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ABSTRACT
Federated learning emerged as a decentralized paradigm to train models while
securing privacy. However, conventional FL faces data heterogeneity and class
imbalance challenges, affecting model performance. In response to these issues,
Personalized FL has been developed as an innovative methodology that relies on
fine-tuning the distinct local models based on individual training datasets. In this
work, we propose a novel PFL method, FedGWC (Federated Gaussian Weight-
ing), which groups clients based on their data distribution, allowing training of a
more robust and personalized model on the identified clusters. FedGWC identifies
homogeneous clusters by transforming individual empirical losses to model client
interactions with a Gaussian reward mechanism. Additionally, we introduce a new
clustering metric for FL to evaluate cluster cohesion with respect to the individual
class distribution. Our experiments on benchmark datasets show that FedGWC
outperforms existing FL algorithms in cluster quality and classification accuracy,
validating the efficacy of our approach.

1 INTRODUCTION
Federated Learning (FL) has emerged as a promising paradigm for training models on decentralized
data while preserving privacy and improving communication efficiency. Unlike traditional machine
learning frameworks, FL enables collaborative training between multiple clients without requiring
raw data transfer, making it particularly attractive in privacy-sensitive domains (McMahan et al.,
2017; Bonawitz et al., 2019). FL was introduced primarily to address two major challenges in de-
centralized scenarios: ensuring privacy (Kairouz et al., 2021) and reducing communication overhead
(Hamer et al., 2020; Asad et al., 2020). In particular, FL algorithms must guarantee communication
efficiency to reduce the burden associated with the exchange of model updates between clients and
the central server, while maintaining strong privacy guarantees is also essential, as clients should
not expose their private data during the training process.
A fundamental challenge in FL is given by data heterogeneity (Li et al., 2020), specifically in the
form of class imbalance within individual clients and non-IID distributions throughout the feder-
ation. In this scenario, a single global model often fails to generalize due to clients contributing
updates from skewed distributions, leading to degraded performance (Zhao et al., 2018; Caldarola
et al., 2022) compared to the centralized counterpart. Furthermore, noisy or corrupted data from
some clients can further complicate the learning process (Cao et al., 2020; Zhang et al., 2022), while
non-IID data often results in unstable convergence and conflicting gradient updates (Hsieh et al.,
2020; Zhao et al., 2018). Despite the introduction of various techniques to mitigate these issues,
such as regularization methods (Li et al., 2020), momentum (Mendieta et al., 2022), and control
variates (Karimireddy et al., 2020b), statistical heterogeneity remains a critical unsolved problem.
Recently, Personalized FL (PFL) techniques have emerged to address the limitations of learning
a single global model for the entire federation, shifting the focus to a more flexible and coopera-
tive strategy (Zhang et al., 2021). These approaches seek to maximize both the shared information
between clients and the specific data characteristics of individual clients, allowing the creation of
personalized models that adapt better to the unique distributions present in the data of each client
(T Dinh et al., 2020; Tan et al., 2022; Li et al., 2021; Sun et al., 2021). By doing so, these meth-
ods mitigate the effects of data heterogeneity and class imbalance and improve the performance of
models on individual client tasks. Among PFL methods, clustering techniques have been employed
to group clients with similar data distributions, proposing an effective solution to face client statis-
tical heterogeneity (Ghosh et al., 2020; Sattler et al., 2020). By partitioning clients based on data
distributions, clustering-based approaches reduce model divergence within each group, allowing for
more homogeneous and targeted model updates.
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In this work, we address the challenges of data heterogeneity and class imbalance through a novel
PFL clustering-based approach. We propose FedGWC (Federated Gaussian Weighting), a method
to group clients with similar data distributions into clusters, enabling the training of personalized
federated models for each group. Using a Gaussian reward mechanism to form homogeneous clus-
ters, our method builds clusters based on an interaction matrix, which encodes the compatibility of
all the couples of clients according to their data distribution. This is achieved by simply communi-
cating the empirical losses to the server at each communication round. Each cluster benefits from
a personalized federated model that better captures the shared data characteristics within the group,
offering a more robust solution to the limitations of training a single global model over heteroge-
neous data. Training on more homogeneous clusters allows us to exploit the advantages of FL, such
as aggregating knowledge from a larger pool of data, while avoiding the drawbacks of statistical
heterogeneity, such as client drift. The core idea of our approach is that client data distributions can
be inferred by a proper transformation of individual empirical loss functions, motivated by the fact
that training federated algorithms on homogeneous clusters leads to better performance compared
to training across the entire federation, as shown in (Sattler et al., 2020).
We present a comprehensive mathematical framework for the proposed algorithm and conduct a rig-
orous analytical examination to establish the convergence properties of the Gaussian weights. Unlike
the majority of existing work on FL, we do not rely on model updates to cluster clients. Instead, in-
spired by (Cho et al., 2022), we extract valuable information from individual losses, hypothesizing
that clients with similar data distributions exhibit similar loss landscapes. Furthermore, FedGWC
can be integrated with any robust FL aggregation algorithm to furtherly handle data heterogeneity.
Additionally, we introduce a new clustering metric tailored for evaluating cluster cohesion in the
presence of class imbalance. Through experiments on benchmark datasets, we demonstrate that our
approach outperforms existing personalization and clustering algorithms in terms of accuracy and
clustering quality.
Contributions.
• We propose an efficient FL framework that clusters clients based on class imbalance and data

heterogeneity, leading to personalized models within clusters.
• We introduce a new clustering metric specifically designed to evaluate clusters in the presence of

class imbalance.
• We provide a rigorous mathematical framework to motivate the algorithm, showing its conver-

gence properties.
• We compare FedGWC with clustered FL baselines, empirically showing that FedGWC provides

the best clusters and improves performance in the most heterogeneous scenarios.
• We empirically show how FedGWC can be used with any FL aggregation algorithm.
• We investigate the behavior of our algorithm in class and domain imbalance scenarios, showing

how our algorithm successfully clusters the clients according to different class distributions or
domains.

2 RELATED WORK
FL with Heterogeneous Data. Handling data heterogeneity, especially class imbalance, remains
a critical challenge in FL. FedProx(Li et al., 2020) was one of the first attempts to address het-
erogeneity by introducing a proximal term that constrains local model updates close to the global
model. FedMD (Li & Wang, 2019) focuses on heterogeneity in model architectures, allowing col-
laborative training between clients with different neural network structures using model distillation.
Methods such as SCAFFOLD (Karimireddy et al., 2020b) and Mime (Karimireddy et al., 2020a)
have also been proposed to reduce client drift by using control variates during the optimization pro-
cess, which helps mitigate the effects of non-IID data. Furthermore, strategies such as biased client
selection (Cho et al., 2022) based on ranking local losses of clients and normalization of updates
in FedNova (Wang et al., 2021) have been developed to specifically address class imbalance in
federated networks, leading to more equitable global model performance.

Personalization in FL. Personalization in FL has been extensively explored to tackle the chal-
lenge of data heterogeneity across clients (Tan et al., 2022). Various techniques aim to adapt models
to each client’s specific needs while maintaining a collaborative training framework. A notable
method is FedPer (Arivazhagan et al., 2019), which personalizes the last layers of the model while
sharing the lower layers across all clients. Another important contribution is the pFedMe algorithm
(T Dinh et al., 2020), which uses a Moreau envelope to decouple local and global model updates,
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allowing for client-specific customization without losing the benefits of collaborative learning. Sim-
ilarly, Per-FedAvg (Fallah et al., 2020) leverages a model-agnostic meta-learning (MAML) ap-
proach (Finn et al., 2017), optimizing a global model while fine-tuning each client locally, ensuring
that the global model can generalize across clients but is also personalized. The Ditto framework
(Li et al., 2021) further advances personalization by ensuring fairness and robustness, particularly
in non-IID settings, through individualized model training. More recently, FedALA (Zhang et al.,
2023) has been introduced, offering adaptive local aggregation for enhanced personalization.

Clustering in FL. Clustering has proven to be an effective strategy in FL for handling client het-
erogeneity and improving personalization (Huang et al., 2022; Duan et al., 2021; Briggs et al., 2020;
Caldarola et al., 2021; Ye et al., 2023). Clustered FL (Sattler et al., 2020) is one of the first meth-
ods proposed to group clients with similar data distributions to train specialized models rather than
relying on a single global one. Nevertheless, from a practical perspective, this method exhibits pro-
nounced sensitivity to hyper-parameter tuning, especially concerning the gradient norms threshold,
which is intricately linked to the dataset. This sensitivity can result in significant issues of either
excessive under-splitting or over-splitting. Additionally, as client sampling is independent of the
clustering, there may be privacy concerns due to the potential for updating cluster models with the
gradient of a single client. An extension of this is the efficient framework for clustered FL proposed
by (Ghosh et al., 2020), which strikes a balance between model accuracy and communication effi-
ciency. Multi-Center FL (Long et al., 2023) builds on this concept by dynamically adjusting client
clusters to achieve better personalization, however a-priori knowledge on the number of clusters
is needed. Similarly, IFCA (Ghosh et al., 2020) addresses client heterogeneity by predefining a
fixed number of clusters and alternately estimating the cluster identities of the users by optimiz-
ing model parameters for the user clusters via gradient descent. However, it imposes a significant
computational burden, as the server communicates all cluster models to each client, which must
evaluate every model locally to select the best fit based on loss minimization. This approach not
only increases communication overhead but also introduces inefficiencies, as each client must test
all models, making it less scalable in larger networks.
Compared to previous approaches, the key advantage of the proposed algorithm, FedGWC, lies in
its ability to effectively identify clusters of clients with similar levels of heterogeneity and class
distribution through simple transformations of individual empirical losses. This is achieved with-
out imposing significant communication overhead or requiring additional computational resources.
Additionally, FedGWC can be seamlessly integrated with any aggregation method, enhancing its
robustness and performance when dealing with heterogeneous scenarios.

3 FEDGWC: MATHEMATICAL FRAMEWORK
In this section, we introduce the mathematical framework of our algorithm, FEDERATED GAUSSIAN
WEIGHTING CLUSTERING (FedGWC), a recursive clustered FL algorithm designed to group clients
with similar data distributions, where each cluster develops its own model.
First, in Section 3.1 we introduce the mathematical formulation and notations of the FL problem
we aim to solve. Then, in Sections 3.2 and 3.3, we present the recursive step of our algorithm or,
in other words, how FedGWC decides if a cluster needs to be split further into smaller but more
homogeneous clusters, or if the current cluster is already homogeneous enough. Finally, Section 3.4
introduces the full algorithmic notation, including cluster indices, and presents the overall recursive
structure. To improve clarity, we initially omit cluster indices, focusing instead on the internal
mechanics of the recursive step. In particular, without loss of generality, we consider a cluster of
clients as the totality of the clients in the federation in Sections 3.2 and 3.3, as the final objective
here is to explain how FedGWC eventually partitions a set of clients into some smaller clusters of
clients. Then, we reintroduce the cluster indices in Section 3.4.
In addition, we propose a novel metric to evaluate the quality of clustered FL algorithms in Section
3.5. This metric, which derives from the Wasserstein distance (Kantorovich, 1942), quantifies the
cohesion of client groups based on their class distribution similarities.

3.1 PROBLEM FORMULATION

We adopt the general structure of most FL methods where, during each round of training, a subset of
clients downloads the model from the server, trains it locally using its data, and sends back the up-
dated models for future rounds. Let K be the total number of clients and T the total number of com-
munication rounds. At each communication round t ∈ [T ], a subset Pt of participating clients are
selected for training. Let S be the total number of training iterations that are performed at each com-
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Figure 1: The principle underlying Gaussian reward mechanisms is that if the client’s loss lies within the
confidence region, the algorithm assigns a higher Gaussian reward. Conversely, if the loss is further from the
confidence region, it assigns a lower reward. Left: Empirical loss processes , dashed lines, over S = 8 local
iterations for 10 sampled clients i.e. lt,sk for k ∈ Pt and s = 1, . . . , S, the average loss is represented in black,
i.e. µ̂t,s for s = 1, . . . , S and the light blue region delineating the confidence within the standard deviation i.e.
σ̂t,s for s = 1, . . . , S. Right: The same representation for the identical clients in the same round is provided
with violin plots instead of intervals. Blacked dashed line is the average process of the empirical loss, i.e. µ̂t,s,
with the associated standard errors, i.e. µ̂t,s ± σ̂t,s for s = 1, . . . , S.

munication round during the training. In general, FL aims to solve an optimization problem that can
be stated in the following form (McMahan et al., 2017): minθ∈Θ L(θ) = minθ∈Θ

∑K
k=1

nk

n
Lk(θ),

where Lk(·) is the loss function of client k with nk training samples, and n =
∑

k nk. When
k is sampled during round t, its local parameters are updated at every iteration s with a stochas-
tic optimizer. For instance, Stochastic Gradient Descent (SGD) has the following update rule:
θt,s+1
k = θt,sk − η∇Lk(θ

t,s
k ), where θt,sk is the vector of the model parameters, η the learning rate.

The stochastic process identified by the optimization algorithm suggests that the evolution of the
empirical loss can be modeled using random variables and tools from probability theory.
In the following sections, we will use capital letters (e.g., X) to denote random variables and lower-
case letters (e.g., x) to represent their specific observations.

3.2 GAUSSIAN REWARDS WEIGHTS

To assess how closely each client’s local data aligns with the global distribution, we introduce the
Gaussian Weights γk, statistical estimators that capture the closeness of each clients’ class distribu-
tion to the main distribution of the cluster. A weight near zero suggests that the client’s distribution
is far from the main distribution, meaning that it should probably belong to a separate cluster. We
pictorially represent the idea of the Gaussian rewards in Figure 1.
The core idea of FedGWC is to group clients based on the similarity of their empirical losses, which
are used to compute the rewards, continuous random variables in (0, 1). A high reward indicates that
a client’s loss is close to the cluster’s mean loss, while a lower reward reflects greater divergence.
Gaussian weights estimate the expected value of these rewards, quantifying the closeness between
each client’s distribution and the central distribution.
At each training round t and local training iteration s, we define the loss random variable Lt,s

k , of
which we observe its samples lt,sk = Lk(θ

t,s
k ). These values are naturally computed in the clients

during the local training. For each client k, it is possible to define a family of random rewards that
are stationary by construction, i.e., their moments do not depend on the iteration and are obtained
with a Gaussian transformation of the loss

Rt,s
k = exp

(
−
(Lt,s

k − µ̂t,s)2

2(σ̂t,s)2

)
, (1)

where µ̂t,s = 1/|Pt|
∑

k∈Pt
Lt,s
k is the sample mean across clients, and (σ̂t,s)2 = 1/(|Pt| −

1)
∑

k∈Pt
(Lt,s

k − µ̂t,s)2 is the sample variance. The rewards Rt,s
k → 1 as the distance between

Lt,s
k and the average µ̂t,s decreases, while Rt,s

k → 0 as the distance increases. Therefore, the ex-
pected reward E[Rt,s

k ] for out-of-distribution clients is lower than that of the in-distribution clients.
In Eq. 1, during any local iteration s, a Gaussian kernel with mean loss and sample variance as-
sesses a client’s proximity to the confidence interval’s center, indicating their probability of sharing
the same learning process distribution.
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To estimate the expected reward E[Rt,s
k ], we introduce the random variable Ωt

k, which is the average
of the rewards across the S local iterations, i.e., Ωt

k = 1/S
∑

s∈[S] R
t,s
k . We introduce Ωt

k to
reduce noise in the estimation caused by stochastic fluctuations in the loss. Instead of using a single
sample, such as the last value of the loss as done in Cho et al. (2022), we opted for averaging across
iterations to provide a more stable estimate. Due to the linearity of the expectation operator, the
expected reward E[Rt,s

k ] for the k-th client at round t, local iteration s equals the expected Gaussian
reward E[Ωt

k] that, to simplify the notation, we denote by µk. µk is the theoretical value that we
aim to estimate by designing our Gaussian weights Γt

k appropriately, as it encodes the ideal reward
to quantify the closeness of the distribution of each client k to the main distribution. Note that the
process is stationary by construction. Therefore, it does not depend on t but differs between clients,
as it reaches a higher value for in-distribution clients and a lower for out-of-distribution clients.
Practically, we calculate the observed Gaussian weights γt

k. We initialize γt
k to zero, as we do

not want to bias the estimation of the expectation of the reward. During each round t, a group of
participating clients Pt is sampled. Each client k ∈ Pt updates its model parameters θt+1

k , stores
the observed loss process ltk = (lt,1k , . . . , lt,Sk ) ∈ RS and communicates it to the server, along
with the update model parameters θt+1

k . Then, the server computes the observed reward process
rtk = (rt,1k , . . . , rt,Sk ) ∈ [0, 1]S according to Eq. 1, and ωt

k = 1/S
∑

s∈[S] r
t,s
k , i.e., the realization of

the random variable Ωt
k, averaging the entries of rtk. Finally the server can update the weight γt

k for
each selected client k ∈ Pt as

γt+1
k = (1− αt)γ

t
k + αtω

t
k (2)

for a sequence of update coefficients {αt}∞t=0 such that 0 < αt < 1 ∀t. The weight definition in Eq.2
is closely related to the Robbins-Monro stochastic approximation method (Robbins & Monro, 1951).
If a client is not participating in the training, its weight is not updated. FedGWC mitigates biases in
the estimation of rewards by employing two mechanisms: (1) uniform random sampling method for
clients, with a dynamic adjustment process to prioritize clients that are infrequently sampled, thus
ensuring equitable participation across time periods; and (2) when a client is not sampled in a round,
its weight and contribution to the reward estimate remain unchanged.
To rigorously motivate the construction of our algorithm and the reliability of the weights, we intro-
duce the following theoretical results. Theorems 3.1 and 3.2 demonstrate that the weights converge
to a finite value and, more importantly, that this limit serves as an unbiased estimator of the theoret-
ical reward µk. The first theorem provides a strong convergence result, showing that, with suitable
choices of the sequence {αt}t, the expectation of the Gaussian weights Γt

k converges to µk in L2

and almost surely. In addition, Theorem 3.2 extends this to the case of constant αt, proving that the
weights still converge and remain unbiased estimators of the rewards as t→∞.
Theorem 3.1. Let {αt}∞t=1 be a sequence of positive real values, and {Γt

k}∞t=1 the sequence of
Gaussian weights. If {αt}∞t=1 ∈ l2(N)/l1(N), then Γt

k converges in L2. Furthermore, for t→∞,

Γt
k −→ µk a.s. (3)

Theorem 3.2. Let α ∈ (0, 1) be a fixed constant, then in the limit t → ∞, the expectation of the
weights converges to the individual theoretical reward µk, for each client k = 1, . . . ,K, i.e.,

E[Γt
k] −→ µk t→∞ . (4)

Finally, Proposition 3.1 shows that Gaussian weights reduce the variance of the estimate, thus de-
creasing the error and enabling the construction of a confidence interval for µk.
Proposition 3.1. The variance of the weights Γt

k is smaller than the variance σ2
k of the theoretical

rewards Rt,s
k .

Complete proofs of Theorems 3.1, 3.2 and Proposition 3.1 are detailed in Appendix A.

3.3 INTERACTION MATRIX AND CLUSTERING

Interaction Matrix. In the previous section, we defined the Gaussian weights as a measure of
proximity between each client’s data distribution and the main distribution of the cluster. Gaussian
weights are scalar quantities that offer an absolute measure of the alignment between a client’s
data distribution and the global distribution. Although these weights indicate the conformity of
each client’s distribution individually, they do not consider the interrelations among the distributions
of different clients. Therefore, we propose to encode these interactions in an interaction matrix
P t ∈ RK×K whose element P t

kj estimates the similarity between the k-th and the j-th client data
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distribution. The interaction matrix is initialized to the null matrix, i.e. P 0
kj = 0 for every couple

k, j ∈ [K].
Specifically, we define the update rule for the matrix P t as follows:

P t+1
kj =

{
(1− αt)P

t
kj + αtω

t
k , (k, j) ∈ Pt × Pt

P t
kj , (k, j) /∈ Pt × Pt

(5)

where {αt}t is the same sequence used to update the weights, and Pt is the subset of clients sampled
in round t.
Intuitively, in the long run, since ωt

k measures the proximity of the loss process of client k to the
average loss process of clients in Pt at round t, we are estimating the expected perception of client
k by client j with P t

kj , i.e. a larger value indicates a higher degree of similarity between the loss
profiles, whereas smaller values indicate a lower degree of similarity. For example, if P t

kj is close to
1, it suggests that on average, whenever k and j have been simultaneously sampled prior to round t,
ωt
k was high, meaning that the two clients are well-represented within the same distribution.

Interestingly, it is possible to show that the diagonal values of the interaction matrix are exactly the
Gaussian weights computed as in Eq. 2. Indeed, by looking at Eq. 5, if we take k = j, we obtain
the same relation in Eq. 2; namely, for any k and any t, the equality P t

kk = γt
k holds. Moreover,

the entries of the interaction matrix P t are bounded, as shown in Proposition A.2. Furthermore, as
a direct consequence of Theorem 3.2, there exists a matrix P ∈ RK×K , such that, in the limit for
t→∞, E[P t

kj ]→ Pkj entry-wise.
To effectively extract the information embedded in P , we introduce the concept of unbiased percep-
tion vectors (UPV). For any pair of clients k, j ∈ [K], the UPV vjk ∈ RK−2 represents the k-th row
of P , excluding the k-th and j-th entries. Recalling the construction of P t, where each row indicates
how a client is perceived to share the same distribution as other clients in the federation, the UPV
vjk captures the collective perception of client k by all other clients, excluding both itself and client
j. This exclusion is why we refer to vjk as unbiased.
The UPVs encode information about the relationships between clients, which can be exploited for
clustering. However, the UPVs cannot be directly used as their entries are only aligned when consid-
ered in pairs. Instead, we construct the affinity matrix W by transforming the information encoded
by the UPVs through an RBF kernel, as this choice allows to effectively model the affinity between
clients: two clients are considered affine if similarly perceived by others. This relation is encoded
by the entries of W ∈ RK×K , which we define as:

Wkj = K(vjk, v
k
j ) = exp

(
−β
∥∥∥vjk − vkj

∥∥∥2) . (6)

The spread of the RBF kernel is controlled by a single hyper-parameter β: changes in this value
provide different clustering outcomes, as shown in the sensitivity analysis in Appendix H.

Clustering. The affinity matrix W , designed to be symmetric, highlights features that capture
similarities between clients’ distributions. Clustering is performed by the server using the rows of
W as feature vectors, as they contain the relevant information. We apply the spectral clustering
algorithm (Ng et al., 2001) to W due to its effectiveness in detecting non-convex relationships em-
bedded within the client affinities. Symmetrizing the interaction matrix P into the affinity matrix
W is fundamental for spectral clustering as it refines inter-client relationship representation. It mod-
els interactions, reducing biases, and emphasizing reliable similarities. This improves robustness
to noise, allowing spectral clustering to effectively detect the distributional structure underlying the
clients’ network (Von Luxburg, 2007). During the iterative training process, the server determines
whether to perform clustering by checking the convergence of the matrix P t. Convergence is nu-
merically verified when the mean squared error (MSE) between consecutive updates is less than a
small threshold ϵ > 0. To reduce the computational cost of computing the MSE at each round, we
employ a running average update. Specifically, the MSE is initialized to 1 in order to ensure stability
and avoid erratic updates in early iterations, and it is updated as follows:

MSEt+1 = (1− αt)MSEt + αtm
t with mt =

1

|Pt|
∑

k,j∈Pt

|P t
kj − P t+1

kj |
2 . (7)

Algorithm 1 summarizes the clustering procedure. If the MSE is below ϵ, the server computes the
matrix W t and performs spectral clustering over W t with a number of clusters n ∈ {2, . . . , nmax}.
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For each clustering outcome, the Davies-Bouldin (DB) score (Davies & Bouldin, 1979) is computed:
DB larger than one means that clusters are not well separated, while if it is smaller than one, the
clusters are well separated.
We denote by ncl the optimal number of clusters detected by FedGWC. If minn=2,...,nmax

DBn > 1,
we do not split the current cluster. Hence, the optimal number of clusters is ncl is one. In the other
case, the optimal number of clusters is ncl ∈ argminn=2,...,nmax

DBn. This requirement ensures
proper control over the over-splitting phenomenon, a common issue in hierarchical clustering al-
gorithms in FL. Over-splitting can undermine key principles of FL by creating degenerate clusters
with very few clients. Moreover, since each cluster requires a server for aggregation, two options
arise: either one client from each cluster acts as the server, or the central server manages the clusters
separately. In the first case, this assumption is unrealistic in cross-device settings, as clients typi-
cally have limited resources. In the second case, the server would face an excessive workload, along
with a significant communication overhead from managing multiple models and performing sepa-
rate aggregations. For these reasons, over-splitting is particularly problematic in cross-device FL.
Finally, on each cluster C(1), . . . , C(ncl) an FL aggregation algorithm is trained separately, resulting
in models θ(1), . . . , θ(ncl) personalized for each cluster.

3.4 FEDGWC ALGORITHM

In the previous sections, we have detailed the recursive step within the individual clusters. In this
section, we present the full FedGWC recursive procedure (Algorithm 2), introducing the complete
notation with indices for the distinct clusters. We denote the clustering index as n, and the total
number of clusters Ncl.
The interaction matrix P 0

(1) is initialized to the null matrix 0K×K , and the total number of clusters
N0

cl, as no clusters have been formed yet, and MSE0
(1) are initialized to 1, in order to ensure stability

in early updates, allowing a gradual decrease. At each communication round t, and for cluster C(n),
where n = 1, . . . , N t

cl, the cluster server independently samples the participating clients P(n)
t ⊆

C(n). Each client k ∈ P(n)
t receives the current cluster model θt(n). After performing local updates,

each client sends its updated model θt+1
k and empirical loss ltk back to the cluster server. The server

aggregates these updates to form the new cluster model θt+1
(n) , computes the Gaussian rewards ωt

k for
the sampled clients, and updates the interaction matrix P t+1

(n) and MSEt+1
(n) according to Eqs. 5 and

7. If MSEt+1
(n) is lower than a threshold ϵ, the server of the cluster performs clustering to determine

whether to split cluster C(n) into ncl sub-groups, as outlined in Algorithm 1. The matrix P t+1
(n) is

then partitioned into sub-matrices by filtering its columns and rows according to the newly formed
clusters, with the MSE for these sub-matrices reinitialized to 1. This process results in a distinct
model θ(n) for each cluster C(n). When the final iteration T is reached we are left with NT

cl clusters
with personalized models θ(n) for n = 1, . . . , NT

cl .
Thanks to the Gaussian Weights, and the recursive spectral clustering on the affinity matrices, our
algorithm, FedGWC, is able to detect groups of clients that display similar levels of heterogeneity.
The clusters formed are more uniform, i.e. the class distributions within each group are more similar.
These results are supported by experimental evaluations, discussed in Section 4.2.

3.5 A NEW METRIC TO EVALUATE CLUSTERING IN FL

In the previous section we observed that when clustering clients according to different heterogeneity
levels, the outcome must be evaluated using a metric that assesses the cohesion of individual dis-
tributions. In this paragraph, we introduce a novel metric to evaluate the performance of clustering
algorithms in FL. This metric, derived the Wasserstein distance (Kantorovich, 1942), quantifies the
cohesion of client groups based on their class distribution similarities.
We propose a general method for adapting clustering metrics to account for class imbalances. This
adjustment is particularly relevant when the underlying class distributions across clients are skewed.
The formal derivation and mathematical details of the proposed metric are provided in Appendix B.
In this section, we provide a high-level overview of our new metric.
Consider a generic clustering metric s, e.g. Davies-Bouldin score (Davies & Bouldin, 1979) or the
Silhouette score (Rousseeuw, 1987). Let C denote the total number of classes, and xk

i the empirical
frequency of the i-th class in the k-th client’s local training set. Following theoretical reasonings,
as shown in Appendix B, the empirical frequency vector for client k, denoted by xk

(i), is ordered
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according to the rank statistic of the class frequencies, i.e. xk
(i) ≥ xk

(i+1) for any i = 1, . . . , C − 1.
The class-adjusted clustering metric s̃ is defined as the standard clustering metric s computed on the
ranked frequency vectors xk

(i). Specifically, the distance between two clients j and k results in

1

C

(
C∑
i=1

∣∣∣xk
(i) − xj

(i)

∣∣∣2)1/2

. (8)

This modification ensures that the clustering evaluation is sensitive to the distributional characteris-
tics of the class imbalance. As we show in Appendix B, this adjustment is mathematically equivalent
to assessing the dispersion between the empirical class probability distributions of different clients
using the Wasserstein distance, also known as the Kantorovich-Rubenstein metric (Kantorovich,
1942). This equivalence highlights the theoretical soundness of using ranked class frequencies to
better capture the variation in class distributions when evaluating clustering outcomes in FL.

4 EXPERIMENTS
In this section, we present the experimental results on widely used FL benchmark datasets (Caldas
et al., 2018), comparing the performance of FedGWC with other baselines from the literature, in-
cluding standard FL algorithms, personalized FL approaches, and clustering methods. The details
on the dataset we use and the implementation choices are shown in Appendix G.
In Section 4.1, we first evaluate our method, FedGWC, against various clustering algorithms, in-
cluding CFL (Sattler et al., 2020), FeSEM (Long et al., 2023), and IFCA (Ghosh et al., 2020),
to demonstrate that FedGWC yields superior and more consistent clustering outcomes in heteroge-
neous scenarios than the baselines. Then, we investigate the benefits of integrating FedGWC with
established FL baselines. Specifically, we test our approach with FedAvg (McMahan et al., 2017),
FedAvgM (Asad et al., 2020) and FedProx (Li et al., 2020), showing how our approach is orthog-
onal to conventional FL aggregation methods. Finally, we compare FedGWC with FeSEM when
paired with personalized FL algorithms such as pFedMe (T Dinh et al., 2020) and Per-FedAvg
(Fallah et al., 2020), showing that our proposed solution exhibits greater robustness than existing
clustering techniques and can be effectively combined with pure personalization FL techniques to
achieve improved performance over these baselines. Finally, in Section 4.2, we propose analyses on
class and domain imbalance, showing that our algorithm successfully detects clients belonging to
separate distributions. Further experiments are presented in Appendix J.

4.1 FEDGWC IN HETEROGENEOUS SETTINGS

FedGWC vs. clustering baselines. We assess the performance of FedGWC in comparison to sev-
eral FL clustering baselines (IFCA, FeSEM, and CFL) utilizing FedAvg aggregation. For the al-
gorithms that require knowing the number of clusters in advance, i.e. FeSEM and IFCA, we show
only the best result among 2, 3, 4, and 5 clusters. The complete tuning is shown in Appendix I.
While IFCA showcases competitive outcomes, it incurs significant communication overhead, as
each client is required to evaluate models from every cluster in each round, rendering this approach
impractical in cross-device scenarios and positioning it as an upper bound in our analysis. Although
FeSEM is less costly, it is constrained by a predefined number of clusters, reducing flexibility. On
the other hand, CFL demands extensive hyperparameter tuning – in contrast, FedGWC requires only
one hyperparameter – and produces overly granular clustering, resulting in an unrealistic number of
models for cross-device scenarios, or no clusters at all.
In Table 1, we present a comparative analysis of these algorithms with respect to balanced accuracy,
adjusted silhouette score (AS), and adjusted Davies-Bouldin index (ADB), employing FedAvg as
the aggregation strategy. Recall that higher the value of AS the better the clustering outcome, as, for
ADB, a lower value suggests a better cohesion between clusters.
Notably, both FedGWC and CFL autonomously determine the optimal number of clusters based
on data heterogeneity, thereby offering a more scalable solution for large-scale cross-device FL. In
contrast to CFL, FedGWC consistently produced a reasonable number of clusters, even when using
the optimal hyperparameters for CFL, which resulted in no splits, thereby achieving performance
equivalent to FedAvg. Interestingly, as illustrated in Figure 2, FedGWC exhibits a significant im-
provement in accuracy on Cifar100 precisely at the rounds where clustering occurs. Furthermore, as
shown in Table 1, FedGWC consistently outperformed other methods on both Cifar10 and Cifar100
when evaluated using adjusted clustering metrics, indicating its superior ability to partition clients
into homogeneous clusters.
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Table 1: Clustered FL baselines: FedGWC con-
sistently outperforms the baselines in the most
heterogeneous settings (Cifar100 and Femnist),
even surpassing the IFCA upper-bound.

Clustering
method C Acc AS ADB

D
at

as
et

C
ifa

r1
0 IFCA 2 78.6 ± 2.3 0.0 ± 0.0 17.1 ± 8.1

FeSem 3 71.5 ± 1.3 -0.1 ± 0.0 52.7 ± 29.9
CFL 1 76.2 ± 0.9 / /

FedGWC 3 75.8 ± 1.1 0.1 ± 0.0 2.6 ± 0.0

C
ifa

r1
00

IFCA 5 47.5 ± 3.5 -0.8 ± 0.2 5.2 ± 5.1
FeSem 5 53.4 ± 1.8 -0.3 ± 0.1 38.4 ± 13.0
CFL 1 41.6 ± 1.3 / /

FedGWC 4 53.4 ± 0.4 0.1 ± 0.0 2.4 ± 0.4

Fe
m

ni
st IFCA 5 76.7 ± 0.6 0.3 ± 0.1 0.5 ± 0.1

FeSem 2 75.6 ± 0.2 0.0 ± 0.0 25.6 ± 7.8
CFL 1 76.0 ± 0.1 / /

FedGWC 4 76.1 ± 0.1 -0.2 ± 0.1 18.0 ± 6.2

Figure 2: Balanced accuracy on Cifar100 for
FedGWC using FedAvg aggregation compared to the
clustered FL baselines. FedGWC detects two splits,
and demonstrates significant improvements in accu-
racy when clustering is performed. FedGWC has a
faster and more stable convergence with respect to
baseline algorithms.
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FeSem
FedAvg

Table 2: Comparison of classical FL algorithms using FedGWC vs. the same algorithms without FedGWC.
Our empirical results suggest that employing our clustering algorithm provides benefits in most heterogeneous
settings, such as Cifar100 and Femnist, while it is unnecessary in simpler settings like Cifar10.

FL method Cifar10 Cifar100 Femnist
no clusters FedGWC no clusters FedGWC no clusters FedGWC

FedAvg 76.2 ± 0.9 75.8 ± 1.1 41.6 ± 1.3 53.4 ± 0.4 76.0 ± 0.1 76.1 ± 0.1
FedAvgM 78.6 ± 1.3 77.8 ± 2.0 41.5 ± 0.5 50.5 ± 0.3 83.3 ± 0.3 83.2 ± 0.4

FedProx 76.1 ± 0.1 75.6 ± 0.8 41.8 ± 1.0 49.1 ± 1.0 75.9 ± 0.2 76.3 ± 0.2

Training FL methods with FedGWC. In this paragraph, we empirically show how FedGWC can
be used on top of any FL aggregation algorithm. Although FedGWC does not improve the results
on Cifar10 because of the simplicity of the task, our method consistently improved the performance
of FL algorithms for the more heterogeneous settings of Cifar100 and Femnist. We show these re-
sults in Table 2. FedGWC consistently boosted balanced accuracies across all methods. Notably,
on Cifar100, the scenario that most resembles cross-device FL, FedGWC substantially improves the
performance, leveraging the increased heterogeneity to construct more homogeneous clusters. This
resulted in an average increase of over 10% in balanced accuracy on Cifar100. While the improve-
ment on Femnist was less pronounced, it remained beneficial in most cases, highlighting FedGWC’s
adaptability to less heterogeneous environments without introducing overhead. These experiments
underscore the orthogonal nature of FedGWC to FL aggregation strategies, demonstrating its ability
to enhance the performance of classical FL algorithms.

FedGWC improves performances of PFL algorithms. To evaluate the benefits of combining pure
personalization with cluster-wise personalization, we conducted a comparative analysis of FedGWC
with FeSEM and the PFL baselines, pFedMe and Per-FedAvg. Given the cross-device nature of
our algorithm, we focused on FeSEM as a representative clustering baseline. While PFL methods
can be considered upper bounds, as they perform a more fine-grained personalization than clus-
tered methods at the cost of more client resources, our experiments demonstrate that incorporating
FedGWC with PFL methods can further enhance their performance when personalization is feasible.
However, personalization entails higher computational overhead and diverges from the fundamental
philosophy of FedGWC, which emphasizes grouping clients based on distribution similarity rather
than optimizing individual models of the clients. As illustrated in Table 3, FedGWC consistently
outperforms FeSEM and surpasses the pure personalization performance bound in all benchmark
datasets when combined with pFedME and Per-FedAvg, achieving a notable 4.5% improvement
on Cifar100.

4.2 ANALYSIS ON THE CLUSTERING DECISIONS OF FEDGWC

FedGWC detects different client class distributions. Here, we investigate the underlying mech-
anisms behind FedGWC ’s clustering decisions in heterogeneous scenarios. Specifically, we explore
how the algorithm identifies and groups clients based on the non-IID nature of their data distribu-
tions, represented by the Dirichlet concentration parameter α. For the Cifar-10 dataset, we propose
three distinct client partitions: (1) 90 clients with α = 0 and 10 clients with α = 100; (2) 90
clients with α = 0.05 and 10 clients with α = 100; and (3) 40 clients with α = 100, 30 clients
with α = 0.05, and 30 clients with α = 0. Similarly, for the Cifar-100 dataset, we apply a similar
splitting approach, obtaining the following partitions: (1) 100 clients with α = 0 and 10 clients
with α = 1000; (2) 90 clients with α = 0.5 and 10 clients with α = 1000; and (3) 40 clients with
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Table 3: Comparison of PFL algorithms with and without FedGWC or FeSEM clustering. Empirical results
indicate that FedGWC outperforms FeSEM and enhances the performance of pFedME and per-FedAvgwhen
integrated with PFL aggregations.

FL method Cifar10 Cifar100 Femnist
no clusters FedGWC FeSEM no clusters FedGWC FeSEM no clusters FedGWC FeSEM

FedAvg 76.2 ± 0.9 75.8 ± 1.1 71.5 ± 1.3 41.6 ± 1.3 53.4 ± 0.4 53.4 ± 1.8 76.0 ± 0.1 76.1 ± 0.1 75.4± 0.5

pFedME 93.4 ± 0.3 93.6 ± 0.1 93.4 ± 0.2 89.0 ± 0.1 93.5 ± 0.1 93.3 ± 0.1 71.2 ± 0.2 72.0 ± 0.2 34.5± 0.9

per-FedAvg 93.1 ± 0.1 93.4 ± 0.1 93.3 ± 0.1 93.4 ± 0.1 93.5 ± 0.1 93.3 ± 0.1 63.6 ± 0.3 63.9 ± 0.2 63.6± 0.2

Table 4: Clustering with three different splits on
CIFAR-10 and CIFAR-100 datasets. FedGWC has su-
perior clustering quality across different splits.

Dataset Split Clustering
method C AS ADB

CIFAR-10

(10, 0, 90)
IFCA 2 / /
FeSem 3 -0.0 ± 0.1 12.0 ± 2.0
FedGWC 3 0.1 ± 0.0 0.2 ± 0.0

(10, 90, 0)
IFCA 2 / /
FeSem 3 -0.0 ± 0.0 12.0 ± 2.0
FedGWC 3 0.2 ± 0.0 0.6 ± 0.0

(40, 30, 30)
IFCA 2 -0.2 ± 0.0 1.0 ± 0.0
FeSem 3 0.1 ± 0.1 20.6 ± 7.1
FedGWC 3 0.6 ± 0.1 1.0 ± 0.4

CIFAR-100

(10, 0, 100)
IFCA 5 -0.9 ± 0.0 1.8 ± 0.0
FeSem 5 -0.8 ± 0.2 2.6 ± 0.6
FedGWC 5 0.1 ± 0.1 0.2 ± 0.2

(10, 90, 0)
IFCA 5 -0.0 ± 0.0 5.6 ± 1.5
FeSem 5 0.2 ± 0.1 12.0 ± 2.0
FedGWC 5 0.4 ± 0.1 6.4 ± 2.0

(40, 30, 30)
IFCA 5 -0.2 ± 0.0 1.0 ± 0.0
FeSem 5 -0.2 ± 0.0 33.2 ± 0.0
FedGWC 3 0.4 ± 0.2 0.9 ± 0.1

Table 5: Clustering performance of FedGWC on fed-
erations with clients from distinct domains, consisting
of clean, noisy, and blurred images across CIFAR-10
and CIFAR-100 datasets. Performance is measured us-
ing the Rand Index score (Rand, 1971).It is noted that a
Rand Index value approaching 1 signifies a perfect cor-
respondence between the clustering ground truth and
the assigned labels. It is important to observe that a
Rand Index of 1 represents the maximum value this
index can reach, and in four instances, FedGWC suc-
cessfully distinguishes all visual domains.

Dataset Domain configuration C Rand Index

CIFAR-10
(50, 0, 50) 2 1.0 ± 0.0
(50, 50, 0) 2 1.0 ± 0.0
(40, 30, 30) 4 0.9 ± 0.0

CIFAR-100
(50, 0, 50) 2 1.0 ± 0.0
(50, 50, 0) 2 1.0 ± 0.0
(40, 30, 30) 4 0.6 ± 0.0

α = 1000, 30 clients with α = 0.05, and 30 clients with α = 0. Unlike FeSem and IFCA, FedGWC
is able to effectively detect varying levels of heterogeneity, as demonstrated by the adjusted Silhuette
and Davies-Bouldin reported in Table 4, proving its ability to separate clients according to their data
distributions.

FedGWC detects different visual client domains. Here, we focus on scenarios with nearly
uniform class imbalance (high α values) but with different visual domains to investigate how
FedGWC forms clusters in such settings. We incorporated various artificial domains (non-perturbed,
noisy, and blurred images) into CIFAR-10 and CIFAR-100 datasets under homogeneous conditions
(α = 100.00). Our results demonstrate that FedGWC effectively clustered clients according to these
distinct domains. Table 5 presents the Rand-Index scores, which assess clustering quality based on
known domain labels. The high Rand-Index scores, often approaching the upper bound of 1, indicate
that FedGWC successfully separated clients into distinct clusters corresponding to their respective
domains. Figure 8 in the appendix visualizes the interaction matrix P , affinity matrix W , and the
scatter plot of the clustering with respect to the spectral bi-dimensional embedding on CIFAR-10 for
the (40, 30, 30) configuration. This anaylsis suggests that FedGWC may be applicable for detecting
malicious clients in FL, pinpointing a potential direction for future research.

5 CONCLUSIONS
We propose FedGWC, an efficient clustering algorithm for heterogeneous FL settings addressing the
challenge of non-IID data and class imbalance. Unlike existing clustered FL methods, FedGWC
groups clients by data distributions with flexibility and robustness, simply using the information
encoded by the individual empirical loss. FedGWC successfully detects homogeneous clusters, as
proved by our proposed novel Wasserstein Adjusted Metric. FedGWC detects splits by removing
out-of-distribution clients, thus simplifying the learning task within clusters without increasing com-
munication overhead or computational cost. Empirical evaluations show that separately training
classical FL algorithms on the homogeneous clusters detected by FedGWC consistently improves
the performance. Additionally, FedGWC excels over other clustering techniques in grouping clients
uniformly with respect to class imbalance and heterogeneity levels, which is crucial to mitigate the
effect of non-IIDness FL. Finally, clustering on different class unbalanced and domain unbalanced
scenarios, which are correctly detected by FedGWC (see Section 4.2), suggests that FedGWC can
also be applied to anomaly client detection and to enhance robustness against malicious attacks in
future research.
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6 REPRODUCIBILITY STATEMENT

The reproducibility of the results and the theoretical contributions of this work has been a paramount
concern throughout the entire development of this project and while drafting this manuscript. In this
section, we provide details and a concise guide to reproduce our results and verify our contributions.
• Code Availability: All the code used in our experiments has been included in the supplementary

material of the submission. Additionally, we will release online a well-documented and structured
final version of the code to allow for easy reproduction of the experiments detailed in the paper.

• Datasets and data split: The datasets used in our experiments are publicly available and can
be downloaded online. Detailed instructions on accessing and preprocessing the datasets will be
provided, along with the final code release. The data splits can be generated directly through
our provided code. This ensures that others can replicate our work’s exact federated learning
scenarios.

• Theoretical Results: We provide complete proofs for all theorems and propositions presented in
the paper in Appendices A and B.

We are confident that with these resources, all experimental and theoretical results can be reproduced
by the community.
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A THEORETICAL RESULTS FOR FEDGWC

This section provides algorithms, in pseudo-code, to describe FedGWC (see Algorithms 1 and 2).
Additionally, here we provide the proofs for the convergence results introduced in Section 3, specif-
ically addressing the convergence (Theorems 3.1 and 3.2) and the formal derivation on the variance
bound of the Gaussian weights (Proposition 3.1). In addition, we also present a sufficient condition,
under which is guaranteed that the overall sampling rate of the training algorithm does not increase
and remain unchanged during the training process (Theorem A.3).
Theorem A.1. Let {αt}∞t=1 be a sequence of positive real values, and {Γt

k}∞t=1 the sequence of
Gaussian weights. If {αt}∞t=1 ∈ l2(N)/l1(N), then Γt

k converges in L2. Furthermore, for t→∞,

Γt
k −→ µk a.s. (9)

Proof. At each communication round, we compute the samples rt,si from Rt,s
k via a Gaussian trans-

formation of the observed loss in Eq. 1. Notice that, due to the linearity of the expectation operator,
E[Ωt

k] = µk, that is the true, unknown, expected reward. The observed value for the random variable
is given by ωt

k = 1/S
∑S

s=1 r
t,s
k , which is sampled from a distribution centered on µk. Each client’s

weight is updated according to

γt+1
k = (1− αt)γt + αtω

t
k . (10)

Since such an estimator follows a Robbins-Monro algorithm, it is proved to converge in L2. In
addition, Γt

k converges to the expectation E[Ωt
k] = µk with probability 1, provided that αt satisfies∑

t≥1 |αt| =∞, and
∑

t≥1 |αt|2 <∞ (Harold et al., 1997).

Theorem A.2. Let α ∈ (0, 1) be a fixed constant, then in the limit t → ∞, the expectation of the
weights converges to the individual theoretical reward µk, for each client k = 1, . . . ,K, i.e.,

E[Γt
k] −→ µk t→∞ . (11)

Proof. Recall that γt+1
k = (1 − α)γt

k + αωt
k, where ωt

k are samples from Ωt
k. If we substitute

backward the value of γt
k we can write

γt+1
k = (1− α)2γt−1

k + αωt
k + α(1− α)ωt−1

k . (12)

By iterating up to the initialization term γ0
k we get the following formulation:

γt+1
k = (1− α)t+1γ0

k +

t∑
τ=0

α(1− α)τωt−τ
k . (13)

Since ωt
k are independent and identically distributed samples from Ωt

k, with expected value µk, then
the expectation of the weight at the t-th communication round would be

E[Γt
k] = E

[
(1− α)tγ0

k +

t∑
τ=0

α(1− α)τΩt−τ−1
k

]
, (14)

that, due to the linearity of expectation, becomes

E[Γt
k] = (1− α)tγ0

k +

t∑
τ=0

α(1− α)τµk . (15)

If we compute the limit

lim
t→∞

E[Γt
k] = lim

t→∞
(1− α)tγ0

k +

∞∑
τ=0

α(1− α)τµk , (16)

and since α ∈ (0, 1), the first term tends to zero, and also the geometric series converges. Therefore,
the expectation of the weights converges to µk, namely

lim
t→∞

E[Γt
k] = µk . (17)
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Proposition A.1. The variance of the weights Γt
k is smaller than the variance σ2

k of the theoretical
rewards Rt,s

k .

Proof. From Eq.13, we can show that Var(Γt
k) converges to a value that depends on α and the

number of local training iterations S. Indeed

Var(Γt
k) = Var

(
(1− α)tγ0

k +

t∑
τ=0

α(1− α)τΩt−τ−1
k

)

=

t∑
τ=0

α2(1− α)2τVar(Ωt
k) =

1

S

t∑
τ=0

α2(1− α)2τσ2
k

(18)

since Ωt
k = 1/S

∑S
s=1 R

t,s
k .

If we compute the limit, that exists finite due to the hypothesis α ∈ (0, 1), we get

lim
t→∞

Var(Γt
k) =

α2σ2
k

S

∞∑
τ=0

(1− α)2τ =
α

2− α

σ2
k

S
<

σ2
k

S
< σ2

k . (19)

We further demonstrate that the interaction matrix P t identified by FedGWC is entry-wise bounded
from above, as established in the following proposition.
Proposition A.2. The entries of the interaction matrix P t are bounded from above, namely for any
t ≥ 0 there exists a positive finite constant Ct > 0 such that

P t
kj ≤ Ct . (20)

And furthermore
lim
t→∞

Ct = 1 . (21)

Proof. Without loss of generality we assume that every client of the federation is sampled, and we
assume that αt = α ∈ (0, 1) for any t ≥ 0. We recall, from Eq.5, that for any couple of clients
k, j ∈ Pt the entries of the interaction matrix are updated according to

P t+1
kj = (1− α)P t

kj + αωt
k . (22)

If we iterate backward until P 0
kj , we obtain the following update

P t+1
kj = (1− α)t+1P 0

kj +

t∑
τ=0

α(1− α)τωt−τ
k . (23)

We know that, by constructions, the Gaussian rewards ωt
k < 1 at any time t, therefore the following

inequality holds

P t
kj = (1− α)tP 0

kj +

t∑
τ=0

α(1− α)τωt−τ−1
k ≤ (1− α)tP 0

kj +

t∑
τ=0

α(1− α)τ . (24)

At any round t we can define the costant Ct, as

Ct := (1− α)tP 0
kj + α

t∑
τ=0

(1− α)τ = (1− α)tP 0
kj + 1− (1− α)t+1 <∞ . (25)

Moreover, since α ∈ (0, 1), by taking the limit we prove that

lim
t→∞

Ct = lim
t→∞

(1− α)tP 0
kj + 1− (1− α)t+1 = 1 . (26)
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Algorithm 1 FedGW Cluster

1: Input: P, nmax,K(·, ·)
2: Output: cluster labels yncl

, and number of clusters ncl

3: Extract UPVs vjk, v
k
j from P for any k, j

4: Wkj ← K(vjk, vkj ) for any k, j
5: for n = 2, . . . , nmax do
6: yn ← Spectral Clustering(W,n)
7: DBn ← Davies Bouldin(W, yn)
8: if minn DBn > 1 then
9: ncl ← 1

10: else
11: ncl ← argminn DBn

12: end if
13: end for

Algorithm 2 FedGWC
1: Input: K,T, S, αt, ϵ, |Pt|,K
2: Output: C(1), . . . , C(Ncl) and θ(1), . . . , θ(Ncl)

3: Initialize N0
cl ← 1

4: Initialize P 0
(1) ← 0K×K

5: Initialize MSE0
(1) ← 1

6: for t = 0, . . . , T − 1 do
7: ∆N t ← 0 for each iterations it counts the number of new clusters that are detected
8: for n = 1, . . . , N t

cl do
9: Server samples P(n)

t ∈ C(n) and sends the current cluster model θt(n)
10: Each client k ∈ P(n)

t locally updates θtk and ltk, then sends them to the server
11: ωt

k ← Gaussian Rewards(ltk,P
(n)
t ), Eq. 1

12: θt+1
(n) ← FL Aggregator(θtk,P

(n)
t )

13: P t+1
n ← Update Matrix(P t

n, ω
t
k, αt,P(n)

t ), according to Eq. 5

14: Update MSEt+1
(n) , according to Eq. 7

15: if MSEt+1
n < ϵ then

16: Perform FedGW Cluster(P t+1
(n) , nmax,K) on C(n), providing ncl sub-clusters

17: Update the number of new clusters ∆N t ← ∆N t + ncl − 1 u
18: Cluster server splits P t+1

(n) filtering rows and columns according to the new clusters

19: Re-initialize MSE for new clusters to 1

20: end if
21: end for
22: Update the total number of clustersN t+1

cl ← N t
cl +∆N t

23: end for

Theorem A.3. (Sufficient Condition for Sample Rate Conservation) Consider Kmin as the minimum
number of clients permitted per cluster, i.e. the cardinality |Cn| ≥ Kmin for any given cluster
n = 1, . . . , ncl, and ρ ∈ (0, 1] to represent the initial sample rate. There exists a critical threshold
n∗ > 0 such that, if Kmin ≥ n∗ is met, the total sample size does not increase.

Proof. Let us denote by ρn the participation rate relative to the n-th cluster, i.e.

ρn = max

{
ρ,

3

|Cn|

}
(27)
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because, in order to maintain privacy of the clients’ information we need to sample at least three
clients, therefore ρn is at least 3 over the number of clients belonging to the cluster. The total
participation rate at the end of the clustering process is given by

ρglobal =

ncl∑
n=1

Kn

K
(28)

where Kn denotes the number of clients sampled within the n-th cluster. If we focus on the term
Kn, recalling Equation 27, we have that

Kn = ρn|Cn| = max

{
ρ,

3

|Cn|

}
× |Cn| = max{ρ|Cn|, 3} . (29)

If we write Equation 29, by the means of the positive part function, denoted by (x)+ = max{0, x},
we obtain that

Kn = 3 +max{0, ρ|Cn| − 3} = 3 + (ρ|Cn| − 3)+ . (30)
Observe that we are looking for a threshold value for which ρglobal = ρ, i.e. the participation rate
remains the same during the whole training process.
Let us observe that Kn = ρ|Cn| ⇐⇒ ρ|Cn| ≥ 3 ⇐⇒ |Cn| ≥ n∗ = 3/ρ. In fact, if we assume
that Kmin ≥ n∗, then the following chain of equalities holds

ρglobal =

ncl∑
n=1

Kn

K
=

1

K

ncl∑
n=1

ρ|Cn| =
ρ

K

ncl∑
n=1

|Cn| =
ρK

K
= ρ

thus proving that Kmin ≥ n∗ is a sufficient condition for not increasing the sampling rate during
the training process.

B THEORETICAL CONSTRUCTION OF THE CLUSTERING METRIC

To address the lack of clustering evaluation metrics suited for FL with distributional heterogeneity
and class imbalance, we introduced a theoretically grounded adjustment to standard metrics, derived
from the Wasserstein distance, Kantorovich–Rubinstein metric (Kantorovich, 1942). This metric,
integrated with popular scores like Silhouette and Davies-Bouldin, enables a modular framework
for a posteriori evaluation, effectively comparing clustering outcomes across federated algorithms.
In this paragraph, we show how the proposed clustering metric that accounts for class imbalance can
be derived from a probabilistic interpretation of clustering.
Definition B.1. Let (M,d) be a metric space, and p ∈ [1,∞]. The Wasserstein distance between
two probability measures P and Q over M is defined as

Wp(P,Q) = inf
γ∈Γ(P,Q)

E(x,y)∼γ [d(x, y)
p]1/p (31)

where Γ(P,Q) is the set of all the possible couplings of P and Q (see Def. B.2).
Furthermore, we need to introduce the notion of coupling of two probability measures.
Definition B.2. Let (M,d) be a metric space, and P,Q two probability measures over M . A cou-
pling γ of P and Q is a joint probability measure on M ×M such that, for any measurable subset
A ⊂M , ∫

A

(∫
M

γ(dx, dy)Q(dy)

)
P(dx) = P(A),∫

A

(∫
M

γ(dx, dy)P(dx)
)
Q(dy) = Q(A).

(32)

Let us recall that the empirical measure over M of a sample of observations {x1, · · · , xN} is defined
such that for any measurable set A ⊂M

P(A) =
1

N

C∑
i=1

δxi(A) (33)

where δxi
is the Dirac’s measure concentrated on the data point xi.

In particular, we aim to measure the goodness of a cluster by taking into account the distance be-
tween the empirical frequencies between two clients’ class distributions and use that to properly

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

adjust the clustering metric. For the sake of simplicity, we assume that the distance d over M is
the L2-norm. We obtain the following theoretical result to justify the rationale behind our proposed
metric.
Theorem B.1. Let s be an arbitrary clustering score. Then, the class-imbalance adjusted score s̃
is exactly the metric s computed with the Wasserstein distance between the empirical measures over
each client’s class distribution.

Proof. Let us consider two clients; each one has its own sample of observations {x1, . . . , xC} and
{y1, . . . , yC} where the i-th position corresponds to the frequency of training points of class i for
each client. We aim to compute the p-Wasserstein distance between the empirical measures P and
Q of the two clients, in particular for any dx, dy > 0

P(dx) =
1

N

N∑
i=1

δxi(dx),

Q(dy) =
1

N

N∑
i=1

δyi(dy) .

(34)

In order to compute W p
p (P,Q) we need to carefully investigate the set of all possible coupling

measures Γ(P,Q). However, since either P and Q are concentrated over countable sets, it is possible
to see that the only possible couplings satisfying Eq. 32 are the Dirac’s measures over all the possible
permutations of xi and yi. In particular, by fixing the ordering of xi, according to the rank statistic
x(i), the coupling set can be written as

Γ(P,Q) =

{
1

C
δ(x(i),yπ(i)) : π ∈ S

}
(35)

where S is the set of all possible permutations of C elements. Therefore we could write Eq. 31 as
follows

W p
p = min

π∈S

∫
M×M

|x− y|p 1

N

C∑
i=1

δ(x(i),yπ(i))(dx, dy) (36)

since S is finite, the infimum is a minimum. By exploiting the definition of Dirac’s distribution and
the linearity of the Lebesgue integral, for any π ∈ S, we get∫

M×M

|x− y|p 1

C

C∑
i=1

δ(x(i),yπ(i))(dx, dy) =
1

C

C∑
i=1

∫
M×M

|x− y|pδ(x(i),yπ(i))(dx, dy)

=
1

C

C∑
i=1

|x(i) − yπ(i)|p .

(37)

Therefore, finding the Wasserstein distance between P and Q boils down to a combinatorial opti-
mization problem, that is, finding the permutation π ∈ S that solves

W p
p (P,Q) = min

π∈S

1

C

C∑
i=1

|x(i) − yπ(i)|p . (38)

The minimum is achieved when π = π∗ that is the permutation providing the ranking statistic, i.e.
π∗(yi) = y(i), since the smallest value of the sum is given for the smallest fluctuations. Thus we
conclude that the p-Wasserstein distance between P and Q is given by

Wp(P,Q) =

(
1

C

C∑
i=1

|x(i) − y(i)|p
)1/p

(39)

that is the pairwise distance computed between the class frequency vectors, sorted in order of mag-
nitude, for each client, introduced in Section 3.5, where we chose p = 2.
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C PRIVACY OF FEDGWC

In the framework of FedGWC, clients are required to send only the empirical loss vectors lt,sk to the
server (Cho et al., 2022). While concerns might arise regarding the potential leakage of sensitive
information from sharing this data, it is important to clarify that the server only needs to access
aggregated statistics, working on aggregated data. This ensures that client-specific information re-
mains private. Privacy can be effectively preserved by implementing the Secure Aggregation proto-
col (Bonawitz et al., 2016), which guarantees that only the aggregated results are shared, preventing
the exposure of any raw client data.

D COMMUNICATION AND COMPUTATIONAL OVERHEAD OF FEDGWC

FedGWC minimizes communication and computational overhead, aligning with the requirements of
scalable FL systems (McMahan et al., 2016). On the client side, the computational cost remains
unchanged compared to the chosen FL aggregation, e.g. FedA, as clients are only required to com-
municate their local models and a vector of empirical losses after each round. The size of this loss
vector, denoted by S, corresponds to the number of local iterations (i.e. the product of local epochs
and the number of batches) and is negligible w.r.t. the size of the model parameter space, |Θ|. In our
experimental setup, S = 8, ensuring that the additional communication overhead from transmitting
loss values is negligible in comparison to the transmission of model weights.
All clustering computations, including those based on interaction matrices and Gaussian weighting,
are performed exclusively on the server. This design ensures that client devices are not burdened
with additional computational complexity or memory demands. The interaction matrix P used in
FedGWC is updated incrementally and involves sparse matrix operations, which significantly reduce
both memory usage and computational costs.
These characteristics make FedGWC particularly well-suited for cross-device scenarios involving
large federations and numerous communication rounds. Moreover, by operating on scalar loss val-
ues rather than high-dimensional model parameters, the clustering process in FedGWC achieves
computational efficiency while maintaining effective grouping of clients. The server-side process-
ing ensures that the method remains scalable, even as the number of clients and communication
rounds increases. Consequently, FedGWC meets the fundamental objectives of FL by minimizing
costs while preserving privacy and maintaining high performance.

E METRICS USED FOR EVALUATION

E.1 SILHOUETTE SCORE

Silhouette Score is a clustering metric that measures the consistency of points within clusters by
comparing intra-cluster and nearest-cluster distances (Rousseeuw, 1987). Let us consider a metric
space (M,d). For a set of points {x1, . . . , xN} ⊂ M and clustering labels C1, . . . , Cncl

. The
Silhouette score of a data point xi belonging to a cluster Ci is defined as

si =
bi − ai

max{ai, bi}
(40)

where the values bi and ai represent the average intra-cluster distance and the minimal average
outer-cluster distance, i.e.

ai =
1

|Ci| − 1

∑
xj∈Ci\{xi}

d(xi, xj)

bi = min
j ̸=i

1

|Cj |
∑

xj∈Cj

d(xi, xj)

(41)

The value of the Silhouette score ranges between −1 and +1, i.e. si ∈ [−1, 1]. In particular, a Sil-
houette score close to 1 indicates well-clustered data points, 0 denotes points near cluster boundaries,
and -1 suggests misclassified points. In order to evaluate the overall performance of the clustering,
a common choice, that is the one adopted in this paper, is to average the score value for each data
point.
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E.2 DAVIES-BOULDIN SCORE

The Davies-Bouldin Score is a clustering metric that evaluates the quality of clustering by measuring
the ratio of intra-cluster dispersion to inter-cluster separation (Davies & Bouldin, 1979). Let us con-
sider a metric space (M,d), a set of points {x1, . . . , xN} ⊂ M , and clustering labels C1, . . . , Cncl

.
The Davies-Bouldin score is defined as the average similarity measure Rij between each cluster Ci
and its most similar cluster Cj :

DB =
1

ncl

ncl∑
i=1

max
j ̸=i

Rij (42)

where Rij is given by the ratio of intra-cluster distance Si to inter-cluster distance Dij , i.e.

Rij =
Si + Sj

Dij
(43)

with intra-cluster distance Si defined as

Si =
1

|Ci|
∑

xk∈Ci

d(xk, ci) (44)

where ci denotes the centroid of cluster Ci, and Dij = d(ci, cj) is the distance between centroids
of clusters Ci and Cj . A lower Davies-Bouldin Index indicates better clustering, as it reflects well-
separated and compact clusters. Conversely, a higher DBI suggests that clusters are less distinct and
more dispersed.

E.2.1 RAND INDEX

Rand Index is a clustering score that measures the outcome of a clustering algorithm with respect to
a ground truth clustering label (Rand, 1971). Let us denote by a the number of pairs that have been
grouped in the same clusters, while by b the number of pairs that have been grouped in different
clusters, then the Rand-Index is defined as

RI =
a+ b(

N
2

) (45)

where N denotes the number of data points. In our experiments we opted for the Rand Index score to
evaluate how the algorithm was able to separate clients in groups of the same level of heterogeneity
(which was known a priori and used as ground truth). A Rand Index ranges in [0, 1], and a value of
1 signifies a perfect agreement between the identified clusters and the ground truth.

F ESTIMATING THE DIRICHLET PARAMETER α

In this appendix, we provide a detailed explanation of the procedure used to estimate the Dirich-
let parameter β for each split identified by our algorithm. This analysis is conducted a posteriori
to statistically evaluate the capability of FedGWC in grouping clients with similar levels of data
heterogeneity.
Consider a fixed cluster of clients, denoted by Ci. For each client k ∈ Ci, let zk ∈ NC represent
the vector of sample counts per class (with C as the total number of classes). Given zk, we can
compute the likelihood function, assuming zk is drawn from a Dirichlet distribution parameterized
by the skew parameter αk, such that L(αk; zk) represents the likelihood function for zk.
To estimate αk, we employ the maximum likelihood estimator by solving:

α̂k ∈ argmax
α>0
L(α; zk)

This estimation is achieved through stochastic optimization (e.g., ADAM or SGD). For each clus-
ter, we obtain an estimate α̂k, which allows us to compare average values, standard errors, and
confidence intervals of α across clusters detected by FedGWC, providing a quantitative measure of
heterogeneity among clusters.
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G DATASETS AND IMPLEMENTATION DETAILS

To simulate a realistic FL environment with heterogeneous data distribution, we conduct experi-
ments on CIFAR-100 (Krizhevsky et al., 2009). As a comparison, we also run experiments on
the simpler CIFAR-10 dataset Krizhevsky et al. (2009). CIFAR-10 and CIFAR-100 are distributed
among K clients using a Dirichlet distribution (by default, we use α = 0.05 for CIFAR-10 and
α = 0.5 for CIFAR-100) to create highly imbalanced and heterogeneous settings. By default, we
use K = 100 clients with 500 training and 100 test images. The classification model is a CNN
with two convolutional blocks and three dense layers. Additionally, we perform experiments on
the Femnist dataset LeCun (1998), partitioned among 400 clients using a Dirichlet distribution with
α = 0.01. In these experiments, we employ LeNet5 as the classification model LeCun et al. (1998).
Local training on each client uses SGD with a learning rate of 0.01, weight decay of 4 · 10−4, and
batch size 64. The number of local epochs is 1, resulting in 7 batch iterations for CIFAR-10 and
CIFAR-100 and 8 batch iterations for Femnist. The number of communication rounds is set to 3,000
for Femnist, 10,000 for CIFAR-10 and 20,000 for CIFAR-100, with a 10% client participation rate
per cluster. For FedGWC we employ constant value αt = α equal to the participation rate, i.e. 10%.
As the performance metric, we use the balanced accuracy, i.e. the average accuracy of each cluster
model evaluated on the test sets associated to each client in the same cluster.

H SENSITIVE ANALYSIS BETA VALUE RBF KERNEL

This section provides a sensitivity analysis for the β hyper-parameter of the RBF kernel adopted for
FedGWC. The results of this tuning are shown in Table 6.

Table 6: A sensitivity analysis on the RBF kernel hyper-parameter β is conducted. We present the balanced
accuracy for FedGWC on the Cifar10, Cifar100, and Femnist datasets for β ∈ {0.1, 0.5, 1.0, 2.0, 4.0}. It is
noteworthy that FedGWC demonstrates robustness to variations in this hyperparameter.

β Cifar10 Cifar100 Femnist
0.1 74.2 49.9 76.0
0.5 74.9 53.4 76.0
1.0 75.1 49.5 76.0
2.0 75.6 50.9 75.6
4.0 72.6 52.6 76.1

I EVALUATION OF IFCA AND CFL ALGORITHMS WITH DIFFERENT NUMBER
OF CLUSTERS

This section shows the tuning of the number of clusters for the IFCA and CFL algorithms, which
cannot automatically detect this value. The results of this tuning are shown in Table 7.

J FURTHER EXPERIMENTS

Figure 5 illustrates the clustering results corresponding to varying degrees of heterogeneity, as de-
scribed in Section 4.2. As per FedGWC, the detection of clusters based on different levels of het-
erogeneity in the Cifar10 dataset is achieved. Specifically, an examination of the interaction matrix
reveals a clear distinction between the two groups. In Figure 6, we show that in class-balanced sce-
narios with small heterogeneity, like Cifar10 with α = 100, FedGWC successfully detects one single
cluster. Indeed, in homogeneous scenarios such as this one, the model benefits from accessing more
data from all the clients.
Figure 4 shows how the MSE converges to a small value as the rounds increase for a Cifar10 exper-
iment.
As Figure 7 illustrates, FedGWC partitions the CIFAR-100 dataset into clients based on class distri-
butions. Each cluster’s distribution is distinct and non-overlapping, demonstrating the algorithm’s
efficacy in partitioning data with varying degrees of heterogeneity. In Figure 8, we report the do-
main detection on Cifar100, where 40 clients have clean images, 30 have noisy images, and 30 have
blurred images. Table 5 shows that FedGWC performs a good clustering, effectively separating the
different domains.
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Table 7: Performance of for baseline algorithms for clustering in FL FeSEM, and IFCA, w.r.t. the number of
clusters

Clustering
method C Acc

D
at

as
et

C
ifa

r1
0

IFCA

2 78.6 ± 2.3

3 75.7 ± 5.2

4 71.9 ± 10.2

5 78.4 ± 2.3

FeSem

2 70.0 ± 4.2

3 67.5 ± 1.3

4 70.5 ± 1.6

5 68.7 ± 0.8

C
ifa

r1
00

IFCA

2 46.7 ± 0.0

3 44.0 ± 1.6

4 45.1 ± 2.6

5 47.5 ± 3.5

FeSem

2 43.3 ± 1.3

3 48.0 ± 1.9

4 50.9 ± 1.8

5 53.4 ± 1.8

Fe
m

ni
st

IFCA

2 76.1 ± 0.1

3 75.9 ± 1.9

4 76.6 ± 0.1

5 76.7 ± 0.6

FeSem

2 75.6± 0.2

3 75.5± 0.5

4 75.0± 0.1

5 74.9± 0.1
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Figure 3: Cluster evolution with respect to the recursive splits in FedGWC on Cifar100, projected on the
spectral embedded bi-dimensional space. From left to right, top to bottom, we can see that FedGWC splits the
client into cluster, until a certain level of intra-cluster homogeneity is reached
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Figure 4: Interaction matrix convergence: on the y-axis MSE, computed as in Eq. 7 in logarithmic scale w.r.t.
communication rounds in the x-axis on CIFAR-10, with Dirichlet parameter α = 0.05.
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Figure 5: Homogeneous (CIFAR-10 α = 100) vs heterogeneous clustering (CIFAR-10 α = 0.05). The
interaction matrix at convergence and the corresponding scaled affinity matrix are on the left. The scatter
plot in the 2D plane with spectral embedding is on the right. It is possible to see that the algorithm perfectly
separates homogeneous clients (orange) from heterogeneous clients (blue)
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Figure 6: Homogeneous case (CIFAR-10 α = 100). The interaction matrix at convergence and the corre-
sponding scaled affinity matrix are on the left. The scatter plot in the 2D plane with spectral embedding is on
the right. In the homogeneous case where no clustering is needed, FedGW does not split the clients.
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Figure 7: Class distributions among distinct clusters as detected by FedGWC on Cifar100. Specifically, we
examine the class distributions for each pair of clusters, demonstrating that (1) the clusters were identified by
grouping differing levels of heterogeneity and (2) there is, in most cases, an absence of overlapping classes.
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Figure 8: FedGWC in the presence of domain imbalance. Three domains on Cifar100: clean clients (unla-
beled), noisy clients (+), and blurred clients (x). Left: is the interaction matrix P at convergence from which it
is possible to see client relations. Center: The affinity matrix W computed with respect to the UPVs extracted
from P , and on which FedGW Clustering is performed. We can see that FedGWC clusters the clients ac-
cording to the domain, as proved by results in Table 5.
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