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Abstract

In the paper, we study the sparse {0,±1}-matrix based random projection, which has been
widely applied in classification to reduce the data dimension. For such kind of sparse
matrices, it is of computational interest to explore the minimum number of nonzero entries
±1 that supports achieving the best or nearly best classification performance. To achieve
this, we analyze the impact of matrix sparsity on the `1 distance between projected data
points. The analysis is inspired by the principle component analysis, which says that the
larger distance between projected data points should better capture the variation among
original data, and then yield better classification performance. Theoretically, the `1 distance
between projected data points is not only related to the sparsity of sparse matrices, but also
to the distribution of original data. Without loss of generality, we consider two typical data
distributions, the Gaussian mixture distribution and the two-point distribution, which have
been widely used to model the distributions of real data. With the two data distributions, we
estimate the `1 distance between projected data points. It is found that the sparse matrices
with only one or at most dozens of nonzero entries per row, can provide comparable or
even larger `1 distances than other more dense matrices, under the matrix size m ≥ O(

√
n).

Accordingly, the similar performance trend should also be obtained in classification. This
is confirmed with classification experiments on real data of different types, including the
image, text, gene and binary quantization data.

1 Introduction

Random projection is an important unsupervised dimensional reduction technique that simply projects high-
dimensional data to low-dimensional subspaces by multiplying the data with random matrices (Johnson &
Lindenstrauss, 1984). The projection can approximately preserve the pairwise `2 distance between original
data points, or say preserving the structure of original data, thus applicable to classification (Bingham &
Mannila, 2001; Fradkin & Madigan, 2003; Wright et al., 2009). To achieve the `2 distance preservation prop-
erty, random projection matrices need to follow certain distributions, such as Gaussian matrices (Dasgupta
& Gupta, 1999) and sparse {0,±1}-ternary matrices (shortly called sparse matrices hereafter) (Achlioptas,
2003). In practical applications, sparse matrices are preferred for its much lower complexity both in storage
and computation. Considering random projection is often applied to computationally-intensive large-scale
classification tasks, it is highly desirable to minimize its complexity. For this purpose, we propose to explore
the minimum number of nonzero entries ±1 that enables the projected data to achieve the best or nearly best
classification performance. To the best of our knowledge, no previous study has investigated the problem.

Existing research on random projection is mainly devoted to exploring the distribution of random matrices
that well holds the distance preservation property, more precisely, keeping the expectation of the pairwise
distance between original data points unchanged after random projection and rendering the variance rel-
atively small (Dasgupta & Gupta, 1999; Achlioptas, 2003). For the sparse matrix with entries properly
scaled, it has been proved that the distance preservation property holds in `2 norm (Achlioptas, 2003; Li
et al., 2006), but not in `1 norm (Brinkman & Charikar, 2003; Li, 2007). Here it is noteworthy that although
the `2 distance preservation property enables random projection to be applied in classification, it can hardly
be used to analyze the impact of matrix sparsity (namely the number of nonzero entries) on the follow-on
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classification, since the classification accuracy depends on the discrimination between projected data points,
rather than the invariance of data structure. For instance, it has been proved that the `2 distance preser-
vation property tends to become worse as the matrix becomes sparser (Li et al., 2006), namely containing
fewer nonzero entries ±1. However, empirically, it is observed that the sparser matrix structure does not
mean a worse classification performance; and usually, very sparse matrices, such as the ones with only one
or dozens of nonzero entries per row, can achieve comparable or even better classification performance than
other more dense matrices. For this intriguing performance, in the paper we provide reasonable theoretical
explanations by analyzing the variation of the `1 distance between projected data points. By the early
research of principle component analysis (PCA) (Jolliffe, 2002), it is known that the projection over a larger
principle component will yield larger pairwise distances (equivalently, larger variances) for projected data
points, while the larger distance tends to better capture the variation (i.e. statistical information) of original
data (Jolliffe & Cadima, 2016), and then provide better classification performance (Turk & Pentland, 1991).

In the sparse matrix based random projection, the `1 distance between projected data points is related
not only to the sparsity of random matrices, but also to the distribution of original high-dimensional data.
To analyze the impact of matrix sparsity on the `1 distance, we need to first model the distribution of
original data. Without loss of generality, we consider two typical data distributions, the Gaussian mixture
distribution and the two-point distribution. The former has been widely used to model the distribution of
natural data (Torralba & Oliva, 2003; Weiss & Freeman, 2007) or their sparse transforms (Wainwright &
Simoncelli, 1999; Lam & Goodman, 2000), while the latter can be used to model the distribution of binary
data, such data often occurring in various quantization tasks (Gionis et al., 1999; Hubara et al., 2016; Yang
et al., 2019). Benefiting from the two general distributions, as shown later, our theoretical analysis results
can be applied to a variety of real data.

Given the two data distributions, by varying the sparsity of sparse matrices, we analyze the expected `1
distance between projected data points and obtain the following two results: 1) The maximum distance
tends to be achieved by the sparse matrices with only one nonzero entry per row, as the discrimination
between two classes of original data is sufficiently high; 2) The distance tends to converge to a constant
value with the increasing of matrix sparsity, and relatively small convergence errors can be achieved when
sparse matrices contain only dozens of nonzero entries per row. To summarize, the two results imply that the
sparse matrices with only one or at most dozens of nonzero entries per row, perform comparably or even better
than the other more dense matrices, in the task of enlarging the expected `1 distance between projected data
points. Accordingly, these matrices should also exhibit similar performance trends on classification. Note
that the above analysis is built upon the expectation of `1 distance. To enable the expected distance to
be approximated by an actual matrix of size m × n, we need m ≥ O(

√
n). In the experiments, we verify

the performance advantage of the sparse matrices mentioned above by conducting classification experiments
on real data of different types, including the image, text, gene and binary quantization data. The major
contributions of the work can be summarized as follows:

• For the sparse {0,±1}-matrices based random projection, we for the first time investigate the impact
of matrix sparsity on classification, by analyzing random projection from the viewpoint of distance
variation rather than the conventional distance preservation. The proposed analysis is inspired by
the early research of PCA (Jolliffe & Cadima, 2016; Turk & Pentland, 1991), that is the larger
distance between projected data points should better account for the variation among original data
and then yield better classification performance.

• By theoretical and numerical analysis, it is found that the sparse matrices with only one or at
most dozens of nonzero entries per row, tend to achieve comparable or even better classification
performance than the other more dense matrices, if the original data has the Gaussian mixture
distribution or two-point distribution, and the matrices have size m ≥ O(

√
n). This implies that

we can drastically reduce the complexity of random projection matrices without losing, or even
improving the classification performance.

• The above analysis results are perfectly verified by simulations and experiments. The high con-
sistency between theory and practice can be attributed to the good generalizability of the two
aforementioned distributions we have adopted to model the original data, which has been recog-
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nized in the modeling of various types of data (Torralba & Oliva, 2003; Weiss & Freeman, 2007;
Wainwright & Simoncelli, 1999; Lam & Goodman, 2000).

2 Problem Formulation

Consider the random projection of two data points h, h′ ∈ Rn over a sparse random matrix R ∈ {0,±1}m×n.
For the matrix R, we attempt to estimate the minimum number of nonzero entries ±1 that enables maximiz-
ing the expected `1 distance E‖Rx‖1 between the projections of h and h′, where x = h− h′. As discussed
before, the maximum E‖Rx‖1 is expected to provide the best classification performance. To determine the
minimum sparsity, we need to investigate the changing trend of E‖Rx‖1 against the varying sparsity of R.
It can seen that the estimation depends on the distributions of the matrix R and the data h. So in the
following, we first model the distributions of sparse matrices and real data, and then give the `1 estimation
model.

Notation. Throughout the work, we typically denote a matrix by a bold upper-case letter R ∈ Rm×n,
a vector by a bold lower-case letter r = (r1, r2, ..., rn)> ∈ Rn, and a scalar by a lower-case letter ri or r.
Sometimes, we use the bold letter ri ∈ Rn to denote the i-th row of R ∈ Rm×n. For ease of presentation,
we defer all proofs to Appendix A.

2.1 The distribution of sparse matrices

The sparse random matrix R we aim to study is specified in Definition 1, which has the parameter k counting
the number of nonzero entries per row, and is simply called k-sparse to distinguish between the matrices of
different sparsity. Instead of the form R ∈ {0,±1}m×n, in the definition we introduce a scaling parameter√

n
mk to make the matrix entries have zero mean and unit variance. With this distribution, the matrix

will hold the `2 distance preservation property, that is, keeping the expected `2 distance between original
data points unchanged after random projection (Achlioptas, 2003). Note that the scaling parameter can
be omitted in practical applications for easier computation; and the omitting will not change the relative
distances between projected data points, thus not affecting the follow-up classification performance.
Definition 1 (k-sparse random matrix). A k-sparse random matrix R ∈ {0,±

√
n
mk}

m×n is defined to be
of the following structure properties:

• its each row vector r ∈ {0,±
√

n
mk}

n contains exactly k nonzero entries, 1 ≤ k ≤ n;

• the positions of k nonzero entries are arranged uniformly at random;

• each nonzero entry takes the bipolar values ±
√

n
mk with equal probability.

2.2 The distribution of original data

For the original high-dimensional data h ∈ Rn, as discussed before, we investigate two typical distributions,
the two-point distribution and the Gaussian mixture distribution. Considering the expected `1 distance
E‖Rx‖1 is directly related to the pairwise difference x between two original data h and h′, namely x =
h − h′ = (x1, x2, . . . , xn)>, we describe the distribution of x for the original data h with the given two
distributions.

2.2.1 Two-point distribution

Suppose that the two high-dimensional data h, h′ ∈ {µ1, µ2}n have their each entry independently following
a two-point distribution, where µ1 and µ2 are two arbitrary constants. Then the difference x between h and
h′ has its each entry xi independently following a ternary discrete distribution

xi ∼ T (µ, p, q) (1)

with the probability mass function t ∈ {−µ, 0, µ} under the probabilities {q, p, q}, where µ = µ1 − µ2 and
p+ 2q = 1.
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2.2.2 Gaussian mixture distribution

When the two data h, h′ ∈ Rn have their each entry independently following a Gaussian mixture distribution,
the difference x = h− h′ remains a Gaussian mixture (Andrews & Mallows, 1974), which allows each entry
xi to be modeled as

xi ∼M(µ, σ2, p, q) (2)
with the probability density function

f(t) = pfN (t; 0, σ2) + qfN (t;µ, σ2) + qfN (t;−µ, σ2) (3)

where fN (t;µ, σ2) denotes the density function of t ∼ N (µ, σ2), and the parameters are subject to p, q ≥ 0
and p+ 2q = 1.

2.3 The `1 distance estimation model

With the distributions defined for the original data points h, h′ ∈ Rn and the k-sparse random matrix R ∈
{0,±

√
n
mk}

m×n, our goal is to analyze the changing of the expected `1 distance E‖Rx‖1 (with x = h−h′)
against varying matrix sparsity k, and determine the minimum sparsity k that corresponds to the maximum
or nearly maximum E‖Rx‖1. Notice that we have E‖Rx‖1 = mE|r>x|, since each row r ∈ Rn of R follows
an independent and identical distribution by Definition 1. This equivalence suggests that E|r>x| will share
the same changing trend with E‖Rx‖1, when varying k. Then for ease of analysis, instead of E‖Rx‖1, in
the following we choose to investigate the changing of E|r>x| against varying k.

3 The `1 Distance Estimation with Two-Point Distributed Data

In this section, we investigate the changing of E|r>x| against varying matrix sparsity k, provided that the
original data h, h′ are drawn from two-point distributions, such that their difference x = h − h′ has i.i.d.
entries xi ∼ T (µ, p, q), as specified in (1).

3.1 Theoretical analysis

Theorem 1. Let r be a row vector of a k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, and x ∈ Rn with
i.i.d. entries xi ∼ T (µ, p, q). It can be derived that

E|r>x| = 2µ
√

n

mk

k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i (4)

and

Var(|r>x|) = 2qµ2n

m
− 4µ2n

mk

(
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

)2

(5)

where Cik is a binomial coefficient
(
k
i

)
and dαe = min{β : β ≥ α, β ∈ Z}. By (4), E|r>x| satisfies the

following two properties:

(P1) When p ≤ 0.188, E|r>x| has its maximum at k = 1.

(P2) When k →∞, E|r>x| converges to a constant:

lim
k→∞

√
m

µ
√
n
E|r>x| = 2

√
q/π, (6)

which has the convergence error for finite k upper-bounded by∣∣∣∣ √mµ
√
n
E|r>x| − 2

√
q/π

∣∣∣∣ ≤ √π +
√

2√
πk

. (7)
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Figure 1: The value of E|r>x|/(µ
√
n/m) calculated by (4) with p = 1/3 (a) and p = 2/3 (b), and estimated by

statistical simulation with p = 1/3 (c) and p = 2/3 (d), provided xi ∼ T (µ, p, q), µ = 1.

Remarks of Theorem 1: In P1 and P2, we characterize the changing trends of E|r>x| against varying
matrix sparsity k, which are further discussed as follows.

• By P1, E|r>x| can achieve its maximum value at k = 1, if the probability p of xi = 0 is sufficiently
small (≤ 0.188). This condition means that the difference x between two data points h and h′

should have a sufficient number of nonzero entries, and also implies that the two data h and h′

should be sufficiently distinguishable from each other. Then we can say that for two discriminative
data distributions, the best classification performance should be able to be achieved using very sparse
random matrices with sparsity k = 1, by virtue of the maximum E|r>x| achieved at k = 1.

• By P2, E|r>x| will converge to a constant that depends on the data distribution and matrix size,
as k tends to infinity. Note that in (6) we describe the convergence with E|r>x|/(µ

√
n/m) instead

of E|r>x|, in terms of the fact that both formulas share the same changing trend against varying
k, but the former has fewer parameters, only involving k and p. Moreover, it is noteworthy that the
convergence error, namely the difference between the values of E|r>x| with finite k and infinite k,
is upper-bounded in (7), and the bound indicates a convergence speed O(1/

√
k). By the bound (7),

it is easy to further derive that∣∣∣ √mµ√nE|r>x| − 2
√
q/π

∣∣∣
2
√
q/π

≤ η, if k ≥ (
√
π +
√

2)2

4qη2 (8)

where η can be an arbitrary positive constant. It is seen that η establishes an upper bound for
the ratio between the convergence error with the convergence value (called the convergence ratio
error for short); and for any given upper bound η, there exists a lower bound for sparsity k to hold
it. This means that within the bound of k derived for small η, E|r>x| will take similar values for
different k, and accordingly, the different k should yield similar classification performance. Then
we can say that the sparse matrices with small k (taking the values around its lower bound), will
provide comparable classification performance with the other more dense matrices with larger k.
Note that the lower bound of k derived in (8) contains slack, and in practice it tends to be much
smaller, as demonstrated in the following numerical analysis.

3.2 Numerical analysis

To more closely examine the changing trends of E|r>x|/(µ
√
n/m) against varying matrix sparsity k (derived

in P1 and P2), we directly compute the value of E|r>x|/(µ
√
n/m) by (4). Note that besides the parameter

k, E|r>x|/(µ
√
n/m) also involves the parameter p, the probability of xi = 0 as specified in (1). So we

investigate E|r>x|/(µ
√
n/m) over k ∈ [1, 500] for different p ∈ (0, 1). For brevity, we here only provide

the results of p = 1/3 and 2/3 in Figs. 1 (a) and (b), see the supplement for more results. By the
numerical analysis results, we revisit the two changing trends described in P1 and P2 and obtain more
positive conclusions:
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Figure 2: The convergence error ratios of three different k ∈ {10, 20, 30} over varying p are derived for two-point
distributed data (a) and Gaussian mixture data (b), by computing the left side of the inequality of η shown respectively
in Eqs. (8) and (14). The parameters involved in computation are set as introduced in the corresponding numerical
analysis.

(P3) When p ≤ 1/3, such as the case of p = 1/3 shown in Fig. 1(a), E|r>x|/(µ
√
n/m) tends to achieve

its maximum value at k = 1, but at other larger k when p > 1/3, such as the case of p = 2/3
illustrated in Fig. 1(b). Compared to the theoretical result P1, the numerical result relaxes the
upper bound of p from ≤ 0.188 to ≤ 1/3, enlarging the data space that allows the maximum E|r>x|
to be reached at k = 1. More precisely, the above relaxed condition requires each entry xi of x to be
nonzero with a probability greater than 2/3, instead of a probability greater than 0.812 (as required
by P1). This superficially reduces the demand for the amount of nonzero entries occuring in the
difference vector x between two data points h and h′, and essentially, reduces the requirement for
the discrimination between h and h′.

(P4) With the increasing of k, as the two cases of p = 1/3 and 2/3 shown in Figs. 1(a) and (b),
E|r>x|/(µ

√
n/m) tends to converge to the limit value 2

√
q/π derived in (6), where q = (1− p)/2.

Furthermore, it can be seen that the convergence speed is fast, allowing small convergence errors
to be reached with small k, typically in the range of a few tens. For instance, in Fig. 2(a) we
derive the convergence error ratios as defined in (8), which give the values close to zero when k ≥ 20
and p is relatively small. Recall that the small p implies the case that the original data have high
discrimination. With the decreasing of data discrimination, we should need larger k to achieve small
convergence errors.

Besides the expectation E|r>x| of pairwise distances as discussed above, the variance Var(|r>x|) of pairwise
distances derived in (5) is also a factor that may affect the classification performance. By computing (5),
interestingly, we find that with the increasing of k, Var(|r>x|) exhibits a changing trend opposite to that of
E|r>x|, see the supplement for details. In other words, the larger expectation corresponds to the smaller
variance. Considering both larger expectations and smaller variances are favorable to classification, we can
say that the two factors achieve consistent results in estimating the classification performance.

3.3 Statistical simulation

To verify the correctness of Theorem 1, including the expression (4) of E|r>x| and its two properties
P1 and P2, we here estimate the expectation value E|r>x|/(µ

√
n/m) (against varying k) by performing

averaging over the statistically generated samples of r and x. If the theorem results are correct, the statistical
simulation results should be consistent with the numerical analysis results P3 and P4 (derived by Theorem
1). The simulation is introduced as follows. First, we randomly generate 106 pairs of r and x from their
respective distributions, i.e. r ∈ {0,±

√
n
mk}

n with k nonzero entries randomly distributed, and x with
i.i.d. xi ∼ T (µ, p, q). Then, the average value of |r>x|/(µ

√
n/m) is derived as the final estimate of

E|r>x|/(µ
√
n/m). The parameters for the distributions of r and x are set as follows: m = 1, n = 104,

µ = 1, and p = 1/3 or 2/3. The data dimension n = 104 allows us to increase k from 1 to 104. The
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average value of |r>x|/(µ
√
n/m) at each k is provided in Figs. 1(c) and (d), respectively for the cases of

p = 1/3 and 2/3. Note that the choices of m, n and µ will not affect the changing trend of E|r>x|/(µ
√
n/m)

against k. Comparing the numerical analysis results and the simulation results provided in Fig. 1, namely
contrasting (a) vs. (c) and (b) vs. (d), it is seen that two kinds of results exhibit similar changing trends
for E|r>x|/(µ

√
n/m). The similarity between them validates Theorem 1, as well as the numerical analysis

results P3 and P4.

Moreover, it is noteworthy that what we estimate is an expected distance E‖Rx‖1 (equivalently, mE|r>x|),
rather than the actual distance ‖Rx‖1 we will derive with a given matrix sample. To approximate the
expected distance, by Property 1 the actual matrices should have the size of m ≥ O(

√
n).

Property 1. Let ri be the i-th row of a k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, and x ∈ Rn with
i.i.d. entries xi ∼ T (µ, p, q). Suppose z = 1

m‖Rx‖1 = 1
m

∑m
i=1 |r>i x|. For arbitrary small ε, δ > 0, we have

the probability Pr{|z − Ez| ≤ ε} ≥ 1 − δ, if m2

m+1 ≥
qµ2n
ε2δ ; and the condition can be relaxed to m2 ≥ 2qµ2n

ε2δ ,
for a given x.

4 The `1 Distance Estimation with Gaussian Mixture Data

In this section, we consider the case that the original data h, h′ are drawn from Gaussian mixture distribu-
tions, such that their difference x = h − h′ has i.i.d. entries xi ∼ M(µ, σ2, p, q), as specified in (2). With
such data, the changing of E|r>x| against varying matrix sparsity k is analyzed.

4.1 Theoretical analysis

Theorem 2. Let r be a row vector of a k-sparse random matrix R ∈ {0,±
√

n
mk}

m×n, and x ∈ Rn with
i.i.d. entries xi ∼M(µ, σ2, p, q). It can be derived that

E|r>x| = 2µ
√

n

mk
T1 + σ

√
2n
πm

T2 − 2µ
√

n

mk
T3 (9)

T1 =
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

T2 =
k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−ie
− (k−i−2j)2µ2

2kσ2

T3 =
k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−iΦ
(
−|k − i− 2j|µ√

kσ

)
and

Var(|r>x|) = n

m
(σ2 + 2qµ2)−

(
E|r>x|1

)2 (10)

where Φ(·) is the distribution function of N (0, 1). Further, we have

E|r>x| ≤ µ
√
n

m
+ σ

√
2n
πm

, (11)

and
lim
k→∞

√
m

µ
√
n
E|r>x| =

√
2
π

(σ2 + 2qµ2) (12)

which has the convergence error for finite k upper-bounded by∣∣∣∣ √mµ
√
n
E|r>x| −

√
2(σ2 + 2qµ2)/π

∣∣∣∣ ≤ 4σ3 [p+ 2q(1 + µ2/σ2)3/2]
(σ2 + 2qµ2)

√
πk

+
√

2[3σ4 + 2q(6σ2µ2 + µ4)]√
(σ2 + 2qµ2)πk

. (13)
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Figure 3: The value of E|r>x|/
√
n/m calculated by (9) with p = 1/2 (a) and p = 2/3 (b), and estimated by

statistical simulation with p = 1/2 (c) and p = 2/3 (d), provided xi ∼M(p, q, µ, σ2), µ = 1 and σ = 1/3.

Remarks of Theorem 2: In Eqs. (12) and (13), we obtain two results similarly as in P2 of Theorem 1.
First, E|r>x| converges to a constant with speed O(1/

√
k). Second, by (13), we can derive the lower bound

of k that ensures the convergence error ratio upper-bounded by any given constant η:∣∣∣ √mµ√nE|r>x| −
√

2(σ2 + 2qµ2)/π
∣∣∣√

2(σ2 + 2qµ2)/π
≤ η, if k ≥

(
4σ3[p+ 2q(1 + µ2/σ2)3/2]

(σ2 + 2qu2)3/2
√

2η
+ 3σ4 + 2q(6σ2µ2 + µ4)

(σ2 + 2qµ2)η

)2

.

(14)
As discussed in the remarks of Theorem 1, the lower bound of k derived for small η indicates a matrix sparsity
k which can provide comparable classification performance with the other larger sparsity k. Usually, as shown
in the following numerical analysis, the lower bound of k is small, allowing us to obtain sparse matrices.
Moreover, the numerical analysis demonstrates that similarly to P1 of Theorem 1, E|r>x| in (12) also has
its maximum attained at k = 1, when the data distribution parameter p specified in (2) takes relatively
small values.

4.2 Numerical analysis

In this part, we directly compute the value of E|r>x|/(µ
√
n/m) by (9). Note that E|r>x|/(µ

√
n/m)

involves four parameters: k, p, µ, and σ. In computing (9), we fix µ = 1 and vary other parameters in the
ranges of σ/µ ∈ (0, 1/3), p ∈ (0, 1) and k ∈ [1, 500]. For easy simulation, we here upper bound σ/µ by 1/3,
in view of the fact that σ/µ is usually not large for real data, while larger bounds empirically also work.
Empirically, the changing trend of E|r>x|/(µ

√
n/m) is not sensitive to σ/µ, but sensitive to p, namely the

probability of each entry xi of the data difference x taking zero value, as specified in (2). In Figs. 3(a) and
(b), we provide two typical results of p = 1/2 and 2/3, and observe two properties similar to the previous
P3 and P4:

(P5) When p ≤ 1/2, such as the case of p = 1/2 and σ/µ = 1/3 shown in Fig. 3(a), E|r>x|/µ
√
n/m

tends to obtain its maximum at k = 1, but at other larger k when p > 1/2, such as the case of
p = 2/3 and σ/µ = 1/3 shown in Fig. 3(b). It can be seen that the upper bound of p obtained
here for Gaussian mixture data is relaxed from 2/3 to 1/2 compared to the bound derived in P3 for
two-point distributed data. This implies a wider range of data distributions that enables obtaining
the maximum E|r>x|/µ

√
n/m at k = 1.

(P6) With the increasing of k, as the two results shown in Fig. 3(a) and (b), E|r>x|/(µ
√
n/m) converges

to the limit value derived in (12). Similarly to the convergence discussed in P4 for two-distributed
data, the convergence error ratio defined in (14) can approach zero with small k, such as k = 20
shown in Fig. 2(b), especially when p is relatively small, namely the original data having relatively
high discrimination.

For P5 and P6, their similarity to P3 and P4 is not surprising, since the two-point distribution xi ∼ T (µ, p, q)
can be viewed as an extreme case of the Gaussian mixture distribution xi ∼ M(µ, σ2, p, q) with σ → 0.
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Thanks to the good generalizability of Gaussian mixture models, as will be seen in our experiments, the two
properties analyzed above hold for a variety of real data.

Again note that we should have the matrix row size m ≥ O(
√
n), such that the actual distance ‖R>x‖1 com-

puted with a single random matrix sample can approximate the expected distance E‖R>x‖1 (equivalently
mE|r>x|) derived with (9). The analysis is similar to Property 1, thus omitted here.

4.3 Statistical simulation

Similarly as in Section 3.3, we here verify the correctness of Theorem 2, including the expression (9) of
E|r>x| and its convergence (12) by performing statistical simulation on x and r. The simulation results
should agree with the numerical analysis results P5 and P6, if the theorem is correct. In the simulation, we
estimate the value of E|r>x|/

√
n/m by drawing 106 pairs of x and r from their respective distributions

and then computing the average of ‖r>x‖1/
√
n/m as the estimate. The parameters of the distributions of

x and r are set as follows: m = 1, n = 10000, µ = 1, σ = 1/3 and p = 1/2 or 2/3. The data dimension
n = 10000 allows us to vary k from 1 to 10000. The average value of |r>x|/

√
n/m at each k is presented in

Figs. 3(c) and (d), which have p = 1/2 and 2/3, respectively. Comparing the numerical analysis results and
the simulation results shown in Fig. 3, namely contrasting (a) vs. (c) and (b) vs. (d), it can be seen that
two kinds of results are roughly consistent with each other. The consistency validates Theorem 2, as well as
the numerical analysis results P5 and P6.

5 Experiments

In this section, we aim to verify that the impact of the varying matrix sparsity k on classification is consistent
with its impact on the `1 distance between projected data as analyzed in Theorems 1 and 2; and more
precisely, our goal is to demonstrate that the sparse matrices with only one or at most dozens of nonzero
entries per row can provide comparable or even better classification performance than other more dense
matrices, under the constraint of matrix size m ≥ O(

√
n).

5.1 Data

Without loss of generality, we evaluate four different types of data, including the image dataset YaleB
(Georghiades et al., 2001; Lee et al., 2005), the text dataset Newsgroups (Joachims, 1997), the gene dataset
AMLALL (Golub et al., 1999) and binary image dataset MNIST (Deng, 2012). The former three kinds of
data can be modeled by Gaussian mixtures, while the last one belongs to the two-point distribution. The
data settings are introduced as follows. YaleB contains 40× 30-sized face images of 38 persons, with about
64 faces per person. Newsgroups consists of 20 categories of 3000-dimensional text data, with 500 samples
per category. AMLALL contains 25 samples taken from patients suffering from acute myeloid leukemia
(AML) and 47 samples from patients suffering from acute lymphoblastic leukemia (ALL), with each sample
expressed with a 7129-dimension gene vector. MNIST involves 10 classes of 28× 28-sized handwritten digit
images in MNIST, with 6000 samples per class and with each image pixel 0-1 binarized. Note here we reduce
the dimension of the data in YaleB and Newsgroups for easy simulation, and this will not influence our
comparative study.

5.2 Implementation

The random projection based classification is implemented by first multiplying original data with k-sparse
random matrices and then classifying the resulting projections with a classifier. To faithfully reflect the
impact of the varying data distance on classification, we adopt the simple nearest neighbor classifier (NNC)
(Cover & Hart, 1967) for classification, which has performance absolutely dependent on the pairwise dis-
tance between data points, without involving extra operations to improve data discrimination. In fact, our
classification performance analysis on matrix sparsity could also be verified with other more sophisticated
classifiers, like SVMs (Cortes & Vapnik, 1995), see Appendix B.

9
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(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 4: Classification accuracy of the sparse matrix-based and Gaussian matrices-based random projections for image data
(YaleB, DCT features), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and
two distance metrics `1 and `2.

For each dataset, we will enumerate all possible class pairs in it to perform binary classification. In each
class, we have one half of samples randomly selected for training and the rest for testing. To suppress
the instability of random matrices and obtain relatively stable classification performance, as in (Bingham
& Mannila, 2001), we repeat the random projection-based classification 5 times for each sample and make
the final classification decision by vote. For comparison, the performance of the Gaussian matrix based
random projection is provided. Although the classification performance of sparse matrices is analyzed with
`1 distance, we also test and verify the performance on the popular `2 distance.

5.3 Results

The classification results of four kinds of data are provided in Figs. 4–7, respectively. For each kind of data,
as can be seen, we evaluate the classification performance of sparse matrices with varying sparsity k ∈ [1, 30],
three different projection ratios m/n = 1%, 10% and 50%, and two distance metrics `1 and `2. Note that
the data dimensions n we test here are on the order of thousands. With such scale of n, it is easy to deduce
that the condition of m ≥ O(

√
n) will be satisfied as m/n = 10% and 50%, but be violated as m/n = 1%.

Let us first examine the case of satisfying m ≥ O(
√
n), namely the cases of m/n = 10% and 50% as shown

in Figs. 4–7(b)(c). It is seen that the four kinds of data all achieve their best performance with relatively
small matrix sparsity k (< 30), such as with k = 1 in Fig. 4(c) and k = 15 in Fig. 5(c). But in the case
of m/n = 1% which violates the condition of m ≥ O(

√
n), as shown in Figs. 4–7(a), the four kinds of data

with an exception of AMLALL all fail to reach their top performance within k < 30. For AMLALL with
m/n = 1%, as illustrated in Fig. 6(a), it fails to get the desired decreasing performance trend and performs
poorly at k = 1, in contrast to the cases of m/n = 10% and m/n = 50% shown in Figs. 6(b)(c). Overall,
the experimental results on four different kinds of data all agree with our theoretical analysis: the sparse
matrices with only one or at most about dozens of nonzero entries per row, achieve comparable or even
better classification performance than other more dense matrices, under the size of m ≥ O(

√
n).

The changing trend of the classification performance against varying matrix sparsity k also consists with
our theoretical analysis. More precisely, it can be seen from Figs. 4–7(b)(c) that the classifications of
four datasets quickly converge to stable performance with the increasing matrix sparsity k. The difference
between them mainly lies in the initial stage of the convergence. Specifically, as illustrated in Figs. 4(b)(c)

10
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(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 5: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for text data
(Newsgroups), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and two
distance metrics `1 and `2.

(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 6: Classification accuracy of sparse matrix-based and Gaussian matrix-based random projections for gene data (AM-
LALL), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%, and two distance
metrics `1 and `2.

and 6(b)(c), the convergence curves on the datasets YaleB and AMLALL both exhibit the declining trend
at the initial increasing region of k, consistent with the numerical analysis result depicted in Fig. 3(a)
(discussed in P5 and P6). As for the curves on the other two datasets Newsgroups and MNIST, as shown in
Figs. 5(b)(c) and Figs. 7(b)(c), they both exhibit the trend of initially increasing with k, aligning with the
numerical analysis results illustrated in Fig. 3(b) (P5 and P6) and Fig. 1(b) (P4 and P5).
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(a) m/n = 1%, `1 distance (b) m/n = 10%, `1 distance (c) m/n = 50%, `1 distance

(d) m/n = 1%, `2 distance (e) m/n = 10%, `2 distance (f) m/n = 50%, `2 distance

Figure 7: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for binary image
data (MNIST, binarized pixels), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and
50%, and two distance metrics `1 and `2.

Although the classification performance of sparse matrices is analyzed with `1 distance, it can be seen that
the performance also holds for `2 distance, when comparing the upper row and the bottom row results
shown in Figs. 4–7. This generalization can be attributed to the closeness of the two metrics (Gionis et al.,
1999; Figiel et al., 1977). Moreover, experiments show that sparse matrices perform comparably or even
better than the popularly used Gaussian matrices. This allows us to replace Gaussian matrices with sparse
matrices, for much lower complexity.

6 Conclusion

For the sparse {0,±1}-matrix based random projection, we have analyzed the impact of matrix sparsity
on classification. It is found that the sparse matrices with only one or at most dozens of nonzero entries
per row, can provide comparable or even better classification performance than other more dense matrices,
when the matrices have size m ≥ O(

√
n) and the original data are sufficiently discriminative. Moreover, it

is empirically observed that the sparse matrices also compare favorably with the popularly used Gaussian
matrices, and furthermore, the performance advantage we estimate with `1 distance also holds with `2
distance. Theses results imply that our sparse matrices have wide applications. Finally, it is noteworthy
that our theoretical analysis exhibits high consistency with the experiments on real data of different types,
owing to the good generalizability of the typical data distributions adopted in our statistical analysis.

Besides the contribution to random projection, our classification performance analysis on sparse matrices
is helpful to understand the competitive performance of deep ternary networks, which are generated by
ternarizing the parameters and/or activations of full-precision networks and enjoy very sparse structures (Li
et al., 2016; Zhu et al., 2017; Wan et al., 2018; Marban et al., 2020; Rokh et al., 2023). Despite suffering from
significant quantization errors, interestingly, deep ternary networks usually have acceptable performance loss
and sometimes can even provide performance gains. The reason for this intriguing phenomenon remains
unclear. Considering deep networks can be modeled as a cascade of random projections (Giryes et al.,
2016), our analysis of sparse matrix-based random projection can be viewed as a layerwise analysis of deep
ternary networks. The sparse ternary matrices we have estimated with good classification performance partly
explains the good performance of sparse ternary networks.
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A Appendix

A.1 Proof of Theorem 1

Proof. In the following, we sequentially prove (4), (5), P1 and P2.

Proofs of (4) and (5): With the distributions of r and x, we can write ‖r>x‖1 =
√

n
mkµ

∣∣∣∑k
i=1 zi

∣∣∣ , where
zi ∈ {−1, 0, 1} with probabilities {q, p, q}. Then, it can be derived that

E|r>x| = µ

√
n

mk

k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−i|k − i− 2j|, (15)

among which
∑k−i
j=0 C

j
k−i|k − i− 2j| can be expressed as

k−i∑
j=0

(Cjk−i|k − i− 2j|) = 2
⌈
k − i

2

⌉
C
d k−i

2 e
k−i , (16)

where dαe = min{β : β ≥ α, β ∈ Z}. Combine (15) and (16), we can obtain (4).

Next, we can derive the variance of |r>x|

Var(|r>x|) = Var(r>x)−
(
E|r>x|

)2

= 2qµ2n

m
− 4µ2n

mk

(
k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

)2

.
(17)

Proof of P1: This part aims to prove

E|r>x|k=1 > E|r>x|k>1,

where the subscript k = 1 denotes the case of E|r>x| with k = 1, and the subscript k > 1 means the case of
k taking any integer value greater than 1. In the following, we will calculate and compare E|r>x| in terms
of the two cases. For the case of k = 1, by (4), it is easy to derive that

E|r>x|k=1 = 2qµ
√
n

m
. (18)

Then, let us see the case of computing E|r>x|k>1. By (4), E|r>x|k>1 is the sum of 2√
k
Cikp

iqk−i
⌈
k−i

2
⌉
C
d k−i

2 e
k−i

multiplied by µ
√

n
m . To compute 2√

k
Cikp

iqk−i
⌈
k−i

2
⌉
C
d k−i

2 e
k−i , we consider separately two cases: k − i is even

or odd, as detailed below.

Case 1: Suppose k − i is even. We have

2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤ 1√
k
Cikp

iqk−i(k − i)2k−i
√

2
(k − i)π

≤
√

2
π
Cikp

i(2q)k−i, (19)

since Cγ2γ ≤ 22γ
√
γπ , where γ is a positive integer (Stǎnicǎ, 2001).

15



Under review as submission to TMLR

Case 2: Suppose k − i is odd. We have

2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤ 1√
k
Cikp

iqk−i(k − i)2k−i
√

2
(k − i− 1)π

=
√

2
π
Cikp

i(2q)k−i k − i√
k(k − i− 1)

(20)

Given k ≥ 5, we further have
k − i√

k(k − i− 1)
< 1 for 2 ≤ i ≤ k − 2,

and for i = k − 1 or k,
2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i <

√
2
π
Cikp

i(2q)k−i.

To sum up, when k − i is odd,

2√
k
Cikp

iqk−i
⌈
k − i

2

⌉
C
d k−i

2 e
k−i

≤


√

2
π
Cikp

i(2q)k−i, k ≥ 5, i ≥ 2,

2√
k
Cikp

iqk−i(k − i)C
k−i−1

2
k−i−1, otherwise.

(21)

According to the results (19) and (21) derived in the above two cases, we know that E|r>x|k>1 can be
computed in terms of two cases, 2 ≤ k ≤ 4 and k ≥ 5. For the case of 2 ≤ k ≤ 4, by (4), we have

E|r>x| =



µ
√
n√

2m
(4q2 + 4pq), k = 2,

µ
√
n√

3m
(12q3 + 12pq2 + 6p2q), k = 3,

µ
√
n√
m

(12q4 + 24pq3 + 12p2q2 + 4p3q), k = 4,

(22)

and for the case of k ≥ 5, with (19) and (21), we have

E|r>x| ≤ µ
√

2n
πm

+ µ

√
n

m
(2q)5

(
3
√

5
8 −

√
2
π

)
. (23)

By (18), (22) and (23), we can derive that

E|r>x|k=1 > E|r>x|k>1

holds under the condition of p ≤ 0.188. Then P1 is proved.

In what follows, we elaborate the proof of (23) by considering two cases of k, being even or odd.
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Case 1: Suppose k ≥ 5 and k is even. Combining (19) and (21), we have

E|r>x| ≤µ
√
n

m
C1
kp(2q)k−1

( √
k

2k−1C
k
2−1
k−1 −

√
2
π

)

+ µ

√
2n
πm

k∑
i=0

Cikp
i(2q)k−i. (24)

Denote h1(k) =
√
k

2k−1C
k
2−1
k−1 . For

h1(k + 2)
h1(k) = k + 1√

k(k + 2)
> 1

we have
h1(k) =

√
k

2k−1C
k
2−1
k−1 ≤ lim

k→∞
h1(k) =

√
2
π
. (25)

Then, it follows from (24) and (25) that

E|r>x| ≤ µ
√

2n
πm

. (26)

Case 2: Suppose k ≥ 5 and k is odd. Combining (19) and (21), we have

E|r>x| ≤µ
√
n

m
C0
k(2q)k

( √
k

2k−1C
k−1

2
k−1 −

√
2
π

)

+ µ

√
2n
πm

k∑
i=0

Cikp
i(2q)k−i. (27)

Denote h2(k) =
√
k

2k−1C
k−1

2
k−1 . For

h2(k + 2)
h2(k) =

√
k(k + 2)
k + 1 < 1

we have
h2(k) =

√
k

2k−1C
k−1

2
k−1 ≤ h2(5) =

√
5

24 C
2
4 . (28)

Then, it follows from (27) and (28) that

E|r>x| ≤ µ
√

2n
πm

+ µ

√
n

m
(2q)5

(
3
√

5
8 −

√
2
π

)
.

Proof of P2: For ease of analysis, we first define the function

g(r>x; k, p) = E|r>x|k
µ
√
n/m

= E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ , (29)

where {zi} is independently and identically distributed and zi ∈ {−1, 0, 1} with probabilities {q, p, q}. By
the Lindeberg-Lévy Central Limit Theorem, we have

1√
k

k∑
i=1

zi  Z, (30)
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where Z ∼ N(0, 2q).

Then based on (23), we have for k ≥ 5,

E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ ≤
√

2
π

+ (2q)5

(
3
√

5
8 −

√
2
π

)
.

It means that

lim
M→+∞

lim sup
k→+∞

E

[∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣ 1
{∣∣∣∣∣ 1√

k

k∑
i=1

zi

∣∣∣∣∣ > M

}]
= 0.

Hence,
∣∣∣ 1√

k

∑k
i=1 zi

∣∣∣ is an asymptotically uniformly integrable sequence.

According to Theorem 2.20 in (Van der Vaart, 2000), we obtain

lim
k→+∞

√
m

µ
√
n
E|r>x| = lim

k→+∞
E

∣∣∣∣∣ 1√
k

k∑
i=1

zi

∣∣∣∣∣
= E |Z|

= 2
√
q

π
.

Next, let us investigate the error of the above convergence with respect to k. Following the definitions and
properties described in Eqs. (29) and (30), we further suppose ti = 1√

2q zi and Q ∼ N(0, 1), and get∣∣∣∣ √mµ
√
n
E|r>x| − 2

√
q/π

∣∣∣∣
=
∣∣∣∣∣E
∣∣∣∣∣1k

k∑
i=1

zi

∣∣∣∣∣− E|Z|
∣∣∣∣∣

=
√

2q
∣∣∣∣∣E
∣∣∣∣∣1k

k∑
i=1

ti

∣∣∣∣∣− E|Q|
∣∣∣∣∣

≤
√

2qdw

(
E

∣∣∣∣∣1k
k∑
i=1

ti

∣∣∣∣∣ ,E|Q|
)

where dw(ν, υ) denotes the Kolmogorov metric, with the form

dw(ν, υ) = sup
h∈H

∣∣∣∣∫ h(x)dν(x)−
∫
h(x)dυ(x)

∣∣∣∣ ,
H = {h : R→ R : |h(x)− h(y)| ≤ |x− y|} .

By the Theorem 3.2 in Ross (2011), since {ti} are i.i.d and Eti = 0, Et2i = 1, E|ti|4 <∞, we have

dw

(
E

∣∣∣∣∣1k
k∑
i=1

ti

∣∣∣∣∣ ,E|Q|
)
≤ 1
k3/2

k∑
i=1

E|ti|3 +
√

2√
πk

√√√√ k∑
i=1

Et4i

= 1√
2qk

+
√

2√
2qπk

,

and then ∣∣∣∣ √mµ
√
n
E|r>x| − 2

√
q/π

∣∣∣∣ ≤ √π +
√

2√
πk

.
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A.2 Proof of Property 1

Proof. This problem can be addressed using the Chebyshev’s Inequality, which requires us to first derive Ez
and Var(z). Note that Ez = E( 1

m

∑m
i=1 |r>i x|) = E(|r>i x|) has been derived in (4). In the sequel, we need

to first solve Var(z) = Ez2 − (Ez)2, which has

Ez2 = E( 1
m

m∑
i=1
|r>i x|)2

= 1
m2E(

m∑
i=1
|r>i x|2) + 1

m2E(
∑
i6=j
|r>i x| · |r>j x|)

= 2qµ2n

m2 + m− 1
2m E(|r>i x| · |r>j x|).

(31)

For the second term in the above result, it holds

E(|r>i x| · |r>j x|) ≤ Var(|r>i x|) + (E|r>i x|)2 = Var(|r>i x|) + (Ez)2, (32)

by the covariance property

Cov(|r>i x|, |r>j x|) = E(|r>i x| · |r>j x|)− E|r>i x| · E|r>j x|

= ρ
√

Var(|r>i x|) ·
√

Var(|r>j x|)

= ρVar(|r>i x|),

(33)

where ρ ∈ (−1, 1) is the correlation coefficient.

Substituting (31) into Var(z) = Ez2 − (Ez)2, by the inequality (32) and (17), we can derive

Var(z) ≤ 2qµ2n

m2 + m− 1
2m [Var(

∣∣r>i x|) + (Ez)2]− (Ez)2

= 2qµ2n

m2 + m− 1
2m · 2qµ2n

m2 − (Ez)2

= (m+ 1)qµ2n

m2 − (Ez)2.

(34)

With the above inequality about Var(z), we can further explore the condition that holds the desired proba-
bility

Pr{|z − Ez| ≤ ε} ≥ 1− δ. (35)

By the Chebyshev’s Inequality, (35) will be achieved, if Var(z)/ε2 ≤ δ; and according to (34), this condition
can be satisfied when m2

m+1 ≥
qµ2n
ε2δ .

In the above analysis, we consider a random x. For a given x, the condition of holding (35) can be further
relaxed to m2 ≥ 2qµ2n

ε2δ , since in this case |r>i x| is independent between different i ∈ [m], such that Var(z)
changes to be (17) divided by m.

A.3 Proof of Theorem 2

Proof. First, we derive the absolute moment of z ∼ N (µ, σ2) as

E|z| =
√

2
π
σe−

µ2

2σ2 + µ
(

1− 2Φ
(
−µ
σ

))
(36)
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which will be used in the sequel. With the distributions of r and x, we have |r>x| =
√

n
mk

∣∣∣∑k
i=1 xi

∣∣∣ . For
easier expression, assume y =

∑k
i=1 xi, then the distribution of y can be expressed as

f(y) =
k∑
i=0

k−i∑
j=0

CikC
j
k−ip

iqk−i
1√

2πkσ
e−

(y−(2j+i−s)µ)2

2kσ2 .

Then, by (36) we can derive that

E|r>x| =
√

n

mk

k∑
i=0

k−i∑
j=0

[
CikC

j
k−ip

iqk−i

×
∫ +∞

−∞

|y|√
2πkσ

e−
(y−(2j+i−s)µ)2

2kσ2 dy

]
= 2µ

√
n

mk

k∑
i=0

Cikp
iqk−i

⌈
k − i

2

⌉
C
d k−i

2 e
k−i

− 2µ
√

n

mk

k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−iΦ
(
−|k − i− 2j|µ√

kσ

)

+ σ

√
2n
πm

k∑
i=0

Cikp
iqk−i

k−i∑
j=0

Cjk−ie
− (k−i−2j)2µ2

2kσ2

where Φ(·) is the distribution function of N (0, 1).

The above equation and (18), (22), (23) together lead to

E|r>x| ≤ µ
√
n

m
+ σ

√
2n
πm

.

Next, we can derive the variance of |r>x| as

Var(|r>x|) = V ar(r>x)−
(
E|r>x|

)2

= n

m
(σ2 + 2qµ2)−

(
E‖r>x‖1

)2
.

Finally, the convergence of
√
m

µ
√
n
E|r>x| shown in (12) and (13) can be derived in a similar way to the proof

of P2 in Theorem 1.

B Appendix

In Figs. 8–11, we test the SVM (with linear kernel) classification accuracy for the sparse ternary matrix
with varying matrix sparsity k (and compression ratio m/n) on four different types of data. It can be seen
that the performance changing trends of SVM against the varying matrix sparsity k are similar to the KNN
performance as illustrated in the body of the paper, thus consistent with our theoretical analysis.
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(a) m/n = 1% (b) m/n = 10% (c) m/n = 50%

Figure 8: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for image data
(YaleB, DCT features), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 9: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for text data
(Newsgroups), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 10: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for gene data
(AMLALL), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and 50%.
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Figure 11: Classification accuracy of the sparse matrix-based and Gaussian matrix-based random projections for binary image
data (MNIST, binarized pixels), with varying matrix sparsity k ∈ [1, 30], three different projection ratios m/n = 1%, 10% and
50%.
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