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ABSTRACT

Combinations of neural ODEs with recurrent neural networks (RNN), like GRU-
ODE-Bayes or ODE-RNN are well suited to model irregularly observed time
series. While those models outperform existing discrete-time approaches, no the-
oretical guarantees for their predictive capabilities are available. Assuming that
the irregularly-sampled time series data originates from a continuous stochastic
process, the L2-optimal online prediction is the conditional expectation given the
currently available information. We introduce the Neural Jump ODE (NJ-ODE)
that provides a data-driven approach to learn, continuously in time, the conditional
expectation of a stochastic process. Our approach models the conditional expec-
tation between two observations with a neural ODE and jumps whenever a new
observation is made. We define a novel training framework, which allows us to
prove theoretical guarantees for the first time. In particular, we show that the output
of our model converges to the L2-optimal prediction. This can be interpreted as
solution to a special filtering problem. We provide experiments showing that the
theoretical results also hold empirically. Moreover, we experimentally show that
our model outperforms the baselines in more complex learning tasks and give
comparisons on real-world datasets.

1 INTRODUCTION

Stochastic processes are widely used in many fields to model time series that exhibit a random
behaviour. In this work, we focus on processes that can be expressed as solutions of stochastic
differential equations (SDE) of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt ,

with certain assumptions on the drift µ and the diffusion σ. With respect to the L2-norm, the best
prediction of a future value of the process is provided by the conditional expectation given the
current value. If the drift and diffusion are known or a good estimation is available, the conditional
expectation can be approximated by a Monte Carlo (MC) simulation. However, since µ and σ are
usually unknown, this approach strongly depends on the assumptions made on their parametric form.
A more flexible approach is given by neural SDEs, where the drift µ and diffusion σ are modelled
by neural networks (Tzen & Raginsky, 2019; Li et al., 2020; Jia & Benson, 2019). Nevertheless,
modelling the diffusion can be avoided if one is only interested in forecasting the behaviour instead
of sampling new paths.

An alternative widely used approach is to use Recurrent Neural Networks (RNN), where a neural
network dynamically updates a latent variable with the observations of a discrete input time-series.
RNNs are successfully applied to tasks for which time-series are regularly sampled, as for example
speech or text recognition. However, often observations are irregularly observed in time. The
standard approach of dividing the time-line into equally-sized intervals and imputing or aggregating
observations might lead to a significant loss of information (Rubanova et al., 2019). Frameworks that
overcome this issue are the GRU-ODE-Bayes (Brouwer et al., 2019) and the ODE-RNN (Rubanova
et al., 2019), which combine a RNN with a neural ODE (Chen et al., 2018). In standard RNNs, the
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hidden state is updated at each observation and constant in between. Conversely, in the GRU-ODE-
Bayes and ODE-RNN framework, a neural ODE is trained to model the continuous evolution of the
hidden state of the RNN between two observations. While GRU-ODE-Bayes and ODE-RNN both
provide convincing empirical results, they lack thorough theoretical guarantees.

Contribution. In this paper, we introduce a mathematical framework to precisely describe the
problem statement of online prediction and filtering of a stochastic process with temporal irregular
observations. Based on this rigorous mathematical description, we introduce the Neural Jump ODE
(NJ-ODE). The model architecture is very similar to the one of GRU-ODE-Bayes and ODE-RNN,
however we introduce a novel training framework, which in contrast to them allows us to prove
convergence guarantees for the first time. Moreover, we demonstrate empirically the capabilities of
our model.

Precise problem formulation. We emphasize that a precise definition of all ingredients is needed,
to be able to show theoretical convergence guarantees, which is the main purpose of this work. Since
the objects of interest are stochastic processes, we use tools from probability theory and stochastic
calculus. To make the paper more readable and comprehensible also for readers without background
in these fields, the precise formulations and demonstrations of all claims are given in the appendix,
while the main part of the paper focuses on giving well understandable heuristics.

2 PROBLEM STATEMENT

The problem we consider in this work, is the online forecasting of temporal data. We assume that we
make observations of a Markovian stochastic process described by the stochastic differential equation
(SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt , (1)

at irregularly-sampled time points. Between those observation times, we want to predict the stochastic
process, based only on the observations that we made previously in time, excluding the possibility
to interpolate observations. Due to the Markov property, only the last observation is needed for an
optimal prediction. Hence, after each observation we extrapolate the current observation into the
future until we make the next observation. The time at which the next observation will be made is
random and assumed to be independent of the stochastic process itself.

More precisely, we suppose to have a training set of N independent realisations of the RdX -
dimensional stochastic process X defined in (1). Each realisation j is observed at nj random
observation times t(j)1 , . . . , t

(j)
nj ∈ [0, T ] with values x(j)

1 , . . . , x
(j)
nj ∈ RdX . We assume that all

coordinates of the vector x(j)
i are observed. We are interested in forecasting how a new independent

realization evolves in time, such that our predictions of X minimize the expected squared distance
(L2-metric) to the true unknown path. The optimal prediction, i.e. the L2-minimizer, is the con-
ditional expectation. Given that the value of the new realization at time t is xt, we are therefore
interested in estimating the function

f(xt, t, s) := E[Xt+s|Xt = xt], s ≥ 0, (2)

which is the L2-optimal prediction until the next observation is made. To learn an approximation
f̂ of f we make use of the N realisations of the training set. After training, f̂ is applied to the new
realization. Hence, this can be interpreted as a special type of filtering problem. The following
example illustrates the considered problem.

Example. A complicated to measure vital parameter of patients in a hospital is measured multiple
times during the first 48 hours of their stay. For each patient, this happens at different times de-
pending on the resources, hence the observation dates are irregular and exhibit some randomness.
Patient 1 has n1 = 4 measurements at hours (t

(1)
1 , t

(1)
2 , t

(1)
3 , t

(1)
4 ) = (1, 14, 27, 34) where the values

(x
(1)
1 , x

(1)
2 , x

(1)
3 , x

(1)
4 ) = (0.74, 0.65, 0.78, 0.81) are measured. Patient 2 only has n2 = 2 measure-

ments at hours (t
(2)
1 , t

(2)
2 ) = (3, 28) where the values (x

(2)
1 , x

(2)
2 ) = (0.56, 0.63) are measured.

Similarly, the j-th patient has nj measurements at times (t
(j)
1 , . . . , t

(j)
nj ) and has the measured values

(x
(j)
1 , . . . , x

(j)
nj ). Based on this data, we want to forecast the vital parameter of new patients coming to

the hospital. In particular, for a patient with measured values x1 at time t1, we want to predict what
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his values will likely be at any time t1 + s > t1. Importantly, we do not only focus on predicting the
value at some t2 > t1, but we want to know the entire evolution of the value.

3 BACKGROUND

Recurrent Neural Network. The input to a RNN is a discrete time series of observations
{x1, · · · , xn}. At each observation time ti+1, a neural network, the RNNCell, updates the latent
variable h using the previous latent variable hi and the input xi+1 as

hi+1 := RNNCell(hi, xi+1).

Neural Ordinary Differential Equation. Neural ODEs (Chen et al., 2018) are a family of
continuous-time models defining a latent variable ht := h(t) to be the solution to an ODE initial-value
problem

ht := h0 +

∫ t

t0

f(hs, s, θ)ds, t ≥ t0, (3)

where f(·, ·, θ) = fθ is a neural network with weights θ. Therefore, the latent variables can be updated
continuously by solving this ODE (3). We can emphasize the dependence of ht on a numerical ODE
solver by rewriting (3) as

ht := ODESolve(fθ, h0, (t0, t)) . (4)

ODE-RNN. ODE-RNN (Rubanova et al., 2019) is a mixture of a RNN and a neural ODE. In contrast
to a standard RNN, we are not only interested in an output at the observation times ti, but also in
between those times. In particular, we want to have an output stream that is generated continuously in
time. This is achieved by using a neural ODE to model the latent dynamics between two observation
times, i.e. for ti−1 < t < ti the latent variable is defined as in (3) and (4), with h0 and t0 replaced by
hi−1 and ti−1. At the next observation time ti, the latent variable is updated by a RNN with the new
observation xi. Fixing h0, the entire latent process can be computed by iteratively solving an ODE
followed by applying a RNN. Rubanova et al. (2019) write this as{

h′i := ODESolve(fθ, hi−1, (ti−1, ti))
hi := RNNCell(h′i, xi) .

(5)

GRU-ODE-Bayes. The model architecture describing the latent variable in GRU-ODE-Bayes
(Brouwer et al., 2019) is defined as a special case of the ODE-RNN architecture. In particular, a
gated recurrent unit (GRU) is used for the RNN-cell and a continuous version of the GRU for the
neural ODE fθ. Therefore, we focus on explaining the difference between our model architecture
and the ODE-RNN architecture, in the following section.

4 PROPOSED METHOD – NEURAL JUMP ODE

Markovian paths. Our assumptions on the stochastic process X imply that it is a Markov process.
In particular, the optimal prediction of a future state of X only depends on the current state rather
than on the full history. Hence, the previous values do not provide any additional useful information
for the prediction.

JumpNN instead of RNN. Using a neural ODE between two observation has the advantage that it
allows to continuously model the hidden state between two observations. But since the underlying
process is Markov, there is no need to use a RNN-cell to model the updates of the hidden state at each
new observation. Instead, whenever a new observation is made, the new hidden state can solely be
defined from this observation. Therefore, we replace the RNN-cell used in ODE-RNN by a standard
neural network mapping the observation to the hidden state. We call this the jumpNN which can be
interpreted as an encoder map. Compared to ODE-RNN, this architecture is easier to train.

Last observation and time increment as additional inputs for the neural ODE. The neural net-
work fθ used in the neural ODE takes two arguments as inputs, the hidden state ht and the current
time t. However, our theoretical problem analysis suggests, that instead of t the last observation time
ti−1 and the time increment t− ti−1 should be used. Additionally the last observation xi−1 should
also be part of the input.
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NJ-ODE. Combining the ODE-RNN architecture (5) with the previous considerations, we introduce
the modified architecture of Neural Jump ODE (NJ-ODE){

h′i := ODESolve(fθ, (hi−1, xi−1, ti−1, t− ti−1), (ti−1, ti))
hi := jumpNN(xi) .

(6)

An implementable version of this method is presented in the Algorithm 1. A neural ODE fθ transforms
the hidden state between observations, and the hidden state jumps according to jumpNN when a new
observation is available. The outputNN, a standard neural network, maps any hidden state ht to the
output yt. To implement the continuous-in-time ODE evaluation, a discretization scheme is provided
by the inner loop. In the training process, the weights of all three neural networks, jumpNN, the
neural ODE fθ and outputNN are optimized.

Algorithm 1 The NJ-ODE. A small step size ∆t is fixed and we denote tn+1 := T .
Input: Data points with timestamps {(xi, ti)}i=0...n,
for i = 0 to n do
hti = jumpNN(xi) . Update hidden state given next observation xi
yti = outputNN(hti) . compute output
s← ti
while s+ ∆t ≤ ti+1 do
hs+∆t = ODESolve(fθ, hs, xi, ti, s− ti, (s, s+ ∆t)) . get next hidden state
ys+∆t = outputNN(hs+∆t) . compute output
s← s+ ∆t

end while
end for

Objective function. Our goal is to train the NJ-ODE model such that its output approximates the
conditional expectation (2), which is the optimal prediction of the target process X with respect to
the L2-norm. Therefore, we define a new objective function, with which we can prove convergence.
Let yi− denote the output of the NJ-ODE at ti before the jump and yi the output at ti after the jump.
Note that the outputs depend on parameters θ and the previously observed xi which are inputs to the
model. Then the objective function is defined as

Φ̂N (θ) :=
1

N

N∑
j=1︸ ︷︷ ︸

paths

1

nj

nj∑
i=1︸ ︷︷ ︸

dates

(
|x(j)
i − y

(j)
i |︸ ︷︷ ︸

jump part
at observations

+ |y(j)
i − y

(j)
i− |︸ ︷︷ ︸

continuous part
between two observations

)2
. (7)

We give an intuitive explanation for this definition. The “jump part” of the loss function forces the
jumpNN to produce good updates based on new observations, while the other part forces the jump
size to be small in (the empirical) L2-norm. Since the conditional expectation minimizes the jump
size with respect to the L2-norm, this forces the neural ODE fθ to continuously transform the hidden
state such that the output approximates the conditional expectation. Moreover, both parts of the loss
function force the outputNN to reasonably transform the hidden state ht to the output yt.

5 MAIN RESULT – THEORETICAL CONVERGENCE GUARANTEE

In the following we informally state our main result. To formally state and prove the theorem, precise
definitions of all ingredients are needed. This analysis is provided in the appendix where the following
results is stated in Theorem E.2 and Theorem E.13.
Theorem 5.1 (informal). We assume that for each number of paths N and for every size of the neural
networks M , their weights are chosen optimally, as to minimize Φ̂N (θ). Then, if N and M tend to
infinity, the output of NJ-ODE converges in mean (L1-convergence) to the conditional exception of
the stochastic process X given the current information.

An intuitive explanation for this theorem was given with the definition of the objective function. In
this result, the focus lies on the convergence analysis under the assumption that optimal weights are
found. In the Appendix we discuss why this assumption is not restrictive.
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6 EXPERIMENTS

For further details and results for all experiments see Appendix F.

6.1 TRAINING ON SYNTHETIC DATASETS

Evaluation metric. For synthetic datasets where an analytic formula for the conditional expectation
exists, we can evaluate the distance of the model output to the target process (2). We use a sampling
time grid with equidistant step size ∆t := T

K , K ∈ N, on [0, T ]. On this grid, we compare for path j
at time t, the true conditional expectation x̂(j)

t with the predicted conditional expectation (the model
output) y(j)

t . For N2 test samples, the evaluation metric is defined as

eval(x̂, y) :=
1

N2

N2∑
j=1

1

K + 1

K∑
i=0

(
x̂

(j)
i∆t
− y(j)

i∆t

)2

. (8)

Black-Scholes, Ornstein-Uhlenbeck and Heston. We test our algorithm on three scalar stochastic
models, Black-Scholes, Ornstein-Uhlenbeck and Heston, with fixed parameters. For each model, we
generate a dataset by sampling N = 20′000 paths on the time interval [0, 1] using the Euler-scheme
with 100 time steps. Independently for each path, on average 10% of the grid points are randomly
chosen as observation times. The NJ-ODE is trained on 80% of the data. On the remaining 20% the
model is tested, by comparing the loss function (31) computed with the NJ-ODE to the loss function
computed with the true conditional expectation (Figure 2). During training, the relative difference
becomes very small, hence the true conditional expectation is nearly replicated.
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Figure 1: Predicted and true conditional expecta-
tion on a test sample of the Heston dataset.
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Figure 2: The relative difference between the loss
function computed with the predicted conditional
expectation and the loss function computed with
the true conditional expectation is shown with
respect to the number of epochs.

6.2 FURTHER SYNTHETIC DATASETS

Heston model without Feller condition. We also train our model on a Heston dataset for which the
Feller condition is not satisfied. As explained by Andersen (2007); Jean-François et al. (2015) this
is a more delicate situation. We see that our model is very robust, since even in this critical case it
learns to replicate the true conditional expectation process. In the Heston model, the variance of the
stochastic process Xt is a stochastic process, vt. Here, we train our model to predict both processes
at the same time. The training on this 2-dimensional dataset is successful as can be seen in Figure 3.
The minimal evaluation metric after 200 epochs is 0.0983.

Dataset with changing regime. In this experiment we test how well our model can deal with
stochastic processes, that undergo an (abrupt) change of regime at a certain point in time. Many real
world time series might exhibit such a change of regime. Some examples are listed below.

• Longitudinal patient health recordings might experience changes depending on seasonal or longer-
term influences, as for example due to the seasonal flue or currently the Covid-19 pandemic.

• In many regions climate data has strong seasonal dependencies, that can lead to relatively abrupt
changes as for example when the weather changes from dry to rain season.
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Figure 3: Heston model without Feller condition. In both plots, the upper sub-plot corresponds to the
1-dimensional path of Xt and the lower sub-plot corresponds to the 1-dimensional path of vt.

• A stock market that suddenly changes from a bullish to a bearish market, for example due to a
macro-economic event. An example for this would be the start of the Covid-19 crisis in the first
quarter of 2020.

We test a change of regime by combining two synthetic datasets. On the first half of the time interval
[0, 0.5] we use the Ornstein-Uhlenbeck and on the second half [0.5, 1] the Black-Scholes model. In
Figure 4 we see that our model correctly learns the change of regime. The minimal evaluation metric
after 200 epochs is 0.0463.
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Figure 4: Our model evaluated o a stochastic dataset that follows an Ornstein-Uhlenbeck SDE on the
time interval [0, 0.5] and an Black-Scholes model on the time interval (0.5, 1]. We see that our model
correctly learns the change of regime.

Dataset with explicit time dependence. Many real world datasets, have an explicit time dependence,
i.e. the drift and diffusion of (9) explicitly depend on t. Examples are all datasets that have a certain
periodicity, as for example weather data (seasonal and daily periodicity), intraday periodicity of
stock prices (Andersen & Bollerslev, 1997) or prices of certain seasonal goods. We incorporate an
explicit time dependence into the Black-Scholes dataset, by replacing the drift constant µ with the
time dependent constant α2 (sin(βt) + 1), for α, β > 0. In Figure 5 we see that the model learns to
adapt to the time-dependent coefficients. The minimal evaluation metric after 100 epochs is 0.0215
(β = 2π) and 0.02805 (β = 4π) respectively.

6.3 EMPIRICAL CONVERGENCE STUDY

We confirm the theoretical results of Theorem 5.1 by an empirical convergence study for growing
numbers of training samples N1 and network size M , where the performance is measured by the
evaluation metric (8). For each combination of the number of training samples N1 and the neural
network size M , the NJ-ODE is trained 5 times on the Black-Scholes, Ornstein-Uhlenbeck and
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Figure 5: NJ-ODE evaluated on the time-dependent Black-Scholes dataset with β = 2π (left) and
β = 4π (right).

Figure 6: Black-Scholes dataset. Mean ± standard deviation (black bars) of the evaluation metric for
varying training samples N1 and network size M .

Heston datasets. The means of the evaluation metric over the 5 trials with their standard deviations
are shown in Figure 6 for Black-Scholes. Already 200 training samples lead to a small evaluation
metric if the network size is big enough, suggesting that the Monte Carlo approximation of the loss
function is good, already with a few samples.

6.4 COMPARISON TO GRU-ODE-BAYES ON SYNTHETIC DATA

On the Black-Scholes, Ornstein-Uhlenbeck and Heston datasets, we compare our model to GRU-
ODE-Bayes (Brouwer et al., 2019), which is, to the best of our knowledge, the neural network based
method with the most similar task to ours. Results of our comparison are shown in Table 6.4. On the
Black-Scholes and Ornstein-Uhlenbeck dataset, our model performs similarly to GRU-ODE-Bayes.
However, on the more complicated Heston dataset, the training of GRU-ODE-Bayes is unstable and
does not converge. On the other hand, our model converges during training. Although the value of
the evaluation metric is much higher than for Black-Scholes and Ornstein-Uhlebeck, the resulting
model output is still meaningful, which is not the case for GRU-ODE-Bayes. Hence we conclude,
that GRU-ODE-Bayes cannot be applied reasonably for the Heston dataset, while our method works
as the theoretical results suggest.

6.5 REAL WORLD DATASETS WITH INCOMPLETE OBSERVATIONS

Self-imputation for incomplete observations. Until now we assumed that at each observation time
all coordinates of the stochastic process X are observed. However, in many real world applications,
the observations are incomplete, i.e. only for some of the coordinates an observation is available. To
deal with such incomplete observations, we propose the following self-imputation method. Whenever
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Table 1: The minimal, last and average value of the evaluation metric throughout the 100 epochs
of training are shown for GRU-ODE-Bayes and our method, together with the number of trainable
parameters.

Black-Scholes Ornstein-Uhlenbeck Heston
GRU ours GRU ours GRU ours

min 7 · 10−4 7 · 10−4 3 · 10−5 5 · 10−4 4.24 1.33
last 3 · 10−3 8 · 10−3 1 · 10−4 6 · 10−4 30.9 1.35
average 3 · 10−3 1 · 10−2 7 · 10−4 8 · 10−4 56.2 1.65
params 112′602 10′071 112′602 10′071 112′602 10′071

an observation xi ∈ RdX is made the mask mi ∈ {0, 1}dX tells whether the k-th coordinate of the
vector xi is observed (mk

i = 1) or not (mk
i = 0). Then we use the prediction yi− of our model to

generate the imputed observation vector

x̃i := mt � xi + (1dX −mi)� yi−,

where � is the element-wise multiplication (Hadamar product) and 1dX ∈ RdX is the one-vector.
Instead of xi we use (x̃i,mi) as an input for the jump part jumpNN. The intuition behind this
definition is the following. In the one dimensional case, if we do not make an observation, but input
yt− as if it was an observation, we expect that this does not change the output ys for s ≥ t. From
this point of view, yt− does not provide any additional information for the model. Similarly, we
expect that imputing yt− for unobserved coordinates does not provide any information about this
coordinate to the model. However, since the model might learn to transfer the information about
an observed coordinate to an unobserved one, we extend the input to also include the information
which coordinates were observed. For the ODE part we use yi, the prediction after processing the
input (x̃i,mi), as input instead of xi. Here, the intuition is that if the model learns how to best use
the incomplete observation, i.e. if the jump is good, then this is the best approximation for xi. Our
objective function is adjusted by multiplying each term in the sum with the mask.

Climate forecast. We compare our model to GRU-ODE-Bayes on the USHCN daily dataset (Menne
et al., 2016), using the same experimental setting as was used by Brouwer et al. (2019). We train a
small (S) and a large (L) version of NJ-ODE with different total number of parameters. The validation
set was used for early stopping after the first 100 epochs, where we trained for a total of 200 epochs.
We see in Table 6.5 that our small version performs slightly worse than GRU-ODE-Bayes while our
large version slightly outperforms it.

Table 2: Mean and standard deviation of MSE on the test sets of USHCN. Result of baselines were
reported by Brouwer et al. (2019). Where known, the number of trainable parameters is reported.

USHCN – MSE # params
neural ODE-VAE 0.96± 0.11 -
neural ODE-VAE-MASK 0.83± 0.10 -
sequential VAE 0.83± 0.07 -
GRU-SIMPLE 0.75± 0.12 -
GRU-D 0.53± 0.06 -
T-LSTM 0.59± 0.11 -
GRU-ODE-Bayes 0.43± 0.07 42′640
NJ-ODE (S) 0.45± 0.06 10′925
NJ-ODE (L) 0.40 ± 0.07 571′305

Physionet. We compare our model to the latent ODE on their extrapolation task on the PhysioNet
Challenge 2012 dataset (Goldberger et al., 2000), using the same experimental setting as was used by
Rubanova et al. (2019). The mean and standard deviation over 5 runs starting at different random
initializations is reported for our model. We see in Table 6.5 that our model outperforms the latent
ODE models although having only about a seventh of the trainable weights.
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Table 3: Mean and standard deviation of MSE on the test set of physionet. Result of baselines were
reported by Rubanova et al. (2019). Where known, the number of trainable parameters is reported.

Physionet – MSE (×10−3) # params
RNN-VAE 3.055± 0.145 -
Latent ODE (RNN enc.) 3.162± 0.052 -
Latent ODE (ODE enc) 2.231± 0.029 163′972
Latent ODE + Poisson 2.208± 0.050 181′723
NJ-ODE 1.945 ± 0.007 24′423

7 RELATED WORK

Stochastic filtering theory. Our main theorem is similar to the theoretical results of neural filtering
(Lo, 2009), which is a neural network approach to stochastic filtering theory in discrete time. In
stochastic filtering, potentially incomplete and noisy observations of X are available continuously
in time. This observation process Y is usually described by the dynamics dYt = h(Xt)dt + dBt,
where h is a measurable function and B is a Brownian motion. Stochastic filtering then estimates the
conditional law of Xt given the noisy observations (Ys)0≤s≤t (Bain & Crisan, 2008, Def. 3.2) and
therefore can provide conditional expectations. Comparably, we directly compute the conditional
expectation given the last observation. Similar to our assumptions, in the neural filtering approach of
GRU-ODE-Bayes (Brouwer et al., 2019) and (Ryder et al., 2018) observations are only available at
irregular discrete time points. They approximate the conditional law of X given the last observation
by a Gaussian distribution and learn its mean and variance parameters. In particular, the conditional
expectation is then given by this mean parameter. In contrast, we do not make normality assumptions
about the conditional distribution and we theoretically prove convergence to the true conditional
expectation.

Neural ODEs with jumps. Except for GRU-ODE-Bayes (Brouwer et al., 2019) and ODE-RNN
(Rubanova et al., 2019) another work studying a neural ODE with jumps is Neural Jump SDE
(NJSDE) (Jia & Benson, 2019). Similar to the NJ-ODE framework (29), the latent process of NJSDE
is described by a neural ODE with jumps at random times. This model is used to describe hybrid
systems which evolve continuously in time but may also be interrupted by stochastic events. In
contrast to that, we model the conditional expectation of a continuous stochastic process.

8 CONCLUSION

We presented the Neural Jump ODE, a data-driven framework for modelling the conditional expecta-
tion of a stochastic process given the previous observations. We introduced a rigorous mathematical
description of our model and more generally for the class of neural ODE based models. Moreover,
for the first time we provided theoretical guarantees for a model falling in this category. We evaluated
our model empirically on six synthetic and two real world datasets. In comparison to the baselines
GRU-ODE-Bayes and latent ODE, we achieved better results especially on complex datasets.
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APPENDIX

A SETUP

A.1 STOCHASTIC PROCESS X

In this section we rigorously describe the process X and give the assumptions which are needed in
order to derive the convergence results. Let dX , dW ∈ N and T > 0 be the fixed time horizon. Con-
sider a filtered probability space (Ω,F ,F := {Ft}0≤t≤T ,P), on which an adapted dW -dimensional
Brownian motion {Wt}t∈[0,T ] is defined. We define the stochastic process1 X := (Xt)t∈[0,T ] as the
solution of the stochastic differential equation (SDE)

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt , (9)

for all 0 ≤ t ≤ T , where X0 = x ∈ RdX is the starting point and the measurable functions
µ : [0, T ] × RdX → RdX and σ : [0, T ] × RdX → RdX×dW are the drift and the diffusion
respectively. We impose the following assumptions:

• X is continuous and square integrable, i.e. for P-a.e. ω ∈ Ω the map t 7→ Xt(ω) is
continuous and E[X2

t ] <∞ for every t ∈ [0, T ].

• µ and σ are both globally Lipschitz continuous in their second component, i.e. for
ϕ ∈ {µ, σ} there exists a constant M̃ > 0 such that for all t ∈ [0, T ]

|ϕ(t, x)− ϕ(t, y)|2 ≤ M̃ |x− y|2 and |ϕ(t, x)|2 ≤ (1 + |x|2)M̃. (10)

In particular, their growth is at most linear in the second component.

• µ is bounded and continuous in its first component (t) uniformly in its second compo-
nent (x), i.e. for every t ∈ [0, T ] and ε > 0 there exists a δ > 0 such that for all s ∈ [0, T ]
with |t− s| < δ and all x ∈ RdX we have |µ(t, x)− µ(s, x)| < ε.

• σ is càdlàg (right-continuous with existing left-limit) in the first component and L2

integrable with respect to W , σ ∈ L2(W ), i.e.

E

 dX∑
i=1

dW∑
j=1

∫ T

0

sup
x
σi,j(x, t)

2d[W j ,W j ]t

 =

∫ T

0

|sup
x
σ(x, t)|2F dt <∞, (11)

where |·|F denotes the Frobenius matrix norm. This is in particular implied if σ is bounded.

A.2 RANDOM OBSERVATION DATES

In this section we describe how we model the observation dates. We want to treat irregularly observed
time-series, i.e. without a fixed number of observations and not necessarily equally distributed.
Therefore, we suppose that we have a possibly random number of n observations and that those
observations are made at random times t1, . . . , tn. For simplicity we make the assumption that
the observation dates are independent of the stochastic process itself. In future work, this will be
generalized to observation dates correlated with X , that could be modelled by a point process on the
same probability space. In contrast, here we hard-code the independence assumption by considering a
second probability space (Ω̃, F̃ , P̃), on which the random observation times of the stochastic process
X are defined. More precisely, we assume that:

• n : Ω̃→ N≥0 is a random variable with EP̃[n] <∞, the random number of observations,

• ti : Ω̃→ [0, T ] for 0 ≤ i ≤ n are sorted 2 random variables, the random observation times.

We denote the joint pushforward measure of n and {ti}0≤i≤n as P̃t := (n, t0, . . . , tn)#P̃. The
random variable n can but does not have to be unbounded. If it is bounded, we define K :=

1A stochastic process is a collection of random variables Xt : Ω→ RdX , ω 7→ Xt(ω) for 0 ≤ t ≤ T .
2For all ω̃ ∈ Ω̃, 0 = t0 < t1(ω̃) < · · · < tn(ω̃)(ω̃) ≤ T .

12
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max
{
k ∈ N | P̃(n ≥ k) > 0

}
to be the maximal value of n, which otherwise is infinity. We use the

notation B([0, T ]) for the Borel σ-algebra of the set [0, T ]. Then we define for each 1 ≤ k ≤ K

λk : B([0, T ])→ [0, 1], B 7→ λk(B) := P̃(n≥k,(tk−)∈B)

P̃(n≥k)
,

which is a probability measure on the time interval as shown in the lemma below. Here, (tk−)
means the left-point of tk, for example, if t0 = 0, t1 = 1 we have t0 ∈ [0, 1), t1 /∈ [0, 1) but
t0− /∈ [0, 1), t1− ∈ [0, 1).
Lemma A.1. For 1 ≤ k < K + 1 the map λk defines a probability measure.

Proof. First we see that λk([0, T ]) = 1 since tk maps to [0, T ]. Furthermore, for any disjoint sets
Bi ∈ B([0, T ]), i ∈ N, we have {n ≥ k, tk− ∈ ∪̇i≥1Bi} = ∪̇i≥1{n ≥ k, tk− ∈ Bi} and these sets
are F̃-measurable, since they are defined through pre-images of random variables. Therefore, the
additivity of P̃ implies that λk (∪̇i≥1Bi) =

∑
i≥1 λk (Bi).

Moreover, we define τ as the time of the last observation before a certain time t,

τ : [0, T ]× Ω̃→ [0, T ], (t, ω̃) 7→ τ(t, ω̃) := max{ti(ω̃)|0 ≤ i ≤ n(ω̃), ti(ω̃) ≤ t}.

Example A.2. We give two examples how the random observation dates could be defined.

• Let (Nt)t∈[0,T ] be a homogeneous Poisson point process with rate r > 0. Hence, N(0) = 0,
t 7→ N(t) is constant except for jumps of size 1 at discrete random times and for any fixed
t ∈ [0, T ], N(t) is Poisson distributed, i.e.

P̃[N(t) = k] = (rt)k

k! e−rt for k ∈ N.

Then the number of observations is defined as n := N(T ) and satisfies EP̃[n] = rT . The
observation dates t1, . . . , tn are defined as the discontinuity times of N , i.e. the times where
N increases by 1. In particular, for 0 ≤ k ≤ n, tk := inf{t|N(t) = k} ≤ T . Therefore, for
0 ≤ a ≤ b ≤ T we can rewrite

λk((a, b)) = P̃(N(a)<k,N(b)≥k)

P̃(N(T )≥k)
.

• We define n by one of the following options:

– as a constant in N>0.
– as a Binomial random variable, n ∼ Binom(p, nmax), for p ∈ (0, 1), nmax ∈ N>0.
– as a Geometric random variable, n ∼ Geom(p), for p ∈ (0, 1).
– as a Poisson random variable, n ∼ Poi(r), for r > 0.

and t1, . . . , tn are defined by choosing n uniform random variables on [0, T ] and sorting
them.

A.3 INFORMATION σ-ALGEBRA

In this section, we define a mathematical tool, the σ-algebra, that is essential to the description of the
conditional expectation. This object describes which information is available at a certain time t. In
the following, we leave away ω̃ ∈ Ω̃ whenever the meaning is clear. We define the filtration of the
currently available information A := (At)t∈[0,T ] by

At := σ(Xti |ti ≤ t),

where ti are the observation times and σ(·) denotes the generated σ-algebra. By the definition of
τ we have At = Aτ(t) for all t ∈ [0, T ]. (Ω × Ω̃,F ⊗ F̃ ,F ⊗ F̃ ,P × P̃) is the filtered product
probability space which, intuitively speaking, combines the randomness of the stochastic process
with the randomness of the observations. Here, F ⊗ F̃ consists of the tensor-product σ-algebras
(F ⊗ F̃)t := Ft ⊗ F̃ for t ∈ [0, T ]. As explained in the remark below, At can be identified with a
sub-σ-algebra of (F ⊗ F̃)t.

13
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Remark A.3. The σ-fields At depend on ω̃ ∈ Ω̃ as well. If we look at the product probability
space (Ω × Ω̃,F ⊗ F̃ ,F ⊗ F̃ ,P × P̃), where F ⊗ F̃ consists of the tensor-product σ-algebras
(F ⊗ F̃)t := Ft ⊗ F̃ for t ∈ [0, T ], then

σ(Xti |ti ≤ t)

:= σ
({{

(ω, ω̃) ∈ Ω× Ω̃
∣∣Xti(ω̃)(ω) ∈ A,n(ω̃) ≥ i, ti(ω̃) ≤ t

} ∣∣∣A ∈ B(RdX ), i ∈ N
})

is a well defined sub-σ-algebra of (F ⊗F̃)t. Furthermore, we can recover the ω̃-wise defined version
of At by intersecting each set in it with Ω× {ω̃} and subsequently projecting the intersection on its
first component. We use the notation Ãt := Ãt(ω̃) = σ(Xti(ω̃)|ti(ω̃) ≤ t) to distinguish this ω̃-wise
definition from the definition as sub-σ-algebra of the product space given above. However, Lemma
B.3 implies that for our considerations, both versions of this σ-algebra have the same effect, therefore
we will simply write At for both versions, by abuse of notation.

B OPTIMAL APPROXIMATION X̂ OF THE STOCHASTIC PROCESS X

We are interested in the “best” approximation (or prediction) X̂t of the process X that one can
make at any time t ∈ [0, T ], given the currently available information At. For us “best” refers to
the L2(Ω× Ω̃,F⊗ F̃ ,P× P̃)-minimizer, therefore, this approximation is given by the conditional
expectation. Indeed, if we define ∆ := {(t, r) ∈ [0, T ]2|t+ r ≤ T}, and the function

µ̃ : ∆× RdX → RdX , ((t, r), ξ) 7→ E [µ(t+ r,Xt+r)|Xt = ξ] ,

this is proven in the following proposition.

Proposition B.1. The optimal (i.e. L2-norm minimizing) A-adapted process in L2(Ω×Ω̃,F⊗F̃ ,P×
P̃) approximating (Xt)t∈[0,T ] is given by3 X̂ := (X̂t)t∈[0,T ] with X̂t := EP×P̃[Xt|At]. Moreover,
this process is unique up to (P× P̃)-null-sets. In addition we have (ω̃-wise for ω̃ ∈ Ω̃) that

X̂t = Xτ(t) +

∫ t

τ(t)

µ̃
(
τ(t), s− τ(t), Xτ(t)

)
ds, (12)

implying that X̂ is càdlàg.

The first part of the result follows from the elementary Proposition below (which is proven for
example in (Durrett, 2010, Thm. 5.1.8) for R-valued random variables and can easily be extended to
Rd-valued random variables when using the 2-norm).

Proposition B.2. Given a probability space (Ω,F ,P) and a sub-σ-algebra A ⊂ F , the orthogonal
projection of X ∈ L2(Ω,F ,P) on L2(Ω,A,P) is given by X̂ := E[X|A]. In particular, for every
Z ∈ L2(Ω,A,P) with P(Z 6= X̂) > 0 we have

E[|X − Z|22] = E[|X − X̂|22] + E[|Z − X̂|22] > E[|X − X̂|22].

Proof Proposition B.1. In our case this means, that the optimal A-adapted process in L2(Ω× Ω̃,F⊗
F̃ ,P× P̃) approximating X is given by (X̂t)t∈[0,T ] with X̂t := EP×P̃[Xt|At]. Here, At is meant as
a sub-σ-algebra of Ft × F̃ . This process is unique up to (P× P̃)-null-sets. Moreover, the following
lemma shows that it coincides ω̃-wise with EP[Xt|Ãt](ω̃), where Ãt = Ãt(ω̃) is defined in Remark
A.3.

Lemma B.3. For P̃-almost-every ω̃ ∈ Ω̃ we have EP×P̃[Xt|At](ω̃) = EP[Xt|Ãt](ω̃) P-almost-
surely.

3While we give a pointwise definition, (Cohen & Elliott, 2015, Theorem 7.6.5) allows to define X̂ directly as
the optional projection. By (Cohen & Elliott, 2015, Remark 7.2.2) this implies that the process X̂ is progressively
measurable, in particular, jointly measurable in t and ω×ω̃. However, as we show below, even from the pointwise
definition, it follows that X̂ is càdlàg, hence optional (Cohen & Elliott, 2015, Theorem 7.2.7).
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Proof. Otherwise we have by Fubini’s theorem, Proposition B.2 and an argument similar to the one
in Lemma E.4

EP×P̃

[∣∣Xt − EP×P̃[Xt|At]
∣∣2
2

]
= EP̃

[
EP

[∣∣Xt − EP×P̃[Xt|At]
∣∣2
2

]]
> EP̃

[
EP

[∣∣∣Xt − EP[Xt|Ãt]
∣∣∣2
2

]]
,

which is a contradiction to Proposition B.2.

This proves the first part of Proposition B.1. The second part of this Proposition, i.e. (12), should be
understood ω̃-wise, for ω̃ ∈ Ω̃. This is justified by Lemma B.3 and derived below. In particular, for
the remainder of this section, all statements are meant ω̃-wise.

With the assumption that µ and σ are Lipschitz, (Protter, 2005, Thm. 7, Chap. V) implies that a
unique solution of (9) exists. Furthermore, this solution is a Markov process as soon as the starting
point x is fixed (Protter, 2005, Thm. 32, Chap. V). Hence, one can define a transition function P
(compare (Protter, 2005, Chap. V.6)) such that for all s < t and φ bounded and measurable,

Ps,t(Xs, φ) := EP[φ(Xt)|σ(Xs)] = EP[φ(Xt)|Fs].

We have that Xτ(s) is Aτ(s)-measurable and therefore, since As = Aτ(s) ⊂ Fτ(s),

Pτ(s),t(Xτ(s), φ) = EP[φ(Xt)|As]. (13)

By our additional assumption on σ it follows from (Protter, 2005, Lem. before Thm. 28, Chap. IV)
that

Mt :=

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T,

is a square integrable martingale, since the Browian motion W is square integrable. In particular, for
0 ≤ s ≤ t ≤ T we have EP[

∫ t
s
σ(r,Xr)dWr|Fs] = EP[Mt −Ms|Fs] = 0. Moreover, the same is

true when conditioning on As 4.

Using the martingale property of M , we have (ω̃-wise) for every t ∈ [0, T ]

X̂t = EP[(Xt −Xτ(t)) +Xτ(t)|Aτ(t)]

= Xτ(t) + EP

[∫ t

τ(t)

µ(r,Xr)dr
∣∣∣Aτ(t)

]
+ EP

[∫ t

τ(t)

σ(r,Xr)dWr

∣∣∣Aτ(t)

]

= Xτ(t) +

∫ t

τ(t)

EP
[
µ(r,Xr)|Aτ(t)

]
dr,

(14)

where we used Fubini’s Theorem (for conditional expectations) in the last step. This is justified
because EP[

∫ T
0
|µ(r,Xr)|2dr] < ∞ follows from µ being bounded. Let us define ∆ := {(t, r) ∈

[0, T ]2|t+ r ≤ T} and the function

µ̃ : ∆× RdX → RdX , ((t, r), ξ) 7→ Pt,t+r(Xt, µ)
∣∣
Xt=ξ

= EP [µ(t+ r,Xt+r)|Xt = ξ] ,

then we can use (13) to rewrite (14) as

X̂t = Xτ(t) +

∫ t

τ(t)

µ̃
(
τ(t), s− τ(t), Xτ(t)

)
ds. (15)

This proves the second part of Proposition B.1.

Proposition B.4. The function µ̃ is (jointly) continuous.
4To see this, we choose a localizing sequence (τn)n∈N such that Mτn is bounded by n (works since M is

continuous). Then the Markov property implies that E[Mτn
t −Mτn

s |As] = E[Mτn
t −Mτn

s |Fs] = 0. Since
Mτn
t

n→∞−−−−→Mt P-a.s. and since this sequence is dominated by the integrable random variable 1+supr≤t|Mr|21
(by Doob’s inequality and square integrability ofM ), dominated convergence implies that E[Mt−Ms|As] = 0.
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Proof of Proposition B.4. For any fixed s ∈ [0, T ], x ∈ RdX , we define

ζs,·(x) : [0, T ]× Ω→ RdX , (t, ω) 7→ ζs,t(x)(ω)

to be the solution of the SDE

ζs,t(ξ) = ξ +

∫ t

s

µ(r, ζs,r)dr +

∫ t

s

σ(r, ζs,r)dWr.

This solution exists and is unique by (Protter, 2005, Chap. V, Thm. 7), therefore we have that
Xt = ζ0,t(x) P-almost surely. Furthermore, (Gubinelli, 2016, Thm. 4) implies that for s ≤ t we
have Xt = ζs,t(ζ0,s(x)). Hence, for t = s+ r, we have the identity µ̃(s, r, ξ) = E[µ(t, ζs,t(ξ))].

Furthermore, by (Gubinelli, 2016, Thm. 8) we have for any ξ, ξ′ ∈ RdX and (s, r), (s′, r′) ∈ ∆ with
t := s+ r, t′ := s′ + r′ ∈ [0, T ] that there exists some constant C such that

E
[
|ζs,t(ξ)− ζs′,t′(ξ′)|22

]
≤ C

[
|ξ − ξ′|22 + (1 + |ξ|2 + |ξ′|2)

2
(|t− t′|+ |s− s′|)

]
. (16)

Therefore, we have that

|µ̃(s, r, ξ)− µ̃(s′, r′, ξ′)|2 = |E [µ(t, ζs,t(ξ))]− E [µ(t′, ζs′,t′(ξ
′))]|2

≤ |E [µ(t, ζs,t(ξ))]− E [µ(t′, ζs,t(ξ))]|2
+ |E [µ(t′, ζs,t(ξ))]− E [µ(t′, ζs′,t′(ξ

′))]|2

≤ E
[
|µ(t, ζs,t(ξ))− µ(t′, ζs,t(ξ))|22

]1/2
+ E

[
|µ(t′, ζs,t(ξ))− µ(t′, ζs′,t′(ξ

′))|22
]1/2

≤ E
[
|µ(t, ζs,t(ξ))− µ(t′, ζs,t(ξ))|22

]1/2
+ M̃ E

[
|ζs,t(ξ)− ζs′,t′(ξ′)|22

]1/2
,

(17)

where we used Jensen’s inequality in the second last and (10) in the last step. Hence, for (s′, r′, ξ′)→
(s, r, ξ) we have that the first term of (17) goes to zero due to continuity of µ in its first component
uniformly in the second component. Moreover, the second term of (17) converges to zero by (16).
Together, this proves continuity of µ̃.

C RECALL: RNN, NEURAL ODE AND ODE-RNN - EQUIVALENT WAYS OF
WRITING

We describe our model as the solution of the SDE (29), which is a compact way of writing. In the
following, we first shortly recall recurrent neural networks (RNN) and the neural ODE and then
recall the ODE-RNN. Furthermore, we give a step-by-step explanation, how the way ODE-RNN
was formalized, can equivalently be written in terms of an SDE similar to (29). Finally we give the
alternative way of writing our model and a short comparison to ODE-RNN.

Recurrent Neural Network. The input to a RNN is a discrete time series of observations
{xt1 , · · · , xtn}. At each time ti+1, the latent variable h is updated using the previous latent variable
hti and the input xti+1

as
hti+1

:= RNNCell(hti , xti+1
), (18)

where RNNCell is a neural network.

Neural Ordinary Differential Equation. Neural ODEs (Chen et al., 2018) are a family of
continuous-time models defining a latent variable ht := h(t) to be the solution to an ODE initial-value
problem (IVP):

ht := ht0 +

∫ t

t0

f(hs, s, θ)ds, t ≥ t0, (19)

where f(·, ·, θ) = fθ is a neural network with weights θ. Therefore, the latent variables can be
updated continuously by solving this ODE (19). We can emphasize the dependence of ht on a
numerical ODE solver by rewriting (19) as

ht := ODESolve(fθ, ht0 , (t0, t)) . (20)
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ODE-RNN. ODE-RNN (Rubanova et al., 2019) is a mixture of a RNN and a neural ODE. In contrast
to a standard RNN, we are not only interested in an output at the observation times ti, but also in
between those times. In particular, we want to have an output stream that is generated continuously in
time. This is achieved by using a neural ODE to model the latent dynamics between two observation
times, i.e. for ti < t < ti+1 the latent variable is defined as in (19) and (20), with ht0 and t0 replaced
by hti and ti. At the next observation time ti+1, the latent variable is then updated by a RNN.
Rubanova et al. (2019) write this as{

h′ti+1
:= ODESolve(fθ, hti , (ti, ti+1))

hti+1 := RNNCell(h′ti+1
, xti+1) .

(21)

Therefore, fixing ht0 := h0, the entire latent process can be computed by iteratively solving an ODE
followed by applying a RNN.

GRU-ODE-Bayes. The model architecture describing the latent variable in GRU-ODE-Bayes
(Brouwer et al., 2019) is defined as the ODE-RNN but with the special choice of a gated recurrent
unit (GRU) for the RNN-cell and the neural network fθ also being derived from a GRU.

ODE-RNN as càdlàg process. Thinking about the process h := (ht)t≥t0 defined in (21) as a
(stochastic) process in time, it is defined to evolve continuously for ti ≤ t < ti+1 according to the
ODE dynamics fθ and jumps at time ti+1 according to the RNN cell. In particular, it is defined to be
a càdlàg5 process, for which hti+1− is the standard notation for the left limit, i.e. the last point before
the jump at time ti+1. According to this notation we have hti+1− = h′ti+1

, hence, we can rewrite (21)
as {

hti+1− := ODESolve(fθ, hti , (ti, ti+1))
hti+1

:= RNNCell(hti+1− , xti+1
) .

(22)

C.1 RESIDUAL ODE-RNN AS A SPECIAL CASE OF CONTROLLED ODE

Residual ODE-RNN. We replace the standard RNN cell by a residual RNN cell (rRNN), as it
was described e.g. in Yue et al. (2018). In particular, instead of applying the RNN cell such that
hti = RNNCell(hti−, xi) we use a residual RNN cell to have hti = hti− + rRNNCell(hti−, xi).
The residual RNN is as expressive as the standard RNN and was empirically shown to perform very
similarly or even better than the standard framework (Yue et al., 2018). This way, the residual RNN
cell models exactly the jump of the latent variable (i.e. the differences) that occurs at the time ti+1

when taking into account the next observation xti+1 . Therefore, we can rewrite the ODE-RNN (22)
as {

hti+1− := ODESolve(fθ, hti , (ti, ti+1))
hti+1

:= hti+1− + rRNNCell(hti+1− , xi) .
(23)

Controlled Ordinary Differential Equation. We briefly recall the definition of controlled ODEs as
it was given in (Herrera et al., 2020, Section 4.1) and used in (Cuchiero et al., 2019; Herrera et al.,
2020) to describe neural networks. We fix `, d ∈ N and define for 1 ≤ i ≤ d the vector fields

Vi : Θ× R≥0 × R` → R`, (θ, t, x) 7→ V θi (t, x),

which are càglàd6 in t and Lipschitz continuous in x. Furthermore, we define the scalar càdlàg control
functions

ui : R≥0 → R, t 7→ ui(t),

which have finite variation and satisfy ui(0) = 0. Then we define the process Z := (Zt)t≥0 as the
solution of the controlled ODE

dZt =

d∑
i=1

V θi
(
t, Zt−

)
dui(t), Z0 = z, (24)

where z ∈ R` is some starting point. (24) is written in Itô’s differential notation for (stochastic)
integrals. The solution of (24) exists and is unique under much more general assumptions than we
made here (Protter, 2005, Chap. V, Thm. 7).

5i.e. right-continuous with existing left limits, also denoted as RCLL
6i.e. left continuous with existing right limits
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Figure 7: Schematic representation of the stochastic control ut (25).

Special Case: ODE-RNN. To write the ODE-RNN as controlled ODE, we set d = 2 and define
V θ1 := fθ, V2 := rRNNCell and u1(t) := t. As pointed out by Herrera et al. (2020), one can take
the ui to be semimartingales instead of deterministic functions. In line with this, we define u2 := u
as the pure jump stochastic control process

u : Ω̃× [0, T ]→ R, (ω̃, t) 7→ ut(ω̃) :=

n(ω̃)∑
i=1

1[ti(ω̃),∞)(t). (25)

We note that u is an adapted process starting at 0 with finite variation on the product probability space
(Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃ ,P× P̃), since the total variation of u up to time T is n and EP×P̃[n] < ∞.
The following result shows that the residual ODE-RNN can compactly be described as a controlled
ODE.
Proposition C.1. Using the vector fields and controls defined above, the latent variable process
h = (ht)t≥t0 of the residual ODE-RNN can equivalent be written as the solution of the controlled
ODE

dht = fθ(ht−, t−)dt+ rRNNCell(ht−, xt)du(t), ht0 = h0. (26)

Proof of Proposition C.1. By (Protter, 2005, Chap. II, Thm. 17), the stochastic integral is indistin-
guishable from the path-wise Lebesgue-Stieltjes integral if the integrator is of finite variation. Hence,
we can assume that some ω̃ ∈ Ω̃ is fixed and that the following expressions are evaluated at this ω̃
whenever applicable. First note, that u is constant except at the ti where it increases by 1 (cf. Figure
7). In particular, the Lebesgue-Stieltjes integral of some càdlàg function g with respect to u is a sum,
i.e.
∫ t

0
g(s−)dus =

∑
ti≤t g(ti−)∆uti , where ∆uti = uti − uti− = 1. Therefore, integrating (26)

from t0 to t we get

ht = ht0 +

∫ t

t0

fθ(hs−, s−)ds+

∫ t

t0

rRNNCell(hs−, xs)du(s)

= ht0 +

∫ t

t0

fθ(hs−, s−)ds+
∑
ti≤t

rRNNCell(hti−, xti).

In particular, since the first integral is continuous in t, we have for every 1 ≤ k ≤ n

htk = ht0 +

∫ tk−

t0

fθ(hs−, s−)ds+
∑
ti<tk

rRNNCell(hti−, xti) + rRNNCell(htk−, xtk)

= htk− + rRNNCell(htk−, xtk),

(27)

and for tk < t < tk+1

ht = ht0 +

∫ tk

t0

fθ(hs−, s−)ds+
∑
ti≤tk

rRNNCell(hti−, xti) +

∫ t

tk

fθ(hs−, s−)ds

= htk +

∫ t

tk

fθ(hs−, s−)ds.

(28)
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Together, (27) and (28) prove that (26) is equivalent to (23). We also emphasize that xt is used as
input only for t = ti, 1 ≤ i ≤ n.

D NEURAL JUMP ODE

We propose a model framework whose architecture can be interpreted as a simplification of the ODE-
RNN (Rubanova et al., 2019) and the GRU-ODE-Bayes (Brouwer et al., 2019) model architecture.

D.1 THE MODEL FRAMEWORK: NEURAL ODE BETWEEN JUMPS

We define X ⊂ RdX andH ⊂ RdH to be the observation and latent space for dX , dH ∈ N. Moreover,
we define the following feed-forward neural networks with sigmoid activation functions:

• fθ1 : RdH × RdX × [0, T ]× [0, T ]→ RdH modelling the ODE dynamics,

• ρθ2 : RdX → RdH modelling the jumps when new observations are made, and

• gθ3 : RdH → RdY the readout map, mapping into the target space Y ⊂ RdY for dY ∈ N.

The trainable parameters of the neural networks are θ := (θ1, θ2, θ3) ∈ Θ := ∪M≥1ΘM . Here,
for every M ∈ N, ΘM is defined to be the set of all parameters such that fθ1 and ρθ2 have hidden
dimension M . We define the pure jump stochastic process (cf. Appendix C)

u : Ω̃× [0, T ]→ R, (ω̃, t) 7→ ut(ω̃) :=

n(ω̃)∑
i=1

1[ti(ω̃),∞)(t).

Then the Neural Jump ODE (NJ-ODE) is defined by the latent process H := (Ht)t∈[0,T ] and the
output process Y := (Yt)t∈[0,T ] defined as solutions of the SDE system (cf. Appendix C)

H0 = ρθ2 (X0) ,

dHt = fθ1
(
Ht−, Xτ(t), τ(t), t− τ(t)

)
dt+ (ρθ2 (Xt)−Ht−) dut,

Yt = gθ3(Ht).

(29)

Note that, only the values of X at the times ti, 0 ≤ i ≤ n are used as inputs. We will use the notation
Hθ
t (X) and Y θt (X) to emphasize the dependence of the latent process H and the output process Y

on the model parameters θ and the input X .

Existence and uniqueness. We note that u is an adapted process starting at 0 with finite variation
on the product probability space (Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃ ,P× P̃), since the total variation of u up to
time T is n and EP×P̃[n] <∞. Hence, since fθ1 and ρθ2 are Lipschitz continuous (as composition
of Lipschitz continuous functions) a unique càdlàg solution Hθ exists, once an initial value is fixed
(Protter, 2005, Thm. 7, Chap. V). Moreover, the resulting process (Y θt )t∈[0,T ] is also càdlàg and
A-adapted.

Equivalent way of writing NJ-ODE. By applying the steps that were explained in Section C
backwards to (29) (but without introducing the residual version of the RNN), it is easy to see that our
model can equivalently be written (similar to (22)) as{

hti+1− := ODESolve(fθ1 , (ht, xti , ti, t− ti), (ti, ti+1))
hti+1

:= ρθ2(xti+1
) .

(30)

In particular, the main difference to (22) is that we use a modified input for fθ1 and that the neural
network performing the jumps does not take hti+1− as an input, i.e. it is not a RNN.

D.2 OBJECTIVE FUNCTION

We introduce a loss function, such that the output Y θ of the NJ-ODE can be trained to approximate
X̂ , i.e. to model the best online prediction of the stochastic process X . We define the theoretical loss
function and its Monte Carlo and Ergodic approximation.
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Objective function. Let us define D to be the set of all RdX -valued A-adapted processes on the
probability space (Ω× Ω̃,F ⊗ F̃ ,F⊗ F̃ ,P× P̃) . Then we define our objective functions

Ψ :D→ R, Z 7→ Ψ(Z) := EP×P̃

[
1

n

n∑
i=1

(|Xti − Zti |2 + |Zti − Zti−|2)
2

]
, (31)

Φ :Θ→ R, θ 7→ Φ(θ) := Ψ(Y θ(X)), (32)

where Φ will be our (theoretical) loss function. Remark that from the definition of Y θ, it directly
follows that it is an element of D, hence Φ is well-defined.

Monte Carlo approximation of the objective function. Let us assume, that we observe N ∈ N
independent realisations of the path X at times (t̃

(j)
1 , · · · , t̃(j)nj ), 1 ≤ j ≤ N , which are themselves

independent realisations of the random vector (n, t1, · · · , tn). In particular, let us assume that
X(j) ∼ X and (nj , t

(j)
1 , · · · , t(j)nj ) ∼ Pt are i.i.d. random processes (respectively variables) for

1 ≤ j ≤ N and that our training data is one realisation of them. Then

Φ̂N (θ) :=
1

N

N∑
j=1

1

nj

nj∑
i=1

(∣∣∣∣X(j)

t
(j)
i

− Y θ
t
(j)
i

(X(j))

∣∣∣∣
2

+
∣∣∣Y θ
t
(j)
i

(X(j))− Y θ
t
(j)
i −

(X(j))
∣∣∣
2

)2

, (33)

converges (P× P̃)-a.s. to Φ(θ) as N →∞, by the law of large numbers (cf. Theorem E.13).

Ergodic approximation of the objective function. If we only observe one realization of the path
X at times (t̃1, · · · , t̃N ), we can still approximate the objective function by assuming that µ and σ
are time-independent and that the stochastic process X is ergodic in the following sense. We fix
n = 1 and assume that the time increments ∆t̃j := t̃j − t̃j−1 are i.i.d. realizations of the probability
distribution λ1. Furthermore, we consider each observation Xt̃j

as one sample with initial condition
Xt̃j−1

for which Y θ,j is the realization of Y θ. Then we approximate the objective function by

Φ̂N (θ) :=
1

N

N∑
j=1

(∣∣∣Xt̃j
− Y θ∆t̃j (X)

∣∣∣
2

+
∣∣∣Y θ∆t̃j (X)− Y θ∆t̃j−(X)

∣∣∣
2

)2

, (34)

which is assumed to converge by the ergodicity assumption for N →∞ to

EP×P̃

[(∣∣Xt1 − Y θt1
∣∣
2

+
∣∣Y θt1 − Y θt1−∣∣2)2] . (35)

Instead of setting the random variable n = 1, one could similarly fix the time horizon T , and take
for each sample all subsequent observations that lie in the time interval [tstart, tstart + T ], where tstart
is the date of the first observation of this sample. The next sample would then start with the first
observation after tstart + T .

E THEORETICAL CONVERGENCE RESULTS

Our main results show, that the output of NJ-ODE converges to the conditional expectation when
the size of the neural networks and the number of samples go to infinity. For each network size
(and number of samples) we assume to have the weights minimizing the (Monte Carlo approxima-
tion of the) loss function. In particular, we do not consider the problem of finding those optimal
weights, and therefore also do not analyse backpropagation through our model. In a similar setting,
backpropagation was studied by Jia & Benson (2019).

For completeness we recall the definition of Lp-convergence.
Definition E.1. Let 1 ≤ p <∞. Let (Ω,F ,P) be a probability space. Then a sequence of random
variables (Xn)n∈N converges to a random variable X in Lp(Ω,F ,P) (or simply Lp), if

E[|Xn −X|p]
n→∞−−−−→ 0.

We use the notation
Xn

Lp

−−→ X.

L1-convergence is also denoted convergence in mean.
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E.1 CONVERGENCE WITH RESPECT TO THEORETICAL OBJECTIVE FUNCTION

Theorem E.2. Let θmin
M ∈ Θmin

M := argminθ∈ΘM
{Φ(θ)} for every M ∈ N. Then, for M →∞, the

value of the loss function Φ (32) converges to the minimal value of Ψ (31) which is uniquely achieved
by X̂ , i.e.

Φ(θmin
M )

M→∞−−−−→ min
Z∈D

Ψ(Z) = Ψ(X̂).

Furthermore, for every 1 ≤ k ≤ K we have that Y θ
min
M converges to X̂ as random variable in

L1(Ω× [0, T ],P× λk). In particular, the limit process Y := limM→∞ Y θ
min
M equals X̂ (P× λk)-

almost surely as a random variable on Ω× [0, T ].

The idea of the proof is to split up the target jump process into its continuous-in-time parts and into
the jumps. Both parts are continuous functions of their inputs and can therefore be approximated by
neural networks (Hornik et al., 1989). More precisely, by Proposition B.1 and B.4 the continuous-in-
time part can be written as an integral over time of a function which is jointly continuous in its inputs.
This jointly continuous function is approximated by a neural network, which is itself integrated over
time – that is the neural ODE part of the NJ-ODE. The remainder of the proof shows L1-convergence
of the output of NJ-ODE with optimal weights (with respect to the loss function) to the conditional
expectation process.

For completeness we restate the straight forward generalization of the universal approximation result
(Hornik et al., 1989, Thm. 2.4) to multidimensional output.

Theorem E.3 (Hornik). Let r, d ∈ N and σ be a sigmoid function. Let NN σ
r,d be the set of

all 1-hidden layer neural networks mapping Rr to Rd. Then for every compact subset K ⊂
Rr, every ε > 0 and every f ∈ C(Rr,Rd) there exists a neural network g ∈ NN σ

r,d such that
supx∈K |f(x)− g(x)|2 < ε.

The following Lemmas are used in the Proof of Theorem E.2.

Lemma E.4. Let 1 ≤ k ≤ K and let Z ∈ D be a process such that (P × λk)[X̂ 6= Z] > 0. Then
there exists an ε > 0 such that B̃ := {t ∈ [0, T ] |EP[|Xt−Zt−|22] ≥ ε+EP[|Xt− X̂t−|22]} satisfies
λk(B̃) > 0.

Proof. First remark that since X is continuous, we have Xt = Xt−. Let us define C := {(ω, t) ∈
Ω × [0, T ] | X̂t−(ω) 6= Zt−(ω)} and for each t ∈ [0, T ] let Ct := {ω ∈ Ω | (ω, t) ∈ C}. Then we
have for B := {t ∈ [0, T ] |P(Ct) > 0} that λk(B) > 0, since otherwise by Fubini’s theorem

0 < (P× λk)[C] =

∫
[0,T ]

P(Ct)dλk(t) = 0,

which is a contradiction. Now Proposition B.2 yields that for each t ∈ B there exists
some εt > 0 such that EP[|Xt− − Zt−|22] ≥ εt + EP[|Xt− − X̂t−|22]. This implies
the claim. Indeed, assume no such ε > 0 exists, then we have for each n ∈ N that
λk

(
{t ∈ [0, T ] |EP[|Xt− − Zt−|22] ≥ 1

n + EP[|Xt− − X̂t−|22]}
)

= 0. Therefore,

λk

(
{t ∈ [0, T ] |EP[|Xt− − Zt−|22] > EP[|Xt− − X̂t−|22]}

)
≤
∑
n∈N

λk

(
{t ∈ [0, T ] |EP[|Xt− − Zt−|22] ≥ 1

n + EP[|Xt− − X̂t−|22]}
)

= 0,

which is a contradiction to λk(B) > 0.

Lemma E.5. For any A-adapted process Z it holds that

EP×P̃

[
1
n

n∑
i=1

|Xti − Zti−|
2
2

]
= EP×P̃

[
1
n

n∑
i=1

∣∣∣Xti − X̂ti−

∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣X̂ti− − Zti−
∣∣∣2
2

]
.
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Proof. First recall that by continuityXti = Xti−. Then the statement is a consequence of Proposition
B.2, Lemma B.3 and Fubini’s theorem, which imply

EP×P̃

[
1
n

n∑
i=1

|Xti− − Zti−|
2
2

]
= EP̃

[
1
n

n∑
i=1

EP

[
|Xti− − Zti−|

2
2

]]

= EP̃

[
1
n

n∑
i=1

(
EP

[∣∣∣Xti− − X̂ti−

∣∣∣2
2

]
+ EP

[∣∣∣X̂ti− − Zti−
∣∣∣2
2

])]

= EP×P̃

[
1
n

n∑
i=1

∣∣∣Xti− − X̂ti−

∣∣∣2
2

]
+ EP×P̃

[
1
n

n∑
i=1

∣∣∣X̂ti− − Zti−
∣∣∣2
2

]
.

Lemma E.6. Let 1 ≤ p < ∞. Let (Zn)n∈N be a sequence of random variables, and Z and Z̃

random variables defined on a common probability space such that Zn
Lp

−−→ Z and Zn
Lp

−−→ Z̃. Then
Z = Z̃ almost surely.

Proof. With the triangle inequality it follows that E[|Z − Z̃|p]1/p = 0, which implies the claim.

Lemma E.7. The random variable ST := sup0≤t≤T |Xt|1 is square integrable and bounded in
probability, i.e. for any ε > 0 exist some K > 0 such that P[ST > K] ≤ ε.

Proof. From the proof of Proposition B.1 we know that

Mt :=

∫ t

0

σ(s,Xs)dWs, 0 ≤ t ≤ T,

is a square integrable martingale and that EP[sup0≤t≤T |Mt|j1] ≤ cEP[|MT |j1] < ∞, for j = 1, 2
and some constant c > 0 by Doob’s inequality. Moreover, µ is bounded, say by B, hence

|Xt|1 =

∣∣∣∣x+

∫ t

0

µ(r,Xr)dr +

∫ t

0

σ(r,Xr)dWr

∣∣∣∣
1

≤ |x|1 +

∫ t

0

|µ(r,Xr)|1 dr + |Mt|1

≤ |x|1 +B T + |Mt|1 .

Therefore, EP[ST ] ≤ |x|1 +B T + cEP[|MT |1] <∞ and similar EP[S2
T ] <∞, which implies the

claim. Indeed, if for a fixed ε > 0 no such K exists, then P[ST =∞] ≥ ε, which is a contradiction
to integrability.

Proof of Theorem E.2. We start by showing that X̂ ∈ D is the unique minimizer of Ψ up to (P×λk)-
null-sets for any k ≤ K. First, we recall that for every ti we have X̂ti = Xti and by continuity of X
that Xti = Xti−. Therefore,

Ψ(X̂) = EP×P̃

[
1

n

n∑
i=1

∣∣∣Xti − X̂ti−

∣∣∣2
2

]

= EP̃

[
1

n

n∑
i=1

EP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

]]

= min
Z∈D

EP×P̃

[
1

n

n∑
i=1

|Xti − Zti−|
2
2

]

≤ min
Z∈D

EP×P̃

[
1

n

n∑
i=1

(|Xti − Zti |2 + |Zti − Zti−|2)
2

]
= min

Z∈D
Ψ(Z),
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where we used Fubini’s theorem for the second line, Proposition B.2 for the third line and the triangle
inequality for the fourth line. Hence, X̂ is a minimizer of Ψ. To see that it is unique (P× λk)-a.s.,
let Z ∈ D be a process such that (P × λk)[X̂ 6= Z] > 0. By Lemma E.4, this implies that there
exists an ε > 0 such that B := {t ∈ [0, T ] |EP[|Xt− − Zt−|22] ≥ ε+ EP[|Xt− − X̂t−|22]} satisfies
λk(B) > 0.

Now recall that by definition of λk we have λk(B) = P̃(∪̇j≥k{n = j, tk− ∈ B})/P̃(n ≥ k) > 0.
This implies that there exists j ∈ N≥k such that P̃(n = j, tk− ∈ B) > 0. Therefore,

EP̃

[
1

n

n∑
i=1

1{ti−∈B}

]
≥ EP̃

[
1{n=j}

1

n

n∑
i=1

1{ti−∈B}

]
≥ EP̃

[
1{n=j}

1
j 1{tk−∈B}

]
= 1

j P̃(n = j, tk− ∈ B) > 0.

This inequality implies now that Z is not a minimizer of Ψ, because

Ψ(Z) = EP×P̃

[
1

n

n∑
i=1

(|Xti − Zti |2 + |Zti − Zti−|2)
2

]

≥ EP̃

[
1

n

n∑
i=1

EP

[
|Xti − Zti−|

2
2

]]

= EP̃

[
1

n

n∑
i=1

(
1{ti−∈B} + 1{ti−∈BC}

)
EP

[
|Xti − Zti−|

2
2

]]

≥ EP̃

[
1

n

n∑
i=1

(
ε1{ti−∈B} + EP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

])]

= εEP̃

[
1

n

n∑
i=1

1{ti−∈B}

]
+ min
Z∈D

Ψ(Z)

> min
Z∈D

Ψ(Z).

Next we show that (29) can approximate X̂ arbitrarily well. Since the dimension dH can be chosen
freely, let us fix it to dH := dX . Furthermore, let us fix θ∗2 and θ∗3 such that ρθ∗2 = gθ∗3 = id. From
Theorem E.3 it follows that for any ε > 0 there exist M ∈ N and θ∗1 with (θ∗1 , θ

∗
2 , θ
∗
3) ∈ ΘM such

that
sup

(u,v,t,r)∈[−M,M ]dH×dX×∆

∣∣fθ∗1 (u, v, t, r)− µ̃ (t, r, v)
∣∣
2
≤ ε, (36)

where we used that µ̃ is continuous by Proposition B.4. Since µ is bounded, also µ̃ is bounded,
say by B − 1 > 0. On [−M,M ]dX we approximate µ̃ by the neural network fθ∗1 and outside we
continuously extend fθ∗1 such that it is bounded by B. By abuse of notation we call this fθ∗1 again
and use it as our neural network. Hence,

∣∣fθ∗1 − µ̃∣∣2 ≤ 2B. Using this, we can bound the distance

between Y θ
∗
M

t and X̂ . In particular, if t ∈ {t1, · · · , tn}, we have∣∣∣Y θ∗Mt − X̂t

∣∣∣
2

=
∣∣(Ht− + (ρθ∗M (Xt)−Ht−)

)
−Xt

∣∣
2

= 0,

and if t not in {t1, · · · , tn}, then (12), (36) and the previous bound yield for ST := sup0≤t≤T |Xt|1∣∣∣Y θ∗Mt − X̂t

∣∣∣
1
≤
∣∣∣Y θ∗Mτ(t) − X̂τ(t)

∣∣∣
1

+

∫ t

τ(t)

∣∣fθ∗1 (Hs−, Xτ(s), τ(s), s− τ(s)
)
− µ̃

(
τ(s), s− τ(s), Xτ(s)

)∣∣
1
ds

≤ ε T1{ST≤M} + 2BT1{ST>M} ≤ ε T + 2BT1{ST>M}.
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Here we used that ST ≤ M implies that (36) can be used for all τ(t) ≤ s ≤ t. Moreover, by
equivalence of the 1- and 2-norm, there exists a constant c > 0 such that∣∣∣Y θ∗Mt − X̂t

∣∣∣
2
≤ c ε T + 2cBT1{ST>M}.

With Lemma E.7 we know that EP[1{ST>M}] = P[ST > M ] =: εM
M→∞−−−−→ 0. Now we can show

the convergence of Φ(θmin
M ) using these two bounds and Xti = X̂ti . Indeed,

min
Z∈D

Ψ(Z) ≤ Φ(θmin
M ) ≤ Φ(θ∗M )

= EP×P̃

[
1

n

n∑
i=1

(∣∣∣Xti − Y
θ∗M
ti

∣∣∣
2

+
∣∣∣Y θ∗Mti − Y θ

∗
M

ti−

∣∣∣
2

)2
]

≤ EP×P̃

[
1

n

n∑
i=1

(∣∣∣X̂ti − Y
θ∗M
ti

∣∣∣
2

+
∣∣∣Y θ∗Mti − X̂ti

∣∣∣
2

+
∣∣∣X̂ti − X̂ti−

∣∣∣
2

+
∣∣∣X̂ti− − Y

θ∗M
ti−

∣∣∣
2

)2
]

≤ EP×P̃

[
1

n

n∑
i=1

(∣∣∣Xti − X̂ti−

∣∣∣
2

+ c(ε T + 2BT1{ST>M})
)2
]

≤ EP̃

[
1

n

n∑
i=1

EP

[(∣∣∣Xti − X̂ti−

∣∣∣
2

+ c(ε T + 2BT1{ST>M})
)2
]]

≤ EP̃

 1

n

n∑
i=1

(
EP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

]1/2

+ EP
[
(c ε T + 2cBT1{ST>M})

2
]1/2)2

 ,
where we used the triangle-inequality for the L2-norm in the last step. We can bound

EP
[
(c ε T + 2cBT1{ST>M})

2
]
≤ 3(c ε T )2 + 3(2cBT )2εM =: c2M ,

which is a constant converge to 0 as M →∞. Using that for a ∈ R, we have a ≤ a2 + 1, we get

min
Z∈D

Ψ(Z) ≤ Φ(θmin
M ) ≤ Φ(θ∗M )

≤ EP̃

 1

n

n∑
i=1

(
EP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

]1/2

+ c(M)

)2


≤ EP̃

[
1

n

n∑
i=1

(
EP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

]
+ 2cMEP

[∣∣∣Xti − X̂ti−

∣∣∣2
2

]1/2

+ c2M

)]

≤ (1 + 2cM )EP×P̃

[
1

n

n∑
i=1

∣∣∣Xti − X̂ti−

∣∣∣2
2

]
+ 2cM + c2M

≤ (1 + 2cM ) min
Z∈D

Ψ(Z) + 2cM + c2M
M→∞−−−−→ min

Z∈D
Ψ(Z),

where we used Ψ(X̂) = minZ∈D Ψ(Z) and that cM converges to 0.

In the last step we show that the limits limM→∞ Y θ
min
M and limM→∞ Y θ

∗
M exist as limits in the

Banach space L := L1(Ω× [0, T ],F⊗ B([0, T ]),P× λk), for every k ≤ K, and that they are both
equal to X̂ . Let us fix k ≤ K. First we note that for every B ∈ B([0, T ]) we have

Eλk
[1B ] = λk(B) = P̃(n≥k,tk−∈B)

P̃(n≥k)
=

EP̃[1{n≥k}1{tk−∈B}]
P̃(n ≥ k)

.

Using “measure theoretic induction” (Durrett, 2010, Case 1-4 of Proof of Thm. 1.6.9) this yields for
c := (P(n ≥ k))−1 and a B([0, T ])-measurable function Z : [0, T ]→ R, t 7→ Zt := Z(t) that

Eλk
[Z] = cEP̃[1{n≥k}Ztk−]. (37)
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Moreover, the triangle inequality and Lemma E.5 yield

Φ(θ∗M )−Ψ(X̂) ≥ EP×P̃

[
1

n

n∑
i=1

∣∣∣Xti − Y
θ∗M
ti−

∣∣∣2
2

]
−Ψ(X̂)

= EP×P̃

[
1

n

n∑
i=1

∣∣∣X̂ti− − Y
θ∗M
ti−

∣∣∣2
2

]
.

(38)

For any RdX -valued Z ∈ L the Hölder inequality, together with the fact that n ≥ 1, yields

EP×P̃ [|Z|2] = EP×P̃

[√
n√
n
|Z|2

]
≤ EP×P̃ [n]

1/2 EP×P̃

[
1

n
|Z|22

]1/2

. (39)

Together, this implies that limM→∞ Y θ
∗
M = X̂ as a L-limit. Indeed, with c̃ := EP×P̃ [n]

1/2
<∞ we

have

EP×λk

[∣∣∣X̂ − Y θ∗M ∣∣∣
2

]
= cEP×P̃

[
1{n≥k}

∣∣∣X̂tk− − Y
θ∗M
tk−

∣∣∣
2

]
≤ c c̃EP×P̃

[
1{n≥k}

1

n

∣∣∣X̂tk− − Y
θ∗M
tk−

∣∣∣2
2

]1/2

≤ c c̃EP×P̃

[
1{n≥k}

1

n

n∑
i=1

∣∣∣X̂ti− − Y
θ∗M
ti−

∣∣∣2
2

]1/2

≤ c c̃EP×P̃

[
1

n

n∑
i=1

∣∣∣X̂ti− − Y
θ∗M
ti−

∣∣∣2
2

]1/2

≤ c c̃
(

Φ(θ∗M )−Ψ(X̂)
)1/2 M→∞−−−−→ 0,

where we used first (37) and (39) followed by two simply upper bounds and (38) in the last step.
The same argument can be applied to show that limM→∞ Y θ

min
M = X̂ as a L-limit. In particular,

this proves that the limit Y := limM→∞ Y θ
min
M exists as L-limit and by Lemma E.6 it equals X̂

(P× λk)-almost surely, for any k ≤ K.

Remark E.8. This result can be extended to any other neural network architecture for which a
universal approximation theorem equivalent to (Hornik et al., 1989, Thm. 2.4) exists. Moreover, the
stochastic process X defined in (9) can be chosen more general, in particular, the diffusion part∫
σdW can be replaced by any martingale, as long as the resulting process still is a Markov process

and µ̃ stays continuous.

Remark E.9. If we used the modified loss function Ψ̃ which is identical to Ψ except that we drop
the factor 1

n , everything would work similarly and we could show L2-convergence instead of L1-
convergence of Y θ

min
M to X̂ . However, we remark that there might exists Z ∈ D, such that Ψ(Z) <∞

while Ψ̃(Z) = ∞. In particular, if some moment of n does not exist, such a process can be
constructed.
Remark E.10. It follows directly from Theorem E.2 that limM→∞ Y θ

min
M = X̂ as random variables

on Ω× [0, T ] except on sets which are null sets with respect to every product measure P× λk for
1 ≤ k ≤ K.

Remark E.11. The result of Theorem E.2 does not imply that X̂ and limM→∞ Y θ
min
M are modifi-

cations or indistinguishable. For example, if B ⊂ [0, T ] is a subset such that no left-point of the
observation times (tk−) lies in B with probability greater 0, i.e. λk(B) = 0 for 1 ≤ k ≤ K, then
Theorem E.2 does not tell us how close (limM→∞ Y θ

min
M )t is to X̂t for t ∈ B. In particular, it does

not tell us whether they are equal P-almost surely. Furthermore, such a set B always exists, since
there has to exists t ∈ [0, T ] such that B := {t} has measure 0 for all k.

In the following corollary we show, that Theorem E.2 can be extended to show convergence to the
conditional expectation of ϕ(X), for some function ϕ ∈ C2,b(RdX ,R), i.e. a function that is twice
continuously differentiable with bounded derivatives.
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Corollary E.12. Let ϕ ∈ C2,b(RdX ,R), then the statement of Theorem E.2 holds equivalently, when
replacing X in the loss functions Ψ and Φ by Γ = ϕ(X) and X̂ by the conditional expectation Γ̂,
where Γ̂t := EP×P̃[ϕ(Xt)|At].

Corollary E.12 combined with the monotone convergence theorem for conditional expectation
theoretically enables us to make statements about the conditional law and conditional moments of X
under some a priori integrability assumptions.

Proof of Corollary E.12. We first remark that Proposition B.2 and Lemma E.4, E.5, B.3 hold similarly
for the conditional expectation Γ̂. Hence, the same argument as in the proof of Theorem E.2 implies
that Γ̂ is the unique A-adapted minimizer of Ψ.
For simplicity of the notation we assume that dX = dY = 1, i.e. that the process X and the Brownian
motion W are 1-dimensional. However, the following works as well in the general case, where the
correlations of the Brownian motion components have to be taken into account. By Itô’s Formula
(Protter, 2005, Chap. II, Thm. 32), Γ = ϕ(X) is the solution of the SDE

dϕ(X)t = ϕ′(Xt)dXt + 1
2ϕ
′′(Xt)d[X,X]t

= ϕ′(Xt)µ(t,Xt)dt+ ϕ′(Xt)σ(t,Xt)dWt + 1
2ϕ
′′(Xt)σ(t,Xt)

2dt

= α(t,Xt)dt+ β(t,Xt)dWt,

for α(t,Xt) := ϕ′(Xt)µ(t,Xt) + 1
2ϕ
′′(Xt)σ(t,Xt)

2 and β(t,Xt) := ϕ′(Xt)σ(t,Xt). Defining α̃
similar to µ̃ as

α̃ : ∆× RdX → RdX , (t, r, ξ) 7→ Pt,t+r(Xt, α)
∣∣
Xt=ξ

= EP [α(t+ r,Xt+r)|Xt = ξ] ,

one can use the boundedness of of ϕ′ and ϕ′′ to show that it is continuous and that

Γ̂t = E[ϕ(X)t|At] = Γτ(t) +

∫ t

τ(t)

α̃
(
τ(t), s− τ(t), Xτ(t)

)
ds.

In particular, Proposition B.1 and B.4 hold equivalently for Γ.
Similar to (36), the neural network parameters can be chosen such that

sup
(u,v,t,r)∈[−M,M ]dH×dX×∆

∣∣fθ∗1 (u, v, t, r)− α̃ (t, r, v)
∣∣
2
≤ ε, (40)

which then implies the statement of the Corollary similar as in the proof of Theorem E.2.

E.2 CONVERGENCE OF THE MONTE CARLO APPROXIMATION

In the following, we assume the size of the neural network M is fixed and we study the convergence
with respect to the number of samples N . Moreover, we show that both types of convergence can
be combined. To do so, we define Θ̃M := {θ ∈ ΘM | |θ|2 ≤M}, which is a compact subspace of
ΘM . It is straight forward to see, that ΘM in Theorem E.2 can be replaced by Θ̃M . Indeed, if the
needed neural network weights for an ε-approximation have too large norm, then one can increase M
until it is sufficiently big. The following convergence analysis is based on (Lapeyre & Lelong, 2019,
Chapter 4.3).

Theorem E.13. Let θmin
M,N ∈ Θmin

M,N := arg infθ∈Θ̃M
{Φ̂N (θ)} for every M,N ∈ N. Then, for every

M ∈ N, (P× P̃)-a.s.

Φ̂N
N→∞−−−−→ Φ uniformly on Θ̃M .

Moreover, for every M ∈ N, (P× P̃)-a.s.

Φ(θmin
M,N )

N→∞−−−−→ Φ(θmin
M ) and Φ̂N (θmin

M,N )
N→∞−−−−→ Φ(θmin

M ).

In particular, one can define an increasing sequence (NM )M∈N in N such that for every 1 ≤ k ≤ K
we have that Y θ

min
M,NM converges to X̂ for M →∞ as random variable in L1(Ω× [0, T ],P×λk). In

particular, the limit process Y := limM→∞ Y θ
min
M,NM equals X̂ (P× λk)-almost surely as a random

variable on Ω× [0, T ].
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The following Monte Carlo convergence analysis is based on (Lapeyre & Lelong, 2019, Section 4.3).
In comparison to them, we do not need the additional assumptions that were essential in (Lapeyre
& Lelong, 2019, Section 4.3), i.e. that all minimizing neural network weights generate the same
neural network output. This assumption is not needed, because we do not aim to show that Y θ

min
M,N

converges to Y θ
min
M .

We define the separable Banach space S := {x = (xi)∈N ∈ `1(RdX ) | ‖x‖`1 <∞} with the norm
‖x‖`1 :=

∑
i∈N|xi|2.

E.2.1 CONVERGENCE OF OPTIMIZATION PROBLEMS

Consider a sequence of real valued functions (fn)n defined on a compact set K ⊂ Rd. Define,
vn = infx∈K fn(x) and let xn be a sequence of minimizers fn(xn) = infx∈K fn(x).

From (Rubinstein & Shapiro, 1993, Theorem A1 and discussion thereafter) we have the following
Lemma.

Lemma E.14. Assume that the sequence (fn)n converges uniformly on K to a continuous function
f . Let v∗ = infx∈K f(x) and S∗ = {x ∈ K : f(x) = v∗}. Then vn → v∗ and d(xn,S∗)→ 0 a.s.

The following lemma is a consequence of (Ledoux & Talagrand, 1991, Corollary 7.10) and (Rubinstein
& Shapiro, 1993, Lemma A1).

Lemma E.15. Let (ξi)i≥1 be a sequence of i.i.d random variables with values in S and h : Rd×S →
R be a measurable function. Assume that a.s., the function θ ∈ Rd 7→ h(θ, ξ1) is continuous and
for all C > 0, E(sup|θ|2≤C |h(θ, ξ1)|) < +∞. Then, a.s. θ ∈ Rd 7→ 1

N

∑N
i=1 h(θ, ξi) converges

locally uniformly to the continuous function θ ∈ Rd 7→ E(h(θ, ξ1)),

lim
N→∞

sup
|θ|2≤C

∣∣∣∣∣ 1

N

N∑
i=1

h(θ, ξi)− E(h(θ, ξ1))

∣∣∣∣∣ = 0 a.s.

E.2.2 STRONG LAW OF LARGE NUMBERS

Let us define
F (x, y, z) := |x− y|2 + |y − z|2

and ξj := (Xj

tj1
, . . . , Xj

tj
nj

, 0, . . . ), where Xj

tji
are random variables describing the realizations of the

training data, as defined in Section D.2. By this definition we have nj := nj(ξj) := maxi∈N{ξj,i 6=
0} P-almost-surely and we know that ξj are i.i.d. random variables taking values in S . Furthermore,
let us write Y θt (ξ) to make the dependence of Y on the input and the weight θ explicit. Then we
define

h(θ, ξj) :=
1

nj

nj∑
i=1

F
(
Xtji

, Y θ
tji

(ξj), Y
θ
tji−

(ξj)
)2

.

Lemma E.16. The following properties are satisfied.

(P1) There exists κ > 0 such that for all S ∈ S and θ ∈ Θ̃M we have |Y θt (S)|2 ≤ κ (1+|Xτ(t)|2)
for all t ∈ [0, T ].

(P2) Almost-surely the random function θ ∈ Θ̃M 7→ Y θt is uniformly continuous for every
t ∈ [0, T ].

(P3) We have EP×P̃
[

1
n

∑n
i=1 |Xti |22

]
<∞ and EP×P̃

[
1
n

∑n
i=1 |Xti−|22

]
<∞.

Proof. By definition of the neural networks with sigmoid activation functions (in particular having
bounded outputs), all neural network outputs are bounded in terms of the norm of the network weights,
which is assumed to be bounded, not depending on the norm of the input. Since after a jump at τ(t),
Y has the value Xτ(t), we can find κ depending on T , such that the claimed bound is satisfied for all
t, proving (P1).
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Since the activation functions are continuous, also the neural networks are continuous with respect to
their weights θ, which implies that also θ ∈ Θ̃M 7→ Y θt is continuous. Since Θ̃M is compact, this
automatically yields uniform continuity and therefore finishes the proof of (P2).

(P3) follows directly from the stronger result in Lemma E.7.

Proof of Theorem E.13. We apply Lemma E.15 to the sequence of i.i.d random function h(θ, ξj).
From (P1) of Lemma E.16 we have that

F (Xtji
, Ytji

, Ytji−
)2 =

(∣∣∣Xtji
− Y θ

tji

∣∣∣
2

+
∣∣∣Y θ
tji
− Y θ

tji−

∣∣∣
2

)2

≤ 4
(
|Xtji
|22 + |Y θ

tji
|22 + |Y θ

tji
|22 + |Y θ

tji−
|22
)

≤ 4
(

3|Xtji
|22 + κ(1 + |Xtji−1

|22)
)
.

Hence, we obtain that

h(θ, ξj) =
1

nj

nj∑
i=1

F (Xtji
, Ytji

, Ytji−
)2 ≤ 12 + 4κ

nj

nj∑
i=1

∣∣∣Xtji

∣∣∣2
2

+ 4κ+ |x|22,

implying that

EP×P̃

[
sup
θ∈Θ̃M

h(θ, ξj)

]
≤ (12 + 4κ)EP×P̃

[
1

n

n∑
i=1

|Xti |22

]
+ 4κ+ |x|22 <∞, (41)

using (P3) of Lemma E.16. By (P2) of Lemma E.16, the function θ 7→ h(θ) is continuous. Therefore,
we can apply Lemma E.15, yielding that almost-surely for N →∞ the function

θ 7→ 1

N

N∑
j=1

h(θ, ξj) = Φ̂N (θ) (42)

converges uniformly on Θ̃M to

θ 7→ EP×P̃[h(θ, ξ1)] = Φ(θ). (43)

We deduce from Lemma E.14 that d(θmin
M,N ,Θ

min
M ) → 0 a.s. when N → ∞. Then there exists a

sequence (θ̂min
M,N )N∈N in Θmin

M such that |θmin
M,N − θ̂min

M,N |2 → 0 a.s. for N → ∞. The uniform

continuity of the random functions θ 7→ Y θt on Θ̃M implies that |Y θ
min
M,N

t − Y θ̂
min
M,N

t |2 → 0 a.s. when
N →∞ for all t ∈ [0, T ]. By continuity of F this yields |h(θmin

M,N , ξ1)− h(θ̂min
M,N , ξ1)|2 → 0 a.s. as

N →∞. With (41) we can apply dominated convergence which yields

lim
N→∞

EP×P̃

[
|h(θmin

M,N , ξ1)− h(θ̂min
M,N , ξ1)|2

]
= 0.

Since for every integrable random variableZ we have 0 ≤ |E[Z]|2 ≤ E[|Z|2] and since θ̂min
M,N ∈ Θmin

M
we can deduce

lim
N→∞

Φ(θmin
M,N ) = lim

N→∞
EP×P̃

[
h(θmin

M,N , ξ1)
]

= lim
N→∞

EP×P̃

[
h(θ̂min

M,N , ξ1)
]

= Φ(θmin
M ). (44)

Now by triangle inequality,

|Φ̂N (θmin
M,N )− Φ(θmin

M )| ≤ |Φ̂N (θmin
M,N )− Φ(θmin

M,N )|+ |Φ(θmin
M,N )− Φ(θmin

M )|. (45)

(42), (43) and (44) imply that both terms on the right hand side converge to 0 when N →∞, which
finishes the proof of the first part of the Theorem.

We define N0 := 0 and for every M ∈ N

NM := min
{
N ∈ N | N > NM−1, |Φ(θmin

M,N )− Φ(θmin
M )| ≤ 1

M + |Φ(θmin
M )−Ψ(X̂)|

}
,
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which is possibly due to (44). Then Theorem E.2 implies that

|Φ(θmin
M,NM

)−Ψ(X̂)| ≤ 1
M + 2|Φ(θmin

M )−Ψ(X̂)| M→∞−−−−→ 0.

Therefore, we can apply the same arguments as in the proof of Theorem E.2 (starting from (38)) to
show that

EP×λk

[∣∣∣X̂ − Y θmin
M,NM

∣∣∣
2

]
≤ c c̃

(
Φ(θmin

M,NM
)−Ψ(X̂)

)1/2 M→∞−−−−→ 0,

for every 1 ≤ k ≤ K.

Corollary E.17. In the setting of Theorem E.13, we also have that (P× P̃)-a.s.

Φ(θmin
M,NM

)
M→∞−−−−→ Ψ(X̂) and Φ̂ÑM

(θmin
M,ÑM

)
M→∞−−−−→ Ψ(X̂),

where (ÑM )M∈N is another increasing sequence in N.

Proof. The first convergence result was already shown in the proof of Theorem E.13 and the second
one can be shown similarly, when defining ÑM by Ñ0 := 0 and for every M ∈ N

ÑM := min
{
N ∈ N | N > ÑM−1, |Φ̂N (θmin

M,N )− Φ(θmin
M )| ≤ 1

M + |Φ(θmin
M )−Ψ(X̂)|

}
,

which is possibly due to (45).

E.3 DISCUSSION ABOUT OPTIMAL WEIGHTS

In Theorem E.2 and E.13, the focus lies on the convergence analysis under the assumption that
optimal weights are found. Below we discuss, why this assumption is not restrictive in theory.

Global versus local optima. The assumption that the optimal weights are found, is typical for a
convergence analysis of a neural network based algorithm, since the objective function is highly
complex and non-convex with respect to the weights. In particular, it is well known that the standard
choice of (stochastic) gradient descent optimization methods do in general only find local and not
global minima. Since the difference between any local minimum and the global minimum can not
generally be bounded, it is unrealistic to hope for a theoretical proof of convergence with respect
to such optimisation schemes. On the other hand, global optimization methods as for example
simulated annealing provably convergence (in probability) to a global optimum (Locatelli, 2000;
Lecchini-Visintini et al., 2008). Hence, combining those with our result, convergence in probability
of our model output to the conditional expectation can be established, without the assumption that
the optimal weights are found. However, these global optimization schemes come at the cost of much
slower training compared to (stochastic) gradient descent methods when applied in practice. Moreover,
several works have focused on showing that most local optima of neural networks are nearly global,
see for example (Feizi et al., 2017) and the related work therein. Hence, using (stochastic) gradient
descent optimization methods likely yield nearly globally optimal weights much more efficiently. In
our case, this is also supported by our empirical convergence studies in Section 6.3.
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F EXPERIMENTAL DETAILS

All implementations were done using PyTorch. The code is available at https://github.com/
HerreraKrachTeichmann/NJODE.

F.1 IMPLEMENTATION DETAILS

Dataset. For each of the SDE models (Black-Scholes, Ornstein-Uhlenbeck, Heston) a dataset was
generated by samplingN = 20′000 paths of the SDE using the Euler-scheme. We used an equidistant
time grid of mesh 0.01 between time 0 and T = 1. Independently for each path, observation times
were sampled from Pt, by using each of the grid points with probability 0.1 as an observation time.
In particular, n ∼ Bin(100, 0.1), t0 = 0 and the observation times {ti}1≤i≤n were chosen uniformly
on the time grid. Hence, 10% of the grid points were used on average. This way, n and ti are defined
as a discretized version of those given in Example A.2 where n is binomially distributed and ti
chosen uniformly on [0, T ]. For each of these datasets, the samples were used in a 80%/20% split for
training and testing. The SDEs of the dataset models and the chosen parameters are described below.

• Black-Scholes:
– SDE: dXt = µXtdt+ σXtdWt, where W is a 1-dimensional Brownian motion
– conditional expectation: E(Xt+s|Xt) = Xte

µs

– used parameters: µ = 2, σ = 0.3, X0 = 1

• Ornstein-Uhlenbeck:
– SDE: dXt = −k(Xt −m)dt+ σdWt, where W is a 1-dimensional Brownian motion
– conditional expectation: E(Xt+s|Xt) = Xte

−ks +m
(
1− e−ks

)
– used parameters: k = 2,m = 4, σ = 0.3, X0 = 1

• Heston:
– SDE: for W and Z 1-dimensional Brownian motions

dXt = µXtdt+
√
vtXtdWt

dvt = −k(vt −m)dt+ σ
√
vtdZt

– conditional expectation7: E(Xt+s|Xt) = Xte
µs

– used parameters: µ = 2, σ = 0.3, X0 = 1 k = 2, m = 4, v0 = 4, ρ = Corr(W,Z) =
0.5

Architecture. In our experiments we choose the dimension of the latent variable to be dH = 10. For
fθ1 , g̃θ3 and ρ̃θ2 we use 2-hidden-layer feed-forward neural networks, with 50 nodes in each hidden
layer and tanh activation functions. Then the neural networks gθ3 and ρθ2 are defined as residual
versions of g̃θ3 and ρ̃θ2 , by adding a residual shortcut between the input and the output of the neural
networks. Dropout was applied after each non-linearity with a rate of 0.1. To scale the possibly
unbounded inputs of the neural networks to a bounded hypercube, we applied tanh component-wise
to x and h in every neural network. This was done, because neural networks sometimes become
unstable when their inputs become large. To solve the ODE of the neural ODE part, the simple
Euler-method was used.

Training. The neural networks were trained using the Adam optimizer (Kingma & Ba, 2014) with a
learning rate of 0.001 and weight decay 0.0005 for 200 epochs using a batch size of 200. A random
initialization was used and no hyper-parameter optimization was needed.

Further training results. Further training results on test samples are shown in Figure 8, 9, 10.

F.2 EXPERIMENTS ON OTHER DATASETS

We test our framework on additional synthetic datasets.

7see (Rujivan & Zhu, 2012, Equation 2.9)
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Figure 8: Black-Scholes
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Figure 9: Ornstein-Uhlenbeck
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Figure 10: Heston
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F.2.1 HESTON MODEL WITHOUT FELLER CONDITION

If the Feller condition
2 km ≥ σ2

is satisfied in the Heston model, it is known that the variance process vt is always strictly bigger
than 0 and that the Euler-scheme works well to sample from it. However, if the Feller condition
is not satisfied, the variance process can touch 0, where the process is reflected deterministically.
Then the Euler-scheme can not longer be used to sample from the model. Moreover, this situation
is generally considered as more delicate. Close to 0 the distribution of vt behaves differently than
further away of 0 (Andersen, 2007, Section 3). As explained by Andersen (2007), there are differently
well performing sampling schemes for a Heston model where the Feller condition is not satisfied. We
use the simplest to implement, which is a slight extension of the Euler scheme, where values of vt
below 0 are replaced by 0 (Andersen, 2007, Section 2.3). Although there is empirical evidence, that
the resulting sampling distribution of vt close to 0 is not correctly replicating the true distribution
(Jean-François et al., 2015, Figure 2,3), this method already produces sufficiently good sample paths.

Dataset. Heston model, sampled as in Section F.1 with the extension described above. Used
parameters: µ = 2, σ = 3, X0 = 1 k = 2, m = 1, v0 = 0.5, ρ = Corr(W,Z) = 0.5. Hence the
Feller condition and also the weaker condition 4 km ≥ σ2 discussed in (Jean-François et al., 2015,
Section 3.2), are both not satisfied. We produce two datasets, a 1-dimensional one similar to before,
where only X is stored and a 2-dimensional one, where both X and v are stored, hence also v is a
target for prediction. Note that v has the same conditional expectation as the Ornstein-Uhlenbeck
SDE. In the 2-dimensional dataset, X and v are always observed at the same time.

Architecture & Training. Same as in Section F.1, but with batch size 100.

Results. The model learns to replicate the true conditional expectation process, which is analytic,
hence not effected by the sampling scheme. In particular, we see that our model is very robust, since
even in the delicate case where the Feller condition is not satisfied and a sampling scheme is used,
that does not perfectly replicate the true distribution, our model still works well. Due to the very
similar results, in Figure 11 we only show plots on test samples of the 2-dimensional dataset, where
X and v are predicted.
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Figure 11: Heston model without Feller condition. In both plots, the upper sub-plot corresponds to
the 1-dimensional path of Xt and the lower sub-plot corresponds to the 1-dimensional path of vt.

F.2.2 DATASET WITH CHANGING REGIME

Dataset. To be able to evaluate the performance of our model, we test a change of regime by
combining two synthetic datasets. On the first half of the time interval [0, 0.5] we use the Ornstein-
Uhlenbeck and on the second half [0.5, 1] the Black-Scholes model. The Black-Scholes process
takes as starting point, the last point of the Ornstein-Uhlenbeck process. We use the same hyper-
parameters for the dataset generation as in Section F.1, except that we set the parameter m = 10 in
the Ornstein-Uhlenbeck model to make the two parts act on similar scales.

Architecture & Training. Same as in Section F.1, but with batch size 100. Moreover, we used
100 neurons in each hidden layer, to account for the more complicated setting, where also a time
dependence has to be learnt.

32



Published as a conference paper at ICLR 2021

Results. In the plots on test samples of the dataset shown in Figure 12 we see that our model correctly
learns the change of regime.
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Figure 12: Our model evaluated on a stochastic dataset that follows an Ornstein-Uhlenbeck SDE on
the time interval [0, 0.5] and an Black-Scholes model on the time interval (0.5, 1].

F.2.3 DATASET WITH EXPLICIT TIME DEPENDENCE

Dataset. We use the Black-Scholes datasets of Section F.1, where we replace the constant µ by
the time dependent constant α2 (sin(βt) + 1), for α, β > 0. The conditional expectation changes
accordingly. For the data generation we use the same hyper-parameters as in Section F.1, except that
we use instead of µ the parameter α = 2 and β ∈ {2π, 4π}.
Architecture & Training. Same as in Section F.1, but with batch size 100. Moreover, we used 400
neurons in each hidden layer, to account for the more complicated setting, where an explicit time
dependence has to be learnt.

Results. We show plots on test samples of the datasets in Figure 5. We see that the model learns to
adapt to the time-dependent coefficients.

F.3 DETAILS ON CONVERGENCE STUDY

Evaluation metric. For the sampling time grid with equidistant step size ∆t := T
ν , ν ∈ N, on [0, T ]

and the true and predicted conditional expectation for path j ∈ N, X̂j and Y j respectively, we define
the evaluation metric as

eval(X̂, Y ) :=
1

N2

N2∑
j=1

1

ν + 1

ν∑
i=0

(
X̂j
i∆t
− Y ji∆t

)2

, (46)

where N2 is the number of test samples, and j accordingly iterates over the paths in the test set.

Increasingly big training sets. We use the following procedure to create increasingly big training
sets, while keeping the exactly same test set for evaluation. Out of the initial 20′000 paths, we
take N2 := 4′000 paths, which are fixed as the testing set. Out of the remaining 16′000 paths, we
randomly choose N1 training paths for N1 ∈ {200, 400, 800, 1′600, 3′200, 6′400, 12′800}.
Increasing neural network sizes. The increasingly big neural networks are defined as follows.
For all involved networks, we use the feed-forward 2-layer architecture with tanh activations (cf.
Appedix F.1), where each hidden layer has the same size M for M ∈ {10, 20, 40, 80, 160, 320}.
Results on Black-Scholes dataset. In accordance with the theoretical results in Theorem E.2 and
E.13, we see that the evaluation metric decreases whenN1 andM increase (Figure 13). It is important
to notice, that already a quite small number of samples can lead to a good approximation of the
conditional expectation, if the network is big enough. In particular, the Monte Carlo approximation
of the theoretical loss function is good already with a few samples. On the other hand, even with a
large number of samples, the evaluation metric does not become so small, if the network size is not
big enough. From a practitioners point of view, this is good news, since increasing the network size
is often much easier than collecting more training data.
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Figure 13: Black-Scholes dataset. Mean ± standard deviation (black bars) of the evaluation metric
for varying N1 and M .

Results on Ornstein-Uhlenbeck and Heston dataset. We get very similar results on the Ornstein
Uhlenbeck (Figure 14) and Heston dataset (Figure 15). Similar as for Black Scholes, also for
Ornstein-Uhlenbeck the training size N1 is not as important as the network size M . For all network
sizes, increasing the training size further than 1600 hardly changes the performance, while increasing
M is crucial to get better performance. In contrast to this, for the Heston dataset we see that a large

Figure 14: Ornstein-Uhlenbeck dataset. Mean ± standard deviation (black bars) of the evaluation
metric for varying N1 and M .

number of training samples is more important to get a smaller convergence metric. This reflects the
fact, that the Heston dataset is more complex and more difficult to learn.

F.4 DETAILS ON COMPARISON TO GRU-ODE-BAYES

GRU-ODE-Bayes (Brouwer et al., 2019). To the best of our knowledge, this is the neural network
based method with the most similar task to ours. In particular, this continuous time model is trained
to learn the unknown temporal parameters of a normal distribution, best describing the conditional
distribution of X given the previous observations. This distribution is given by the Fokker-Planck
equation. Brouwer et al. (2019) outlined, that their model can exactly represent the Fokker-Planck
dynamics of the Ornstein-Uhlenbeck process, since the corresponding distribution is Gaussian.

Implementation of GRU-ODE-Bayes. We use the code of the official implementation of (Brouwer
et al., 2019)8 and slightly adjust it for our purpose. In particular, we do not use incomplete ob-
servations, hence the input mask used for this task has always only 1-entries. Furthermore, we
slightly changed the scheme how the time steps are taken, to be the same as in our implementation,
so that comparisons can be made. Besides these minor changes, the original model is used and

8https://github.com/edebrouwer/gru_ode_bayes
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Figure 15: Heston dataset. Mean ± standard deviation (black bars) of the evaluation metric for
varying N1 and M .

trained on all 3 datasets (Black-Scholes, Ornstein-Uhlenbeck and Heston). We tried out all com-
binations of the following parameters and always chose the best performing one for comparison
to our model: impute ∈ {True,False}, logvar ∈ {True,False}, mixing ∈ {0.0001, 0.5} and
hiddensize ∈ {50, 100}, whereby phidden and prephidden were chosen to be equal to hiddensize.
The first parameter choices were the ones used in the official implementation. The model was always
trained using the Euler-method for solving ODEs and with dropout = 0.1, to be comparable to
our implementation. Furthermore, we always used the full GRU-ODE-Bayes implementation, since
it should be the more powerful one. For the comparison, we only use the estimated mean of the
normal distribution (the estimated variance is not used), which is precisely the estimated conditional
expectation of the model.

Implementation of NJ-ODE. Same as described in Section F.1. For each dataset only one model
was trained, since we already saw the convergence properties before and wanted to have a qualitative
comparison to GRU-ODE-Bayes. In particular, we did not try to optimize our hyper-parameters for
best performance (e.g. by choosing different number of layers or neurons or different activation
functions) and used about 10K trainable parameters compared to the best performing GRU-ODE-
Bayes models of our study which used 112K trainable parameters.

Datasets. Same as described in Section F.1. The train and test sets were fixed to be the same for all
trained models.

Training. All models were trained using the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 and weight decay 0.0005 for 100 epochs using a batch size of 20. A random initialization
was used.

F.4.1 FURTHER RESULTS AND DISCUSSION OF THE COMPARISON

Evolution of losses and evaluation metric during training. In Figure 16 and 17 we see, that
already after a few epochs the NJ-ODE model finds close to optimal weights for the given network
size on the Black-Scholes and Orstein-Uhlenbeck dataset and oscillates around this optimum. The
Heston dataset is considerably more difficult and the model slowly converges to close-to-optimal
weights for the given network size. In comparison to this, it takes the GRU-ODE-Bayes model longer
to converge to its close-to-optimal weights on the Black-Scholes and Orstein-Uhlenbeck dataset.
Moreover, the model does not converge to close-to-optimal weights on the Heston dataset, but rather
oscillates between bad weights. Due to some very large outliers, this is not directly visible in the plot,
but can be deduced from Table 6.4.

Comparison of predicted paths. For each dataset we show 5 paths that were predicted with NJ-
ODE and with GRU-ODE-Bayes, first at the optimal epoch, i.e. where the test loss was minimal
during training (Figures 18, 19, 20), and then at the last epoch (Figures 21, 22, 23). For the sake of
comparison, in each row the performance on the same test sample is shown. The results are very
similar for NJ-ODE and GRU-ODE-Bayes on the Black-Scholes and Ornstein-Uhlenbeck dataset,
with sometimes the one and sometimes the other having a slightly better prediction. On the Heston

35



Published as a conference paper at ICLR 2021

0 20 40 60 80 100

0.1

0.2

tra
in

_lo
ss

0 20 40 60 80 100
0.15

0.16

0.17
ev

al
_lo

ss

0 20 40 60 80 100
epoch

0.01

0.02

ev
al

_m
et

ric
0 20 40 60 80 100

0.0075

0.0100

tra
in

_lo
ss

0 20 40 60 80 100

0.008

0.009

ev
al

_lo
ss

0 20 40 60 80 100
epoch

0.0005

0.0010

0.0015

ev
al

_m
et

ric

0 20 40 60 80 100
0

500

tra
in

_lo
ss

0 20 40 60 80 100
47

48

ev
al

_lo
ss

0 20 40 60 80 100
epoch

2

3

ev
al

_m
et

ric

Figure 16: NJ-ODE on Black-Scholes, Ornstein-Uhlenbeck and Heston (from left to right). Blue (1st
row): training loss, orange (2nd row): evaluation loss, green (3rd row): evaluation metric.
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Figure 17: GRU-ODE-Bayes’ best performing models on Black-Scholes, Ornstein-Uhlenbeck and
Heston (from left to right). Blue (1st row): training loss, orange (2nd row): evaluation loss, green
(3rd row): evaluation metric.

dataset, the results of NJ-ODE are good predictions, being correct whenever a new observation
is made and not too far away even after longer periods without observations. On the other hand,
GRU-ODE-Bayes is not even correct at times of new observations and learns an incorrect behaviour
in between observations (e.g. making kinks where there should not be any). For the last epoch, we
see that this malfunction is amplified.

F.4.2 FURTHER EXPERIMENTS

Since the results of GRU-ODE-Bayes were unexpectedly bad on the Heston dataset, we performed
additional tests. In particular, we retrained the best combinations of GRU-ODE-Bayes with the larger
batch size 100. For smaller versions of the network (M), i.e. with hiddensize = prephidden =
phidden = 50 this stabilized the training, such that the models converged. Still, even at the best
epoch, the models suffered from the same difficulties as explained in Section F.4.1. Increasing the
hiddensize by factor 2 to 100 (L), made the training unstable again, and the models did not converge
any more. This gives more empirical evidence, that GRU-ODE-Bayes can not be reliably trained
on more complex datasets, where the target conditional distributions differs to much from a normal
distribution. In contrast to this, retraining NJ-ODE with batch size 100, once for the smaller version
described in Section F (S), once for a larger version with 100 instead of 50 neurons in all hidden
layers (M) and once with 200 neurons (L), yielded the expected results of better performance with
larger networks. In particular, there is no instability for larger networks. In Table F.4.2 we show
results of our model and of the best GRU-ODE-model for the given size.

Table 4: The minimal, last and average value of the evaluation metric (smaller is better) on the Heston
dataset throughout the 100 epochs of training, together with the number of trainable parameters.

min last average params
GRU (M) 2.38 4.63 8.25 28′802
GRU (L) 5.58 17.39 1877.26 112′602
ours (S) 1.71 1.71 2.05 10′071
ours (M) 1.21 1.23 1.60 35′121
ours (L) 1.07 1.08 1.36 130′221
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F.5 REAL WORLD DATASETS WITH INCOMPLETE OBSERVATIONS

F.5.1 LOSS FUNCTION FOR INCOMPLETE OBSERVATIONS

In accordance with the self-imputation scheme, the loss function is adjusted to only use the non-
imputed coordinates, i.e. if m is the random process in {0, 1}dX describing which coordinates are
observed we have

Ψ(Z) := EP×P̃

[
1

n

n∑
i=1

(|mti � (Xti − Zti)|2 + |mti � (Zti − Zti−)|2)
2

]
.

F.5.2 CLIMATE FORECASTING DETAILS

Dataset. We use the publicly available United State Historical Climatology Network (USHCN) daily
dataset (Menne et al., 2016) together with all pre-processing steps as they were provided by Brouwer
et al. (2019). In particular, there are 5 sporadically observed (i.e. incomplete observations) climate
variables (daily temperatures, precipitation, and snow) measured at 1′114 stations scattered over the
United States during an observation window of 4 years (between 1996 and 2000) where each station
has an average of 346 observations over those 4 years. For 5 folds, the data is split into train (70%),
validation (20%) and test (10%) sets. The task is to predict the next 3 measurements after the first
3 years of observation. The mean squared error between the prediction and the correct values is
computed on the validation and test set.

Baselines. We use the results reported in (Brouwer et al., 2019, Table 1) as baselines for our
comparison and perform the exact same 5-fold cross validation using the same folds with the same
train, validation and test sets. For completeness, we give all results of the table together with our
results in Table 6.5. We only show the mean squared error (MSE), since our model does not provide
the negative log-likelihood.

Implementation of NJ-ODE. We once use the architecture described in Section F.1 (S) and once
use the exact same architecture, but with hidden size dH = 50 and 400 instead of 50 nodes in each
hidden layer (L). To deal with the incomplete observations, the self-imputation scheme described in
Section 6.5 is used. In particular, the data is self-imputed and passed together with the observation
mask as input to the network ρ̃θ2 . Moreover, the network fθ1 uses the NJ-ODE output at the last
observation time instead of the last observation as input.

Training. Both versions of NJ-ODE were trained using the Adam optimizer (Kingma & Ba, 2014)
with a learning rate of 0.001 and weight decay 0.0005 for 100 epochs using a batch size of 100. A
random initialization was used. The performance on the validation set was used for early stopping
after the first 100 epochs, i.e. early stopping was possible at any epoch between {101, . . . , 200}.
Results. The results of our model and all models reported in (Brouwer et al., 2019, Table 1) are
shown in Table 6.5.

F.5.3 PHYSIONET PREDICTION DETAILS

Dataset. We use the publicly available PhysioNet Challenge 2012 dataset (Goldberger et al., 2000)
together with all pre-processing steps as they were described and provided by Rubanova et al. (2019).
In particular, there are 41 features of 8000 patients that are observed irregularly over a 48 hour time
period. The observations are put on a time grid with step size 0.016 hours leading to 3000 grid points.
While in their paper Rubanova et al. (2019) say that they use 2880 grid points (i.e. minute wise) in
their implementation they used 3000. Moreover, in contrast to what was written in the paper, the 4
constant features were not excluded in their implementation, hence we also keep them. Furthermore,
we also rescale the time-grid to [0, 1] and normalize each feature as Rubanova et al. (2019) did it
for training the model. The dataset is split with the same fixed seed into 80% training and 20% test
set. In particular, no cross validation but only multiple runs with new random initializations are
performed to be exactly comparable to the results reported by Rubanova et al. (2019). On the test set,
the observation paths are split in half. The first half (first 1500 time steps) is used as input for the
model, from which the second half (second 1500 time steps) should be forecast. The masked mean
squared error (MSE) with a certain balancing procedure between the predictions and the true values
is reported. For comparability we use the exact same implementation of the MSE as Rubanova et al.
(2019).
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Baselines. We compare the performance of our model to latent ODE on the extrapolation task
(as described above) on physionet. As baseline for our comparison we use the results reported in
(Rubanova et al., 2019, Table 5). For completeness, we show all extrapolation results of the table
together with our results in Table 6.5. We shortly outline the different approach of latent ODE
compared to our model for the given extrapolation task. Latent ODE also splits the training samples
similar to the test samples in half, using the first half as input and the second half as target. It is trained
as an encoder-decoder, encoding the observations in the first half and reconstructing (decoding) the
second half. This falls in the standard supervised learning framework. In particular, this approach
cannot straight forward be extended for online forecasting. Moreover, this approach might learn
certain path dependencies. On the other hand, our model is trained as always, online forecasting
after each observation until the next observation is made. Instead of splitting the training samples
we use the entire path as input for our unsupervised training framework. Our model is based on the
assumption that paths are Markov, therefore it cannot learn path dependencies, i.e. dependencies
on more than just the last observation. However, by training the model also on the second half
of the training samples, it learns the underlying behaviour there, which should be helpful for the
extrapolation task.

Implementation of NJ-ODE. We use the architecture described in Section F.1, but with hidden
size dH = 41. To deal with the incomplete observations, the self-imputation scheme described in
Section 6.5 is used. In particular, the data is self-imputed and passed together with the observation
mask as input to the network ρ̃θ2 . Moreover, the network fθ1 uses the NJ-ODE output at the last
observation time instead of the last observation as input.

Training. The NJ-ODE was trained using the Adam optimizer (Kingma & Ba, 2014) with a learning
rate of 0.001 and weight decay 0.0005 for 175 epochs using a batch size of 50. 5 runs with random
initialization were performed over which the mean and standard deviations were calculated. In
particular, these runs always used the same training and test set, specified by the same random seed
as in thee implementation of Rubanova et al. (2019).

Results. The results of our model and all models reported in (Rubanova et al., 2019, Table 5,
extrapolation) are shown in Table 6.5. We report the minimal MSE on the test set during the 175
epochs, since it was not differently specified in (Rubanova et al., 2019). However, if the MSE of the
epoch is used where the training loss is minimal, the results are nearly the same with 1.986± 0.058
(×10−3). Moreover, we trained a larger model for 120 epochs, where 200 nodes were used instead
of 50 (187′323 parameters in total), leading to slightly better results of 1.934± 0.007 (×10−3) (at
minimal MSE) and 1.982± 0.027 (×10−3) (at minimal training loss).
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Figure 18: Comparison of predictions for Black-Scholes paths at best epoch.
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Figure 19: Comparison of predictions for Ornstein-Uhlenbeck paths at best epoch.
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Figure 20: Comparison of predictions for Heston paths at best epoch.
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Figure 21: Comparison of predictions for Black-Scholes paths at last epoch.
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Figure 22: Comparison of predictions for Ornstein-Uhlenbeck paths at last epoch.
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Figure 23: Comparison of predictions for Heston paths at last epoch.
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