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Abstract. Graphs are widely in use to model related instances of data
attributed with properties providing rich spatial information. Although a
lot of classical graph-related problems have been solved with the advent
of Graph Neural Networks (GNN), Spatio-Temporal data poses a new
challenge. We propose GraphCoReg: a novel methodology to perform re-
gression on spatio-temporal data, in a Semi-Supervised Learning (SSL)
setting using co-training. Our co-training approach exploits two model-
based views of the dataset using two temporal Graph Neural Networks
(GNNs) - an Attention-based GNN (ASTGCN) and a Long Short Term
Memory GNN (GCLSTM). Additionally, methodologies to incrementally
add the pseudo-targets to training data have been described. We finally
compare the performance of the semi-supervised model with equivalent
supervised models. This approach has been tested on the MetrLA dataset
for traffic forecasting. This is a work-in-progress to investigate the perfor-
mance of GraphCoReg on multiple benchmark spatio-temporal datasets
for the task of regression on temporal graphs.
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1 Introduction

A graph, in its most basic sense, is a collection of nodes and the edges that
connect them. Graphs are abundantly useful in representing collections of data,
such as social networks, wireless sensor networks, maps, molecules, etc. In recent
years, there has been an increase in the usage of graph-based learning methods
using the message passing framework in variations of Graph Neural Networks
[18] [27] to solve the problems of node classification, edge prediction and graph
classification.

Dynamic graphs are graphs whose components such as node attributes, links,
and the number of nodes change over time. Such graphs can be viewed as a
time-series of different graph snapshots. One class of dynamic graphs, as defined
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in PyTorch Geometric Temporal [17], consists of Static Graphs with Temporal
Signals. Their graph structure (nodes and edges) remains invariant, but the
signals (node and edge attributes) change with time. The temporal signals can
be viewed as state transitions, hence providing a time-series of “states”, similar
to a standard time-series problem.

Additionally, in real-world spatio-temporal data, true values might be scarcely
available due to issues like sensor failures within the network. Performing regres-
sion with limited ground truth values in a Semi-Supervised setting has previ-
ously been a challenge. In this case, we posit that the spatial information of these
graphs can be exploited to handle the unavailability of ground truth values.

To handle this problem of regression in a Semi-Supervised Learning (SSL) set-
ting that exploits spatial and temporal information, we propose a novel method-
ology GraphCoReg. We use co-training [1] that exploits two views of the graph
generated by two temporal GNNs — namely the Graph Convolution Embedded
LSTM (GCLSTM) [2] and the Attention Spatial-Temporal Graph Convolutional
Network (ASTGCN) [6] — to efficiently generate pseudo-targets. These pseudo-
targets are incrementally added to the data that is used to train the models to
learn an optimal regression function. We also propose a novel method to pick
the most confident pseudo-targets.

In this study, we explore the applications of GraphCoReg for the problem of
traffic forecasting, using the MetrLA benchmark dataset [10] and compare its
performance to the two individual models in a supervised manner. The rest of
the paper is organized as follows: Section 2 summarizes related work, Section
3 elaborates on the experimental setting, Section 4 details the methodology,
Section 5 discusses the results and analysis, and Section 6 covers the conclusion
and future scope.

2 Related Work

2.1 Co-training and Semi-Supervised Learning

SSL algorithms refer to a class of machine learning techniques that exploit the
availability of an abundance of unlabelled data to enhance the learning capabil-
ity of labelled data. Co-training [1] as an SSL technique has been around for over
two decades, but several recent improvements have been made. Want et al. [22]
proposed random subspace co-training (RASCO) which eased up the necessary
condition of multi-view learning by artificially generating it via a sufficiently
large random division of the attribute set. Han et al. [8] propose co-teaching,
which aims to curb the effect of noisy labels by co-training with two deep neural
networks that “teach” each other. With exponential developments in deep learn-
ing algorithms, researchers have explored fusing deep learning with co-training
[15].

2.2 Semi-Supervised Regression

Semi-Supervised Regression (SSR) is a statistical technique that generates real-
valued output vectors whereas semi-supervised classification generates discrete
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output variables [12]. A majority of the research output in the field of SSL per-
tains to classification. In a review conducted by Ning et al. [15], SSL classification
held 9% of the proportion of keywords related to SSL. Regression on the other
hand had less than 1%. Zhou and Li [28] sparked a new interest in SSL re-
gression with their co-training style semi-supervised regression algorithm named
COREG. In our paper, we greatly reduce the complexity of the neighbour-based
confidence estimator proposed in COREG while retaining the accuracy of our
model.

2.3 Graph-based Semi-Supervised Learning

In [3], the authors describe both transductive and inductive algorithms for graph-
based SSL. Inductive learning is mainly concerned with methods related to the
Label Propagation Algorithm [29], either based on embeddings or neural net-
works, whereas transductive learning consists of sparse, low-rank models and
semi-supervised neural network models. Wang et. al. [23] provided an intuitive
perspective of looking at co-training and multi-view learning as a label propa-
gation over a combinative graph. Extending this idea, [13] introduces Co-GCN
which provides a new aggregation strategy for Graph Convolution Networks
(GCN) that is trained on a combinative model of two views. Mutual Teach-
ing [25] describes a more conventional co-training approach where pseudo-labels
are generated from the two views. The authors also introduce a pseudo-label
loss and consistency loss to encourage consistency among the two views’ em-
beddings. Similarly in [11], spectral Graph Convolutions have been used for
semi-supervised node classification.

3 Experimental Setting

To simulate a semi-supervised setting, we assume a hypothetical scenario where
a number of these speed detectors have failed in the sensor network. This would
lead to the unavailability of true targets at all failed nodes, and the success of
conventional supervised and time-series methods in such a scenario is question-
able due to their inability to circumvent missing data.

A detailed description of the MetrLA dataset [10] used has been provided
under Appendix C. Formally, we refer to the set of unlabelled/failed nodes as
set U . U is also referred to as the set of masked nodes as their signals have been
masked across all time-steps. The nodes in set U are picked at random with no
bias towards a node’s neighbourhood. The remaining set of nodes (labelled or
non-masked nodes) are referred to as set L. The ratio of U/(L + U) or mask-
ratio is a hyperparameter and has been chosen to be 0.7, which would mean
true-targets are unavailable at 70% of the nodes. This choice of hyperparameter
simulates the relevant realistic scenario of the high availability of unlabelled data
coupled with a small pool of labelled data. Drawing a parallel to the MetrLA
dataset, it allows for a high margin of speed detector failures in the sensor
network.
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4 Methodology

4.1 Compatibility with multi-view co-training

An extension of the original co-training algorithm [1] proposed by Goldman and
Zhou [5], demonstrates that the requirement of sufficient and redundant views
can be substituted through the use of a largely diverse base of learning algo-
rithms. The GC-LSTM offers a long-term dependency view while the AST-GCN
offers an attention-based weighted view. The two base learners are conditionally
independent owing to their difference in architecture and underlying algorithms,
a detailed description of which has been provided in Appendix B. The GC-LSTM
model was designed with the intention for link prediction whereas the AST-GCN
has been built for node prediction. Although our primary task pertains to node
label prediction, we assume that the spatio-temporal features from a link predic-
tion GNN would improve that of a node prediction GNN. In combination, the
two independent views allow our model to train on and leverage heterogeneous
input features owing to each model in turn learning from the other. Since the
two base learners are conditionally independent, it would imply that their target
outputs are also conditionally independent, demonstrated in Eq. 1.

(Glstm ⊥⊥ Gast) ⇒ (ŷlstm ⊥⊥ ŷast) (1)

The architecture of the resultant overall co-training model is similar to the
AGC-LSTM classification framework proposed by [20] in a semi-supervised set-
ting for regression. Thus we propose a novel approach for semi-supervised re-
gression on spatio-temporal graphs using multi-view co-training.

4.2 GraphCoReg

The two temporal graph neural networks, i.e Glstm and Gast, are initially trained
on the labelled data L and later refined with the benefit of pseudo-targets P gen-
erated from the unlabelled example set U . The pseudo-targets P are computed
by averaging the values predicted by the different models Glstm and Gast. This
enables the inclusion of implicit information extracted by both views in the
pseudo-targets. The selection of the set of nodes (topk) whose pseudo-targets
are added to training data Y at the end of every epoch has been described fur-
ther in Section 4.3. Over each epoch, the pool of labelled data is incremented
until eventually GraphCoReg exhausts the U set and continues to train on the
set L+P . The base models are backpropagated during every time-step. The loss
is calculated using the mean squared error shown in Eq. 2. The GraphCoReg
training algorithm in its entirety is provided in Algorithm 1 and is explained in
Fig. 1. We have included a link to the GitHub Repository 1.

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (2)

1 https://github.com/Deep-Co-Training/GraphCoReg

https://github.com/Deep-Co-Training/GraphCoReg
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4.3 Pseudo-target Confidence Estimation

Co-training relies on the ability to choose the top k candidates from set U to
add to set L based on the confidence of their predictions. When performing co-
training on classification, the top k targets are typically chosen corresponding
to the k highest softmax values. In the case of regression, however, the possible
values have no bounds and a different method must be employed. Zhou et al. [28]
use two kNNs with different distance metrics as the two models and calculate
the top k based on the influence of each prediction on others.

We introduce a method to calculate the top k candidates by finding the k
nodes in the graph with the least difference in the two predicted values from
the two models. Every epoch, k nodes from U get added to L. If at any point k
exceeds ∥U∥, we simply add all nodes in U to L. The algorithm is described in
Algorithm 2.

5 Results and Analysis

Our results have been obtained by training the models using an RTX Nvidia 3080
GPU with PyTorch-GPU dependencies. The data was sourced and the models
were built using PyTorch Geometric Temporal [17]. The models were trained on
80% of the graph dataset which approximately took 9 hours to complete.

5.1 Co-training vs Supervised

For purposes of equal and fair comparison between the two learning methods, the
losses of co-training and the supervised algorithms were calculated on only the
unmasked nodes, i.e the nodes which don’t have a “sensor failure”. We computed
and recorded the sum of mean-squared error across all time-steps during each
epoch. The results from training for 30 epochs are shown in Fig. 3.
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Algorithm 1 GraphCoReg Training

Input: Two Temporal GNNs - the GCLSTM Glstm and astGCN Gast , Set of labelled
nodes L and unlabelled nodes U , Temporal Signals X, Targets Y , Number of pseudo-
targets to append each epoch k, Number of epochs E

1: for epoch e = 0 to E do
2: for timestep t = 0 to T do
3: ŷt

lstm ← Glstm(xt) ; ŷt
ast ← Gast(x

t)
4: lossL ← MSE(ŷt

L, y
t
L) ▷ ŷt

L are predictions of nodes in L
5: Backpropogate lossL ▷ Tune the weights of Glstm and Gast

6: end for
7: Ŷlstm ← Glstm(X) ; Ŷast ← Gast(X)
8: k ← min(k,∥U∥)
9: topk ← findTopK(ŷt

lstm, ŷt
ast, U)

10: L ← L
⋃

topk ; U ←U – topk

11: Y [topk] ← 1
2
×(Ŷlstm[topk] + Ŷast[topk]) ▷ Add k pseudo-targets to Y

12: end for

Algorithm 2 FindTopK

Input: Predictions Ŷlstm from GCLSTM and Ŷast from astGCN, unlabelled set U
Output: Set of top k nodes topk

1: Ydiff ← abs(Ŷlstm − Ŷast)

2: Ydifftotal ←
∑T

t=0
Yt

diff ▷ Add differences over all timesteps for each node
3: Set topk as the k nodes in U with lowest Y n

difftotal

4: return topk

From a quick visual inspection, we notice that the AST-GCN model performs
slightly worse than the GC-LSTM. However, during co-training, the AST-GCN
converges while the GC-LSTM performs worse. The models were then evaluated
on a validation set and the losses were calculated across all time-steps. The
results are shown in Table. 1.

Table 1. Train and test loss for each model

Models Test loss Train loss

Supervised - LSTM 3101.61 2873.19
Supervised - AST 5130.56 4211.11

Co-Training - LSTM 3973.35 1402.35
Co-Training - AST 7644.07 2408.27

Co-Training - Combined 5808.71 1905.31
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5.2 GC-LSTM vs AST-GCN

In the supervised setting, GC-LSTM performs much better than the AST-GCN.
This could be attributed to the fact that only a short window has been made
available as input to both models. The short window limits the ability of atten-
tion weights in the AST-GCN to forecast optimal values, whereas the hidden
state of the GC-LSTM is better suited to encoding the window values.

After co-training, the performance of AST-GCN and GC-LSTM become com-
parable. In Fig. 3. it is noticeable that the training loss decreases significantly in
both AST-GCN and GC-LSTM after utilizing the co-training algorithm. Addi-
tionally, we report the standardized miles per hour for one sensory node across
all time-steps which represents the range for one entire day, the results of which
are displayed in Fig. 2.

6 Conclusions and Future Scope

In this paper, we propose a novel algorithm for forecasting traffic speeds in
a spatial graph with temporal signals in the case of sensor failure. A custom
co-training algorithm is implemented using two models which incorporate two
conditionally independent views of the MetrLA dataset - a Graph Convolution
embedded LSTM (GC-LSTM) and an Attention Temporal Graph Convolution
Network (AST-GCN). We demonstrated that the link prediction features from
GC-LSTM were able to boost the performance of the node-based AST-GCN. We
observed a significant improvement in training loss after utilizing the co-training
framework.

This solution mitigates the problem of scarcity of labelled data by simulating
sensor failure in the traffic network. We establish that GraphCoReg has the
potential to perform better than both equivalent supervised models. Both models
show similar performance in the semi-supervised setting.

For the future, we outline three aspects to further refine and bolster our
fundamental research. Firstly, we are in the process of tuning our base co-training
model parameters by experimenting with other classes of temporal GNNs as
well as hyper-tuning the window sizes for effective learning. Secondly, inspired
by Co-teaching [8] and Co-teaching+ [24] we intend to extend our proposed
GraphCoReg top-k pseudo-target selection algorithm to select a certain range of
loss examples and cross feed them during backpropagation. We speculate that
loss adjustment would be a necessary addition to robustly train the base learners
[21]. Last but not least, we hope to carry over our work across other benchmark
datasets with an emphasis on spatio-temporal social media data. In doing so we
wish to portray and evaluate the general performance of the GraphCoReg model
across a variety of conditions.
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A Related Work

A.1 Spatio-Temporal Data Mining

Spatio-temporal data is classically dealt with by processing the spatial infor-
mation (using graph representation learning) and temporal information (using
time-series methods) separately and then combining them by processing a time-
series of spatial embeddings. However, recently with the introduction of Recur-
rent GNNs [19] and Temporal Graph Networks [16], and the explosion of spatio-
temporal data, effective processing of such data has come into the spotlight.
Spatio-temporal data mining has also been widely used in various applications
such as Covid-19 forecasting [4] and traffic forecasting [26] [7].

B Model Descriptions

B.1 GC-LSTM

A Graph Convolution embedded Long Short-Term Memory (GC-LSTM) Net-
work [9] [2] employs a GCN to learn spatial features in combination with an
LSTM network capable of learning long-term feature dependencies, similar to a
conventional LSTM. The model can thus make effective predictions on spatial-
temporal data. For a dynamic network, this results in retention of traffic speeds
over multiple time-steps, owing to it being a continuous phenomenon.

B.2 AST-GCN

A Attention based Spatial Temporal Graph Convolution Network (ASTGCN)
proposed by Guo et al. [7] for traffic flow forecasting consist of three compo-
nents based on the length of time intervals considered for temporal data: recent,
daily-periodic and weekly-periodic. Each component is constituted, firstly, by
an attention mechanism - both spatial attention and temporal attention - to
capture spatio-temporal correlation within the data. Secondly, it consists of a
convolution module - graph convolutions to capture spatial features of the traf-
fic network as well as temporal convolutions to capture traffic flow from various
time-steps.

C Data Description

For the purposes of this preliminary study, we check the validity of GraphCoReg
on the MetrLA benchmarking dataset [10], discretized and formulated as a sensor
network as in [14]. The distribution of sensors is shown in Fig. 4. This dataset
consists of data from 207 loop detectors in the Los Angeles highway network over
4 months. Each data sample is collected at 5-minute intervals. The goal is to
forecast the traffic speed (target) at each of these detectors, given the temporal
signals which are features of traffic flow like traffic volume at the detectors.
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Fig. 4. Sensor distribution in METR-LA Dataset [14]
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