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Abstract. Handwritten Text Generation (HTG) conditioned on text
and style is a challenging task due to the variability of inter-user charac-
teristics and the unlimited combinations of characters that form new
words unseen during training. Diffusion Models have recently shown
promising results in HTG but still remain under-explored. We present
DiffusionPen (DiffPen), a 5-shot style handwritten text generation app-
roach based on Latent Diffusion Models. By utilizing a hybrid style
extractor that combines metric learning and classification, our app-
roach manages to capture both textual and stylistic characteristics of
seen and unseen words and styles, generating realistic handwritten sam-
ples. Moreover, we explore several variation strategies of the data with
multi-style mixtures and noisy embeddings, enhancing the robustness
and diversity of the generated data. Extensive experiments using TAM
offline handwriting database show that our method outperforms exist-
ing methods qualitatively and quantitatively, and its additional gener-
ated data can improve the performance of Handwriting Text Recognition
(HTR) systems. The code is available at: https://github.com/koninik/
DiffusionPen.

Keywords: Handwriting Generation - Latent Diffusion Models -
Few-shot Style Representation

1 Introduction

Handwritten Text Generation (HTG) or Styled HTG is a challenging task
recently gaining increased attention. The challenge lies in preserving the read-
ability of specific textual content while capturing the unique characteristics of
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a writer. The ability to automatically generate text that resembles a specific
writing style could enhance personalization in digital design or potentially assist
people facing writing challenges. Furthermore, more relevant to this work, it
enables the augmentation of datasets to train efficient text recognition systems.

Generative  Adversarial
Networks (GANSs) have been
the predominant method for

IV-S OO0V-S IV-U [ O0V-U ] [Digits&SpeCia] characters]
[ Tiaow | B R +9.9-5443¢ offline HTG [1,6, 15,22,34.]. In
. L Vi , I terms of network architec-

QE Yok ghe s >, 0006, 00«

/ . p .y . ture, Transformer-based solu-
Wt fF CcoSwuc kv\ow Ca TR EY AR X . A
o 7 it bbby (61 0TV, gV tions [3,25,38] are invari-
fgue abuat LS7TH i ‘ ‘ ably employed, following the
trends set in other fields.
Fig.1. Qualitative results generated using our Among these standard meth-

method for four cases: In-Vocabulary words and
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style (OOV-S), Out-of-Vocabulary words and
Unseen style (OOV-U), as well as digits and punc-
tuations.

ods, Denoising Diffusion Prob-
abilistic Models (DDPM) [13]

have recently emerged as

a compelling alternative for

HTG, offering a new paradigm
distinct from traditional GANs
and showcasing impressive results [24,43]. A common approach in GAN-based

methods concerning the treatment of handwriting style is to incorporate a writer

recognizer to classify the generated samples during training in order to force the

generator to learn how to generate a specific handwriting style. However, adver-

sarial training is known to suffer from limited diversity in the generated samples

and presents instabilities in the training process [26, §15.1.4]. The same approach

is not straightforward when using DDPM since the objective during training is

to model the noise. Thus, the style space must be modeled more carefully.

DDPMs are a class of hierarchical Variational Autoencoders (VAEs) [13,17,
36] that have recently garnered considerable interest within the representation
learning and vision communities. Among an assortment of impressive results on
a range of tasks, they have notably dominated the field of text-to-image gener-
ation by creating high-quality images given a text prompt [23,28,30,32]. Their
success relies on the efficiency of the model itself and the use of pre-training
techniques of large-scale image-text pairs [27]. While numerous diffusion-based
systems demonstrate high-quality results in generating images given a text
description [2,23,28,30,32], fewer works focus on generating readable scene-text
images [4,41,43] or fonts [11,40] and, related to this work, generating handwrit-
ing [10,24,43].

In this work, we present a latent diffusion model that generates handwritten
text images conditioned on a text prompt and a limited set of style samples in
a few-shot scheme. As it can be seen in Fig. 1, our proposed method manages
to generate realistic samples of seen and unseen styles as well as In-Vocabulary
(IV) and Out-of-Vocabulary (OOV) words. Most importantly, we deal success-
fully with the problem of limited diversity when sampling from the posterior and



DiffusionPen: Towards Controlling the Style of Handwritten Text Generation 419

attempt to manipulate the output samples through various strategies. An effect
relating conditional weighting and stereotypical sampling has been recently dis-
cussed in the context of diffusion-based modeling [26, §18.6.3]. To the best of our
knowledge, this is one of the first works incorporating the few-shot style scheme
in diffusion-based methods for HTG. We show that the resulting model leads
to handwriting samples of simultaneously high diversity and high quality while
conditioned on textual and style information.

Contributions. We propose DiffusionPen (DiffPen), a styled handwritten text
generation method based on latent diffusion models. The method comprises a
latent denoising autoencoder that performs the denoising diffusion process as the
main network, and two auxiliary pre-trained encoders to create the style and
textual conditions. The style encoder is based on the combination of classifica-
tion and metric-learning training, which creates a continuous space for the style
embeddings, providing more diversity to the generation process. The style con-
dition is introduced in the main network in a few-shot setting to represent the
unique characteristics of each writer from a limited set of & = 5 samples.

Our method is able to imitate the style of a writer given specific text content
and five images from the specific writer. In particular, we show that we:

— avoid posterior collapse; given a text and style embedding, the proposed
model is capable of producing highly diverse handwriting samples.

— estimate a meaningful style space; points in the style space invariably corre-
spond to realistic, unseen styles.

— outperform numerically the current state of the art by a significant margin.

— control style generation via style interpolation, style mizture & noise bias.

We evaluate our proposed method by presenting both qualitative and quan-
titative results. Through qualitative results, we show that our method is able to
generate IV and OOV words of both seen and unseen writer styles. We quan-
tify generated data quality by computing commonly used metrics and comparing
versus other SotA methods. Furthermore, we quantify style quality by examining
whether a writer recognizer trained on real data can recognize the writer class
of the generated data. To quantify diversity of the generated data, we conduct
extensive experiments using an “auxiliary” HTR task; in particular, we use our
model to imitate the real dataset and proceed to explore the variation present
in the generated data by measuring the extent of improvement over HTR per-
formance after using diffusion-generated data in the training process. Moreover,
we present different sampling strategies that incorporate noise bias, style inter-
polation, and style mixture that showcase how style can be controlled and give
extra variation to the generation. Finally, we present limitations with practical
solutions, leading to future work perspectives and discuss ethical considerations.

2 Related Work

Handwritten Text Generation. The steady progress in the expressiveness
and sophistication of generative modeling has enabled HT'G, especially after the
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advent of adversarial modeling. Most works focusing on offline HTG rely on
GAN-based approaches. Alonso et al. [1] present a GAN-based approach that
takes as input a sequential text embedding encoded by an LSTM Recurrent
Neural Network and further deploys an auxiliary network that uses CTC loss to
recognize the generated text. Similarly, ScrabbleGAN [34] uses a text recognizer
to help improve the quality of the generated text and character filters, showing
variability in style and stroke width. Both approaches focus mostly on condi-
tioning on the text content. On the contrary, Davis et al. [6] present a method
that conditions on both text and style to generate realistic handwritten lines of
arbitrary length by predicting the space required between text. Likewise, GAN-
writing [15] is a GAN-based system conditioned on text and few-shot stylistic
samples and is trained in an adversarial manner with additional help from a text
recognizer and a writer classification network. The method manages to gener-
ate realistic handwritten images of in-vocabulary and out-of-vocabulary words
of seen and unseen writer styles. The work is further extended in [14] to also
work for whole sentences. Although GANwriting generates understandable and
stylistic samples there are several artifacts present in the generated data. An
approach based on GANwriting named SmartPatch was introduced in [22] to
tackle these artifacts.

Also based on a GAN framework and adversarial training, [3] and [25] have
combined the encoder-decoder nature of Transformers with a few-shot style
encoding to generate handwritten text. Further following the image synthesis
trends, the works presented in [24] and [43] have introduced the application of
Diffusion Models to synthesize understandable handwritten text. These systems
have the ability to generate high quality text conditioning on a writer style and
a text content, however they are limited in the way they represent and han-
dle unseen styles. In this work, we address the limitations of the aforementioned
approaches [24,43] and propose a Diffusion-based generative model that can pro-
duce unseen writing style samples by deploying pre-trained writer classifiers in
a few-shot setting.

Few-Shot Conditional Diffusion Models. Few-shot Conditional Generation
is the task of generating new samples of a specific class or object by conditioning
on a few samples instead of a class embedding. This further enables the gener-
ation of unseen classes. Few-Shot Diffusion Models [8] condition the generation
on a small set of image patches using a Vision Transformer (ViT). D2C [35]
is a conditional few-shot Latent Diffusion Model that utilizes contrastive self-
supervision to learn the latent space. The existing work indicates that there is
plenty of room to explore conditioning diffusion models in few-shot schemes.

3 Proposed Method

The problem formulation of this work can be described as follows. Given k = 5
samples written by a writer w € W and a word ¢ comprising ¢ characters, our
goal is to generate new images Y,/ that depict the text content in ¢ and the style
of writer w. This task can be cast in terms of a conditional generative model,
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Fig. 2. Overview of DiffusionPen. DiffusionPen comprises the conditional generator
UNet Encoder-Decoder, having a Text Encoder Tk, a Style Encoder Sg, and a VAEE
encoder during training (2a) and VAEp decoder during sampling (2b).

where we need to learn a distribution of handwriting samples ¢(+). Sampling over
the distribution (conditioned on w,t) will produce the desired new images Y.

Prior work on HTG, using similar considerations with GAN-based approaches
[3,15,25] or diffusion modeling [24,43] is hindered by two correlated issues. First,
the style space is inadequately modeled in the sense that points in the sample
space are not guaranteed to correspond to a meaningful style. This is particularly
visible in the results of Sect. 4, where some of the compared methods achieve very
high CER and WER scores when used to train an HTR system, indicating that
they lack variation due to mode collapse. Second, sampling from the posterior
given style and content gives samples that are practically too close to specific
distribution modes.

We deploy a Conditional Latent Diffusion Model in combination with an
existing text encoder and a feature extractor that operates in a few-shot scheme
on the style samples. The feature extractor is trained using a hybrid metric-
learning and classification approach to obtain a more intuitive feature space for
the writer-style representations. In this manner, we constrain the learned style
space to retain a sense of prescribed style distance.

Style Encoder. Given a batch of images, the goal of the style encoder Sg is to
extract meaningful feature representations that encapsulate the writer charac-
teristics of each image to ultimately be used in a few-shot learning setting and
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condition the diffusion model training. To this end, we utilize a MobileNetV2
backbone [33] as the style encoder Sg due to its high performance and lightweight
design, and we combine a classification and metric learning approach during
training. A small ablation on the choice of the backbone is presented in the
supplementary material.

Given a sample image s,,, used as an anchor, the model learns its stylis-
tic characteristics from a random positive sample sy from the same writer
and a random negative sample s_ from a different writer. The model learns
the similarity between the samples using a triplet loss Lipiprer formulated as:
Liripiet(Sw, S4,5—) = max (0,04 — 6_ + «), where dx = ||fs, — fsillp and « is
a margin. Furthermore, the feature representation of the anchor sample f,  is
passed through a classification layer to predict its writer class. The classifica-
tion part is optimized using Cross-Entropy as the classification loss L.j,ss. The
model is trained using the combination of the two parts, formulating the loss as:
Leomb = Letass(fsys W) + Liripiet (Sw, S+, 5-). A graphical representation of the
style encoder hybrid training is presented in Fig.3. This hybrid approach pro-
vides a feature space that keeps the different classes well-separated and robust-
ness in intra-class variation. More details about the training of the style encoder
are presented in Sect.4.1.

Given the pre-trained style
encoder, the style condition c;
that is fed into the diffusion
model is created as follows.
For every image in the train-
ing set, we consider k samples
from the same writer class
and pass them through Sg

to extract the feature repre- Fig.3. A graphical representation of the hybrid
sentation of each style image style encoder Sg training. The style encoder creates
sg. Then, we aggregate the the feature representations of the anchor sample fs,, ,
extracted d-dimensional fea- positive sample fs, , and negative sample f,_. The
tures of the style images by metric learning training part pushes the positive fea-
obtaining the mean of the k tures closer to the anchor and the negative features
feature embeddings S, € further away. The model uses the class prediction y.,
R, Unlike most works that of the anchor for the classification optimization.

use 15 samples [3,15,22,25] to
get the stylistic characteristics, we condition the writer style on & = 5 style fea-
tures. Finally, the mean feature embedding is projected to the model dimension

using a linear layer Fj,.;, giving the final style condition as ¢; = Fproj(Sems) €
R%model

Text Encoder. The text condition ¢, defines the textual content depicted in
the images. The condition is created by using CANINE-C [5] as the text encoder.
CANINE-C is an encoder that operates directly on character sequences without
using an explicit vocabulary. This is particularly useful in the case of handwrit-
ing generation in order to generate OOV words. First, the raw character input
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sequence 7 is given to the CANINE tokenizer to get a structured format of the
words, giving a unique token to each character and padding every word to a
maximum length for batch processing. An encoded embedding 7,,; of the tok-
enized input is then created by the text encoder, and then, Fj,.,; is applied to
the text embedding to obtain the text condition ¢; = Fproj(Tems) € Rémeodet
The text encoder and Conditional Latent Diffusion Model are trained using the
objective described in the following paragraphs.

Conditional Latent Diffusion Model. Diffusion models can be understood as
a special case of a Variational Autoencoder, where the latent space is defined as
a Markov chain consisting of random variables z1, - -- , zr. These variables have
the same dimensionality as the initial sample zy and furthermore the encoder is
(usually) fixed, with Gaussian noise being added layer after layer of the Markov
chain. In diffusion modeling, we aim to learn the decoder or otherwise termed
reverse or denoising phase, to be understood as letting the network learn how
to gradually remove noise from zp gradually back to the original sample space.

For the latent diffusion-based network, we utilize a UNet architecture [31],
similar to WordStylist [24], as the network that learns the noise distribution to
be removed. To reduce computational cost, we use a pretrained VAE encoder
[30] to map the original image input of shape W x H into a 4-D latent repre-
sentation z € R¥>*W/8xH/8 a5 input to the network that performs the diffusion
and the denoising process. In the forward diffusion process, a timestep ¢ € [0, 7]
and Gaussian noise € € R¥*W/8xH/8 gre sampled to corrupt the initial latent
representation z;. The network is trained using the denoising loss between the
sampled Gaussian noise € and the predicted noise €g, as: L = ||e — € (24, ¢s, ¢7) Hg
In the backward denoising process or sampling, given a style embedding and a
text condition, the denoising autoencoder predicts and subtracts the present
noise given the previous denoised sample. Finally, the predicted latent sample is
given to the VAE decoder to create the final image. Figure 2 presents the overall
architecture of our method.

4 Experiments

4.1 Datasets, Training Setup, and Considered SotA Approaches

Datasets. IAM Offline Handwriting Database [21] is one of the most commonly
used datasets for handwriting recognition. It contains ~115K isolated words and
their transcriptions written by various writers. Similar to [15], we use 339 writers
to train the style encoder and diffusion model, and we keep 160 for the experi-
mental evaluation of the unseen style scenario and the HTR system. Additionally,
we use the GNHK dataset [19], which includes unconstrained camera-captured
images of English handwritten text, and show qualitative results in the supple-
mentary material.

Training Setup. The training process occurs in two stages: the Style Encoder
and the Denoising Model training. The Style Encoder is trained as described
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in Sect.3, using IAM database. The style extractor is trained for 20 epochs,
with a batch size of 320, Adam [18] as the optimizer, and a learning rate of
0.001 that is reduced by a factor of 0.1 every 3 epochs and weight decay of
0.0001. We used a random selection for the negative samples as the inherently
varied and nuanced differences across writers reduce the chance of selecting an
easier negative; hence, the randomly chosen examples are sufficiently challenging,
and no convergence issues were observed. All images are initially rescaled to a
height of 64 pixels, preserving the aspect ratio. If the width of an image after
rescaling is less than 256 pixels, padding is added to a fixed width of 256 pixels.
Otherwise, the image is resized in height and width until obtaining a width
less than 256 pixels and then padded in both height and width to a fixed size
of 64 x 256. The same image pre-processing is also used in the main model
training. The style encoder is trained independently from the diffusion model
and is kept frozen during the diffusion training to create the stylistic feature
condition. For the Denoising Model training, we use DDIM [37] noise scheduler
for the noise injection and sampling. During training, the diffusion timesteps are
set to 1K, while for sampling, the noise scheduler gives the flexibility to reduce
the backward timesteps to 50. AdamW [20] is the optimizer with a weight decay
of 0.2 and a learning rate of 0.0001. Every model is trained with a batch size of
320 for 1K epochs on a single A100 SXM GPU.

Considered SotA Approaches. For qualitative and quantitative compari-
son with the literature, we consider the GAN-based methods GANwriting [15]
and SmartPatch [22], the Transformer-based VATr [25], and the Diffusion-based
WordStylist [24]. GANwriting, SmartPatch, and VATr are similar to our method
in terms of few-shot style condition. However, these methods use 15 samples to
create the style embedding, while we use only 5. Furthermore, these methods use
an auxiliary writer identification network as the feature extractor that is trained
dynamically for the task with the generator. On the other hand, WordStylist is
relevant to our method, as the main denoising diffusion process and network are
similar, while the key difference is that WordStylist conditions on the style as a
whole class embedding, which limits it to create only previously seen styles.

4.2 Quality Assessment

Figure 1 shows that our approach manages to generate samples of Seen (S) and
Unseen (U) styles, In-Vocabulary (IV) and Out-of-Vocabulary (OOV) words,
as well as digits and special characters. Comparative visual results with the
SotA methods are also presented in Fig. 4. Furthermore, examples of generated
words containing more than 10 characters are presented in Fig. 5b, showcasing
the ability of our model to create longer words. Unseen styles are also presented
in Fig.5a. Finally, we present small paragraphs generated using our method
in Fig.6. More visual examples of both IAM and GNHK datasets, highlight-
ing the notable variety of simulated styles and capabilities of our method, are
included in the supplementary material.

To assess and quantify the quality of the generated words, we compute the
Fréchet Inception Distance (FID) score [7], the Mean Structural Similarity Index
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the 5 style samples used for the style condition, and on the right, the generated word.
(b) Generated words of different styles comprised of more than 10 characters.

(MSSIM) [39], the Root Mean Squared Error (RMSE), and the Learned Percep-
tual ITmage Patch Similarity (LPIPS) [42] scores. These metrics are commonly
used to evaluate generative models. However, their use in HTG is not really
intuitive, as they either rely on an ImageNet pre-trained network or compute
pixel-wise similarities. Furthermore, we approach the evaluation through a writer
classification strategy, following a more document-oriented strategy. To this end,
we deploy a ResNet18 architecture [12], pre-trained on ImageNet, and finetune it
on the TAM database for the task of writer-style classification. We use a different
backbone from our style extractor to avoid any bias induced by our model train-
ing. The goal is to train the recognizer on a subset of the real training set and
then evaluate its performance on the entire set of synthetic samples generated by
different methods that simulate IAM (same words, same styles). This approach
aims to determine whether the recognizer can correctly classify the generated
samples, regardless of whether it has seen the corresponding real samples during
training or not.

Table 1 presents the aforementioned metrics obtained using the different con-
sidered methods. Our proposed method and its variations non-trivially outper-
form the other HTG approaches for all metrics. Similarly, for the task of writer
identification, the model successfully classifies a high percentage of samples gen-
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Table 1. Comparison of FID, MSSIM, RMSE, LPIPS, and classification accuracy with
previous methods. For FID, RMSE, and LPIPS, the lower, the better.

Method FID| MSSIM! RMSE| LPIPS| Acc(%)?
Real IAM - - - - 92.34
GANwriting 43.97 0.777 03118 0.2912  3.25
SmartPatch 50.21 0.757  0.3207 0.3003  2.14
WordStylist 3420  0.955 0.1576 0.1080  68.25

DiffPen-class (Ours) 22.23 0.967  0.1587 0.1114  68.04
DiffPen-triplet (Ours) 22.06 0.953  0.1612 0.1127  67.50
DiffPen (Ours) 22.54 0963  0.1505 0.1072  70.31

erated by our method with an accuracy of 70.31%. This result overpasses the
68.25% of the recent WordStylist approach that learns the style class in an
explicit manner. In general, WordStylist and DiffusionPen have very similar per-
formances in most metrics. This behavior is expected, as the two systems share
backbone architecture. Our results suggest that, while we are able to reproduce
the style slightly better than Wordstylist (which explicitly uses the style class as
an embedding), we have managed to introduce more variation to the generated
samples, which is the most crucial component in improving HTR performance
when training on generated samples. Within this experimental setup, we also
conduct an ablation study on the usefulness of our proposed style extractor by
exploring the role of the loss terms. A breakdown of the loss terms of each abla-
tion variation and additional discussion on the benefits of the style extractor are
presented in the supplementary material. Due to format issues, the metrics for
VATY are not included in the table. From the presented results, we can draw the
following conclusions. First, the writer classification accuracy is increased using
the hybrid style embedding, namely through the joint classification and triplet
scheme. This is not the case for the other metrics, but the differences are non-
significant, and their relevance to the HTG task is far inferior compared to the
writer classification paradigm. Moreover, previous methods, such as GANwrit-
ing [15] and SmartPatch [22], despite having paved the way towards generating
realistic images of handwritten words, seem unable to simulate the varieties of
writing styles existing in IAM. Finally, our proposed hybrid style embedding
outperforms all the reported methods for all the considered metrics.

Unseen Styles. Unlike previous works that use Diffusion Models for HTG [24,
43], DiffusionPen can imitate a writing style not seen during training from a
few samples. We present qualitative results of generating unseen writing styles
in Fig. 5a. Our method can replicate the style of the unseen style samples used
as conditions and produce understandable text. More generation examples of
Unseen styles, with both IV and OOV words, are included in the supplementary
material. We should highlight the low number of required exemplars — only 5 —
used for the generation, enabling potential applications where writers’ data are
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Fig. 6. A small paragraph generated in a Seen and Unseen Style.

limited. Additionally, the mean aggregation used over the exemplar embeddings
suggests that one can use a variable number of exemplar images without issue.
We showcase how the number of samples in the few-shot setting affects the
generation in the supplementary material.

4.3 Handwriting Text Recognition

Similar to previous works [24,43], we evaluate the quality of the generated hand-
written text on the task of Handwriting Text Recognition (HTR) on the word
level. We use a CNN-LSTM HTR system [29] trained with Connectionist Tem-
poral Classification (CTC) loss [9], as used in the evaluation process of [24].

Imitating TAM. We regen-
erate the training set and
use the generated data to
train the HTR system. Then,

Table 2. Comparison of HTR Results using only
the synthetic IAM samples for training. The closer
to the Real IAM result (first row), the better.

we evaluate the HTR perfor- _Dataset CER(%)| | WER(%)!
mance on the real test set, Real [AM 5.16 = 0.01 | 14.49 £ 0.07
aiming to reach results as GANwriting 39.94£0.35|73.38 £0.61
close as possible to the real SmartPatch 39.81 4 0.83 | 72.75 & 0.19
training data. The motiva-  yaTy 21.74 £ 0.32 | 50.55 + 0.47
tion behind this experiment is v jar it 8.26 +0.05 | 23.36 & 0.16
straightforward yet powerful 0, " Ours)| 7124003 | 1855 + 0.10
Specifically, an HTG method ) ' ’ )

could reproduce the perfor. Difftriplet (Ours) | 7.13£0.11 | 18.48 +0.14
mance of the real IAM data, DiffPen (Ours) 6.94+0.06 | 18.11 +0.25

or even surpass it, if these

three abilities are satisfied: 1)

the textual information is generated correctly, 2) styles differ substantially
between them, and 3) given a text and a style a non-trivial variation would
be generated. Even if point (1) is very crucial, the main shortcomings of recent
HTG methods concern points (2) and (3) in the sense that these methods do
not generate enough variations in order to be efficiently utilized for such a learn-
ing task. An example to understand the importance of this rationale is that if
the inner-class variance of the generation process is trivial, generating 10 times
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the common word “and”, typically met numerous times in documents, can not
provide any useful extra information to the training procedure.

Concerning the imitation experiment, we follow the same steps in [3,15,22,
24,25]. The HTR results are presented in Table 2. Our method reaches the closest
results to the real data with a CER of 6.94% and WER of 18.11%, outperforming
all the other methods. Similar to the quality assessment experiments, we include
experiments to assess the effectiveness of our introduced style extractor and its
loss terms. The variations of DiffusionPen, where the style encoder is trained
with the classification or the triplet protocol, achieve the next best performance.
WordStylist achieves the next closest performance with a CER of 8.26% and a
WER of 23.36%.

Improving HTR Performance. Given the results of Table 2, we use the data
generated from the best performing method, which is our proposed DiffusionPen,
as an augmentation to the real training set aiming to improve the performance of
the baseline HTR system that achieves a CER of 5.16% and a WER of 14.49%.
We also compare our performance with other works [16,34,43] that use synthetic
data, as shown in Table3. Using the additional data from DiffusionPen can
enhance the performance of the HTR system, showing promising potential for
future use in larger generated datasets to assist the training process.

Table 3. HTR performance with additional synthetic data to the real training set.
The baseline values The baseline values are the ones from the original paper [29].

Dataset # Synthetic Data CER(%)| WER(%)|
ScrabbleGAN [34] 100K 13.42 23.61
Kang et al. [16] - 6.75 17.76
CTIG-DM [43] 1M 5.19 13.37
Baseline [29] - 5.14 14.33
DiffusionPen (Ours) 55K 4.71 13.61

4.4 Style Variation

To reflect the natural variations of human handwriting in automatic handwriting
generation, it is crucial not only to generate realistic text but also to have diver-
sity. Under our framework, style variation can be simulated seamlessly. First, the
few-shot paradigm is, by its nature, a variation-promoting mechanism since, for
the same style, different embeddings are calculated from the randomly selected
exemplar images. Nonetheless, the style space is less sensitive to “exploration”,
compared to previous works, enabling us to search for more “aggressive” style
augmentations. Specifically, we explore the aspect of style variation through the
following scenarios: interpolation and noisy style embedding.
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Interpolation. We tweak the style embedding between two writer styles to
obtain samples between the two styles. We interpolate a generated sample of a
style S4 to a style Sp using a weighted average Sap = (1 — Wap)Sa+ WapSp
for different values of W4 p. Figure 7a presents several examples of interpolating
between two random styles. We can see from the results that there is a smooth
transition between the styles as the value of W4 changes. An interesting result
can be observed in the last row of the figure, where for W4p = 0.5 of the word
the, the curvature of the character h does not resemble either of the style classes.
This hints that we may “stumbled” upon an entirely different style by cursing
through the style space.

Wap=00| [Wiz=02] [Wiz=04 [WAB:O.5] [W,m:(].s] [WM:O.S] [WAB:I.O]

uo\go._x whak wlhodk what W NG o JNAA
hell helo hello helfo helly Aello Letly
Cosprie Cahkprre COSnIC COJmbc COInRmE CoNnac (o hadc
the he the the Mo W Ve
(a) Interpolation between two writer styles with various values of the weight Wapg.
& EN ER ) Generated words from the 5 styles
ML\K“ \-0\1\‘5\' o Cﬂ//fd W J_)).‘(L (S1-85) using different weights
x0.7 x0.1 x0.1 %0.1 %0.0 N '\’5 L mel?-’ oLa,r h—a_,!(
x0.5 x0.2 x0.1 x0.1 %01 worsld ’/0“//%’ du"\ hack
x0.3 x0.2 x0.2 x0.2 %01 wod ﬂiﬂU Adep *Yacl(
%02 %0.2 x0.2 %0.2 %0.2 Wm’(o/ Pf’ﬂaf Jee(a TLYQCI(
x0.1 %02 x0.2 %02 %0.3 wo,/J P&/}fj 0(2(‘1 ‘fchk
x0.0 x0.1 x0.1 x0.1 x0.7 world ot ‘/“P back

(b) Multi-style mixture generation.

Fig. 7. Generated samples by (a) interpolation and (b) multiple styles.

Multi-style Mixture. Following the interpolation strategy, instead of mixing
two writing styles, we generate samples by conditioning on 5 different styles.
Figure 7b shows that combining 5 different styles (S1-S5) with different weights
can create new styles and variations of the same word, showcasing our model’s
capability of exploiting the style space. More style mixture examples are pre-
sented in the supplementary material.

Noisy Style Embedding. We explore two different noise variations that could
inject diversity into the generated data. One variation is the noisy style embed-
ding, where we add random noise to the style embedding to avoid explicitly
getting the learned style. The other variation is the noise bias. We inject noise
bias into the diffusion model by replacing the random noise given to the dif-
fusion model as the initial latent variable with a noisy image from a wished
style. We regenerate the IAM database using either the noise bias to initiate
the denoising of the model or the noisy style embedding for different levels of
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noise or the combination. Then, we train the HTR system using the different
generated databases instead of the real IAM training set to determine how the
noise injections can assist the data variation in the generation.

The results are presented pupe 4. Exploration of random noise variations in
in Table4. One can observe the style embedding or the prior. The v indicates
that a small magnitude of whether there is a bias in the prior, and the values
noise (i.e., 0.25) could assist 0.25-2.00 indicate the weight of the noise added to
the training procedure and the style embedding.

improve the HTR perfor-
mance, indicating that the
noise variations are beneficial.

Noise Bias Style Noise CER(%)| WER(%)/
- 2.00 7.56 £0.06 19.56 +0.11

On the other hand, increas- - 0.50  6.99+0.06 18.30 + 0.21
ing noise above a threshold — 0.25 6.79 +£0.08 17.85+0.09
may complicate the system v - 6.93+0.20 18.18 +0.49
- potentially diverging from v 0.25  7.0240.20 18.26 +0.26

the manifold of useful styles.
Finally, the noise bias does not seem to assist performance, even when combined
with the noisy embedding of 0.25 magnitude.

5 Limitations and Ethical Considerations

Limitations. Fail cases may occur in rare combinations of characters (“xyzyxz”)
or complex ligatures in some cursive styles (“affluent” ), as shown in Fig. 8a. Con-
sidering the word “affluent”, our model successfully generates the top style that
has less complex connections, while it struggles with the cursive “fH” ligature in
the more complex style on the bottom. This might not be observed in comparing
GAN-based methods, which tend to simplify the style to force the generation
of understandable text. However, a trade-off between text and style variation
should be found to get a robust generation. Furthermore, although our method
is able to generate words over 10 characters (see Fig. 5b), there is still a length
limit due to the maximum word length present in the training and the noise
initialization of the denoising process. Such a case is presented in Fig. 8b, where
the model fails to generate the word “interoperabilitationism” (top). This issue
could be solved by practical tricks such as patching generated samples of smaller
parts of the word, as presented in the bottom of Fig. 8b, where we generate the

b2

parts “interoper”, “abilitation” and “ism”.

Ethical Considerations. The possibility of mimicking a specific handwriting
style from a limited set of image samples poses a significant risk for handwrit-
ing forgery. Although technologically impressive, this capability of HTG models
could potentially be exploited for fraud and identity theft by creating unwanted
text or signatures resembling a person’s writing style. There is an entire field in
forensics that attempts to detect such frauds with predictive models and tech-
niques to distinguish authentic from machine-generated imitations.
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Xyzyxz affluent interoperabilitationism
X gE=pr= N PUGNS (- SR ) P-o s S,
X T X ol V o mesalm i haM coia e
(a) Rare character combinations (left) (b) Unsuccessful generation of the word
and complex ligatures (right). interoperabilitationism and solution.

Fig. 8. Examples of fail cases. See text for details.

6 Conclusion

We presented DiffusionPen, a few-shot style latent diffusion model for hand-
writing generation that incorporates a hybrid metric-learning and classification-
based style extractor. Our approach captures stylistic features of seen and unseen
writers while preserving readable text content. We present qualitative and quan-
titative results and compare them with other SotA methods based on GANS,
Transformers, and DDPM. Given the HTR task results, our method is the closest
to the performance of the real IAM, and using data generated from DiffusionPen
enhances HTR performance, allowing us to envisage utilizing HTG large-scale
dataset generation. Finally, further exploration of style and noise variation in
different stylistic aspects shows potential directions for future work.
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