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Figure 1: We found that existing image style transfer methods based on a single style image (b)
either suffer from overfitting and semantic drift when performing text-driven style transfer or merely
achieve texture blending rather than truly learning the artist’s style during image-driven style transfer
(c). Moreover, there is currently a lack of a unified framework for addressing the various issues in
style transfer. For genuine artworks (a), the colors are never confined to just one piece (b). Therefore,
this paper designs a unified model that can learn the artist’s creative style and achieves style transfer
results that are indistinguishable from the artist’s creative style (d), (e) and (f) through different
pipeline. Meanwhile, the model also realizes color editing during the style transfer process for the
first time (g).

ABSTRACT

In the realm of image style transfer, existing algorithms relying on single refer-
ence style images encounter formidable challenges, such as severe semantic drift,
overfitting, color limitations, and a lack of a unified framework. These issues
impede the generation of high quality, diverse, and semantically accurate images.
In this study, we introduce StyleWallfacer, an innovative unified training and in-
ference framework, which not only addresses various issues encountered in the
style transfer process of traditional methods but also unifies the framework for
different tasks. This framework is designed to advance the development of this
field by enabling high-quality style transfer and text driven stylization. First, we
propose a semantic-based style injection method that uses BLIP to generate text
descriptions strictly aligned with the semantics of the style image in CLIP space.
By leveraging a large language model to remove style-related descriptions from
these descriptions, we create a semantic gap. This gap is then used to fine-tune
the model, enabling efficient and drift-free injection of style knowledge. Second,
we propose a data augmentation strategy based on human feedback, incorporating
high-quality samples generated early in the fine-tuning process into the training set
to facilitate progressive learning and significantly reduce its overfitting. Finally, we
design a training-free triple diffusion process using the fine-tuned model, which
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manipulates the features of self-attention layers in a manner similar to the cross-
attention mechanism. Specifically, in the generation process, the key and value of
the content-related process are replaced with those of the style-related process to
inject style while maintaining text control over the model. We also introduce query
preservation to mitigate disruptions to the original content. Under such a design, we
have achieved high-quality image-driven style transfer and text-driven stylization,
delivering high-quality style transfer results while preserving the original image
content. Moreover, we achieve image color editing during the style transfer process
for the first time, further pushing the boundaries of controllable image generation
and editing technologies and breaking the limitations imposed by reference images
on style transfer. Our experimental results demonstrate that our proposed method
outperforms state-of-the-art methods.

1 INTRODUCTION

Art encapsulates human civilization’s essence, epitomizing our imagination and creativity, and has
yielded innumerable masterpieces. Online, you may encounter a painting that profoundly affects
you, yet you may find it hard to describe the artist’s unique style or locate more similar works. This
highlights a key issue in image generation: style transfer.

Recently, numerous excellent works have conducted research on this issue, which are mainly divided
into three categories: text-driven style transfer Rout et al. (2025); Sohn et al. (2023a), image-driven
style transfer Chung et al. (2024); Liu et al. (2021); Huang & Belongie (2017) and text-driven
stylization Jiang & Chen (2024); Brooks et al. (2023); Tumanyan et al. (2023). The mainstream
approach of image-driven style transfer is to decouple the style and content information of a reference
style image, and then inject the style information as an additional condition into the model’s generation
process Chen et al. (2024); Wang et al. (2024c). This enables the model to generate new content that
is similar to the reference style image in terms of texture and color. Alternatively, a unique identifier
can be used to characterize the style of the style image, and the model can be fine-tuned to learn new
stylistic knowledge for text-driven style transfer Ruiz et al. (2023); Han et al. (2023). This allows
the model to recognize and generate corresponding style images using the identifier. For text-driven
stylization, most methods involve blending the pre-trained model’s prior style knowledge with the
texture of the target image to achieve the final style transfer result Jiang & Chen (2024). However, as
shown in Figure 1 (c), these models generally suffer from the following issues:

Limited color domain: Both the style-content disentanglement-based and identifier-based fine-
tuning approaches commonly face the problem of a restricted color domain in the generated images.
Specifically, the color distribution of the generated images is entirely consistent with that of the
single reference style image. For example, in the case of Van Gogh’s paintings Ojha et al. (2021b) as
shown in Figure 1 (a), great artists are by no means limited to the color palette of a single artwork in
Figure 1 (b). Therefore, such generation results are unreasonable. For more detailed visualization
results and discussions, please refer to Appendix F.1.

Failure of text guidance: Due to the architectural flaws in the style-content disentanglement-based
methods and the mismatch between text and image in the style information injection of the identifier-
based fine-tuning methods, models exhibit significant semantic drift, which refers to the phenomenon
of inconsistency or deviation in semantics between the generated image and the input text prompt in
the T2I model. This not only leads to chaotic generation but also results in the loss of the model’s
ability to handle complex text prompts. For more detailed visualization results and discussions, please
refer to Appendix F.2.

Risk of overfitting : Due to the extremely limited number of training samples, traditional approaches
are generally prone to overfitting. This results in a loss of structural diversity in the generated content.
For more detailed visualization results and discussions, please refer to Appendix F.3.

Lack of a unified framework: Due to the significant differences between various style transfer tasks,
most existing style transfer methods are only capable of handling one specific task, and there is a lack
of a unified framework to integrate these tasks.

These problems, much like the "sophons" in "The Three-Body Problem" Liu (2014) that restrict
human technological progress, limit people’s imagination for style transfer. In fact, truly good style
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transfer enables the model to learn and imitate the artist’s style, rather than mechanically copying
the textures of reference images, thus achieving true artistic creation. However, most of the above-
mentioned studies are limited to using a single style image as reference, thus suffering from the
aforementioned problems. In few-shot style transfer, however, the number of reference style samples
increases; the model is no longer constrained to learning the sole texture present in one sample,
but can instead acquire richer stylistic knowledge. Therefore, we aim to bridge research between
these two areas, leveraging ideas from few-shot style transfer to assist single-shot style transfer in
achieving more realistic stylization results. Just as in "The Three-Body Problem", humanity uses
the "Wallfacer Plan" to break the technological blockade imposed by the "sophons", to break the
limitations of "sophons" in style transfer, this paper proposes a novel unified style transfer framework,
called StyleWallfacer, which consists of three main components:

Firstly, a style knowledge injection method based on semantic differences is proposed (Figure 2
(a)). By using BLIP Li et al. (2022) to generate text descriptions that are strictly aligned with the
target style image in CLIP space Radford et al. (2021), and then leveraging LLM to remove the
style-related descriptions, a semantic gap is created. This gap allows the model to maintain its prior
knowledge as much as possible during training, focusing solely on learning the style information.
As a result, the model captures the most fundamental stylistic elements of the style image (e.g., the
artist’s brushstrokes). As shown in Figure 1 (d), this not only enables the generation of new samples
with rich and diverse colors but also preserves the model’s ability to handle complex text prompts.

Secondly, a progressive learning method based on human feedback (HF) is employed (Figure 5).
At the beginning of model training, the model is trained using a single sample. During the training
process, users are allowed to select high-quality samples generated by the model and add them to the
training set. This effectively expands the single-sample dataset and significantly mitigates overfitting
of the model.

Thirdly, we propose a brand-new training-free triple diffusion “style-structure” diffusion process
(Figure 2 (b) and (b1)). It explores the impact of different noise thresholds on the model’s generation
effects by using the diffusion process with a smaller noise threshold as the main process to preserve
the content information of the original image, and employing the diffusion process with a larger noise
threshold as the style guidance process. Meanwhile, the Key and Value from the self-attention layer
during this process are extracted to replace the Key and Value in the main diffusion process and obtain
the initial noise of the style image to be transferred through DDIM inversion Song et al. (2021). The
Query from the diffusion process of the inverted noise is extracted and fused with the Query in the
main diffusion process, serving as a structural guidance for the main diffusion process. Meanwhile,
the pre-trained style LoRA Hu et al. (2022) is used as a style guide to direct the model to conduct
image-driven style transfer. This approach thus achieves high-quality style transfer results as shown
in Figure 1 (e) and (f). During the generation process, text prompt is employed as a condition, and in
combination with the aforementioned structure, it also enables color editing of the model during the
style transfer process as shown in Figure 1 (g).

Our main contributions are summarized as follows:

(1) We propose the first unified style transfer framework that simultaneously achieves high-quality
style transfer from the perspective of the task. Meanwhile, for the first time, it enables text-based
color editing during the style transfer process.

(2) We propose a style knowledge injection method based on semantic differences, which achieves
efficient style knowledge injection without affecting the model’s semantic space and suppresses
semantic confusion during the style injection process.

(3) We propose a progressive learning method based on human feedback for few-shot datasets, which
alleviates the model overfitting caused by insufficient data and significantly improves the generation
quality after model training.

(4) We propose a novel training-free triple diffusion process that achieves high-quality style transfer
results while retaining the control ability of text prompts over the generation results, and for the first
time enables color editing during the style transfer process.

(5) Our experiments demonstrate that the proposed method in this paper addresses many issues
encountered by traditional methods during style transfer, achieving high-quality style generation
results rather than merely texture blending, and delivering state-of-the-art performance.
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2 STYLEWALLFACER

2.1 OVERALL ARCHITECTURE OF StyleWallfacer

As shown in Figure 2, StyleWallfacer mainly consists of two parts: First is the semantic-based
style learning strategy, which aims to guide the model to learn the most essential style features in
artworks based on the semantic differences between images and their text descriptions during the
model fine-tuning process, truly helping the model understand the artist’s style. It also employs a data
augmentation method based on human feedback to suppress overfitting when the model is fine-tuned
on a single image, thereby achieving realistic text-driven style transfer.
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Figure 2: Illustration of the StyleWallfacer Framework. In the fine-tuning stage (a), we use a
semantic-based style knowledge injection method with human feedback (see Figure 5) fine-tuning to
help the model learn the style knowledge of a single image, obtaining fine-tuned style LoRA weights.
This enables powerful text-driven style transfer (c). In the inference stage (b), we design a triple
training-free diffusion pipeline (denoted as ①, ②, ③). It use the diffusion denoising process with
a smaller threshold tss as the main process and extract Key Kl

t and Value Vl
t from the process with

a larger threshold tls to guide the main process in style and text. Additionally, we use the DDIM
inversion latent’s denoising diffusion process as the third guiding process, extracting its Query Qi

t to
inject into the main process, achieving high-quality image-driven style transfer, text-driven stylization
and color edit (b1). For more detailed introductions to the pipelines, please refer to Appendix B.3.

The second part is the training-free triple diffusion process, which is designed using the previously
fine-tuned LoRA weights. This section comprises three newly designed pipelines tailored to address
different style transfer problems. By adjusting the self-attention layers of three denoising networks
that share weights (denoted as ), it achieves high-quality style control and, for the first time, enables
text prompts to control image colors during the style transfer process, solving the traditional method’s
shortcomings of monochromatic colors, simple textures, and lack of text control when transferring
styles based on a single image.

2.2 SEMANTIC-BASED STYLE LEARNING STRATEGY

The semantic-based style learning strategy primarily aims to fine-tune text-to-image (T2I) models
using their native “language” to enhance their comprehension of the knowledge humans intend them
to learn during the fine-tuning process. Taking Stable Diffusion as an example, there is a significant
discrepancy between the image semantics understood by the pre-trained CLIP and the intuitive
human understanding of image semantics. Therefore, to better “communicate” with the pre-trained
T2I model during fine-tuning, this paper employs a method of reverse-engineering the semantic
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information of image I in the CLIP space through BLIP Li et al. (2022):

TCLIP = BLIP (I) (1)

where TCLIP denotes the image prompt derived through BLIP.

Although such methods enable us to obtain the semantic information corresponding to an image in
the CLIP space, this text description cannot be directly employed in the fine-tuning process. This is
because the description TCLIP encompasses all information pertaining to the image, including content,
style, and other details understood by CLIP. Utilizing this comprehensive description for fine-tuning
still results in the model’s inability to comprehend human fine-tuning intentions, thereby preventing
it from learning the stylistic information of the dataset.

Therefore, our StyleWallfacer transforms TCLIP by creating an semantic discrepancy among de-
scriptions. By incorporating a large language model to perform subtle semantic edits on TCLIP,
descriptions related to image style are selectively removed:

Tw/oS = LLM (TCLIP) (2)

where Tw/oS denotes the text description after removing the style information, and LLM stands for
large language model.

After such processing, we obtain the image I and its corresponding text description Tw/oS in the
CLIP space, from which stylistic descriptions have been removed. As shown in Figure 2 (a), fine-
tuning a pre-trained T2I model using these image-text pairs enables it to focus more effectively on
understanding stylistic information, thereby circumventing unnecessary semantic drift.

2.3 TRAINING-FREE TRIPLE DIFFUSION PROCESS

After fine-tuning, the model has essentially learned the most fundamental style knowledge from
the reference style image. Therefore, how to activate this knowledge so that it can be utilized for
image-driven style transfer has become an extremely critical issue.

Unlike traditional one-shot style transfer algorithms that require the reference style image as input
during style transfer, we aim to rely solely on the pre-trained style LoRA obtained in Section 2.2
for style transfer. Therefore, we cannot adopt a method similar to StyleID Chung et al. (2024) to
manipulate the features in the self-attention layer as if they were cross-attention features, with the
features from the style image Is serving as the condition for style injection.

945st  845st  745st  645st  545st  445st  345st  Original 
Image

Figure 3: Illustration of the Impact of Noise Schedule Threshold ts on Model Generation
Results.

However, as shown in Figure 3, we observe that when initializing the noisy latent X0 with the original
image and using the U-Net to denoise it, the larger the noise schedule threshold ts, the more stylized
the generated image will be, losing the original image’s content information and retaining only
its basic semantics. Conversely, the smaller the noise schedule threshold ts, the more the model’s
generation tends to preserve the original image’s content information, while reducing the diversity
and stylization in the generation process.

Therefore, we contemplate: Is it possible to fully leverage this characteristic by employing a diffusion
process with a smaller ts as the main diffusion process, and using a diffusion process with a larger ts
as the stylistic guiding process? Meanwhile, we can utilize the inverted latent obtained through DDIM
inversion as the noisy latent for the third diffusion process, and harness the residual information from
its denoising process as content guidance. In this way, we aim to achieve high-quality style transfer
results while preserving the image content.

To this end, as shown in Figure 2 (b), we first use the VAE encoder to transform the image Ic to be
transferred from the pixel space to the latent space, obtaining F0. By setting a larger noise schedule
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threshold tls, we add noise to F0 (at t = 0) to obtain Fl (at t = tls). Similarly, by using a smaller
noise schedule threshold tss , we obtain Fs (at t = tss). Additionally, we use DDIM inversion to invert
F0 to Gaussian noise Fi (at t = T ). Then, using the same denoising U-Net, we denoise Fs, Fl, and
Fi respectively. As shown in Figure 2 (b1), during the entire denoise process of latent Fs, we transfer
Fs to Fl by injecting the Key Kl

t and Value Vl
t collected from Fl into the self-attention layer, instead

of the original Key Ks
t and Value Vs

t . However, merely implementing this substitution can result in
content disruption, as the content of the Fs representation would be progressively altered with the
changes in the attended values.

Consequently, we propose a query preservation mechanism to retain the original content. Simply, as
shown in Figure 2 (b1), we fuse the Query Qi

t of DDIM inverted latent Fi with the original Query
Qs

t to get Query Qf
t and inject it to the main denoise process instead of the original Query Qs

t .
These style injection, query preservation and structural residual injection processes at time step t are
expressed as follows:

Qf
t = βQi

t + (1− β)Qs
t , (3)

ϕl
out = Attn(Qf

t ,K
l
t,V

l
t), (4)

where β ∈ [0, 1]. µ(·), σ(·) and ϕl
out denote channel-wise mean, standard deviation and the result of

self-attention calculation after replacement, respectively. In addition, we apply these operations on
the decoder of U-net in SD. We also highlight that the proposed method can adjust the degree of style
transfer by changing noise schedule threshold tls and tss. Specifically, lower tls and tss maintains more
content, while higher tls and tss strengthens effects of style transfer.

2.4 DATA AUGMENTATION FOR SMALL SCALE DATASETS BASED ON HUMAN FEEDBACK

Although this paper proposes a more robust style knowledge injection method than DreamBooth Ruiz
et al. (2023) in Section 2.2, fine-tuning models with a single sample remains challenging. Therefore,
inspired by human feedback reinforcement learning (HFRL) Shen et al. (2025), this paper proposes a
human feedback-based data augmentation method for small-scale datasets to compensate for dataset
insufficiency and mitigate overfitting.
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Figure 4: Illustration of the Best Generation Results When Fine-tuning the Model Directly with
a Single Image.

Specifically, when the model is first trained on a single style image, as shown in Figure 4, although
the injection of style knowledge does not generalize well to all the prior knowledge of the model
in the early stages of training, and some of the generated results do not match the reference style
consistently, resulting in an asynchronous phenomenon in the injection of style knowledge. However,
there are still many excellent samples in the model’s generated results. The reason for the emergence
of these samples is that the prior knowledge represented by these samples is similar to the style image
used in training in the CLIP space. This makes it easier for the model to transfer style knowledge to
these pieces of knowledge during training. Therefore, it is possible to select samples that meet the
style requirements from the large number of generated samples and add them to the training set for
further fine-tuning of the model.

To this end, as shown in Figure 5, we divide the model’s fine-tuning process into three stages. In the
first stage, which is the single-sample fine-tuning stage, we generate a large number of new samples
using a text prompt that reflects the basic semantics of the reference image after the model has been
trained. We then manually select the 50 samples that best match the stylistic features of the reference
image and add them to the training set for the second stage of fine-tuning. In the second stage of
fine-tuning, the basic idea is similar to the first stage. We expand the training set from 50 to 100
images. Finally, we fine-tune the model using these 100 samples to obtain the final style LoRA.

Through this data augmentation strategy, the overfitting phenomenon of the model during the fine-
tuning process is greatly alleviated. The fine-tuned model is able to generate more diverse results and
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Figure 5: Illustration of the Small Scale Datasets Augmentation Method Based on Human
Feedback.

generalize the style knowledge to all the prior knowledge of the model, rather than being limited to a
single sample.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTING

Baselines Our baseline list in one-shot text-driven style transfer includes DreamBooth Ruiz et al.
(2023), a LoRA Hu et al. (2022) version of DreamBooth, Textual Inversion Gal et al. (2023), and
SVDiff Han et al. (2023). For the text-driven stylization task, the baselines we selected include Artist
Jiang & Chen (2024), InstructPix2Pix Brooks et al. (2023) , and Plug-and-play (PnP) Tumanyan
et al. (2023). And baseline list in one-shot image-driven style transfer includes StyleID Chung et al.
(2024), AdaAttn Liu et al. (2021), AdaIN Huang & Belongie (2017), AesPA-Net Hong et al. (2023)
and InstantStyle-Plus Wang et al. (2024c).

Datasets We selected one image from each of the three widely used 10-shot datasets, including
landscapes Wang & Tang (2009), Van Gogh houses Ojha et al. (2021b), and watercolor dogs Sohn
et al. (2023b), to form our one-shot datasets, in order to quantitatively evaluate the proposed method
from a better perspective. To test our model, we first used FLUX Labs (2024) to generate 1,000
images of houses, 1,000 images of dogs and 1,000 images of mountains based on the prompts "a
photo of a house", "a photo of a dog" and "a photo of a moutain", respectively. These images served
as the style-free images to be transferred.

Metric For image style similarity, we compute CLIP-FID Parmar et al. (2022), CLIP-I score,
CLIP-T score and DINO score Zhang et al. (2023a) between 1,000 samples with the full few-shot
datasets. For image content similarity, we compute the LPIPS Parmar et al. (2022) between 1,000
samples and the source image to evaluate the content similarity between the style-transferred images
and the original images. Intra-clustered LPIPS Ojha et al. (2021a); Zhang et al. (2018) of 1,000
samples is also reported as a standalone diversity metric.

Detail For other details of the experiments and StyleWallfacer, please refer to Appendix B.

3.2 QUALITATIVE COMPARISON

One-shot Text-driven Style Transfer Experimental Qualitative Results. As depicted in Figure 6,
StyleWallfacer outperforms other methods in generating diverse and semantically accurate images.
Unlike other methods that suffer from overfitting and semantic drift when trained on single-style
images, StyleWallfacer employs multi-stage progressive learning with human feedback to reduce
overfitting and enhance diversity. It also avoids identifiers for style injection, minimizing semantic
drift and enabling precise style generation based on prompts.

Text-driven Stylization Experimental Qualitative Results. As shown in Figure 7, other methods,
except StyleWallfacer, although have completed the task of style transfer, the results obtained after the
transfer are far from the authentic style of the painter and fall short of the expected level. However,
StyleWallfacer has achieved the best balance between image style transfer and content preservation.
The images after style transfer not only closely match the painter’s authentic style but also feature
finer details and a high degree of fidelity to the original image content.

One-shot Image-driven Style Transfer Experimental Qualitative Results. As shown in Figure 8

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

1
0

-s
h

o
t 

V
a
n

 G
o
g

h
 h

o
u

s
e
s

 A house

Dream
Booth

SVDiff

Ours

Textual 
Inversion

Dream
Booth
LoRA

Reference Image

A man A dog

Figure 6: Qualitative Comparison of Text-driven Style Transfer Results on Van Gogh houses
Dataset Using Different Methods. Due to page limitations, we have placed some of the experimental
results in Appendix H.1. House
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Figure 7: Qualitative Comparison of Text-driven Stylization Results Using Different Methods.
Due to page limitations, we have placed some of the experimental results in Appendix H.2.

(a), a visual comparison of the style transfer results of the StyleWallfacer model with other methods
is presented. Clearly, the StyleWallfacer model achieves the best results in terms of image structure
preservation and style transfer. Compared with the results of other methods, the style transfer results
of StyleWallfacer have truly realized the style transfer, as if the painter himself had redrawn the
original image according to his painting style, rather than simply blending the textures and colors of
the original and reference images. Moreover, in terms of detail, the results generated by StyleWallfacer
feature more refined texture details, while other methods generally suffer from noise and damage.

One-shot Image-driven Style Transfer & Color Edit Experimental Qualitative Results. As
depicted in Figure 8 (b), the visualization results of image-driven style transfer and color editing are
presented. Analysis of the figure reveals that the proposed method in this paper not only accomplishes
style transfer but also retains the model’s controllability via text prompts. This enables synchronous
guidance of the model’s generation process by both "text and style", thereby enhancing controllability.
Moreover, the images obtained after style transfer maintain a high degree of content consistency with
the original images, achieving a better balance between generation diversity and controllability.

3.3 QUANTITATIVE COMPARISON

Method Landscapes (one-shot) Van Gogh Houses (one-shot) Watercolor Dogs (one-shot)
CLIP-FID ↓ DINO ↑ CLIP-I ↑ I-LPIPS ↑ CLIP-FID ↓ DINO ↑ CLIP-I ↑ I-LPIPS ↑ CLIP-FID ↓ DINO ↑ CLIP-I ↑ I-LPIPS ↑

DreamBooth* Ruiz et al. (2023) 29.25 0.8565 0.8611 0.7878 28.95 0.8480 0.8224 0.7553 35.31 0.8224 0.7648 0.6570
DreamBooth+LoRA* Hu et al. (2022) 29.54 0.8489 0.8628 0.7200 31.08 0.8316 0.8000 0.6611 37.78 0.8510 0.8124 0.7145

SVDiff* Han et al. (2023) 29.53 0.8406 0.8648 0.7301 27.76 0.8641 0.8642 0.7435 45.09 0.7670 0.7854 0.6815
Text Inversion* Gal et al. (2023) 30.58 0.8425 0.8513 0.6947 29.35 0.8488 0.8245 0.7616 27.77 0.8393 0.7964 0.6941

Ours 28.34 0.8649 0.8712 0.8388 26.44 0.8649 0.8732 0.7084 26.64 0.8608 0.8540 0.7205

Table 1: Quantitative Comparisons to SOTAs on Text-driven Style Transfer Task. The results
that achieve the highest and second-highest performance metrics are respectively delineated in red
and blue.

As shown in Table 1, Table 2 and Table 3, the method proposed in this paper achieved the best results
compared with all the baseline methods, further demonstrating the effectiveness of the proposed
method from a quantitative perspective.
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Figure 8: Qualitative Comparison of Image-driven Style Transfer and Color Edit Results on
Van Gogh houses Dataset Using Different Methods. Due to page limitations, we have placed some
of the experimental results in Appendix H.3 and H.4 and some comparison results with GPT-4o
OpenAI (2024) in Appendix G.1.

Method House→Van Gogh style (text-driven stylization) House→Monet style (text-driven stylization) House→Cezanne style (text-driven stylization)
CLIP-FID ↓ DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS ↓ CLIP-FID ↓ DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS ↓ CLIP-FID ↓ DINO ↑ CLIP-I ↑ CLIP-T ↑ LPIPS ↓

Artist Jiang & Chen (2024) 70.75 0.7925 0.6260 0.2989 0.8060 68.74 0.6699 0.4910 0.2755 0.7815 79.27 0.6587 0.5302 0.2830 0.7494
InstructPix2Pix Brooks et al. (2023) 72.36 0.7464 0.5680 0.2378 0.3677 85.05 0.6499 0.4696 0.2446 0.4135 77.23 0.6424 0.5336 0.2693 0.4151

Plug-and-play Tumanyan et al. (2023) 57.96 0.7977 0.6776 0.3086 0.4295 79.87 0.6638 0.5024 0.2545 0.2800 73.86 0.6576 0.5506 0.2777 0.3295
Ours 45.69 0.8075 0.6870 0.3117 0.7444 57.69 0.7049 0.5788 0.2859 0.7268 63.83 0.6761 0.5816 0.3145 0.7042

Table 2: Quantitative Comparisons to SOTAs on Text-driven Stylization Task.

3.4 ABLATION STUDY

To prove that the proposed techniques can indeed effectively improve the performance of Style-
Wallfacer in various generation scenarios, we conduct extensive ablation studies focusing on these
techniques and leave them in Appendix E due to page limit. And we have also understood the source
of StyleWallfacer’s superiority from a mathematical perspective, for details see Appendix D.

4 CONCLUSION

In this work, we focus on building a unified framework for style transfer by analyzing semantic
drift, overfitting, and the true meaning of style transfer that previous works have failed to settle, and
accordingly proposing a new method named StyleWallfacer. StyleWallfacer includes a one-stage
fine-tuning process and a training-free inference framework that aims to solve these issues, namely
the semantic-based style learning strategy, the training-free triple diffusion process, and the data
augmentation method for small scale datasets based on human feedback. With these designs tailored
to style transfer, our StyleWallfacer achieves convincing performance on text/image-driven style
transfer scenarios, text-driven stylization, and image-driven style transfer with color edit, while
solving problems before. In Appendix I and J, we will discuss possible limitations and potential
future works of StyleWallfacer.

Method Mountain→Landscapes (one-shot) Houses→Van Gogh Houses (one-shot) Dogs→Watercolor Dogs (one-shot)
CLIP-FID ↓ DINO ↑ CLIP-I ↑ LPIPS ↓ CLIP-FID ↓ DINO ↑ CLIP-I ↑ LPIPS ↓ CLIP-FID ↓ DINO ↑ CLIP-I ↑ LPIPS ↓

AdaAttn Liu et al. (2021) 60.92 0.7444 0.7200 0.7613 70.43 0.7839 0.5825 0.7046 40.05 0.7455 0.7556 0.6995
AdaAIN Huang & Belongie (2017) 64.03 0.7590 0.6942 0.7005 73.09 0.7892 0.5516 0.7504 37.82 0.7708 0.7530 0.7170

AesPA-Net Hong et al. (2023) 61.71 0.7554 0.6996 0.6592 65.65 0.7887 0.5979 0.7380 39.92 0.7438 0.7645 0.6677
StyleID Chung et al. (2024) 47.45 0.7518 0.7564 0.6062 55.79 0.7996 0.6501 0.7183 36.83 0.7615 0.7613 0.6859

InstantStyle-Plus Wang et al. (2024c) 59.04 0.7595 0.7381 0.3909 64.32 0.7582 0.6077 0.2903 41.04 0.7437 0.7633 0.3132
Ours 45.14 0.8124 0.8210 0.5917 37.19 0.8346 0.7309 0.7437 35.40 0.8041 0.7852 0.6848

Table 3: Quantitative Comparisons to SOTAs on Image-driven Style Transfer Task.
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APPENDIX

OVERVIEW

This supplementary material provides the relsted works, additional experiments and results to further
support our main findings and proposed StyleWallfacer. These were not included in the main paper
due to the space limitations. The supplementary material is organized as follows:
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A RELATED WORKS

A.1 ONE-SHOT TEXT-DRIVEN STYLE TRANSFER

The primary objective of one-shot text-driven image transfer is to generate images that are consistent
with the content specified by a text prompt and the style of a single reference image. Recent
advancements have concentrated on developing feature inversion techniques and implementing
efficient fine-tuning strategies. In the context of feature inversion, Textual Inversion Gal et al. (2023)
generates pseudo-words in the embedding space to represent specific styles. By embedding these
pseudo-words during the generation process, the model can produce images that reflect the desired
style. In contrast, data-driven strategies such as DreamBooth Ruiz et al. (2023) and SVDiff Han et al.
(2023) bind image style information to a specific identifier through fine-tuning. During generation,
the inclusion of this identifier in the text prompt enables the model to recognize and reproduce
the associated style. However, when dealing with single-sample data, these methods are prone
to issues such as model overfitting and semantic drift, which significantly impair the quality and
diversity of the generated images. To address these challenges, this paper proposes a semantic-based
style knowledge injection method and a human feedback-based small dataset enhancement strategy,
effectively resolving the aforementioned limitations of traditional models.

A.2 ONE-SHOT IMAGE-DRIVEN STYLE TRANSFER

The primary objective of one-shot image-driven style transfer is to perform style transfer on a target
image based on the stylistic information extracted from a single reference style image. The main ideas
of traditional one-shot image-driven style transfer methods lie in two aspects. The first is to use neural
networks to extract high-level features from the style and content images and then fuse these features
using a model. The second is to structure and encode the structural and stylistic information of the
image and recombine the stylistic information of the style image with the structural information of
the content image. A representative method for high-level feature fusion is AdaIN Huang & Belongie
(2017), which aligns the mean and variance of the content features extracted by the neural network
with those of the style features, thereby achieving instance-based style transfer results. However, the
generated results are relatively coarse, with large areas of color blocks appearing in the images. To
further refine the generated results, AesPA-Net Hong et al. (2023) uses a more advanced Transformer
network to fuse the content and style features and employs an image refinement branch to optimize
the generated results, making the stylized generation results more delicate. In terms of feature
disentanglement and recombination, InstantStyle-Plus Wang et al. (2024c) uses ControlNet Zhang
et al. (2023b) and DDIM Inversion to disentangle the structural information of the image and a style
guide to extract information from the style image. Finally, based on these two parts of information, a
pre-trained text-to-image model is used to generate the stylized image. StyleID Chung et al. (2024)
uses DDIM Inversion to obtain the latent representations corresponding to the content and style
images and fuses them using AdaIN to get the initial latent of the model. During the denoising
process, the key and value in the self-attention layer are replaced with the key and value from the
style latent denoising, and the original query is combined with the content latent to ultimately achieve
high-quality stylized generation results. However, these methods all share a common drawback: they
can only rigidly learn the texture and color features of the style image and simply replace the texture
and color of the content image based on these features, resulting in generated images that lack true
stylistic features and merely possess some of the textures and colors of the style image. The method
proposed in this paper aims to address this issue and achieve artist-level style transfer results.

A.3 TEXT-DRIVEN IMAGE STYLIZATION

The primary objective of text-driven image stylization is to perform style transfer on the target image
based on the stylistic descriptions provided in the text prompt. This process primarily leverages the
rich stylistic prior knowledge inherent in the pre-trained models. Prior to the widespread adoption
of diffusion models, text-driven image manipulation was predominantly achieved by optimizing an
image representation Kwon & Ye (2022); Michel et al. (2022); Wang et al. (2024a); Cai et al. (2023)
or the distribution of images Gal et al. (2022); Kim et al. (2022); Cai et al. (2025), utilizing specific
forms of CLIP loss Radford et al. (2021). Subsequently, it was demonstrated that text-to-image (T2I)
diffusion models could be adapted for analogous optimization schemes Hertz et al. (2023); Jiang
et al. (2023); Kawar et al. (2023); Poole et al. (2023); Cai et al. (2024). For instance, Instruct-Pix2Pix
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Brooks et al. (2023) fine-tunes the diffusion model with a language model to facilitate generalized
editing tasks. Diffstyler Huang et al. (2025) learns a content and style-specific denoiser to achieve
disentanglement. FreeStyle Liu et al. (2024) modulates the U-Net features to enable training-free
stylization. More recent research has shifted focus to stylized image generation, where the content is
provided as a prompt Chen et al. (2023); Gao et al. (2024); Hertz et al. (2024); Wang et al. (2024b;c);
Tian et al. (2023). However, these methods are not directly related to text-driven stylization. Recent
work directly related to text-driven image stylization is Artist Jiang & Chen (2024), which employs
DDIM inversion and attention-related operations to achieve style guidance and structure preservation
during the model’s generation process. However, these methods suffer from the problem of text-style
mismatch, which is partly due to the failure of text guidance and partly due to the imbalance between
content preservation and style transfer. This paper addresses the aforementioned issues through an
innovative triple diffusion process, achieving high-quality text-driven image stylization.

B IMPLEMENTATION DETAIL

B.1 MODEL

Our StyleWallfacer adopts Stable Diffusion as its foundational model. To ensure fairness, StyleWall-
facer and all baseline methods utilize the same base model, specifically SDXL Podell et al. (2024).
However, StyleWallfacer is likely compatible with newer versions of SD, as the fine-tuning techniques
proposed in this work are not contingent upon the specific architecture of the current version. During
the two-stage fine-tuning process, we apply LoRA from the PEFT Xu et al. (2023) framework to the
UNet of SD, with a rank of r = 8. By default, LoRA is applied to the parameters to_k, to_q, to_v,
to_out.0, add_k_proj, and add_v_proj. The text encoder τ is neither fine-tuned nor subjected to
LoRA adaptation. When removing style-related descriptions from text using LLMs, we selected the
Meta Llama-3.2-1B AI (2024). In reality, LLMs with larger parameter sizes might perform better in
this regard. However, this goes beyond the scope of this study.

B.2 TRAINING

For the first stage, we train the model for 1500 steps, with batch size 4 and learning rate 1× 10−4.
During this periods, gradient checkpointing and 8bit Adam are also applied to save VRAM. All the
experiments running StyleWallfacer in this work are done on four NVIDIA A100 GPUs with 80GB
VRAM.

B.3 INFERENCE

The proposed method in this paper is capable of performing a diverse range of image style transfer
tasks. However, slight variations in the pipeline may exist between different tasks. This section will
elaborate on the pipelines employed by StyleWallfacer for accomplishing distinct tasks. As shown in
Figure 9, the pipelines employed by StyleWallfacer for different tasks are illustrated.

Text-driven Style Transfer. As shown in Figure 9 (a), when performing text-driven style transfer, the
model employs the classic Stable Diffusion pipeline for generation, leveraging the style knowledge
from the style LoRA to guide the model in producing images that match the text description. In this
process, the text description does not need to include any style-related descriptors, such as "Van Gogh
style". Instead, it should focus solely on describing the content and structure of the desired image.

Text-driven Styliztion. As shown in Figure 9 (b), when performing text-driven stylization, the model
employs the triple diffusion pipeline designed in this paper for generation. There is no need to load
LoRA weights into the U-Net. Simply describe the main content of the image to be transferred and
add style-related trigger words. For example, if the content of the image to be transferred is a house
and the user wishes to transfer it to the Van Gogh style, the prompt "A house in Van Gogh style" can
be used, and the model will complete the style transfer task.

Image-driven Style Transfer. As shown in Figure 9 (b), When performing image-driven style
transfer, the model also employs the triple diffusion pipeline for generation. But it is necessary to
load the pre-trained LoRA weights corresponding to the desired style, as proposed in this paper, into
the U-Net. During style transfer, a brief description of the image’s main content should be provided
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Figure 9: Illustration of the Pipelines Employed by StyleWallfacer for Different Tasks.
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as the text prompt. There is no need to include any style-related trigger words; simply describe the
basic content of the image to be transferred.

Text-driven Style Transfer & Color Edit. As shown in Figure 9 (b), for text-driven style transfer
& color edit task, the same pipeline is used as for image-driven style transfer. Simply add color
descriptions to the text prompt, such as "A blue house."

B.4 DETAILS ABOUT THE BENCHMARK

Traditional one-shot style-transfer algorithms merely fuse the texture of a reference image onto a
content image; consequently, the widely used one-shot benchmarks, despite their large style counts,
only assess how well a model mimics that one reference.

In contrast, we treat an artist’s style as an abstract concept emerging from commonalities across
multiple works. Therefore, we deliberately discard the conventional evaluation mindset and instead
adopt the few-shot protocols established in the literature. These protocols are more demanding, as
they force the model to distill domain-level characteristics from just a handful of exemplars. Through
this evaluation strategy, we can better assess the model’s ability to learn abstract stylistic knowledge
rather than merely focusing on superficial texture blending.

C THE USE OF LARGE LANGUAGE MODELS

In this paper, large language models (LLMs) are primarily employed for caption generation and
prompt refinement.

In LLM, we only use a single one-time user dialogue to complete the editing of the text description.
Here are the relevant details about the dialogue:

Sys: You are now a master of style related text removal, and the task given to you is to remove the
description of style from a text describing a picture. Directly complete the task I gave you, give the
results and don’t have repetitive answers.

Sys: Complete the task I gave you and do not give the process.

User: Remove the style related information from the description and output it in the same structure:
*text*.

D THE MATHEMATICAL EXPLANATION OF THE EFFICACY OF StyleWallfacer

To better explain the origin of StyleWallfacer’s superiority over other solutions, this section delves
into a mathematical analysis of StyleWallfacer’s performance.

Mathematically, style transfer and image - editing tasks are essentially about transforming one data
distribution pt(x) into another qt(y). Assuming each sample from the pt(x) distribution can be
transformed into the qt(y) distribution, the above problem can be regarded as a continuous optimal
transport problem. Therefore, we can utilize the theory of optimal transport to better understand
StyleWallfacer. However, in the theory of optimal transport, the Wasserstein distance is mostly used
to describe the distance between distributions, which does not have a direct connection with diffusion
models. Consequently, we need to establish a relationship between the model and the W-distance to
better assist us in theoretically investigating the mechanism of the model.

Suppose pt(x) follows the forward SDE process:

dx = f(x, t)dt+ g(t)dw, t ∈ [0, T ] (5)

Starting from t = 0, define p0(x) as the data distribution. Let sθ(t, x) be trained via score matching
loss from (5). Assume qt(x) follows the reverse SDE process:

dx = [f(x, t)− g(t)2sθ(x, t)]dt+ g(t)dw, t ∈ [0, T ] (6)

According to Theorem 8.4.7 of Ambrosio et al. (2008) and Proposition 5.25 of Santambrogio (2015),
we have:
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−1

2

dW 2
2 (pt(x), qt(y))

dt
= Eπt(x,y)

[
(x− y) ·

(
dy

dt
− dx

dt

)]
(7)

where πt(x, y) denotes the optimal transport plan from pt(x) to qt(y), and dx
dt and dy

dt are the total
derivatives of the paths x and y with respect to t, corresponding to the probability flow ODEs.

The probability flow ODE corresponding to (5) is:

dx

dt
= f(x, t)− g(t)2∇x log pt(x) (8)

The probability flow ODE corresponding to (6) is:

dy

dt
= f(y, t)− g(t)2sθ(y, t) +

1

2
g(t)2∇y log qt(y) (9)

Substituting these into (7), we get:

−1

2

dW 2
2 (pt(x), qt(y))

dt
= Eπt(x,y)[(x− y) · (f(y, t)− f(x, t))]

+ g(t)2Eπt(x,y) [(x− y) · (sθ(x, t)− sθ(y, t))]

+ g(t)2Eπt(x,y) [(x− y) · (log∇xpt(x)− sθ(x, t))]

+
g(t)2

2
Eπt(x,y) [(x− y) · (log∇yqt(y)− log∇xpt(x))]

(10)

The first and second terms on the right-hand side can be easily obtained as:

Eπt(x,y) [(x− y) · (f(y, t)− f(x, t))] ≤ Lf (t)Eπt(x,y)

[
∥x− y∥2

]
= Lf (t)W

2
2 (pt(x), qt(y))

(11)

and

g(t)2Eπt(x,y) [(x− y) · (sθ(x, t)− sθ(y, t))] ≤ g(t)2Ls(t)Eπt(x,y)

[
∥x− y∥2

]
= g(t)2Ls(t)W

2
2 (pt(x), qt(y))

(12)

For the third term, using the integral Cauchy-Schwarz inequality:

g(t)2Eπt(x,y)[(x− y) · (log∇xpt(x)− sθ(x, t))]

≤ g(t)2Eπt(x,y)[∥x− y∥] 12Eπt(x,y)[∥ log∇xpt(x)− sθ(x, t)∥2]
1
2

= g(t)2W2(pt(x), qt(y))Ept(x)[∥ log∇xpt(x)− sθ(x, t)∥2]
1
2

(13)

For the fourth term:

Eπt(x,y)[(x− y) · (log∇yqt(y)− log∇xpt(x))] ≤ 0 (14)

Combining (11) to (14), we finally get:

−1

2

dW 2
2 (pt(x), qt(y))

dt
≤Lf (t)W

2
2 (pt(x), qt(y))

+ g(t)2Ls(t)W
2
2 (pt(x), qt(y))

+ g(t)2W2(pt(x), qt(y))b
1
2
t

(15)
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where bt = Ept(x)[∥ log∇xpt(x)− sθ(x, t)∥2].
Due to:

−1

2

dW 2
2 (pt(x), qt(y))

dt
= −W2(pt(x), qt(y))

dW2(pt(x), qt(y))

dt
(16)

Rearranging both sides of (15):

−dW2(pt(x), qt(y))

dt
≤ (Lf (t) + g(t)2Ls(t))W2(pt(x), qt(y)) + g(t)2b

1
2
t

(17)

This is a first-order non-linear differential inequality. Using the method of integrating factors, let:

W2(pt(x), qt(y)) = Ct exp

(∫ 0

t

Lf (r) + g(r)2Ls(r)dr

)
= Ct/I(t) (18)

Substituting into (16):

−dCt

dt
≤ exp

(∫ t

0

Lf (r) + g(r)2Ls(r)dr

)
g(t)2b

1
2
t = I(t)g(t)2b

1
2
t (19)

Integrating both sides from t = 0 to T :

C0 ≤
∫ T

0

I(t)g(t)2b
1
2
t dt+ CT (20)

Since W2(pT (x), qT (y)) = CT /I(T ), we have CT = I(T )W2(pT (x), qT (y)). Therefore:

W2(p0(x), q0(y)) = C0 ≤
∫ T

0

I(t)g(t)2b
1
2
t dt+ I(T )W2(pT (x), qT (y)) (21)

It indicates that optimizing the score matching loss is equivalent to optimizing the Wasserstein
distance. But diffusion models often struggle to follow the shortest Wasserstein distance path during
distribution transformation, resorting to a near-optimal route instead. For different models, this path
can deviate from the optimal in both direction and distance, causing flawed distribution transformation
and subpar generation results.

Thus, there are significant relationships between the efficiency and quality of distribution transfor-
mation in diffusion models during style transfer and image editing, and the Wasserstein distance.
But the relationships between image distributions are complex and hard to study directly. In the
case of a single - point distribution in two - dimensional space, the Wasserstein distance equals the
corresponding Euclidean distance. So, to better understand this theory, we use t-SNE to reduce the
dimension of StyleWallfacer’s image-driven style transfer results on the Van Gogh houses dataset,
along with results from other methods, to two-dimensional. Then, we use visualizations for intuitive
analysis.

As shown in Figure 10, this is a schematic diagram of the initial image before style transfer and
ten reference style images after t-SNE dimensional reduction. In the two - dimensional distribution
transformation, the straight lines are the optimal routes for distribution transformation (shown as red
lines in the figure). Therefore, the generative model should ensure that the generation process follows
the optimal transport path as much as possible to achieve the best results.

As shown in Figure 11, the distribution transformation process in two - dimensional space is often
represented by a curve. When the parameters of StyleWallfacer are not optimal, the model’s dis-
tribution transformation deviates in both direction and distance from the target distribution (e.g.,
red for tss = 200 and purple for tss = 900). However, when parameters are optimized (green), the
process aligns with the optimal transport path, ensuring generated results match the target distribution.
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Optimal Transport

Figure 10: The Performance of StyleWallfacer in Image Editing Tasks.

Adjust

Figure 11: The Performance of StyleWallfacer in Image Editing Tasks.
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This highlights StyleWallfacer’s unique ability to ensure accurate distribution transformation through
hyperparameter tuning, setting it apart from other models.

As shown in Figure 12, traditional style transfer methods deviate significantly from the optimal
transport path. This deviation occurs in both distance and direction. Even better-performing methods
like InstantStyle-Plus and StyleID, while close to the optimal path, still show slight deviations.
In contrast, StyleWallfacer accurately follows the optimal transport path, transferring the original
distribution to the target one precisely. This highlights StyleWallfacer’s advantage: its precise
distribution transfer control. By adjusting hyperparameters, it ensures accurate distribution transfer
and avoids potential deviations.

Optimal Transport

Figure 12: The Performance of StyleWallfacer in Image Editing Tasks.

E ABLATION STUDY

E.1 STUDY ON THE ROLE OF Key AND Value IN STYLE AND SEMANTIC GUIDANCE

Input Image w/o KV in Ours Input Image w/o KV in Ours

Figure 13: Schematic comparison of style transfer results without Key-Value replacement versus
StyleWallfacer.
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Method Dogs→Watercolor Dogs (one-shot)
CLIP-FID ↓ DINO ↑ CLIP-I ↑ LPIPS ↓

w/o KV In 35.61 0.7945 0.7926 0.7913
Ours 35.40 0.8041 0.7852 0.6848

Table 4: Quantitative Comparisons to w/o KV In Version on Image-driven Style Transfer Task
on Watercolor Dogs Dataset.

In fact, as illustrated in Figure 13, the model can still accomplish the style transfer task even without
the guidance of Key and Value. Moreover, when not compared with our proposed method, its
style transfer results significantly outperform traditional approaches. However, the critical flaw of
abandoning Key-Value guidance lies in the model’s inability to achieve an optimal balance between
content preservation and stylization—unlike the full implementation of StyleWallfacer. Regardless
of parameter adjustments, methods without Key-Value guidance consistently suffer from content
mismatch in the stylized output relative to the original image. For instance, in the figure, the shape of
the dog’s chain is altered, and the breed of the dog changes. In contrast, StyleWallfacer, enhanced
by triple diffusion guidance, employs a relatively small t in the primary diffusion process to ensure
robust content preservation. As shown in Table 4, when the model without the guidance of Key and
Value, it experiences a significant drop in the LPIPS metric, which indicates a substantial compromise
in its ability to preserve image content. In terms of style similarity, it only outperforms StyleWallfacer
in the CLIP-I score, proving that this mode fails to balance content preservation and style transfer.
Meanwhile, in the complete StyleWallfacer architecture, Key-Value guidance from diffusion processes
with larger ts further strengthens the model’s stylization performance, thereby achieving the best
trade-off between content fidelity and stylistic expression.

E.2 STUDY ON THE ROLE OF Query IN IMAGE CONTENT PRESERVATION

To investigate the role of Query in achieving image content preservation during the generation process,
this paper designs experiments by adjusting the hyperparameter β, and obtains the corresponding
research results through visual comparisons. When the value of the hyperparameter β is larger, it
indicates that the Query extracted by DDIM inversion has a greater proportion in the fused Query.
Conversely, when the value of β is smaller, it means that the original Query has a larger proportion.

A house
in

Cezanne
style

A house
in

 Van Gogh 
style

A house
in

 Monet
style

Ours Artist InstructPix2Pix Plug-and-play

A house
in

Cezanne
style

A house
in

 Van Gogh 
style

A house
in

 Monet
style

Ours Artist InstructPix2Pix Plug-and-playInput Image Prompt Input Image Prompt

Input Image 0  0.2  0.4  0.6  0.8  1 

Figure 14: Visualization of the Impact of Varying β on Model Generation When tls and tss Are
Fixed.

As shown in Figure 14 and 15, when the values of tls and tss are fixed at 800 and 600 respectively
(which is not the optimal state), a larger value of β results in the generated image having a structure
and content that are more similar to the original image. Conversely, when the value of β is smaller, the
preservation of the image structure deteriorates. Therefore, by adjusting the proportion of the original
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Figure 15: Visualization of the Impact of Varying β on LPIPS and CLIP-FID When tls and tss
Are Fixed.
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Query and the DDIM inverted Query, one can effectively control the similarity of the generated
image’s content to the original image. This further confirms the effectiveness of the proposed method
of preserving image structure through Query, as introduced in this paper.

Secondly, this experiment indirectly corroborates that the reason why the latent obtained through
DDIM Inversion can maintain the original image during the denoising process is largely due to
the role of the Query. Specifically, during the denoising of the inverted latent, the Query enables
the model to focus more effectively on the intrinsic information of the image. It is precisely this
characteristic that allows the extracted Query to assist the primary diffusion process proposed in this
paper in preserving the content and structure of the image.

E.3 STUDY ON THE IMPACT OF NOISE TIME THRESHOLDS ON MODEL GENERATION
OUTCOMES

As discussed in the main text, this paper regards noise time thresholds t as the "regulator" for
balancing style transfer and content preservation, playing a crucial role in StyleWallfacer. Therefore,
to further investigate the role of Noise Time Thresholds in the style transfer process, this section
conducts in-depth experiments to explore it.

E.3.1 STUDY ON THE tls
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Figure 16: Visualization of the Impact of Varying tls on Model Generation When β and tss Are
Fixed.

As shown in Figure 16, when we fix the values of tss and β at 600 and 0.5 respectively, the style
transfer results gradually become more stylized while neglecting the content and color preservation
of the original image as tls increases. Conversely, when tls is too small, the stylization results are not
satisfactory. Unlike the role of β, which regulates the content preservation of the image but cannot
achieve color preservation (as shown in Figure 14, no matter how β is adjusted, it cannot make the
stylized result similar to the original image in terms of color), it is necessary to adjust tss to modify
the color space of the stylized image. Combining this with the regulation of Query by β can achieve
more realistic style transfer while better preserving the content and color.

As shown in Figure 17, when tss and beta are fixed, the overall trends of LPIPS and FID, as well as the
visual effects, are consistent as tls varies. However, when tls exceeds 600, an inverse increase in FID
is observed. This occurs because when the model becomes overly stylized, the color distribution of
the generated results tends to become monotonous. As a result, when calculating KID, samples with
similar colors exhibit high style similarity, while those with significantly different color distributions
show low style similarity. Therefore, when adjusting the parameters, it is necessary to keep tls within
a reasonable range, neither too large nor too small. An excessively large tls can lead to a decrease
in the color diversity of the generated results, while an overly small tls can result in insufficient
stylization of the model’s output.
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Figure 17: Visualization of the Impact of Varying tls on LPIPS and CLIP-FID When β and tss
Are Fixed.

Input Image 100s
st  200s

st  300s
st  400s

st  500s
st  600s

st  700s
st  800s

st  900s
st 

Figure 18: Visualization of the Impact of Varying tss on Model Generation When β and tls Are
Fixed.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 19: Visualization of the Impact of Varying tss on LPIPS and CLIP-FID When β and tls
Are Fixed.
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E.3.2 STUDY ON THE tss

As shown in Figure 18, when we fix the values of tls and β at 800 and 0.5 respectively, the style transfer
results are gradually becoming more stylized while neglecting the content and color preservation
of the original image as tss increases. However, unlike tls, when tss gradually increases to a certain
extent, the model’s style transfer results will become completely inconsistent with the original image
in terms of content. In contrast, when tls is larger, the model’s style transfer results are simply more
stylized. It can be seen that tss plays a crucial role in adjusting the consistency between the style
transfer results and the original image content. When tss is too small, the model’s generated results
will tend more towards the original image. Conversely, when tss is too large, the model’s generated
results are overly stylized, leading to issues with content preservation. Therefore, a more moderate
value of tss should be chosen to better cooperate with tls to achieve a balance between stylization and
content preservation.

As shown in Figure 19, similar to the LPIPS changes dominated by tls, the smaller the tss, the more
similar the model’s stylized generation results will be to the content image. However, FID shows
a significant increase when tss is greater than tls. This is because an excessively large tss causes the
content-guided process dominated by tss to converge with the stylization-guided process dominated
by tls, leading to the failure of content guidance. As a result, the model’s stylized results become
inconsistent in content and monotonous in stylized colors. Combining this with the previous analysis
of tls, when performing stylized generation, it is important to balance tls and tss to achieve a balance
between content preservation and stylization in the generated results.

E.4 GENERALIZABILITY STUDY ON IMAGE EDIT

Since StyleWallfacer has for the first time achieved color editing while completing image style transfer
during image-driven style transfer, we speculate that the idea of StyleWallfacer can be applied to
more image editing-related work.

Input Image w/o KV in Ours Input Image w/o KV in Ours

Input Image Hopeful Happy Bored Angery Sad Serious Sunglasses

Input Image Hold A Bone Input Image Hold A Bone Input Image Hold A Bone Input Image Hold A Bone

Dog -> Cat Dog -> Cat Dog -> Cat Dog -> Cat

Input Image A Sketch Edit By User Edit Result A Sketch Edit By User Edit Result A Sketch Edit By User Red Diamond Edit Result Black Diamond Edit Result

Figure 20: The Performance of StyleWallfacer in Image Editing Tasks.

As shown in Figure 20, StyleWallfacer also demonstrates good versatility in image editing tasks.
By adjusting the values of β, tss, and tls, it can not only achieve conceptual image editing (such
as the understanding and editing of expressions and facial features) but also produce object-driven
editing results (such as sunglasses). Moreover, while accomplishing the aforementioned tasks, it can
simultaneously maintain a good balance between image structure preservation and targeted editing.
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Although StyleWallfacer still has room for improvement compared to some methods based on precise
masks, such as more accurate content preservation and image editing to maintain complete consistency
of the unedited parts with the original image, these minor differences are entirely acceptable given
that StyleWallfacerr is training-free compared to those methods. Furthermore, future work can explore
how to incorporate masks into the StyleWallfacer architecture to achieve more precise image editing
and content preservation. This further proves the great application potential of the StyleWallfacer
architecture.

F PROBLEMS OF EXISTING METHODS AND THEIR VISUALIZATIONS

F.1 LIMITED COLOR DOMAIN
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Figure 21: Schematic Diagram of Limited Color Domain in Conventional Methods.

As shown in Figure 21, most one-shot image-driven style transfer methods based on a single reference
style image currently suffer from the problem that the color distribution of the generated image after
style transfer is highly similar to that of the reference style image or that the color distributions of the
generated images tend to converge. However, from the perspective of artistic creation, style transfer
is closer to "imitating the creative style of a painter or artist" rather than mechanically combining the
textures and colors of the reference style image with the target image to be transferred. Therefore,
how to learn the true stylistic knowledge from a single reference style image and to "recreate" the
target image based on style is the real problem that style transfer should address. In this way, style
transfer is no longer about mechanically learning texture information, but about learning the true
creative style of an artist, thereby generating digital works of real artistic value.

F.2 FAILURE OF TEXT GUIDANCE

As shown in Figure 22, when using the prompt “a sks church with no house around it, in a garden,
pink sky” for image generation, traditional methods generally produce images that do not match the
text. This mismatch is not limited to a few samples, indicating that the problem has penetrated the
model’s semantic space and weakened its text control ability. This loss of control is manifested in
aspects such as color inaccuracy, content deviation, and semantic drift.

In contrast, the model fine-tuned using the method proposed in this paper not only achieves consistency
in style with the reference image but also realizes complete alignment between the generated results
and the text prompt. Compared with other solutions, our method demonstrates superior text control,
which enables the model to perform exceptionally well in tasks that require strict adherence to the
text prompt, such as color editing.

F.3 RISK OF OVERFITTING

As shown in Figure 23, the results presented are generated by training a conventional method using a
single style image (the image within the red box) from the Van Gogh Houses dataset. Although these
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Figure 22: Schematic Diagram of Text Control Failure in Conventional Methods.
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Figure 23: Schematic Diagram of the Overfitting Problem in Conventional Methods.

results vary in detail due to the different random seeds used during generation, their image structures,
color distributions, and main styles are remarkably consistent. This is a manifestation of the model’s
overfitting.

Conventional methods, lacking effective data augmentation techniques, tend to drive the model
towards two extremes during training: one is that the model does not overfit but fails to learn the true
stylistic information; the other is that the model learns the stylistic information but suffers from severe
overfitting. Traditional methods are unable to strike a good balance between these two extremes, that
is, to enable the model to learn stylistic knowledge while retaining its diverse generation capabilities.

In this paper, we design a data augmentation strategy based on human feedback for small datasets.
This approach effectively prevents the model from veering towards these extremes during training
and balances the relationship between stylization and diversity.

G ADDITIONAL ANALYSIS

G.1 COMPARISON WITH GPT-4O OPENAI (2024) IMAGE GENERATION

As one of the most popular models in the field of image generation, GPT-4o is hailed as a new
solution for image generation and has demonstrated satisfactory results in multiple tasks. Therefore,
to better explore the superiority of StyleWallfacer, this section conducts comparative experiments
with GPT-4o.

As shown in Figure 24, the visualization results of GPT-4o and StyleWallfacer on the Van Gogh
Houses dataset are presented. Clearly, StyleWallfacer’s style transfer results are more faithful
to the reference style image’s style compared to GPT-4o. For instance, in outlining house lines,
StyleWallfacer uses black lines closer to the style image, whereas GPT-4o generates results with oil
painting brushstrokes. GPT-4o seems to understand the reference image’s style semantics as "Van
Gogh style" and transfers it to the target image based on this semantic understanding and the model’s
prior knowledge of Van Gogh’s style. This leads to GPT-4o’s results being less faithful to the original
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Figure 24: Qualitative Comparisons to GPT-4o on Image-driven Style Transfer Task on Van
Gogh Houses Dataset.

style image and more similar to the texture and style characteristics of Van Gogh’s more famous
Starry Night painting.

Method Houses→Van Gogh Houses (one-shot)
CLIP-FID ↓ DINO ↑ CLIP-I ↑ LPIPS ↓

GPT-4o OpenAI (2024) 51.55 0.8019 0.6865 0.7647
Ours 41.26 0.8353 0.7056 0.7500

Table 5: Quantitative Comparisons to GPT-4o on Image-driven Style Transfer Task on Van
Gogh Houses Dataset.

As shown in Table 5, the quantitative evaluation results of GPT-4o and StyleWallfacer on the Van
Gogh Houses dataset are presented. Clearly, StyleWallfacer significantly outperforms GPT-4o in all
four metrics, leading in both style similarity and content preservation.

H ADDITIONAL RESULTS

H.1 ONE-SHOT TEXT-DRIVEN STYLE TRANSFER

As shown in Figure 25, StyleWallfacer’s generative results on three datasets are presented. On the
Van Gogh houses dataset, our method achieves optimal style similarity and diversity, as discussed
in the text. It is the only method that effectively transfers style knowledge across domains without
confusion. In comparison, other methods suffer from semantic drift (DB, DB LoRA), incomplete
style knowledge transfer (SVDiff), or style errors (Textual Inversion). This leads to various chaotic
phenomena in the generated results and very poor quality of the produced images. For instance, the
generated images may include elements of rifles, have inconsistent styles with the reference style,
or even fail to complete the stylization process. Similar issues, along with severe overfitting, are
observed in the watercolor dogs and landscape datasets. This demonstrates that our method efficiently
addresses problems in text-driven style transfer using a single - style image, delivering excellent
performance.

H.2 TEXT-DRIVEN STYLIZTION

As shown in Figure 26, our StyleWallfacer proposed in this paper more faithfully reproduces the
painter’s creative style compared to other methods. For example, in the Cezanne style, only StyleWall-
facer achieves the characteristics of Paul Cézanne’s paintings, which are characterized by geometrical
shaping and unique spatial structure. It emphasizes expressing the structure and spatial relationships
of objects through the contrast and harmony of colors. Focusing on subjective expression, it pursues
the purity and formal beauty of painting.

In the Monet style, StyleWallfacer provides a more realistic depiction of vegetation, gardens, and
similar elements. This is particularly significant given Monet’s painting style, which is quintessential
Impressionism. Monet focused on capturing the fleeting effects of light and color through short,
visible brushstrokes, often painting en plein air to directly observe and depict nature. His works
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Figure 25: Qualitative Comparison of Text-driven Style Transfer Results on Three Datasets
Using Different Methods.
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Figure 26: Qualitative Comparison of Text-driven Stylization Results Using Different Methods.
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emphasize the interplay of light and atmosphere, with a particular interest in how light changes the
appearance of objects. Similarly, StyleWallfacer excels in capturing these nuances, offering a more
authentic representation of Monet’s style compared to other methods.

In the Van Gogh style, StyleWallfacer excels in capturing the unique characteristics of his paintings.
Van Gogh’s art is defined by several key features: the use of "vivid and bold colors", often with
striking contrasts; "thick and expressive brushstrokes" that convey a sense of raw emotion; and
a "dynamic composition" that breaks away from traditional norms. StyleWallfacer captures these
elements more authentically than other methods, providing a more vivid and emotionally resonant
representation of Van Gogh’s style.

H.3 ONE-SHOT IMAGE-DRIVEN STYLE TRANSFER
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Figure 27: Qualitative Comparison of Image-driven Style Transfer and Color Edit Results on
Watercolor Dogs Datasets and Landscapes Datasets Using Different Methods.

As shown in Figure 27, these are the test results of StyleWallfacer’s image-driven style transfer and
color edit on the Watercolor Dogs dataset and the Landscapes dataset. Clearly, on the Watercolor Dogs
dataset, due to the reference style images having stylistic features beyond texture (for example, a halo
of watercolor bleeding around the puppies), traditional methods struggle to learn such abstract stylistic
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features. This results in generated images that, while similar in color to the reference style images,
only perform simple texture fusion in other style-related aspects (such as the choice of watercolor
bleeding style and background color). Some even lose the unique brushstroke characteristics of
watercolor, resembling oil painting instead. In contrast, StyleWallfacer retains a diverse color
representation while fully learning the artistic expression of the reference style. It achieves the best
style transfer results by considering both the watercolor brushstrokes and the compositional features
that highlight the subject and downplay the background.

On the Landscape dataset, the overall artistic style is more abstract, which leads to traditional methods
failing to understand the stylistic features of the reference images during style learning (resulting in
simple color or texture fusion). This issue is particularly evident in methods like AdaIN. Although
InastantStyle-Plus achieves a clearer fusion of color and texture, it still fails to capture the stylistic
knowledge of the reference images, tending towards oil painting. StyleID, while performing better
than InastantStyle-Plus, only completes simple texture fusion, transforming the image into a colored
sketch style without learning the stylistic characteristics of the reference image, such as abstract
structural expression. In contrast, StyleWallfacer does not have the aforementioned shortcomings.
It not only remains faithful to the structural expression of the content image but also to the stylistic
expression of the style image, achieving a balance between the two. Additionally, by adjusting model
parameters, it can achieve more abstract style transfer results (at which point the style transfer results
will be completely faithful to the artistic image’s stylistic representation).

H.4 ONE-SHOT TEXT-DRIVEN STYLE TRANSFER & COLOR EDIT

The right half of Figure 27 shows the experimental results of one-shot text-driven style transfer &
color edit. As depicted, whether on the Watercolor Dogs dataset or the Landscapes dataset, the model
is capable of achieving high-quality image color control while completing the style transfer task. This
fully demonstrates the model’s high degree of customization and controllability during style transfer,
which is something traditional methods cannot achieve. This breakthrough expands the boundaries of
imagination for style transfer, offering more possibilities for image style transformation.

H.5 CROSS-CONTENT IMAGE TESTING RESULTS

To conduct a more comprehensive test of StyleWallfacer, we evaluated the model across different
image contents. The primary aim of this test was to prevent the same image content from affecting the
comprehensiveness of the model evaluation. Therefore, we tested models trained with single images
from the Landscape dataset (content of colored pencil sketches of scenery) and the Watercolor Dogs
dataset (content of watercolor puppies) using images of "houses". We also tested a model trained
with a single image from the Van Gogh Houses dataset (content of Van Gogh-style houses) using
images of "gardens". This test fully demonstrates the generalizability of StyleWallfacer across images
with different contents.

As shown in Figure 28, these are the test results of StyleWallfacer on different image contents. From
the figure, it can be analyzed that the model has good generalizability across different image contents,
and the generated results excellently achieve a balance between stylization and content preservation.

I LIMITATION AND FUTURE WORK

In this work, we propose StyleWallfacer, a novel unified framework for style transfer. Although
the theory presented in this paper has been validated through experiments and demonstrates many
advantages over traditional solutions, there are still the following issues:

• While the present study is primarily concerned with the task of infusing stylistic knowledge
to achieve a range of style transfer-related objectives, it is imperative to extend the contem-
plation beyond the confines of this research. Specifically, future endeavors should consider
how to leverage the theoretical framework established herein to address tasks analogous to
subject-driven image generation. Although StyleWallfacer demonstrates remarkable profi-
ciency in incorporating abstract stylistic concepts into models, it appears to be less effective
in the context of subject-driven tasks. Consequently, future research may benefit from
further exploring strategies for integrating subject-specific knowledge within this domain.
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Figure 28: Qualitative Comparison of Image-driven Style Transfer Results on Different Image
Contents.
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• From a theoretical perspective, this paper reveals a significant discrepancy between the
natural language processed by text-to-image (T2I) models and that interpreted by humans.
However, this study does not fully close this gap. Instead, it integrates the semantic space
into the CLIP space as a solution. In fact, future research should focus on how to make the
natural language understood by T2I models more consistent with human comprehension,
thereby eliminating the need for a “translation” process.

J BROADER IMPACT

As an innovative approach to style-driven image generation and editing, StyleWallfacer holds potential
for application in creative AI endeavors and as a non-traditional form of data augmentation for
various downstream tasks. Given that image generation constitutes a fundamental task within the
realm of computer vision, the principles underlying StyleWallfacer could potentially be extended to
research in other related areas. However, akin to other image generation methods, our technique may
inadvertently facilitate societal harms such as the creation of counterfeit images for malicious purposes
or copyright infringement, contingent upon the specific context of its application. Consequently, we
advocate for the judicious and responsible utilization of StyleWallfacer.
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