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Abstract

Credit policy evaluation presents profitable op-
portunities for E-commerce platforms through
improved decision-making. The core of policy
evaluation is estimating the causal effects of the
policy on the target outcome. However, selection
bias presents a key challenge in estimating causal
effects from real-world data. Some recent causal
inference methods attempt to mitigate selection
bias by leveraging covariate balancing in the rep-
resentation space to obtain the domain-invariant
features. However, it is noticeable that balanced
representation learning can be accompanied by
a failure of domain discrimination, resulting in
the loss of domain-related information. This is
referred to as the over-balancing issue. In this
paper, we introduce a novel objective for repre-
sentation balancing methods to do policy evalu-
ation. In particular, we construct a doubly ro-
bust loss based on the predictions of treatment
and outcomes, serving as a prerequisite for co-
variate balancing to deal with the over-balancing
issue. In addition, we investigate how to improve
treatment effect estimations by exploiting the un-
confoundedness assumption. The extensive ex-
perimental results on benchmark datasets and a
newly introduced credit dataset show a general
outperformance of our method compared with
existing methods.
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1 INTRODUCTION

The rapid-growing E-commerce has become an indispens-
able part of the retail industry in the recent decade. With
a rising trend of online shopping, many E-commerce plat-
forms have been offering the lending service, which en-
ables approved buyers to utilize their credit line to undergo
online payment. When big promotional events such as
Black Friday and Double 11 are coming, the E-commerce
platform usually raises some consumers’ credit limits to en-
courage their spending. In reality, different people can re-
act very differently to the same credit policy. For example,
people with higher consumption demand but with lower
credit limits can be sensitive to the credit increase policy. In
this scenario, personalized credit policy impact evaluation
becomes a vital real-world question for the credit loaner.

The core of policy evaluation is to estimate causal effects
Heckman and Vytlacil (2005). Taking online consumer fi-
nance as an example, if the credit increase policy is the
treatment and the default status is the outcome, then our
target is to evaluate the direct effect of the credit policy
on default status, which is called the treatment effect. An
important target of policy evaluation problems is to esti-
mate the individual treatment effect (ITE, aka heteroge-
neous treatment effect) and the average treatment effect
(ATE). ITE represents the treatment effect for a specific
individual, while ATE is the average of ITE at the popula-
tion level. Obtaining treatment effects requires the answer
to a hypothetical question: What would the outcome (de-
fault status) be if one had received an alternative treatment
(credit policy)? Such a hypothesized outcome is referred to
as the counterfactual outcome.

With vast amounts of data collected, researchers have been
devoting themselves to effective machine learning meth-
ods to estimate their interested quantities. Still, it is dif-
ficult for classical machine learning methods to deal with
problems like policy evaluation. This is because though
the advanced models have conceivable predictive power,
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they cannot handle selection bias. For example, the actual
cause-and-effect relation is that a higher credit line leads to
a higher default probability, but a typical regression model
can infer a relation that the higher the credit line, the lower
the default probability Huang et al. (2020). Such a phe-
nomenon exists because the default probability is affected
by some factors that are also used for credit policy assign-
ments. These factors are named confounders/covariates,
and they can incur selection bias due to the non-random
policy assignment, which presents a major challenge in es-
timating treatment effects.

To eliminate selection bias, the standard way is to conduct
randomized controlled trials (RCTs). However, RCTs are
infeasible for E-commerce credit policy evaluation since
RCTs are very expensive and time-consuming. More re-
alistically, researchers attempt to use models that directly
estimate treatment effects from observational data, such as
the outcome model. The outcome model infers (covari-
ates, treatment)-outcome relation, but it is subject to the
covariate shift problem incurred by selection bias Shalit
et al. (2017). Another mainstream method considers bal-
ancing the distribution of covariates by weighting them
Rosenbaum and Rubin (1983); Lunceford and Davidian
(2004); Li et al. (2018), and the weight usually involves the
treatment-outcome relation, which is known as the propen-
sity score.

Recently, the neural network models have boosted the rep-
resentation balancing methods Johansson et al. (2016);
Shalit et al. (2017). These methods aim to achieve domain-
invariant representations by enforcing the distribution of
covariates between the treated and controlled groups to
be balanced in the representation space. However, on the
one hand, previous causal inference methods are mainly
based on unconfoundedness assumption, whereas this as-
sumption has not been fully exploited in practice; on the
other hand, if a neural net model considers merely the the
domain invariance instead of domain discrimination, the
model might suffer an over-balancing issue and lose the
domain-discriminative (domain-related) information that
contributes to the treatment and outcome modeling Guo
et al. (2020); Zhang et al. (2020); Assaad et al. (2021);
Huang et al. (2022a). To explicate this phenomenon more
intuitively, we give a toy example below with illustrations
in Figure 1.

Toy example. Let X denote the covariate (monthly con-
sumption), Y denote the outcome (default status), T = 1
denote the treatment (increasing credit limit), and T = 0
denote the control (no change to credit limit). Suppose that
the credit policy is assigned according to the consumption
in the last month. The outcome is generated by Y = 1 (de-
fault) if P (T = 1|X = x) > 0.5, otherwise Y = 0 (pay
off). The left graph in Figure 1 indicates that the higher
monthly consumption, the higher probability of one getting

Adjust 
covariates 

Figure 1: Toy example for illustrating the tradeoff between
domain invariance and domain discrimination.

default. In contrast, as shown in the right panel of Figure
1, the distribution of X̃ (X̃ is the adjusted covariates based
on X) is invariant between treatment and control domains.
In this case, however, precisely predicting T (treatment or
control) becomes more difficult. This is because the distri-
bution of X̃ is so balanced that we can hardly distinguish
between treated and controlled units. Consequently, it is
hard to predict Y accurately using the over-balanceing fea-
tures X̃ . Therefore, although domain invariance can alle-
viate selection bias, improperly balanced features can be
indistinguishable, thereby failing to preserve the domain-
related information that is helpful for treatment and out-
come predictions.

Contribution. This paper proposes a novel balanced rep-
resentation learning method, DRRB-OB, to evaluate the ef-
fect of credit increase policy on consumption from a newly
introduced observational dataset, Credit, at the individual
level (ITE) and population level (ATE). In particular, afore-
mentioned issues motivate us to introduce a framework in-
volving doubly robust representation balancing and out-
come balancing (DRRB-OB). The main contributions are
fourfold: (1) We propose a doubly robust loss as a prerequi-
site for domain invariance, which prevents the learned rep-
resentation from being over-balanced. This idea can also
be extended to other machine learning areas, such as un-
supervised domain adaptation. (2) We fully exploit the ad-
vantage of the unconfoundedness assumption by proposing
an outcome balancing loss to improve treatment effect es-
timations. (3) Our method is applicable to the online credit
policy evaluation at either the individual level or popula-
tion level. (4) We create a new Credit dataset that mimics
the distribution of real-world online consumer data. This
Credit dataset will be very useful for future credit limit
management and policy evaluation studies.

2 BACKGROUND

2.1 Potential Outcome Framework

Consider N i.i.d. samples {(Xi, Ti, Yi)}Ni=1. Let the ran-
dom variable Xi ∈ X ⊂ Rs be s−dimensional con-
founders/covariates, Ti ∈ {0, 1} be the binary treatment,
and Y 1

i , Y
0
i ∈ Y ⊂ R be the potential outcomes for treat-
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ment Ti = 1 and Ti = 0, respectively. Under the potential
outcome (PO) framework (aka, Rubin Causal Model) Ru-
bin (2005), the treatment assignment is according to the
propensity score P (Ti = 1 | Xi), and the factual outcome
Yi is determined by Yi = TiY

1
i +(1−Ti)Y 0

i . Let (xi, ti, yi)
be the ith observed realization of (Xi, Ti, Yi). Our target is
to estimate ITE and ATE, denoted by τITE(x) and τATE ,
respectively:

τITE(x) = E
[
Y 1 − Y 0 | X = x

]
, (1)

τATE = E
[
Y 1 − Y 0

]
= E

[
E
[
Y 1 − Y 0 | X

]]
. (2)

Identifying ITE and ATE requires the following assump-
tions under the PO framework:

Assumption 1 (Consistency). If the treatment is t, then the
observed outcome equals the potential outcome under the
treatment t: When T = t, Y = Y t ∀t ∈ {0, 1}.
Assumption 2 (Overlap). The propensity score is bounded
away from 0 to 1: 0 < P (T = 1 | X = x) < 1 and
0 < P (T = 0 | X = x) < 1 ∀x ∈ Rs.
Assumption 3 (Unconfoundedness). The potential out-
comes are independent of treatment assignment given co-
variates: Y t ⊥⊥ T | X, ∀t ∈ {0, 1}.

After obtaining the estimates τ̂ITE(x) and τ̂ATE , we can
measure the model performance on policy evaluation by
the following metrics εPEHE (PEHE stands for Precision
in Estimation of Heterogeneous Effects) and εATE :

εPEHE =

∫
X

(τ̂ITE(x)− τITE(x))2p(x)dx, (3)

εATE =
∣∣ ∫
X

(τ̂ITE(x)− τITE(x))p(x)dx
∣∣

=
∣∣τ̂ATE − τATE∣∣. (4)

2.2 Related Works

Doubly robust estimation. The doubly robust (DR) es-
timator has been thoroughly studied for ATE estimation
in many pieces of literature. For example, the debiased
machine learning (DML) estimator (Chernozhukov et al.,
2018) is doubly robust for ATE estimation. The DML esti-
mator is consistent if either the outcome model or propen-
sity score model is correctly specified with a specific con-
vergence rate. Additionally, the DR-learner (Kennedy,
2020) is designed with doubly robust pseudo-outcomes for
ITE estimation. The DR-learner requires two-stage estima-
tions: First, the DR-learner fits the outcome model and the
propensity score model to construct the so-called doubly
robust pseudo-outcomes. Second, it regresses the differ-
ence of constructed outcomes on covariates and predicts
the ITE directly. Traditional machine learning methods,
e.g., logistic regression and tree models, can also be used to
evaluate credit policy, and they have been extended under
the debiased machine learning framework (Oprescu et al.,

2019; Liu et al., 2021) Other studies in terms of doubly ro-
bust estimators or the debiased machine learning method
include Farrell (2015); Yang et al. (2020); Huang et al.
(2020); Knaus (2021); Jung et al. (2021); Huang et al.
(2022b) and references therein.

Representation learning. Our work has a strong connec-
tion with representation learning methods for causal infer-
ence. These methods share very similar basic neural net
structures (Shalit et al., 2017; Du et al., 2021; Assaad et al.,
2021). The basic architecture of these methods consists of
a representation network Φ : X → R and two-head out-
come networks f1 : X ×{1} → Y and f0 : X ×{0} → Y .
Some methods (Shi et al., 2019) also consider an additional
propensity head network π : R → R. For causal repre-
sentation learning methods, they usually achieve domain-
invariant representations by minimizing the distribution
distance between treated and controlled groups in the rep-
resentation space. The distance is measured by the integral
probability metric (IPM), denoted by IPMG(·, ·), where G
is a function family consisting of functions g : R → R.
If we assume that G is the functional space of a family of
1−Lipschitz functions, then IPMG becomes 1-Wasserstein
distance, denoted by Wass(·, ·). This idea is inspired from
domain adaptation (Ben-David et al., 2006, 2010) The var-
ious representation learning methods (Louizos et al., 2017;
Yao et al., 2018; Johansson et al., 2016; Yoon et al., 2018;
Zhang et al., 2020; Assaad et al., 2021; Du et al., 2021) can
be found in Section 4 and Appendix.

3 REPRESENTATION BALANCING

In this section, we first state the theoretical generalization
bounds for balanced representation learning models in Sec-
tion 3.1. The over-balancing problem is then demonstrated
in Section 3.2. Section 3.3 next introduces the idea of in-
volving the domain discrimination task in representation
learning models. Finally, Section 3.4 discusses how to re-
solve the over-balancing issue and exploit the benefit of the
unconfoundedness assumption, under the proposed DRRB
framework.

3.1 Generalization Bounds

Due to the existence of selection bias, the covariate dis-
tribution shift problem is widespread in observational E-
commerce data. For example, a credit increase policy is
more likely to assign to individuals who have high his-
torical consumption and low default risks. This indicates
that the covariate distributions of the treated and controlled
groups can be considerably imbalanced. Therefore, we
propose to use representation balancing to tackle this issue.
Below we present the theoretical generalization bounds in
representation balancing methods (Shalit et al., 2017).

Theorem 1. Let Ψ be the inverse of Φ, pT=1
Φ
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and pT=0
Φ be the densities of the treated and con-

trolled covariates in the representation space,
h : R × {0, 1} → Y such that h(Φ(x), t) estimates
yt, and G be the family of 1-Lipschitz functions. As-
sume that there exists a constant BΦ ≥ 0 such that
gΦ,h(r, t) := 1

BΦ
· `h,Φ(Ψ(r), t) ∈ G for any t ∈ {0, 1},

where `h,Φ(x, t) =
∫
Y (yt, h(Φ(x), t))2p(yt|x)dyt. Defin-

ing σ2
y = min{σ2

yt(p(x, t)), σ
2
yt(p(x, 1 − t))} ∀t ∈

{0, 1}, where σ2
yt(p(x, t)) =

∫
X×{0,1}×Y (yt −

τ t(x))2p(yt|x)p(x, t)dytdxdt, we then have

εPEHE(h,Φ) ≤2(εT=1
F (h,Φ) + εT=0

F (h,Φ)

+BΦ · IPMG(pT=1
Φ , pT=0

Φ )− 2σ2
y).

(5)

Here, εT=t
F (h,Φ) =

∫
X `h,Φ(x, t)pT=t(x)dx is the es-

timation error over factual outcomes for t ∈ {0, 1}.
IPMG(pT=1

Φ , pT=0
Φ ) measures the distributional discrep-

ancy between the treated domain P (Φ(X) | T = 1) and
the controlled domain P (Φ(X) | T = 0). We defer the
proof of Theorem 1 to Appendix.

3.2 The Conundrum in Representation Balancing

The generalization bound for εPEHE in (5) indicates that
we can handle selection bias by (i) achieving a low predic-
tion error over factual outcomes and (ii) obtaining domain-
invariant representations by minimizing the distribution
discrepancy between the treated and controlled groups in
the representation space.

To achieve the goal (i), we define f(·, ti) = tif1(·) + (1−
ti)f0(·) as the estimate of factual outcome, where f1 and
f0 estimate the potential outcome y1 and y0, respectively.
We aim to minimize the loss over factual outcomes:

Ly(xi, ti, yi; Φ, f) = [f (Φ (xi) , ti)− yi]2 . (6)

The goal (ii) aims to find a representation function Φ such
that Φ minimizes the distance between the treated domain
and the controlled domain in the representation space:

IPMG(pT=1
Φ , pT=0

Φ ). (7)

If IPMG is chosen as 1-Wasserstein distance, then the final
objective of the representation balancing models is

min
Φ,f

1

N

N∑
i=1

Ly(xi, ti, yi; Φ, f) + α1Wass(pT=1
Φ , pT=0

Φ ).

(8)
The most representative domain-invariant representation
learning model is CFR-Wass (Shalit et al., 2017) (see Fig-
ure 2(a)). However, representation learning models that
merely consider domain invariance may suffer an over-
balancing issue since the objective (8) imposes no re-
strictions on the domain invariance task. As a result, Φ

would keep updating for the goal of domain invariance un-
til the optimization converges. In this scenario, Φ is prone
to being over-balanced and hence may lose the domain-
discriminative information useful for outcome modeling.

3.3 Combining with Domain Discriminator

The toy example in Figure 1 demonstrates the inadequacy
of domain invariance to preserve domain-related informa-
tion to prevent representation balancing models from the
over-balancing problem. In this section, we will introduce
the domain discrimination task for the representation learn-
ing methods.

Direct objective. An intuitive and direct approach to in-
corporating domain-discriminative information is to force
the model to learn domain-discriminative representations.
This allows the treated units to be easily distinguished from
the controlled ones in the representation space. Specifi-
cally, we can minimize the treatment prediction error mea-
sured by the cross-entropy loss Lt(xi, ti; Φ, π) by jointly
training the domain discriminator (treatment classifier) π
and the representation function Φ such that

Lt(xi, ti; Φ, π) =− ti log π(Φ(xi))

− (1− ti) log(1− π(Φ(xi))).
(9)

Together with the outcome loss in (6), a direct objective of
domain-discriminative models is

min
Φ,f,π

1

N

N∑
i=1

[Ly(xi, ti, yi; Φ, f) + α2Lt(xi, ti; Φ, π)] .

(10)
One of the representative domain-discriminative represen-
tation learning models is called Dragonnet (Shi et al., 2019)
(see Figure 2(b)). Such a domain-discriminative model can
preserve domain-related patterns, but the objective makes it
hard to deal with the selection bias problem due to lacking
the domain-invariant task.

Multi-task objective. As discussed above, merely desir-
ing domain invariance might cause the model to fall into an
over-balancing issue, while considering domain discrimi-
nation alone is insufficient to handle selection bias. Natu-
rally, we can combine both domain invariance (8) and do-
main discrimination (10) with a multi-task learning objec-
tive:

min
Φ,f,π

1

N

N∑
i=1

Ly(xi, ti, yi; Φ, f) + α1Wass(pT=1
Φ , pT=0

Φ )

+ α2
1

N

N∑
i=1

Lt(xi, ti; Φ, π).

(11)
Heuristically, the multi-task objective (11) forces Φ to pre-
serve domain-discriminative information using a domain
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𝑓𝑓1(Φ 𝐱𝐱 )

𝑓𝑓0(Φ 𝐱𝐱 )

Φ

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑝𝑝Φ𝑇𝑇=0, 𝑝𝑝Φ𝑇𝑇=1)

𝐗𝐗

(a) CFR-Wass

𝑓𝑓1(Φ 𝐱𝐱 )

𝑓𝑓0(Φ 𝐱𝐱 )
Φ

𝜋𝜋(Φ 𝐱𝐱 )
𝐗𝐗

(b) Dragonnet

𝑓𝑓1(Φ 𝐱𝐱 )

𝑓𝑓0(Φ 𝐱𝐱 )
Φ

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑝𝑝Φ𝑇𝑇=0, 𝑝𝑝Φ𝑇𝑇=1)

𝜋𝜋(Φ 𝐱𝐱 )
𝐗𝐗

(c) Dragon-Wass

𝑓𝑓1(Φ 𝐱𝐱 )

𝑓𝑓0(Φ 𝐱𝐱 )
Φ

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊(𝑝𝑝Φ𝑇𝑇=0, 𝑝𝑝Φ𝑇𝑇=1)
𝜋𝜋(Φ 𝐱𝐱 )

(d) DRRB

𝐗𝐗 𝐿𝐿𝐷𝐷𝐷𝐷

Figure 2: Illustrations of CFR-Wass, Dragonnet, Dragon-
Wass, and the proposed DRRB methods.

discriminator, protecting representation balancing models
from the over-balancing problem. As a combination of
CFR-Wass and Dragonnet, the model with the objective
(11) can be referred to as Dragon-Wass (see Figure 2(c)).

The multi-task objective (11) is expected to compensate for
the shortfalls of CFR-Wass and Dragonnet, but there still
remain some challenges confronted by Dragon-Wass. First,
the fact that domain invariance and domain discrimination
counteract each other makes it difficult to strike a balance
between the two subtasks, as the optimal trade-off is usu-
ally unknown in practice. Second, the objective (11) just
combines the three sub-objectives together, without expli-
cating the interaction between them. Third, like other exist-
ing causal representation learning methods, Dragon-Wass
does not make use of the unconfoundedness assumption.

3.4 Doubly Robust Representation Balancing

The dilemmas encountered by the above representation
learning models motivate us to explore a new representa-
tion balancing framework, the doubly robust represen-
tation balancing (DRRB) framework. Specifically, we
construct the doubly robust loss LDR(xi, ti, yi; Φ, f, π) to
avoid the over-balancing issue, and establish the outcome
balancing loss LOB(x, t; Φ, f0, f1) to adapt the model to
the unconfoundedness assumption stated in Assumption 3.
We first introduce the doubly robust loss and explain how
it avoids the over-balancing issue.

Doubly robust loss. Recall that domain-related informa-
tion is associated with the treatment and outcome model-
ing. Therefore, it can be concluded that if either treat-
ment or outcome is accurately predicted, domain-related
information is considered well-preserved (i.e., no over-
balancing issue). Inspired by this doubly robust prop-

erty, we construct the pseudo-outcomes yDR1 (ti, ·) and
yDR0 (ti, ·) such that

yDR1 (ti, ·) = f1(·) +
ti
π(·)

(yi − f1(·));

yDR0 (ti, ·) = f0(·) +
1− ti

1− π(·)
(yi − f0(·)).

(12)

Based on (12), we have the doubly robust loss

LDR(xi, ti, yi; Φ, f, π)

=[tiy
DR
1 (ti,xi) + (1− ti)yDR0 (ti,xi)− yi]2

=ti(f1(Φ(xi))− yi)2(1− ti
π(Φ(xi))

)2

+ (1− ti)(f0(Φ(xi))− yi)2(1− 1− ti
1− π(Φ(xi))

)2.

(13)
The doubly robust loss gains the following two insights into
learning domain-invariant representations. First: Take ti =
1 as an example (we have similar insights for ti = 0). If ei-
ther f1 (Φ (xi)) correctly predicts the outcome or π(Φ(xi))
accurately estimates the propensity score, we believe that
Φ does not lose the domain-related information useful for
treatment and outcome modeling, i.e., no over-balancing
issue. In this case, the small value of (1 − ti

π(Φ(xi))
)2 or

(f1(Φ(xi)) − yi)
2 will result in the small sample mean

of LDR(xi, ti, yi; Φ, f, π), and the representation encoder
Φ is allowed to update for the domain invariance task,
i.e., minimizing Wass(pT=1

Φ , pT=0
Φ ). Second: If both

f1 (Φ (xi)) and π(Φ(xi)) are not correctly specified, then
it indicates that domain-related information might be un-
intentionally removed in the representation space. That is,
the learned representations suffer an over-balancing issue.
In this case, the sample mean of LDR(xi, ti, yi; Φ, f, π) is
large, and the representation encoder Φ should not be up-
dated for the domain invariance task anymore.

Note that quantities of a similar form to the pseudo-
outcomes in (12) and (13) have also appeared in the dou-
bly robust estimator Chernozhukov et al. (2018) and DR-
learner Kennedy (2020). However, the doubly estimator
is a plug-in ATE estimator, and the DR-learner regresses
the difference of pseudo-outcomes to estimate ITE, so they
are different from how we utilize such pseudo-outcomes.
We take advantage of the doubly robust property of these
pseudo-outcomes to resolve the over-balancing issue. To
be specific, LDR(xi, ti, yi; Φ, f, π) will be small if either
the outcome or the treatment is well predicted, but not nec-
essarily both. Therefore, the proposed doubly robust loss
can be used as an indicator of the over-balancing problem,
which brings a new insight into the representation balanc-
ing method.

Outcome balancing loss. Now we are ready to demon-
strate how to utilize the unconfoundedness assumption for
representation balancing models. Previous causal inference
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methods are based on the PO framework, where the uncon-
foundedness assumption (Assumption 3) is necessary, i.e.,
Y t ⊥⊥ T | X,∀t ∈ {0, 1}. According to the unconfound-
edness assumption, we have the following property:

P (Y j | X, T ) = P (Y j | X) ∀j ∈ {0, 1}. (14)

The unconfoundedness indicates that the potential out-
comes are independent of the treatment assignment given
specific covariates. Consequently, the distribution of po-
tential outcome Y j with ∀j ∈ {0, 1} in treated units should
be identical to that in controlled units given X ∼ X . In our
model setup, fj ◦ Φ(X) is the approximate of Y j . There-
fore, we encourage representation balancing models to bal-
ance the distributions of potential outcomes fj ◦ Φ(X) for
j ∈ {0, 1} between treated and controlled groups based on
the property given in (14). To be specific, we propose the
outcome balancing loss LOB(x, t; Φ, f0, f1) such that

LOB(x, t; Φ, f0, f1) = Wass(pT=1
f1

, pT=0
f1

)

+Wass(pT=1
f0

, pT=0
f0

).
(15)

The final objective. Combining the doubly robust loss
(13) and the outcome balancing loss (15), we have the final
model DRRB-OB. The objective of DRRB-OB involves
three separated steps:

Step 1 : min
Φ,f0,f1

1

N

N∑
i=1

Ly(xi, ti, yi; Φ, f) (16)

+ λ1LOB(x, t; Φ, f0, f1); (17)

Step 2 : min
π

1

N

N∑
i=1

Lt(xi, ti; Φ, π); (18)

if LDR(xi, ti, yi; Φ, f, π) < λ2 : (19)

Step 3 : min
Φ

Wass(pT=1
Φ , pT=0

Φ ). (20)

Within each iteration, equation (16) accommodates the
model to outcome predictions, which corresponds to
εT=t
F (h,Φ) in equation (5) of Theorem 1; equation (17)

adapts the model to the unconfoundedness assumption,
which corresponds to LOB(x, t; Φ, f0, f1) in equation
(15). Further, the domain discriminator is trained in (18)
to estimate the propensity score using π(Φ(xi)). Note
that unlike (10) or (11) where π and Φ are updated si-
multaneously, equation (18) is primarily designed to use
π to judge whether Φ(xi) loses domain-discriminative in-
formation. In (19), the DRRB method cleverly takes ad-
vantage of the doubly robust property to identify whether
Φ(xi) suffers an over-balancing issue. In particular, given
a threshold λ2, if (19) is satisfied, domain-related infor-
mation is believed to be well-preserved without an over-
balancing problem. In this scenario, Φ is allowed to be
further updated for the domain invariance task (20), which
corresponds to IPMG(pT=1

Φ , pT=0
Φ ) in equation (5) of The-

orem 1. Here, λ1 and λ2 are hyperparameters, where the

threshold λ2 can be either fixed or adaptive. Note that the
discrepancy measure can be changed to other divergence
metrics other than 1-Wasserstein distance. It is also an im-
portant step for future studies to solve the time-consuming
problem of training our model with multi-task objectives.

4 EXPERIMENTS

This section gives comprehensive experimental results of
our method and baseline models on causal benchmark
datasets and an E-commerce retail credit dataset. All
the experiments are run on Dell 7920 with 1x 16-core
Intel Xeon Gold 6250 3.90GHz CPU and 3x NVIDIA
Quadro RTX 6000 GPU. In the subsequent investigation,
we mainly go deep into two questions: (1) Does the pro-
posed method outperform other baseline methods in terms
of treatment effect estimation? (2) Do the proposed compo-
nents, i.e., the doubly robust loss in (19) and the outcome
balancing loss in (17), contribute to improving treatment
effect estimations?

4.1 Experiments on Benchmark Datasets

In reality, the ground truth of treatment effects is unavail-
able because each individual can only receive treatment 0
or treatment 1. That is, y1 and y0 are not available simul-
taneously. Previous works adopt semi-synthetic datasets
to evaluate the performances of causal inference methods,
of which IHDP and Twins are the most frequently used
benchmark datasets.

Benchmark datasets. IHDP: The IHDP dataset is intro-
duced by Hill (2011). The dataset consists of 747 sam-
ples with 25-dimensional covariates collected from a real-
world randomized experiment. The selection bias is cre-
ated by removing a part of treated samples, and the target
is to study the effect of special visits (treatment) on cogni-
tive scores (outcome). The potential outcomes are gener-
ated using the NPCI package Dorie (2021). We use the
same 1000 datasets as used in Shalit et al. (2017), with
each dataset split by the ratio of 63%/27%/10% as train-
ing/validation/test sets. Twins: The Twins dataset contains
11400 pairs of twins weighing less than 2 kg in the USA
between 1989 and 1991 Almond et al. (2005). There are
30 attributes associated with parents, pregnancy, and birth
as the covariates. The treatment T = 1 and T = 0 in-
dicate the heavier twin and the lighter twin, respectively.
The outcome is 1-year mortality, and the average mortality
rate is 17.7% for the lighter twin and 16.1% for the heav-
ier twin. The selection bias is created by choosing one of
the two twins as the factual observation Yoon et al. (2018):
Ti | Xi ∼ Bernoulli((1+exp(wTXi+n))−1), where w ∼
U((−0.01, 0.01)30×1) and n ∼ N (0, 0.01). We repeat the
process to generate 100 datasets, with each dataset split by
the ratio of 56%/24%/20% as training/validation/test sets.
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Table 1: Performance comparisons with mean± standard error on benchmark datasets IHDP and Twins.
√
εPEHE : Lower

is better. εATE : Lower is better. AUC: Higher is better. Bold indicates the best results across different models.

Method

IHDP Twins

Within-sample Out-of-sample Within-sample Out-of-sample√
εPEHE εATE

√
εPEHE εATE AUC εATE AUC εATE

OLS/LR1 5.8± .3 .73± .04 5.8± .3 .94± .06 .660± .005 .004± .003 .500± .028 .007± .006
OLS/LR2 2.4± .1 .14± .01 2.5± .1 .31± .02 .660± .004 .004± .003 .500± .016 .007± .006

k-NN 2.1± .1 .14± .01 4.1± .2 .79± .05 .609± .010 .003 ± .002 .492± .012 .005 ± .004
BART Chipman et al. (2010) 2.1± .1 .23± .01 2.3± .1 .34± .02 .506± .014 .121± .024 .500± .011 .127± .024
CEVAE Louizos et al. (2017) 2.7± .1 .34± .01 2.6± .1 .46± .02 .845± .003 .022± .002 .841± .004 .032± .003

SITE Yao et al. (2018) .69± .0 .22± .01 .75± .0 .24± .01 .862± .002 .016± .001 .853± .006 .020± .002
BLR Johansson et al. (2016) 5.8± .3 .72± .04 5.8± .3 .93± .05 .611± .009 .006± .004 .510± .018 .033± .009
BNN Johansson et al. (2016) 2.2± .1 .37± .03 2.1± .1 .42± .03 .690± .008 .006± .003 .676± .008 .020± .007
TARNet Shalit et al. (2017) .88± .0 .26± .01 .95± .0 .28± .01 .849± .002 .011± .002 .840± .006 .015± .002

CFR-Wass Shalit et al. (2017) .71± .0 .25± .01 .76± .0 .27± .01 .850± .002 .011± .002 .842± .005 .028± .003
Dragonnet Shi et al. (2019) .89± .0 .15± .01 .93± .0 .18± .01 .880 ± .000 .005± .005 .874± .001 .008± .005

ABCEI Du et al. (2021) .96± .0 .18± .01 1.1± .0 .20± .01 .871± .001 .003 ± .001 .863± .001 .005 ± .001
Dragon-Wass .57± .0 .13± .01 .61± .0 .15± .01 .877± .000 .004± .001 .874± .001 .007± .001

DRRB-OB (Ours) .46 ± .0 .12 ± .01 .49 ± .0 .13 ± .01 .880 ± .000 .004± .000 .875 ± .001 .008± .001

Implementation Details We adopt the absolute error
in ATE, εATE =

∣∣ 1
N

∑N
i=1

(
(y1
i − y0

i )− (ŷ1
i − ŷ0

i )
)∣∣, to

evaluate the estimation error in ATE. As for the estima-
tion error in ITE, we use Precision in Estimation of Het-
erogeneous εPEHE = 1

N

∑N
i=1

(
(y1
i − y0

i )− (ŷ1
i − ŷ0

i )
)2

Shalit et al. (2017) for IHDP datasets, and Area Un-
der ROC Curve (AUC) Louizos et al. (2017) for Twins
datasets. To analyze the source of gain, we let εF =
1
N

∑N
i=1 (yi − ŷi)2 denote the error in factual outcome es-

timation, and Wass denote the empirical approximation
of Wass(pT=1

Φ , pT=0
Φ ). The model structure and hyperpa-

rameters are set as stated in the implementation details of
Appendix.

Ablation study. To investigate the source of gain of the
proposed components, we compare DRRB-OB with DRRB
(with (17) removed) and RB (with (17) and (19) removed)
for various metrics on 1-100 IHDP datasets in Figure 3.
The top of each subplot presents the mean ± standard er-
ror of each metric averaged over 100 runs. In Figure 3, we
gain an important insight that RB achieves more balanced
representations (smaller Wass) than DRRB, but such bal-
ancing can be harmful to factual outcome estimation (εF ).
In contrast, DRRB that involves the doubly robust loss
in (17) yields a general outperformance in most cases for
RB, reducing εF by |1.02/1.53 − 1| = 33.3%. Con-
sequently, DRRB attains substantially better ITE estima-
tion (

√
εPEHE) and ATE estimation (εATE), with errors

reduced by |0.46/1.17 − 1| = 60.7% for
√
εPEHE and

|0.14/0.25 − 1| = 44.0% for εATE . We also note that the
outcome balancing loss in (17) does not affect factual out-
come estimation (εF ) or domain invariance (Wass), but it
improves treatment effect estimation by adapting the model
to the unconfoundedness assumption. Specifically, DRRB-
OB achives better ITE and ATE estimations than DRRB,
with |0.44/0.46 − 1| = 4.3% smaller for

√
εPEHE and

|0.12/0.14− 1| = 14.3% smaller for εATE .

Figure 3: Plots of model performances on test set for εF ,
Wass,

√
εPEHE , and εATE . Each graph plots the metric

for 1-100 IHDP datasets. Mean ± std of each metric aver-
aged across 100 runs are reported on the top.

Comparison with baselines. We further compare base-
line models with DRRB-OB on 1000 IHDP and 100 Twins
datasets, and report the model performances (mean± stan-
dard error) in Table 1. We bold the method with the best
performance and defer more detailed comparisons to Ap-
pendix. From Table 1, we have the following observations:
1. DRRB-OB achieves superior performances among all
the models on IHDP datasets. Notably, DRRB-OB attains
significantly smaller treatment effect errors compared to
the second-best result, and the error reduction is especially
pronounced for

√
εPEHE , reaching |0.46/0.57 − 1| =
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Table 2: The comparisons of the mean and standard devia-
tion for the outcome and covariates between the generated
data and the real data in treated and controlled groups.

Variables

Mean Standard Deviation

Controlled Treated Controlled Treated

Fake Real Fake Real Fake Real Fake Real

Age 31.02 30.99 30.54 30.00 7.09 6.68 7.41 6.92
Used days 950.10 921.28 874.61 875.62 324.99 310.12 291.13 292.99

Status 0.05 0.05 0.05 0.04 0.23 0.22 0.21 0.20
Credit line (×100) 93.05 91.24 94.34 93.56 41.13 39.10 36.78 38.52

Order amount (×100) 11.53 10.64 9.58 10.77 15.97 18.48 12.85 15.86
Borrow amount (×100) 8.58 9.01 13.26 13.69 15.86 15.51 18.83 21.88
Repay amount (×100) 6.83 6.95 12.69 11.37 13.93 12.44 18.49 19.20

Numer of orders 3.82 3.87 4.09 4.55 3.51 3.37 2.85 4.46
Numer of borrows 1.96 1.99 2.94 3.00 2.38 2.22 3.35 4.33

Numer of repayment 0.97 0.94 1.13 1.11 0.51 0.58 0.53 0.68
Handling fee 15.87 16.47 14.09 16.29 63.26 67.60 51.66 59.90

Loan term 2.61 2.58 2.22 2.20 3.76 3.61 2.82 2.98
Monthly consumption 4.19 3.63 4.78 3.98 2.68 2.65 2.9 2.73

19.3% and |0.49/0.61 − 1| = 19.7% on in-sample and
out-of-sample data, respectively. 2. For the Twins dataset,
DRRB-OB has the second best result for ATE estimation,
but still achieves the best result for ITE estimation, thereby
showing the overall effectiveness. Note that DRRB-OB
does not show significant priority on Twins experiments.
This is probably because 1) the main objective for Twins
data is classification (cross-entropy loss) instead of regres-
sion (mean squared loss); 2) unlike IHDP data where Y 0

and Y 1 are generated entirely by (X, T ), Twins data ex-
hibit a weaker connection between Y and (X, T ) since they
are from randomized controlled trials, leading to underuti-
lized strengths of our model as covariate balancing is less
prone to affect outcome modeling in this case. 3. Com-
pared to CFR-Wass, Dragonnet, and Dragon-Wass, DRRB
shows consistent superiority, indicating that the proposed
objective of DRRB-OB is constructive to treatment effect
estimations.

4.2 Experiments on E-commerce Datasets: Credit

We introduce a new dataset for E-commerce credit pol-
icy evaluation, the Credit dataset. Traditional bench-
mark datasets such as IHDP generate ground truth of
treatment effects through a parametric data generating
form. Recently, Athey et al. (2021) have proposed using
Wasserstein Generative Adversarial Networks (WGAN)
(Arjovsky et al., 2017) to generate data with access to
ground truth of treatment effects. The data generated by
this nonparametric method approximately mimic the real-
world data, making it more realistic than traditional para-
metric generating process.

Data description. The Credit dataset consists of 12-
dimensional covariates in June. 2019: i) borrow amount,
repayment amount, order amount, number of borrows,
number of repayment, number of orders, handling fee, loan
term, and credit line averaged in the past three months;
ii) the default status of the last month; iii) age and days
of usage. The treatment is the credit increase policy, and

Figure 4: The distribution histogram for comparing the
generated data and the real data with selected variables. In
each graph, the x-axis represents the variable’s value, and
the y-axis represents the probability density.

the outcome is the consumption amount within one month.
The observational data exhibit selection bias because the
assignment of the credit increase policy was determined by
the E-commerce platform according to the consumers’ dig-
ital footprints (covariates). The original dataset contains
86880 individuals whose monthly consumption is less than
1000, of which 11056 are the treated units and 75824 are
the controlled ones. Following the data generating algo-
rithm in Athey et al. (2021), we apply WGAN to generate
an artificial dataset containing 2000 samples whose factual
and counterfactual outcomes are available. Then we com-
pare the distribution of the generated data (fake data) with
that of the original data (real data) in Table 2 and Figure 4.
We defer more comparisons to Appendix.

Implementation. Following the strategy in creating
IHDP datasets, we remove part of the treated units with
the removal ratio varying in {0.1, 0.3, 0.5, 0.7, 0.9} for the
generated Credit dataset. Then we randomly split the
after-removal dataset by the ratio 56%/24%/20% as train-
ing/validation/test sets. We repeat this process 100 times to
generate 100 different Credit datasets for each removal ra-
tio. We remain the implementation details the same as used
in the IHDP experiments, and defer more details of hyper-
parameters to Appendix. Furthermore, we make compar-
isons in Table 3 for DRRB, DRRB-OB, and other models
that share very similar neural network architectures.

Results. As shown in Table 3, it is evident that DRRB
and DRRB-OB can overwhelmingly achieve lower errors
than other methods. Furthermore, we find DRRB-OB is
better than DRRB in most cases, indicating the outcome
balancing loss is effective. Moreover, it is worth noting
that none of these baseline models can outperform TAR-
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Table 3: Performance comparisons for with mean ± standard error on out-of-sample Credit datasets.
√
εPEHE : Lower is

better. εATE : Lower is better. Bold indicates the best results across different models.

Out-of-sample
√
εPEHE Out-of-sample εATE

Model
/

Removal ratio 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

TARNet 3.761± .01 3.786± .01 3.770± .01 3.752± .01 3.757± .01 .280± .03 .265± .03 .265± .03 .274± .03 .277± .03
CFR-Wass 3.766± .01 3.801± .01 3.773± .01 3.768± .01 3.761± .01 .291± .03 .270± .03 .260± .03 .317± .04 .268± .03
Dragonnet 3.769± .01 3.791± .01 3.771± .01 3.750± .01 3.755± .01 .286± .03 .282± .03 .252± .03 .280± .03 .272± .03

Dragon-Wass 3.759± .01 3.784± .01 3.771± .01 3.752± .01 3.753± .01 .278± .03 .271± .03 .274± .03 .276± .03 .281± .03

DRRB 3.758± .01 3.783 ± .01 3.771± .01 3.747 ± .01 3.748 ± .01 .266± .03 .253± .03 .253± .03 .265± .03 .266± .03
DRRB-OB 3.756 ± .01 3.783 ± .01 3.768 ± .01 3.748± .01 3.748 ± .01 .260 ± .03 .249 ± .03 .230 ± .02 .203 ± .02 .262 ± .03

Net (the objective of TARNet is equation (16)) across all
the datasets. This reveals that it may be ineffectual if only
considering domain invariance or domain discrimination.
By contrast, DRRB and DRRB-OB exhibit stronger robust-
ness and minor estimation errors than the baseline models,
and such superiority is more significant in terms of ATE es-
timation. The experiments conducted on the Credit dataset
suggest the DRRB-OB framework and the outcome balanc-
ing loss are practical and applicable to treatment effect es-
timations on real-world E-commerce credit data.

5 DISCUSSION

In this paper, we leverage balanced representation learning
methods and design a new model, DRRB-OB, to do policy
evaluation. In summary, the proposed method not only han-
dles selection bias by learning domain-invariant represen-
tations, but also protects the learned representations from
being over-balanced through a doubly robust loss. More-
over, we encourage representation balancing models to uti-
lize the unconfoundedness assumption by incorporating the
outcome balancing loss. Comprehensive experimental re-
sults on causal benchmark datasets and the Credit dataset
confirm the effectiveness of our methods.

Limitation and future work. 1 Our study is limited to
the PO framework , where the treatment is binary. Also, our
method is not limited to the credit policy evaluation, and it
can be extended to other problems where treatment effects
need to be estimated. We believe another important ques-
tion is how to design a proper adaptive strategy to deter-
mine the threshold in equation (19). Moreover, it would be
interesting if future works go beyond the binary policy and
explore further advances in balanced representation learn-
ing methods in terms of decision-making problems in the
E-commerce field, e.g., the treatment assignment problem
(Kitagawa and Tetenov, 2018; Athey and Wager, 2021). It
is also worth noting that the consumers’ credit loan is pro-
vided by the platform, so the platform is also exposed to
credit risk. This prevents lenders from unethically allocat-
ing credit lines. Finally, it would be interesting if future
commercial studies consider both consumption and credit

1We are thankful for all the reviewers and meta-reviewers who
provide thoughtful and constructive comments and suggestions.

risk simultaneously. We hope our work can inspire more
research on commercial credit policy under the representa-
tion learning framework, and we expect our work will boost
more studies that intersect artificial intelligence, causal in-
ference, and fintech to facilitate joint development in these
areas.
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Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (elus). arXiv preprint
arXiv:1511.07289, 2015.

Vincent Dorie. Nonparametric methods for causal infer-
ence. https://github.com/vdorie/npci, 2021.

Xin Du, Lei Sun, Wouter Duivesteijn, Alexander Nikolaev,
and Mykola Pechenizkiy. Adversarial balancing-based
representation learning for causal effect inference with
observational data. Data Mining and Knowledge Dis-
covery, 35(4):1713–1738, 2021.

Max H Farrell. Robust inference on average treatment ef-
fects with possibly more covariates than observations.
Journal of Econometrics, 189(1):1–23, 2015.

Ruocheng Guo, Jundong Li, Yichuan Li, K Selçuk Can-
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A Proofs of Technical Results

To prove theorem 1, we first introduce some necessary terms.

Definition 1. Let Φ be the representation function such that Φ : X → R, h : R × {0, 1} → Y be the outcome function
such that h(Φ(x), t) estimates yt, and `h,Φ(x, t) =

∫
Y (yt, h(Φ(x), t))2p(yt|x)dyt. The expected factual loss εF (h,Φ)

and counterfactual losses εCF (h,Φ) over h and Φ are, respectively:

εF (h,Φ) =

∫
X×{0,1}

`h,Φ(x, t)p(x, t)dxdt,

εCF (h,Φ) =

∫
X×{0,1}

`h,Φ(x, t)p(x, 1− t)dxdt.

Lemma 2. Let Φ : X → R be an invertible representation with Ψ being its inverse. Let pT=1
Φ and pT=0

Φ be the densities
of the treated and controlled covariates in the representation space. Let h : R × {0, 1} → Y , u := Pr(T = 1) and
G be the family of 1-Lipschitz functions. Assume there exists a constant BΦ ≥ 0, such that for t = 0, 1, the function
gΦ,h(r, t) := 1

BΦ
· `h,Φ(Ψ(r), t) ∈ G. Then we have:

εCF (h,Φ) ≤ (1− u) · εT=1
F (h,Φ) + u · εT=0

F (h,Φ) +BΦ ·Wass(pT=1
Φ , pT=0

Φ ).

Proof.

εCF (h,Φ)− [(1− u) · εT=1
F (h,Φ) + u · εT=0

F (h,Φ)]

=[(1− u) · εT=1
CF (h,Φ) + u · εT=0

CF (h,Φ)]− [(1− u) · εT=1
F (h,Φ) + u · εT=0

F (h,Φ)]

=(1− u) · [εT=1
CF (h,Φ)− εT=1

F (h,Φ)] + u · [εT=0
CF (h,Φ)− εT=0

F (h,Φ)]

=(1− u)

∫
X
`h,Φ(x, 1)(pT=0(x)− pT=1(x))dx + u

∫
X
`h,Φ(x, 0)(pT=1(x)− pT=0(x))dx

=(1− u)

∫
R
`h,Φ(Ψ(r), 1)(pT=0

Φ (r)− pT=1
Φ (r))dr + u

∫
R
`h,Φ(Ψ(r), 0)(pT=1

Φ (r)− pT=0
Φ (r))dr

≤BΦ · (1− u)

∫
R

1

BΦ
`h,Φ(Ψ(r), 1)(pT=0

Φ (r)− pT=1
Φ (r))dr

+BΦ · u
∫
R

1

BΦ
`h,Φ(Ψ(r), 0)(pT=1

Φ (r)− pT=0
Φ (r))dr

≤BΦ · (1− u) sup
g∈G
|
∫
R
g(r)(pT=0

Φ (r)− pT=1
Φ (r))dr|

+BΦ · u · sup
g∈G
|
∫
R
g(r)(pT=1

Φ (r)− pT=0
Φ (r))dr|

=BΦ · sup
g∈G
|
∫
R
g(r)(pT=1

Φ (r)− pT=0
Φ (r))dr|

=BΦ ·Wass(pT=1
Φ , pT=0

Φ ).

(21)

Lemma 3. Let loss function L be the squared loss such that L(y1, y2) = (y1 − y2)2. Defining σ2
y =

min{σ2
yt(p(x, t)), σ

2
yt(p(x, 1− t))} ∀t ∈ {0, 1}, where σ2

yt(p(x, t)) =
∫
X×{0,1}×Y (yt − τ t(x))2p(yt|x)p(x, t)dytdxdt,

we have

εPEHE(h,Φ) ≤ 2(εCF (h,Φ) + εF (h,Φ)− 2σ2
y).

Proof. Define the function f : X × {0, 1} → Y such that f(x, t) = h(Φ(x), t). We denote εPEHE(f) = εPEHE(h,Φ),
εF (f) = εF (h,Φ), εCF (f) = εCF (h,Φ) for f(x, t) = h(Φ(x), t). Assuming that τ1(x) := E

[
Y 1|X = x

]
and τ0(x) :=
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E
[
Y 0|X = x

]
, then we have

εPEHE(f) =

∫
X

((f(x, 1)− f(x, 0))− (τ1(x)− τ0(x)))2p(x)dx

≤2

∫
X

((f(x, 1)− τ1(x))2 + (f(x, 0)− τ0(x))2)p(x)dx

=2

∫
X

(f(x, 1)− τ1(x))2p(x, T = 1)dx + 2

∫
X

(f(x, 0)− τ0(x))2p(x, T = 0)dx

+ 2

∫
X

(f(x, 1)− τ1(x))2p(x, T = 0)dx + 2

∫
X

(f(x, 0)− τ0(x))2p(x, T = 1)dx

=2

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, t)dxdt+ 2

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, 1− t)dxdt.

(22)

On the other hand,

εF (f) =

∫
X×{0,1}×Y

(f(x, t)− yt)2p(yt|x)p(x, t)dytdxdt

=

∫
X×{0,1}×Y

(f(x, t)− τ t(x))2p(yt|x)p(x, t)dytdxdt

+

∫
X×{0,1}×Y

(τ t(x)− yt)2p(yt|x)p(x, t)dytdxdt

+ 2

∫
X×{0,1}×Y

(f(x, t)− τ t(x))(τ t(x)− yt)p(yt|x)p(x, t)dytdxdt

=

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, t)dxdt+ σ2
yt(p(x, t))

(23)

Similarly, for εCF , we have

εCF (f) =

∫
X×{0,1}

(f(x, t)− τ t(x))2p(x, 1− t)dxdt+ σ2
yt(p(x, 1− t)). (24)

Combining results (22), (23), and (24), we have

εPEHE(h,Φ) ≤ 2(εF (f)− σ2
yt(p(x, t))) + 2(εCF (f)− σ2

yt(p(x, 1− t)))
≤ 2(εCF (h,Φ) + εF (h,Φ)− 2σ2

y).
(25)

Theorem 4. Let Ψ be the inverse of Φ, pT=1
Φ and pT=0

Φ be the densities of the treated and controlled covariates in the
representation space, h : R× {0, 1} → Y such that h(Φ(x), t) estimates yt, and G be the family of 1-Lipschitz functions.
Assume that there exists a constant BΦ ≥ 0 such that gΦ,h(r, t) := 1

BΦ
· `h,Φ(Ψ(r), t) ∈ G for any t ∈ {0, 1}, where

`h,Φ(x, t) =
∫
Y (yt, h(Φ(x), t))2p(yt|x)dyt. Defining σ2

y = min{σ2
yt(p(x, t)), σ

2
yt(p(x, 1 − t))} ∀t ∈ {0, 1}, where

σ2
yt(p(x, t)) =

∫
X×{0,1}×Y (yt − τ t(x))2p(yt|x)p(x, t)dytdxdt, we then have

εPEHE(h,Φ) ≤2(εT=1
F (h,Φ) + εT=0

F (h,Φ)

+BΦ · IPMG(pT=1
Φ , pT=0

Φ )− 2σ2
y).

(26)

Proof. By Lemma 2, Lemma 3 and the fact that εF (h,Φ) = u · εT=1
F (h,Φ) + (1− u) · εT=0

F (h,Φ), we have

εPEHE(h,Φ) ≤ 2(εCF (h,Φ) + εF (h,Φ)− 2σ2
y)

≤ 2
(
(1− u) · εT=1

F (h,Φ) + u · εT=0
F (h,Φ) +BΦ ·Wass(pT=1

Φ , pT=0
Φ ) + εF (h,Φ)− 2σ2

y

)
= 2
(
(1− u) · εT=1

F (h,Φ) + u · εT=0
F (h,Φ) +BΦ ·Wass(pT=1

Φ , pT=0
Φ )

+ u · εT=1
F (h,Φ) + (1− u) · εT=0

F (h,Φ)− 2σ2
y

)
= 2
(
εT=1
F (h,Φ) + εT=0

F (h,Φ) +BΦ · IPMG(pT=1
Φ , pT=0

Φ )− 2σ2
y

)
.

(27)



Towards Balanced Representation Learning for Credit Policy Evaluation

B Additional Experimental Results

Results. We report performances produced by our model DRRB-OB and other baseline models in Table 1. The symbol
“*” means that their paper does not report this result. In addition, we plot the loss outputs for the first 100 iterations of RB,
DRRB and DRRB-OB on the 1st IHDP dataset in Figure 5. Figure 5 shows that RB suffers the over-balancing issue (with
Wass being very close to 0), and hence εF does not get well minimized. As a result,

√
εPEHE converges to the value

around 1.0 after 25 iterations. In contrast, DRRB and DRRB-OB can achieve smaller εF with the iteration increasing,
thereby leading to smaller

√
εPEHE with the value around 0.4. Additionally, it should be noticed that the optimization of

DRRB-OB is more steady than that of DRRB.

Figure 5: Loss outputs for the first 100 iterations of RB, DRRB, and DRRB-OB.

Comparisons between fake and real data We plot distribution histograms for comparing the generated (fake) data and
the original (real) data in Figure 6. This illustrates that using the strategy in Athey et al. (2021) to generate monte carlo
simulations is reasonable since the generated data are similarly distributed to the original data.

Implementation details We set 5/3/3/3 fully connected layers with 100/100/100/100 units for the network Φ/π/f0/f1 on
benchmark experiments, and set 4/3/3/3 fully connected layers with 200/100/200/200 units for the network Φ/π/f0/f1 on
Credit experiments. All experiments adopt the activation function as ELU (Clevert et al., 2015). For IHDP/Twins/Credit
experiments, the (batch size, epoch) are set to be (100, 600)/(1000, 300)/(200, 200), and (λ1, λ2) are set to be
(0.1, 1)/(0.01, 1)/(0.1, 30). Note that λ2 is chosen according to the doubly robust loss on the validation set within the
first 10 iterations, and it can also be determined adaptively, i.e., updated in each iteration. The optimizer is chosen as
Adam (Kingma and Ba, 2014), and the learning rates for the three optimization steps are set to be 1e−3/1e−3/1e−3,
1e−3/1e−4/1e−3, 1e−3/1e−4/1e−3 for IHDP, Twins, Credit experiments, respectively. All methods are selected by the
searching rule and early stopping rule stated in Shalit et al. (2017), and the hyperparameters of baseline models are consis-
tent with their papers or public codes.
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Table 4: Performance comparisons with mean± standard error on benchmark datasets IHDP and Twins.
√
εPEHE : Lower

is better. εATE : Lower is better. AUC: Higher is better.

Method

IHDP

Wthin-sample Out-of-sample√
εPEHE εATE

√
εPEHE εATE

OLS/LR1 5.8± .3 .73± .04 5.8± .3 .94± .06
OLS/LR2 2.4± .1 .14± .01 2.5± .1 .31± .02

k-NN 2.1± .1 .14± .01 4.1± .2 .79± .05
BART Chipman et al. (2010) 2.1± .1 .23± .01 2.3± .1 .34± .02

RF Breiman (2001) 4.2± .2 .73± .05 6.6± .3 .96± .06
CF Wager and Athey (2018) 3.8± .2 .18± .01 3.8± .2 .40± .03
CEVAE Louizos et al. (2017) 2.7± .1 .34± .01 2.6± .1 .46± .02

SITE Yao et al. (2018) .69± .0 .22± .01 .75± .0 .24± .01
GANITE Yoon et al. (2018) 1.9± .4 .43± .05 2.4± .4 .49± .05
BLR Johansson et al. (2016) 5.8± .3 .72± .04 5.8± .3 .93± .05
BNN Johansson et al. (2016) 2.2± .1 .37± .03 2.1± .1 .42± .03
TARNet Shalit et al. (2017) .88± .0 .26± .01 .95± .0 .28± .01

CFR-WASS Shalit et al. (2017) .71± .0 .25± .01 .76± .0 .27± .01
Dragonnet Shi et al. (2019) .89± .0 .15± .01 .93± .0 .18± .01

DKLITE Zhang et al. (2020) .52± .0 * .65± .0 *
BWCFR-MW Assaad et al. (2021) * * .66± .0 .18± .01
BWCFR-OW Assaad et al. (2021) * * .65± .1 .18± .02

BWCFR-TruncIPW Assaad et al. (2021) * * .63± .0 .19± .01
ABCEI Du et al. (2021) .96± .0 .18± .01 1.1± .0 .20± .01

Dragon-Wass .82± .0 .14± .01 .86± .0 .17± .01
DRRB-OB (Ours) .46 ± .0 .12 ± .01 .49 ± .0 .13 ± .01

Method

Twins

Wthin-sample Out-of-sample
AUC εATE AUC εATE

OLS/LR1 .660± .005 .004± .003 .500± .028 .007± .006
OLS/LR2 .660± .004 .004± .003 .500± .016 .007± .006

k-NN .609± .010 .003 ± .002 .492± .012 .005 ± .004
BART Chipman et al. (2010) .506± .014 .121± .024 .500± .011 .127± .024

RF Breiman (2001) * .005± .003 * .008± .005
CF Wager and Athey (2018) * .029± .004 * .034± .008
CEVAE Louizos et al. (2017) .845± .003 .022± .002 .841± .004 .032± .003

SITE Yao et al. (2018) .862± .002 .016± .001 .853± .006 .020± .002
GANITE Yoon et al. (2018) * .006± .002 * .009± .008
BLR Johansson et al. (2016) .611± .009 .006± .004 .510± .018 .033± .009
BNN Johansson et al. (2016) .690± .008 .006± .003 .676± .008 .020± .007
TARNet Shalit et al. (2017) .849± .002 .011± .002 .840± .006 .015± .002

CFR-WASS Shalit et al. (2017) .850± .002 .011± .002 .842± .005 .028± .003
Dragonnet Shi et al. (2019) .880 ± .000 .005± .005 .874± .001 .008± .005

ABCEI Du et al. (2021) .871± .001 .003 ± .001 .863± .001 .005 ± .001
Dragon-Wass .877± .000 .004± .001 .874± .001 .007± .001

DRRB-OB (Ours) .880 ± .000 .004± .000 .875 ± .001 .008± .001
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Figure 6: The distribution histogram for comparing the generated data and the real data with selected variables. In each
graph, the x-axis represents the variable’s value, and the y-axis represents the probability density. The histogram is plotted
using matplotlib.pyplot.hist(real, fake, density=True).
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