi(yi − PTu0
(yi)) (by linearity of projection onto an affine subspace).

Taking the norm and using the triangle inequality and the fact that
∑

wi = 1:

∥ŷ − π(ŷ)∥ =

∥∥∥∥∥
n∑

i=1

wi(yi − PTu0
(yi))

∥∥∥∥∥
≤

n∑
i=1

wi∥yi − PTu0
(yi)∥

≤ max
i:wi>0

∥yi − PTu0
(yi)∥ ≤ 4κr2h2.

D PROOF OF THEOREM 2 (DIVERSITY)

Consider arbitrary open neighborhood around u and call it N(u). Define ϕ(x) = π(y(x)). Since
ϕ is a continuous function, ϕ−1(N(u)) is an open set in RD. Under Assumption (ii), x belongs to
this set. Thus it is an open neighborhood of x. Under Assumption (i), any neighborhood of x has
positive probability mass, so ϕ−1(N(u)) has positive probability mass. This implies for every open
neighborhood of u, the probability mass is positive.

E HIGH-DIMENSIONAL MANIFOLD VISUALIZATIONS

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(a) 5D Spheres (b) 10D Spheres (c) 20D Spheres (d) 50D Spheres (e) Swiss Roll (f) S-Curve

Figure 5: Sample visualizations of high-dimensional manifold datasets projected to 2D pixel grids.
Each image shows training samples from different manifold structures: concentric spheres in various
dimensions (5D, 10D, 20D, 50D), Swiss roll, and S-curve manifolds.

F 2D SYNTHETIC DATASET VISUALIZATIONS

(a) 2 Moons (b) 2 Circles (c) 8 Gaussians

Figure 6: Sample visualizations of 2D synthetic datasets converted to pixel grids. These datasets
represent classic machine learning benchmarks: two moons, two circles, and eight Gaussians distri-
butions.
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G HIGH-DIMENSIONAL MANIFOLD PR RESULTS

H 2D SYNTHETIC DATASET PR RESULTS
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(a) 5D
Vanilla

(b) 10D
Vanilla

(c) 20D
Vanilla

(d) 50D
Vanilla

(e) Swiss Roll
Vanilla

(f) S-Curve
Vanilla

Figure 7: Precision-Recall curves for high-dimensional manifold datasets using vanilla EVF evalu-
ation (no novelty filtering). Results show EVF performance across different manifold complexities
and dimensionalities. 16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

(a)
5D

Cond(95/50)

(b)
10D

Cond(95/50)

(c)
20D

Cond(95/50)

(d)
50D

Cond(95/50)

(e)
Swiss Roll

Cond(95/50)

(f)
S-Curve

Cond(95/50)

Figure 8: Precision-Recall curves for high-dimensional manifold datasets using conditional EVF
evaluation with novelty filtering (95th percentile for generated samples, 50th percentile for real
samples). This filtering focuses evaluation on novel, high-quality generated samples.
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(a) 8 Gaussians - Vanilla (b) Circle Images - Vanilla

Figure 9: Precision-Recall curves for 2D synthetic datasets using vanilla EVF evaluation. Results
demonstrate EVF performance on classic machine learning benchmarks converted to pixel space.

(a)
8 Gaussians
Cond(95/50)

(b)
Circle Images
Cond(95/50)

Figure 10: Precision-Recall curves for 2D synthetic datasets using conditional EVF evaluation with
novelty filtering (95/50 thresholds). The conditional evaluation provides more discriminative assess-
ment by focusing on novel generated samples.

I REAL IMAGE DATASET PR RESULTS

Enlarged versions of the PR plots for real images.
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(a)
CIFAR-10
Standard

(b)
CIFAR-10

Conditional

(c)
MNIST
Standard

(d)
MNIST

Conditional

Figure 11: Precision-Recall curves for real image datasets comparing standard EVF evaluation and
conditional evaluation with novelty filtering (95th percentile for generated samples, 50th percentile
for real samples). Results show EVF performance on (a,b) CIFAR-10 and (c,d) MNIST datasets.
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J LARGE LANGUAGE MODEL (LLM) USAGE

We used LLMs (GPT-5 and Gemini) to help with writing code and polishing the writing of the paper.
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