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Abstract

Continuous-time reinforcement learning (CTRL)
provides a principled framework for sequential
decision-making in environments where inter-
actions evolve continuously over time. Despite
its empirical success, the theoretical understand-
ing of CTRL remains limited, especially in set-
tings with general function approximation. In this
work, we propose a model-based CTRL algorithm
that achieves both sample and computational ef-
ficiency. Our approach leverages optimism-based
confidence sets to establish the first sample com-
plexity guarantee for CTRL with general func-
tion approximation, showing that a near-optimal
policy can be learned with a suboptimality gap
of Õ(

√
dR + dFN

−1/2) using N measurements,
where dR and dF denote the distributional Eluder
dimensions of the reward and dynamic functions,
respectively, capturing the complexity of general
function approximation in reinforcement learning.
Moreover, we introduce structured policy updates
and an alternative measurement strategy that sig-
nificantly reduce the number of policy updates and
rollouts while maintaining competitive sample effi-
ciency. We implemented experiments to backup
our proposed algorithms on continuous control
tasks and diffusion model fine-tuning, demonstrat-
ing comparable performance with significantly
fewer policy updates and rollouts. The code is
available at https://github.com/MLIUB/
PURE.

1 INTRODUCTION
Continuous-time reinforcement learning (CTRL) is a fun-
damental problem in learning-based control, with numer-

*These authors contributed equally to this work.
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ous applications in robotics, finance, healthcare, and au-
tonomous systems. Many real-world decision-making prob-
lems are more naturally modeled in continuous time rather
than discrete time, as they involve continuous interaction
with the environment. The goal of CTRL is to find an op-
timal policy that continuously interacts with and adapts to
the environment to maximize long-term rewards. A grow-
ing body of work has demonstrated the empirical suc-
cess of CTRL, leveraging approaches such as model-based
continuous-time control [Greydanus et al., 2019, Yildiz
et al., 2021, Lutter et al., 2021, Treven et al., 2024a] and
fine-tuning in diffusion models [Yoon et al., 2024, Xie et al.,
2023]. These studies have shown promising results in real-
world tasks, indicating that continuous-time policies can
outperform their discrete-time counterparts in various appli-
cations.
Despite these empirical advances, the theoretical understand-
ing of CTRL remains limited. A fundamental question in
CTRL is sample efficiency, which refers to the total number
of measurements an agent must take from the environment
to learn a near-optimal policy. Existing works have primarily
focused on specific settings, such as linear quadratic regula-
tors (LQR) [Cohen et al., 2018, Abeille and Lazaric, 2020,
Simchowitz and Foster, 2020] or well-calibrated statisti-
cal models [Treven et al., 2024a], where strong structural
assumptions facilitate theoretical analysis. However, this
stands in contrast to empirical practice, where general func-
tion classes—such as neural networks—are widely used.
These structured models often fail to capture the complex-
ity of real-world environments, highlighting the need for
a more general theoretical framework. Thus, we pose the
following question:

What is the sample complexity for CTRL with general
function approximation to find a near-optimal policy?

Beyond sample efficiency, another crucial aspect is compu-
tational efficiency, which is characterized by minimizing
the number of policy updates and episode rollouts during
the online learning phase. Unlike discrete-time RL, where
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sample complexity is tightly coupled with the number of
episode rollouts, CTRL allows for multiple—even an in-
finite number of—measurements within a single rollout.
This flexibility enables practitioners to employ various mea-
surement strategies, such as equidistant sampling or adap-
tive strategies, to enhance learning efficiency. While empiri-
cal studies have explored multiple measurement strategies
[Treven et al., 2024a], their theoretical understanding re-
mains limited, particularly regarding the tradeoff between
computational efficiency and sample complexity. This leads
to our second fundamental question:

Can we develop provable new measurement strategies that
enhance computational efficiency without significantly

sacrificing sample efficiency?

In this work, we answer the above questions affirmatively.
Specifically, we study model-based CTRL in a general func-
tion approximation setting, where both the dynamic model
and policies are approximated using a general function class.
We propose an algorithm, Policy Update and Rolling-out
Efficient CTRL (PURE), which achieves both sample and
computational efficiency. Our main contributions are as fol-
lows:

1. We first introduce PUREbase, the foundational version
of PURE, which focuses on sample efficiency us-
ing the optimism-in-the-face-of-uncertainty principle
[Abbasi-Yadkori et al., 2011] and a confidence set
construction for the underlying environment. Theoret-
ically, we prove that with N measurements, PUREbase
finds a near-optimal policy with a suboptimality gap
of Õ(

√
dR + dFN

−1/2), where dR and dF denote the
Eluder dimensions [Russo and Van Roy, 2013, Jin et al.,
2021] of the reward and dynamic functions, respectively.
This result provides the first known sample complexity
guarantee for CTRL with general function approxima-
tion. Notably, unlike prior works such as Treven et al.
[2024a], PUREbase does not rely on an external calibra-
tion model, which often requires strong smoothness as-
sumptions that are difficult to satisfy and verify in prac-
tice.

2. To improve computational efficiency, we propose
PURELowSwitch, an extension of PUREbase that incorpo-
rates a tailored policy update strategy, reducing the num-
ber of policy updates from N to O(logN(dR + dF )).
This represents a significant reduction for many function
classes. Furthermore, we introduce PURELowRollout, de-
signed to minimize the number of policy rollouts. We
prove that PURELowRollout reduces the number of roll-
outs by a factor of m, achieving a suboptimality gap of
Õ(
√
CT ,mN−1/2+m/N), where CT ,m is the indepen-

dency coefficient that used for quantifying the indepen-
dency between each measurement. Our results suggest
that one can further improve computational complexity
for CTRL.

3. We empirically backed up our theoretical findings by
implementing PURE in both the traditional continuous-
time RL framework [Yildiz et al., 2021] and the diffusion-
model fine-tuning framework [Uehara et al., 2024]. Our
experimental results demonstrate the practical advan-
tages of PURE, achieving comparable performance with
fewer policy updates and rollouts.

2 RELATED WORKS

Continuous-Time Reinforcement Learning Our algo-
rithms fall into Continuous-Time Reinforcement Learning
(CTRL), which has been extensively studied by the control
community for decades [Doya, 2000, Vrabie and Lewis,
2009], primarily focusing on planning or simplified models
such as the linear quadratic regulator [Shirani Faradonbeh
and Shirani Faradonbeh, 2023, Caines and Levanony, 2019,
Huang et al., 2024, Basei et al., 2022, Szpruch et al., 2024].
A significant shift occurred with Chen et al. [2018], which
introduced CTRL with nonlinear function approximation,
enabling continuous-time representations to be learned us-
ing neural networks. Building on this foundation, Yildiz
et al. [2021] proposed an episodic model-based approach
that iteratively fits an ODE model to observed trajectories
and solves an optimal control problem via a continuous-time
actor-critic method. More recently, Holt et al. [2024] investi-
gated CTRL under a costly observation model, demonstrat-
ing that uniform time sampling is not necessarily optimal
and that more flexible sampling policies can yield higher
returns. While these works primarily focus on empirical
studies of CTRL with nonlinear function approximation,
theoretical understanding remains limited. In this direction,
Treven et al. [2024a] analyzed deterministic CTRL with
nonlinear function approximation, introducing the concept
of a measurement selection strategy (MSS) to adaptively
determine when to observe the continuous state for optimal
exploration. Extending this line of research, Treven et al.
[2024b] studied stochastic CTRL under a cost model, aim-
ing to minimize the number of environment observations.
Our work builds upon Treven et al. [2024a] by considering
a broader function approximation class and providing theo-
retical insights into the tradeoff between sample efficiency
and computational efficiency, without relying on strong as-
sumptions about the epistemic uncertainty estimator.

Reinforcement Learning with Low Switching Cost In
many real-world RL applications, frequently updating the
policy can be impractical or costly. This has motivated the
study of low-switching RL, where the agent deliberately
restricts how often its policy changes. Early works focus
on the bandit setting, including multi-armed bandits [Auer,
2002, Cesa-Bianchi et al., 2013, Gao et al., 2021] and linear
bandits [Abbasi-Yadkori et al., 2011, Ruan et al., 2021],
among others. In the RL setting, Bai et al. [2019] and Zhang
et al. [2021a] studied low-switching algorithms for tabu-
lar Markov Decision Processes (MDPs), while Wang et al.



[2021], He et al. [2023] and Huang et al. [2022] extended
the study to linear function approximation. The most rele-
vant works to ours consider low-switching RL with general
function approximation. For example, Kong et al. [2021]
proposed a low-switching RL approach for episodic MDPs
using an online subsampling technique, Zhao et al. [2023]
explored low-switching RL through the lens of a general-
ized Eluder dimension, and Xiong et al. [2023] studied a
low-switching RL framework under a general Eluder condi-
tion class. Our work differs from these prior studies in two
key aspects. From an algorithmic perspective, we develop a
CTRL-based approach, which contrasts with existing meth-
ods designed for discrete episodic RL. From a theoretical
standpoint, we introduce novel analytical tools and notions
to handle the continuous-time nature of our dynamics.

3 PRELIMINARIES
Diffusion SDE In this work, we consider a general nonlin-
ear continuous time dynamical system with a state x(t) ∈
X ⊆ Rd and a control unit u(t) = π(x(t)) ∈ U ⊆
Rm, t ∈ [T ]. We model the system dynamics using an
Itô-form stochastic differential equation (SDE), which is
a tuple S = {f∗, g∗, b∗}. Given an initial distribution
q ∈ Q : ∆(X ), let the initial state x(0) ∼ q, then the
flow x(t), t ∈ [0, T ] is evolved following:

dx(t) = f∗(x(t), u(t))dt+ g∗(x(t), u(t))dw(t), (1)

where f∗ ∈ F : X × U → Rd is the drift term and
g∗ : X × U → R is the diffusion term, and w(t) ∈ Rd is a
standard Wiener process. Our goal is to find a deterministic
policy π ∈ Π : X → U and an initial distribution q ∈ Q :
∆(X ) which maximizes the following quantity:

R(π, q) := E
[ ∫ T

t=0

b∗(x(t), π(x(t)))dt

∣∣∣∣x(0) ∼ q

]
,

where b∗ ∈ R : X×U → [0, 1] denotes the reward function.
Note that we only assume f∗, b∗ are unknown, and we can
access g∗ during the algorithm. We only consider time-
homogeneous policy. For time-inhomogeneous policy, we
augment the state x′(t) = [x(t), t].
Remark 3.1. Our formulation of continuous time dynamical
system in (1) is general enough to capture many popular
applications w.r.t. CTRL. A concrete example is given by
diffusion models [Song et al., 2020b], where one could
formulate the backward process as follows:

dx(t) = f(t, x(t)) dt + σ(t)dw(t), x(0) ∼ q, (2)

where f is the standard drift formulated by neueral networks,
and σ(t) is a predefined diffusion term. Notably f can be
trained by either score matching [Song et al., 2020a, Ho
et al., 2020] or flow matching [Lipman et al., 2022, Shi
et al., 2024, Tong et al., 2023, Somnath et al., 2023, Albergo
et al., 2023, Liu et al., 2023, 2022a]. Comparing (1) and (2),
it is straightforeward to see (2) falls into the definition of
our (5.4).

For simplicity, we use X(t, π, q) to denote the random vari-
able x(t) following policy π and the initial distribution q.
We also denote z = (x, u), and we use Z(t, π, q) to denote
the random variable (x(t), π(x(t))) following policy π and
the initial distribution q.
Measurement Model Everytime for a policy π and the
initial distribution q, we can choose a time t to observe the
following (x(t), u(t), y(t), r(t)), where

x(t) = X(t, π, q), u(t) = π(x(t)),

y(t) ∼ N (f∗(x, u),
g∗(x, u)2

∆
· I), r(t) ∼ N (b∗(x, u), 1),

where N (µ, σ2) denotes the normal distribution and ∆ > 0
denotes the measurement time step.

Remark 3.2. We assume known diffusion coefficient
g∗(x, u) to simplify the theoretical analysis. This assump-
tion is common in related literature — for instance, in
diffusion-model-based RL fine-tuning [Uehara et al., 2024,
Song et al., 2020a], where g∗ = σ as discussed in Remark
3.1, and in deterministic dynamic control problems [Yildiz
et al., 2021], where g∗ = 0.

Remark 3.3. In practice, only the state x(t), control u(t),
and reward r(t) are directly observed, whereas the instan-
taneous drift y(t) must be approximated. Following the
gradient-measurement approach in Treven et al. [2024a]
(Definition 1), we assume that both x(t) and x(t+∆) can
be accessed jointly—effectively doubling the state observa-
tion cost, which is often reasonable when dense trajectory
data are available. Then, for a sufficiently small time step ∆,
we apply the Euler–Maruyama method [Platen and Bruti-
Liberati, 2010] to approximate

y(t) ≈ x(t+∆)− x(t)

∆
.

With ∆ small enough, this yields a valid approximation of
the true instantaneous drift y(t).

In the following sections, we often omit t and directly use
(x, u, y, r) to describe any measurements we will receive
during a policy execution.
Distributional Eluder Dimension We introduce the notion
of the ℓp-distributional Eluder dimension [Jin et al., 2021],
which extends the classical Eluder dimension [Russo and
Van Roy, 2013] to a distributional setting. Given a domain
A, a function class B ⊆ A → R, a distribution class C ⊆
∆(A), and a threshold parameter ϵ > 0, we define the ℓp-
distributional Eluder dimension as DEp(A,B, C, ϵ), which
is the largest integer L such that there exists a sequence
of distributions p1, . . . , pL ⊆ C satisfying the following
condition: there exists a threshold ϵ′ ≥ ϵ such that for all
l ∈ [L], there exists a function h ∈ B for which

|Epl
h| > ϵ and

l−1∑
i=1

|Epih|
p ≤ ϵ′p.



Intuitively, the distributional Eluder dimension quantifies
the complexity of function class B, C by capturing the non-
linearity of the expectation operator Epl

h. In this work, we
leverage this measure as the key complexity metric to char-
acterize the nonlinearity in our continuous-time dynamical
system.

4 PROVABLE CTRL WITH GENERAL
FUNCTION APPROXIMATION

In this section, we introduce PUREbase, outlined in Al-
gorithm 1. Broadly speaking, PUREbase is a model-based
CTRL algorithm that interacts with the environment online,
receives feedback, and continuously updates its estimates
of the dynamics f∗ and reward function b∗. During the n-
th episode, PUREbase maintains confidence sets for f∗ and
b∗, denoted as Fn and Rn, respectively. Formally, given
a dataset D = {(x, u, y, r)}, we define the empirical loss
functions for the dynamics and reward as

LD(f) =
∑

(x,u,y,r)∈D

(f(x, u)− y)2,

LD(b) =
∑

(x,u,y,r)∈D

(b(x, u)− r)2.

Let Dn be the collection of all measurements (x, u, y, r)
collected up to episode (n− 1). The confidence sets Fn and
Rn are then constructed as follows:

Fn ←
{
f | LDn(f) ≤ min

f ′∈F
LDn(f

′) + βF
}
, (3)

Rn ←
{
b | LDn(b) ≤ min

b′∈R
LDn(b

′) + βR
}
. (4)

Following the classical optimism-in-the-face-of-uncertainty
principle [Abbasi-Yadkori et al., 2011], PUREbase jointly
optimizes its policy, initial distribution, and estimates of
the dynamics and reward functions to maximize the accu-
mulated reward R(π, q, f, b). At each episode, it uniformly
samples a time step tn ∈ [T ], executes the policy πn un-
der the initial state distribution qn, and receives the mea-
surement (xn, un, yn, rn) at time tn. After running for N
episodes, PUREbase outputs the target policy and initial dis-
tribution by selecting uniformly at random from the existing
ones.

Remark 4.1. We briefly compare PUREbase with OCoRL
[Treven et al., 2024a], which is the most closely related
algorithm. A key difference is that OCoRL requires access
to an external oracle that quantifies epistemic uncertainty
in estimating f∗, whereas PUREbase operates without ex-
plicitly maintaining such an oracle. Additionally, OCoRL
selects tn deterministically based on complex strategies and
assumes additional smoothness conditions on the epistemic
uncertainty oracle. In contrast, PUREbase employs a simple
and randomized selection of tn, making it more flexible and
potentially more practical in real-world applications.

Next we provide theoretical analysis for PUREbase. We first
make the following assumptions on f, b, g, π.

Assumption 4.2. We have that for any π ∈ Π, any f ∈ F ,
b ∈ R, any x, x′ ∈ X , u, u′ ∈ U ,

• We have the following bounded assumptions: |f(x, u)| ≤
1, |b(x, u)| ≤ 1 and |g(x, u)| ≤ G/

√
d∆.

• We have the following Lipschitz-continuous assumptions:

∥f(x, u)− f(x′, u′)∥2 ≤ Lf (∥x− x′∥2 + ∥u− u′∥2),
|b(x, u)− b(x′, u′)| ≤ Lb(∥x− x′∥2 + ∥u− u′∥2),
|g(x, u)− g(x′, u′)| ≤ Lg(∥x− x′∥2 + ∥u− u′∥2),
∥π(x)− π(x′)∥2 ≤ Lπ∥x− x′∥2.

Next we define the distributional Eluder dimension of the
function class PUREbase used in its algorithm design.

Definition 4.3. Let Z = X × U and p ∈ P denote the
following distribution class over Z: each distribution p is
associated with a policy π ∈ Π and an initial distribution
q ∈ Q, such that

z = (x, u) ∼ p :

{
x = X(t, π, q), t ∼ Unif[0, T ],

u = π(x).

Furthermore, denote function class F̄ , R̄ as

F̄ = {∥f − f∗∥22 : f ∈ F}, R̄ = {(b− b∗)2 : b ∈ R}.

Then we set

dF,ϵ = DE1(Z, F̄ ,P, ϵ), dR,ϵ = DE1(Z, R̄,P, ϵ).

Intuitively, dF,ϵ and dR,ϵ capture the nonlinearity of loss
functions ∥f−f∗∥22 and (b−b∗)2 with respect to the dynam-
ical system induced by function class F and policy class
Π. Next proposition shows that several common models, in-
cluding linear dynamical systems, enjoy small distributional
Eluder dimensions. The proof is deferred to Appendix A.1.

Proposition 4.4. Let F = {fθ(z) = ⟨Θ, ϕ(z)⟩ : ∥Θ∥F ≤
R} and R = {bθ(z) = ⟨θ, ϕ(z)⟩ : ∥θ∥ ≤ R}, where
Θ ∈ Rd×d and θ ∈ Rd. These represent classes of lin-
ear functions on Z with a feature mapping ϕ. Assume that
∥ϕ(z)∥ ≤ L for all z ∈ Z . Then, for any family P of
distributions on Z and for any ϵ > 0, we have dF,ϵ =
O(d2 log(1+R2L2/ϵ2)), dR,ϵ = O(d2 log(1+R2L2/ϵ2)).

Next we show our main algorithm which characterizes the
sample complexity of PUREbase.

Theorem 4.5. Set confidence radius βF , βR as

βF = O(G2 log(N · logN |N (F , N−2)|/δ)),
βR = O(log(N · logN |N (R, N−2)|/δ)),

then with probability at least 1− δ, Algorithm 1 satisfies:



Algorithm 1 PUREbase

Require: Total measurement number N , policy class Π, initial distribution class Q, drift class F , diffusion term g∗, reward
classR, confidence radius βF , βR, episode length T , initial measurement set D1 = ∅

1: Initialize confidence sets F1 = F ,R1 = R.
2: for episode n = 1, . . . , N do
3: Set πn, qn, fn, bn ← argmaxπ∈Π,q∈Q,f∈Fn,b∈Rn

R(π, q, f, b).
4: Uniformly sample tn ∈ Unif[0, T ]. Execute qn, πn and receives measurement (xn, un, yn, rn) at time tn. Update

Dn+1 ← Dn ∪ (xn, un, yn, rn).
5: Update Fn+1 following (3), updateRn+1 following (4).
6: end for

Ensure: Randomly pick up n ∈ [N ] uniformly and outputs (π̂, q̂) as (πn, qn).

• For all n ∈ [N ], f∗ ∈ Fn, b
∗ ∈ Rn.

• The suboptimality gap of (π̂, q̂) is bounded by

O

(
T
√

dR,N−1βR + LT 3/2
√

exp(KT )
√

dF,N−1βF√
N/ logN

)
,

(5)

where K = 1+ (1 +Lπ)
2 ·L2

g + 2(1 +Lπ)
2 ·L2

f , L =
Lb(1 + Lπ).

From Theorem 4.5, we know that to find an ϵ-optimal policy
π̂, it is sufficient to set the total measurement number

N = Õ

(
ϵ−2 ·

(
T 2dR,ϵ−2 log(|N (R, ϵ−4)|/δ)

+ L2T 3 exp(KT )dF,ϵ−2G2 log(|N (F , ϵ−4)|/δ)
))

,

which gives us an Õ(ϵ−2) sample complexity if we treat the
Eluder dimensions and covering numbers as constants.
Remark 4.6. Note that our sample complexity has an ex-
ponential dependence on the time horizon T , which seems
larger than the polynomial dependence of the planning hori-
zon in discrete-time RLs [Jin et al., 2021]. However, we
would like to highlight that CTRL and discrete-time RL
are two different types of algorithms for different problem
settings, thus they can not be compared directly. Meanwhile,
our result also aligns with several recent works about CTRL
[Treven et al., 2024a], which also established exponential
dependence on T .
Remark 4.7. We assume a perfect approximation of R to
simplify the theoretical analysis. However, it is not difficult
to extend our results to account for a ℓ-approximation. Sup-
pose that in each episode n, we can only access an estimate
R̂n such that |R̂n −R| ≤ ℓ for some ℓ > 0. Then, it is not
difficult to show that the suboptimality gap will be bounded
by (5) with an additional ℓ factor. This ensures that the ap-
proximation error does not significantly impact the overall
performance of the algorithm.

4.1 PROOF SKETCH

Below is the proof sketch of Theorem 4.5, with full proof
deferred to Appendix B. We mainly demonstrate how to

bound the regret
∑N

n=1 Rn, where

Rn = R(f∗, b∗, π∗, q∗)−R(f∗, b∗, πn, qn).

1. Trajectory deviation. Applying Itô’s lemma, Fubini’s
theorem, Grönwall’s inequality and standard analytic
arguments, the mean–square gap between the true trajec-
tory xn(t) and the optimistic trajectory x̂n(t) is

E
∥∥x̂n(t)− xn(t)

∥∥2
≤ 2eKt

∫ t

0

E
∥∥f∗(xn(s), πn(xn(s)))

− fn(xn(s), πn(xn(s)))
∥∥2ds.

2. High-probability confidence sets. Standard covering
argument yields empirical–risk inequalities for any b ∈
R and f ∈ F . Choosing confidence radii βR, βF =
Õ(log(| · |/δ)) guarantees b∗ ∈ Rn and f∗ ∈ Fn for all
n with probability 1− δ.

3. Per-episode regret decomposition. By optimism,

Rn ≤ R(fn, bn, πn, qn)−R(f∗, b∗, πn, qn).

Using Lipschitz continuity and Cauchy–Schwarz inequal-
ity, one shows

Rn ≤ LE
∫ T

0

∥x̂n(t)− xn(t)∥dt

+ E
∫ T

0

(bn − b∗)(xn(t), πn(xn(t))) dt,

which, together with the trajectory bound, gives

Rn ≤ LT
√
2TeKTAn + T

√
Bn,

where An = E∥fn − f∗∥2, Bn = E|bn − b∗|2.

4. Chaining via Eluder dimension. Applying Theorem
5.3 from Wang et al. [2023] to the sequences {(bn −
b∗)2} and {∥fn − f∗∥2} converts the confidence radii
βR, βF into

∑
n Bn = O(dRβR logN) and

∑
n An =

O(dFβF logN).



5. Cumulative regret. Summing the regret decomposition
from step 3 over n = 1, . . . , N and applying the Cauchy–
Schwarz inequality yield, with probability at least 1 −
2δ logN ,

N∑
n=1

Rn = O
(
T
√
N dR(logN + log |Rϵ|)

+ LT
√
TN eKT dF (logN + log |Fϵ|)

)
.

Replacing δ by δ/(2 logN) in the confidence parame-
ter leaves the asymptotic rate unchanged, and thus the
theorem follows.

5 IMPROVED COMPUTATIONAL
EFFICIENCY FOR PURE

PUREbase suggests that to find an ϵ-optimal policy, Õ(ϵ−2)
measurements are required. This dependency aligns with
the standard statistical error rate established in prior works.
However, a key limitation of PUREbase is that it updates
its policy and initial distribution in every episode, which
can be computationally expensive if such updates are costly.
Additionally, PUREbase collects only a single uniformly ran-
dom measurement per episode. While this ensures sample
efficiency, it also results in wasted rollouts, as the policy
is executed at all times but only measured at one. In con-
trast, discrete-time RL evaluates the policy at every time
step, making it more computationally efficient. To address
these two challenges, we propose two improved versions of
PUREbase, each designed to tackle a specific limitation.

5.1 POLICY UPDATE EFFICIENT PURE

We first introduce PURELowSwitch in Algorithm 2, designed
to reduce the frequency of policy and initial distribution up-
dates. In essence, PURELowSwitch follows the same setup as
PUREbase while actively monitoring how well the estimated
model fits the collected measurements. Specifically, it up-
dates the dynamic model fn and reward model bn only when
either fails to fit the current dataset Dn+1—that is, when
the empirical loss LDn+1

(fn) exceeds a predefined thresh-
old. When such a discrepancy is detected, PURELowSwitch
updates the corresponding model and adjusts the policy and
initial distribution accordingly.
Next, we present the theoretical guarantees for
PURELowSwitch.

Theorem 5.1. Setting the confidence radii βF , βR as in
Theorem 4.5, with probability at least 1 − δ, Algorithm 2
satisfies:

• For all n ∈ [N ], f∗ ∈ Fn and b∗ ∈ Rn.

• The suboptimality gap of (π̂, q̂) matches that in (5).

• The total number of episodes where πn and qn are updated
is at most logN ·O(dF,N−1 + dR,N−1).

The proof is deferred to Appendix C. The result above im-
plies that PURELowSwitch significantly reduces the number
of policy and initial distribution updates from N to logN ,
without degrading the final policy performance.

Remark 5.2. A similar strategy has been explored in prior
works on discrete-time RL with general function approx-
imation [Xiong et al., 2023, Zhao et al., 2023]. However,
in discrete-time RL, these methods monitor every discrete
time step t to detect discrepancies in the estimated dynam-
ics. In contrast, such an approach is infeasible in CTRL,
as continuous-time monitoring is not possible. This fun-
damental difference makes our analysis of PURELowSwitch
significantly more challenging.

5.2 ROLLOUT EFFICIENT PURE

Next, we study how to reduce the number of roll-
outs required by PUREbase. To achieve this, we propose
PURELowRollout, outlined in Algorithm 3, which performs
multiple measurements within a single episode. Specif-
ically, in the n-th episode, measurements are taken at
times tn,1, . . . , tn,m, where m is the measurement fre-
quency. For simplicity, we analyze a fixed measurement
strategy, assuming that for any n ∈ [N/m], the mea-
surement times tn,1, . . . , tn,m are sampled from a pre-
defined distribution T . Here, T is allowed to be any
joint distribution over Unif[0, T ]m. In each episode, the
dataset Dn is updated in batches, incorporating m mea-
surements {(xn,i, un,i, yn,i, rn,i)}mi=1 collected during the
episode. Other than this batched measurement update,
PURELowRollout follows the same procedure as PUREbase.
By introducing the measurement frequency m and the
sampler T , PURELowRollout reduces the number of policy
rollouts from N to N/m. To maintain a fair comparison
and ensure consistency in sample complexity, we also set
the total number of episodes to be N/m, ensuring that
PURELowRollout and PUREbase use the same total number
of measurements, differing only in the number of rollouts.

Remark 5.3. Our in-episode sampling strategy is similar
to the Measurement-Selection-Strategy (MSS) introduced
in Treven et al. [2024a]. However, a key distinction is that
we do not impose determinism or any specific structure on
the sampler T , allowing for a more general and flexible
measurement selection process.

Next, we analyze how the introduced measurement fre-
quency affects the output policy and initial distribution. To
quantify this effect, we define the independency coefficient
of T , which measures how well our sampler approximates
i.i.d. samples.

Definition 5.4. Given a policy π, an initial distribution
q, and a sampling strategy T , let Ẑ be the random vari-
able defined as Ẑ = Z(t, π, q), where t ∼ Unif[0, T ]. Let
Z̄1, . . . , Z̄m be random variables corresponding to measure-
ment times t1, . . . , tm ∼ T , where Z̄(t) denotes a tra-
jectory sampled according to π, q, and Z̄i = Z̄(ti). We



Algorithm 2 PURELowSwitch

Require: Total measurement number N , policy class Π, initial distribution class Q, drift class F , diffusion term g∗, reward
classR, confidence radius βF , βR, episode length T , initial measurement set D1 = ∅.

1: Initialize confidence sets F1 = F ,R1 = R.
2: for episode n = 1, . . . , N do
3: Set πn, qn, fn, bn ← argmaxπ∈Π,q∈Q,f∈Fn,b∈Rn

R(π, q, f, b).
4: Uniformly sample tn ∈ Unif[0, T ]. Execute qn, πn and receives measurement (xn, un, yn, rn) at time tn. Update

Dn+1 ← Dn ∪ (xn, un, yn, rn).
5: Set Fn+1 ← Fn,Rn+1 ← Rn

6: if LDn+1(fn) ≥ minf ′∈F LDn+1(f
′) + 5βF then Update Fn+1 following (3)

7: if LDn+1
(bn) ≥ minb′∈R LDn+1

(b′) + 5βR then UpdateRn+1 following (4).
8: end for

Ensure: Randomly pick up n ∈ [N ] uniformly and outputs (π̂, q̂) as (πn, qn).

Algorithm 3 PURELowRollout

Require: Total measurement number N , policy class Π, initial distribution class Q, drift class F , diffusion term g∗, reward
classR, confidence radius βF , βR, episode length T , measurement frequency m, sampler T , initial measurement set
D1 = ∅.

1: Initialize confidence sets F1 = F ,R1 = R.
2: for episode n = 1, . . . , N/m do
3: Set πn, qn, fn, bn ← argmaxπ∈Π,q∈Q,f∈Fn,b∈Rn

R(π, q, f, b).
4: Sample tn,1, . . . , tn,m ∼ T . Execute qn, πn and receive measurement (xn,i, un,i, yn,i, rn,i) at time tn,i. Update

Dn+1 ← Dn ∪ {(xn,i, un,i, yn,i, rn,i)}mi=1.
5: Update Fn+1 following (3), updateRn+1 following (4).
6: end for

Ensure: Randomly pick up n ∈ [N/m] uniformly and outputs (π̂, q̂) as (πn, qn).

define the independency coefficient CT ,m as CT ,m :=
supi∈[m] max{CT ,m,F,i, CT ,m,R,i}, where

CT ,m,F,i := sup
Z̄i−1...,Z̄1,π,q

Ezi∼P
Ẑ
∥f(zi)− f∗(zi)∥22

Ezi∼PZ̄i|Z̄i−1,...,Z̄1
∥f(zi)− f∗(zi)∥22

,

CT ,m,R,i := sup
Z̄i−1...,Z̄1,π,q

Ezi∼P
Ẑ
(b(zi)− b∗(zi))

2

Ezi∼PZ̄i|Z̄i−1,...,Z̄1
(b(zi)− b∗(zi))2

,

Intuitively, CT ,m quantifies how well the measurement
times generated by T approximate those obtained from
uniform sampling per rollout. The following proposition
suggests that for certain continuous-time dynamical sys-
tems, CT ,m can be upper bounded by a small constant. The
proof is deferred to Appendix A.2.

Proposition 5.5. There exists a one-dimensional
continuous-time dynamical system with the control space U
being one-dimensional and lower bounded by umin > 0,
satisfying CT ,m ≤ 1 + m

2Tumin
. For this dynamical system,

we have CT ,m ≤ 2 when m ≤ 2Tumin.

Using CT ,m, we establish the following theoretical guaran-
tee for PURELowRollout.

Theorem 5.6. Setting the confidence radii βF , βR as in
Theorem 4.5, with probability at least 1 − δ, Algorithm 3
satisfies:

• For all n ∈ [N/m], f∗ ∈ Fn and b∗ ∈ Rn.

• The suboptimality gap of (π̂, q̂) is bounded by

O

(
T
√

dR,N−1βR + LT 3/2
√

exp(KT )
√

dF,N−1βF√
N/ logN

·
√

CT ,m +
mT (dF,N−1 + dR,N−1)

N/ logN

)
.

where K = 1+ (1 +Lπ)
2 ·L2

g + 2(1 +Lπ)
2 ·L2

f , L =
Lb(1 + Lπ).

The proof is deferred to Appendix D. By treating the Eluder
dimension and covering numbers as constants, Theorem 5.6
suggests the following suboptimality gap:

Õ

(√
CT ,m√
N

+
m

N

)
. (6)

Comparing this result with the suboptimality gap in Theo-
rem 4.5, we draw the following conclusions. First, the qual-
ity of the final output policy and initial distribution depends
on the effectiveness of the sampler T . The closer T is to
generating i.i.d. samples, the more similar the performance
of PURELowRollout and PUREbase. Second, if the sampler T
is sufficiently well-designed such that CT ,m = O(1), then
by (6), we can safely increase m without significantly com-
promising the final policy performance.



6 EXPERIMENTS

In this section, we apply the principles of PUREbase,
PURELowSwitch, and PURELowRollout to several practical
CTRL-based setups to evaluate their effectiveness. Specifi-
cally, we aim to answer the following question:

Given the same number of measurements, can we reduce
the total training time of CTRL by minimizing the number of
policy updates and rollouts while maintaining comparable

final performance to the original base algorithm?

To investigate this, we conduct experiments across two dis-
tinct domains: (1) fine-tuning diffusion models and (2) clas-
sical continuous control tasks.

6.1 FINE-TUNING DIFFUSION MODELS

Experiment Setup We consider fine-tuning a diffusion
model to generate images with enhanced aesthetic quality,
as measured by aesthetic scores [Wightman, 2019, Radford
et al., 2021, Liu et al., 2022b, Schuhmann et al., 2022, Black
et al., 2023]. Our baseline fine-tuning approach is SEIKO
[Uehara et al., 2024], a continuous-time reinforcement learn-
ing framework specifically tailored for optimizing diffusion
models. SEIKO jointly refines the diffusion policy π̂ and
the initial distribution q̂ by drawing samples from a pre-
trained diffusion backbone and training a reward function
r̂ based on these samples, where the reward encodes the
aesthetic score as its evaluation metric. This setup dovetails
perfectly with our PURE framework under the assumption
of fixed, known dynamics f . The measurement we receive is
simplified to (x, u, r) since f does not need to be estimated.
A key feature of SEIKO is its low-switching strategy, where
episodes are divided into K batches, and the batch size Bi

is increased geometrically according to Bi+1 = ηbaseBi

for i ∈ [K]. Due to space constraints, we defer details on
SEIKO’s backbone architecture and the training procedure
for updating π̂, q̂, and r̂ to Appendix F.

Algorithm Implementation We propose our algorithm,
PURESEIKO, which builds upon SEIKO by incorporating
an additional sampler, T , from PURELowRollout to reduce
the number of rollouts and thereby lower the computa-
tional complexity of SEIKO. The full pseudo-code for
PURESEIKO is provided in Algorithm 4, with further de-
tails on SEIKO and our modifications available in Ap-
pendix F. Our sampler T operates based on a measure-
ment frequency parameter m. At the n-th episode, it sam-
ples {tn,1, . . . , tn,m} ⊆ { 1

mT, . . . , m−1
m T, T}. Each tn,i is

drawn independently, with the probability of selecting i
mT

following a geometric distribution P
(

i
mT
)
∝ λi, where

λ > 0 is a tunable temperature parameter. In our experi-
ments, we set λ = 6. Intuitively, geometric weighting aligns
well with the exponential nature of information gain in re-
verse diffusion [Sohl-Dickstein et al., 2015], encouraging
the agent to focus more on later time steps. We repeat the

experiments across five random seeds.

Results We compare PURESEIKO with m = 4 and ηbase =
2, where the diffusion model is updated K = 4 times, gener-
ating only a single final image per trajectory. We evaluate
the final aesthetic score of the generated image following
our learned π̂, q̂ and compare it to the one produced by
SEIKO. Additionally, we compare the total training time of
PURESEIKO and SEIKO. To ensure a fair comparison, both
algorithms are run under the same update time K and with
the same total number of measurements, N = 19200. Our
results are summarized in Figure 1a. We report the mean
and standard deviation of both reward and runtime over
multiple seeds, demonstrating that PURESEIKO achieves aes-
thetic scores comparable to SEIKO while requiring signifi-
cantly fewer episodes. This reduction translates to approxi-
mately half the training time, demonstrating the efficiency
of PURESEIKO.

Ablation Study To evaluate the impact of the number of
policy updates K on both aesthetic reward and computa-
tional efficiency, we conduct an ablation study comparing
PURESEIKO with different ηbase, setting K = 2, 4, 8 under
the same sample budget N = 19200. The results are sum-
marized in Figure 1b. Our findings suggest that the number
of policy updates exhibits a threshold atK = 4. Specifically,
for PURESEIKO with K ≥ 4, the aesthetic score remains
nearly unchanged even if K is reduced. However, when K
is too small, e.g., K = 2, the aesthetic score drops signif-
icantly. This empirical evidence supports our theoretical
result in Theorem 5.1, which establishes a lower bound on
the number of policy updates required.
Furthermore, we analyze the impact of the measurement
frequency m by comparing PURESEIKO with m = 1, 4, 40.
As illustrated in Figure 1c, increasing m generally reduces
the total training time by decreasing the total number of
episodes. However, setting m excessively high leads to per-
formance degradation, suggesting that an optimal choice
of m is necessary to balance the quality of the generated
images and training efficiency. This supports our claim in
Theorem 5.6, which emphasizes the importance of selecting
an appropriate m for achieving the best trade-off.

6.2 CONTINUOUS-TIME CONTROL

Experiment Setup We study continuous-time control
tasks in the standard Gym benchmark [Brockman, 2016], fo-
cusing on three tasks: Acrobot, Pendulum, and CartPole. As
our baseline model, the Ensemble Neural ODE (ENODE)
[Yildiz et al., 2021] is used. The dynamical system is de-
terministic, and the reward function is known. ENODE
employs a low-policy rollout strategy. The length of total
observation time for a trajectory is T = 50(s), and the
measurement frequency is m = 250. We defer details on
ENODE’s backbone architecture, training procedure and
the details of the sampler T to Appendix G.2.
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(b) PURESEIKO with varying K
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(c) PURESEIKO with varying m

Figure 1: Summary of the experiment for fine-tuning Diffusion Models. 1a presents a comparison of aesthetic scores for
denoised images generated by the fine-tuned Diffusion policy. 1b and 1c show ablation studies examining the effects of the
number of policy updates and the value of m on the final reward.
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(a) Comparison on Acrobot
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(b) Comparison on Pendulum
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(c) Comparison on Cart Pole
Figure 2: Summary of continuous-time control experiments, PUREENODE vs. ENODE, in three control environments.

Algorithm Implementation We implement PUREENODE
based on ENODE, incorporating the low-policy update
strategy introduced in PURELowSwitch. Specifically, we adopt
a batch-like strategy similar to SEIKO, as described in Sec-
tion 6.1, to reduce the frequency of policy updates. In this
approach, the batch size Bi is doubled at each step, follow-
ing Bi+1 = 2Bi. To ensure the same sample budget N , we
may slightly modify the doubling batch size strategy accord-
ing to the environments. Further details on the algorithmic
implementation, dataset collection, and policy updates for
our experiments are provided in Appendix G.3.

Results Our main results are presented in Figure 2. We
report both the mean and standard derivation for both reward
and running time from 20 seeds. Empirically, PUREENODE
reaches the target state using only 1/2 to 1/4 of the policy
update steps required by standard ENODE. This reduction
also leads to nearly a 50% decrease in training time. Such
efficiency gains align with our theoretical predictions in
the main theorems. To further evaluate the effectiveness
of the policy update strategy, we conducted ablation study
about the measurement frequency m and different batch
update scheduling strategy with varing policy updates. The
corresponding results are deferred to Appendix G.4.

7 CONCLUSION AND LIMITATIONS
Conclusion In this work, we study CTRL with general
function approximation under a finite number of measure-
ments, aiming to reduce its computational cost. We develop
a theoretical framework to propose our algorithm, PURE,
along with a finite-sample analysis. Additionally, we intro-
duce several variants of our algorithm with improved com-
putational efficiency. Empirical results on continuous-time
control tasks and fine-tuning of diffusion models backup
our theoretical findings.

Limitations While our analysis yields useful insights for
sample- and computationally efficient CTRL, it does come
with several caveats. First, the regret bound grows on the
order of exp(T ), which may render it vacuous for long time
horizons. Second, our theoretical guarantees hinge on the
Euler–Maruyama discretization [Platen and Bruti-Liberati,
2010] of the underlying SDE, introducing unquantified bias
from discretization error that could degrade performance in
practice. Finally, we assume access to jointly measured ob-
servations (x(t), x(t+∆)) following Treven et al. [2024a],
which may be infeasible in systems with asynchronous sen-
sors or communication delays. We leave these challenges as
directions for future work.
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A PROOF OF PROPOSITIONS

A.1 PROOF OF PROPOSITION 4.4

Proof. Note that for any p ∈ P , f ∈ F , b ∈ R, we have

Ez∼p∥f(z)− f∗(z)∥22 = Ez∼pϕ(z)
⊤(Θ−Θ∗)(Θ−Θ∗)⊤ϕ(z) = Ez∼p⟨(Θ−Θ∗)(Θ−Θ∗)⊤, ϕ(z)ϕ(z)⊤⟩,

and similarily,

Ez∼p(b(z)− b∗(z))2 = Ez∼p⟨(θ − θ∗)(θ − θ∗)⊤, ϕ(z)ϕ(z)⊤⟩.

Therefore, dF,ϵ can be bounded by DE1(Z, F̄ ,P, ϵ), where F̄ = {fθ(z) = ⟨Θ̄, ϕ̄(z)⟩ : ∥Θ̄∥F ≤ R2, ∥ϕ̄∥2 ≤ L2, ϕ ∈ Rd2}.
Therefore, first through Lemma 5.4 in Wang et al. [2023], we have DE1(Z, F̄ ,P, ϵ) ≤ DE2(Z, F̄ ,P, ϵ). Then according
to Proposition 29 in Jin et al. [2021], we have DE2(Z, F̄ ,P, ϵ) = O(d2 log(1 +R2L2/ϵ2)) for any P . Similar arguments
hold forR as well.

A.2 PROOF OF PROPOSITION 5.5

Proof. Consider a sampler T that selects time points t1, . . . , tm uniformly in [0, T ], i.e., ti = i
m · T . We consider an

one-dimensional Ornstein–Uhlenbeck (OU) process follows

dx(t) = −u · x(t)dt+
√
2dw(t), x(0) = 0,

where umin ≤ u ≤ umax. Our dynamic class F is a singleton, and the reward class is defined asR = {b(x, u) = α ·x | 0 ≤
α ≤ 1} with b∗(x, u) = x. We have CT ,m,F,i = 1. To bound CT ,m,R,i, note that (b− b∗)2 = (1− α)2x2. For simplicity,
we use z to denote x and omit u since it is a constant control unit. Then the Gaussian marginal distribution of the OU process
gives

P(Ẑ = z) =
1

T

∫ T

0

√
u

2π(1− e−2ut)
exp

(
− uz2

2(1− e−2ut)

)
dt.

Since the OU process is a Markov process, we have

P(Z(ti) = z | Z(ti−1) = zi−1, . . . , Z(t1) = z1) = P(Z(ti) = z | Z(ti−1) = zi−1).

The transition density is given by

P(Z(ti) = z | Z(ti−1) = zi−1) =

√
u

2π(1− e−2uT/m)
exp

(
−u(z − zi−1e

−uT/m)2

2(1− e−2uT/m)

)
.

We compute the expectations over (b− b∗)2. For Ẑ,

(1− α)−2E[(b− b∗)2(Ẑ)] = E[Ẑ2] = E[E[Z2
t | t]] =

∫ T

0

1

u
(1− e−2ut)

1

T
dt =

1

u
− 1

2u2T
(1− e−2uT ).

For Z(ti),

(1− α)−2E[(b(Z(ti))− b∗(Z(ti)))
2 | Z(ti−1) = zi−1] = E[Z(ti)

2 | Z(ti−1) = zi−1]

= (zi−1e
−uT/m)2 +

1

u
(1− e−2uT/m).

Then the ratio is bounded by

E[(b− b∗)2(Ẑ)]

E[(b(Z(ti))− b∗(Z(ti)))2 | Z(ti−1) = zi−1]
≤

1
u −

1
2u2T (1− e−2uT )

1
u (1− e−2uT/m)

≤ 1

1− e−2uT/m

≤ 1 +
m

2Tumin
,

which implies CT ,m,R,i ≤ 1 + m
2Tumin

for all i. Thus, we obtain the upper bound for CT ,mR.



B PROOF OF THEOREM 4.5
In this section we prove Theorem 4.5. To make our presentation more clear, we separate Theorem 4.5 into two theorems
Theorem B.4 and Theorem B.5 and prove them separately. To begin with, we have the following lemma to bound the flow
first.

Lemma B.1. Denote x̂(t) to be the state flow that following fn, πn, qn, and let x(t) denote the state flow following
f∗, πn, qn. Then we have

E∥x̂n(t)− xn(t)∥22 ≤ 2eKt ·
∫ t

s=0

E[∥f∗(xn(s), πn(xn(s)))− fn(xn(s), πn(xn(s)))∥22]ds.

where K = 1 + d · (1 + Lπ)
2 · L2

g + 2(1 + Lπ)
2 · L2

f .

Proof. Define δ(t) := x̂n(t)− xn(t). The dynamics of δ(t) are governed by:

dδ(t) = [fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t)))] dt

+ [g∗(x̂n(t), πn(x̂n(t)))− g∗(xn(t), πn(xn(t)))] dw(t). (7)

Applying Itô’s lemma to ∥δ(t)∥22 yields:

d∥δ(t)∥22 = 2δ(t)⊤dδ(t) + d · |g∗(x̂n(t), πn(x̂n(t)))− g∗(xn(t), πn(xn(t)))|2dt.

Taking integration on both sides:

∥δ(t)∥22 = ∥δ(0)∥22 +
∫ t

0

2δ(t)⊤dδ(t) + d ·
∫ t

0

|g∗(x̂n(t), πn(x̂n(t)))− g∗(xn(t), πn(xn(t)))|2dt.

Taking expectations, the martingale term corresponding to (7) vanishes, then apply Fubini’s theorem for other terms leading
to:

d

dt
E∥δ(t)∥22 = 2E

[
δ(t)⊤ (fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t))))

]
+ d · E|g∗(x̂n(t), πn(x̂n(t)))− g∗(xn(t), πn(xn(t)))|2.

Bounding the first term using Cauchy-Schwarz and 2ab ≤ a2 + b2:

2E
[
δ(t)⊤ (fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t))))

]
≤ 2E [∥δ(t)∥2 · ∥fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t)))∥2]

≤ E[∥δ(t)∥22] + E[∥fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t)))∥22].

To leverage the Lf -Lipschitzness of fn, f∗ (Assumption 4.2), we bound the term:

E ∥fn(x̂n(t), πn(x̂n(t)))− f∗(xn(t), πn(xn(t)))∥22
≤ 2E[∥fn(x̂n(t), πn(x̂n(t)))− fn(xn(t), πn(xn(t)))∥22] + 2E[∥fn(xn(t), πn(xn(t)))− f∗(xn(t), πn(xn(t)))∥22]

≤ 2L2
f (1 + Lπ)

2E[∥δ(t)∥22] + 2E[∥fn(xn(t), πn(xn(t)))− f∗(xn(t), πn(xn(t)))∥22],

where the first inequality is due to the fact that ∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, the second inequality is due to Assumption 4.2.
Similarly for the diffusion term, by g∗ is Lg-Lipschitz:

E|g∗(x̂n(t), πn(x̂n(t)))− g∗(xn(t), πn(xn(t)))|2 ≤ (1 + Lπ)
2 · L2

gE∥δ(t)∥22.

Combining above:

d

dt
E∥δ(t)∥22 ≤ (1 + d · (1 + Lπ)

2 · L2
g + 2(1 + Lπ)

2 · L2
f )E∥δ(t)∥22 + 2E ∥fn(xn(t), πn(xn(t)))− f∗(xn(t), πn(xn(t)))∥22 .

Applying Grönwall’s inequality with K = 1 + (1 + Lπ)
2 · L2

g + 2(1 + Lπ)
2 · L2

f :

E∥δ(t)∥22 ≤ 2eKt

∫ t

0

E ∥fn(xn(s), πn(xn(s)))− f∗(xn(s), πn(xn(s)))∥22 ds.



We also have the following lemma to show the difference between b− b∗ with their empirical one:

Lemma B.2. [Lemma 1,5, Russo and Van Roy 2013] For any δ > 0 and ϵ > 0, let Φϵ be the ϵ-covering net of Φ (for any
ϕ ∈ Φ, there exists a ϕϵ ∈ Φϵ such that ∥ϕ− ϕϵ∥∞ ≤ ϵ). Then with probability at least 1− δ, we have

• For all b ∈ R, recall that |b| ≤ 1 and r is 1-Gaussian, then we have for all n,∑
z,r∈Dn

(b(z)− r)2 − (b∗(z)− r)2 ≥ 1

2

∑
z∈Dn

(b(z)− b∗(z))2 − 4 log(|Rϵ|/δ)− ϵn(8 +
√
8 log(4n2|Rϵ|/δ)),

∑
z,r∈Dn

(b(z)− r)2 − (b∗(z)− r)2 ≤ 3

2

∑
z∈Dn

(b(z)− b∗(z))2 + 4 log(|Rϵ|/δ) + ϵn(ϵ+ 8 +
√

8 log(4n2|Rϵ|/δ)),

• For all f ∈ F , recall that ∥f∥2 ≤ 1 and y is g(z) · 1-Gaussian vector, |g| ≤ G/
√
d, then we have for all n,∑

z∈Dn

∥f(z)− f∗(z)∥2 ≤ 2

( ∑
z,y∈Dn

∥f(z)− y∥2 −
∑

z,y∈Dn

∥f∗(z)− y∥2
)

+ 8G2 log(|Fϵ|/δ) + 2ϵn(8 +
√
8G2 log(4n2|Fϵ|/δ)).

∑
z,y∈Dn

∥f(z)− y∥2 − ∥f∗(z)− y∥2 ≤ 3

2

∑
z∈Dn

∥f(z)− f∗(z)∥2 + 4G2 log(|Fϵ|/δ)

+ ϵn(ϵ+ 8 +
√

8G2 log(4n2|Fϵ|/δ)).

Proof. To prove the first part, let Rϵ ⊂ R be a finite set such that for every b ∈ R there exists some bϵ ∈ Rϵ with
∥b− bϵ∥∞ ≤ ϵ.
Recall the notations L2,n(b) :=

∑
z,r∈Dn

(b(z)−r)2 and ∥b−b∗∥22,Dn
:=
∑

z∈Dn
(b(z)−b∗(z))2 from Russo and Van Roy

2013. Following the proof of Lemma 1 of Russo and Van Roy 2013, for each bϵ ∈ Rϵ, with η2 = 1 as our 1-Gaussian
assumption, with probability at least 1− δ

|Rϵ| :

∥bϵ − b∗∥22,Dn
≤ 2 (L2,n(bϵ)− L2,n(b

∗)) + 8 ln

(
|Rϵ|
δ

)
, (8)

taking union bound overRϵ we then have with probability at least 1− δ, every bϵ ∈ Rϵ satisfies above inequality.
Now let b ∈ R be arbitrary. By the definition of the ϵ-net, pick bϵ ∈ Rϵ with ∥b− bϵ∥∞ ≤ ϵ.
Since ∥b− bϵ∥∞ ≤ ϵ and ∥b∥∞ ≤ 1 and the reward noise variance is η2 = 1, apply Lemma 5 of Russo and Van Roy 2013
and taking union bound we have with probability at least 1− δ for all n ∈ N:∣∣∣∣12∥bϵ − b∗∥22,Dn

− 1

2
∥b− b∗∥22,Dn

+ L2,n(b)− L2,n(bϵ)

∣∣∣∣ ≤ ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
, (9)

We now connect ∥b− b∗∥2 to ∥bϵ − b∗∥2. By (9):

1

2
∥b− b∗∥22,Dn

=
1

2
∥bϵ − b∗∥22,Dn

− (L2,n(bϵ)− L2,n(b)) +

[
1

2
∥b− b∗∥2 − 1

2
∥bϵ − b∗∥2 + L2,n(bϵ)− L2,n(b)

]
≤ 1

2
∥bϵ − b∗∥22,Dn

− (L2,n(bϵ)− L2,n(b)) + ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
.

Multiply both sides by 2:

∥b− b∗∥22,Dn
≤ ∥bϵ − b∗∥22,Dn

− 2(L2,n(bϵ)− L2,n(b)) + 2ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
.

Then apply (8) for ∥bϵ − b∗∥22,Dn
:



∥b− b∗∥22,Dn
≤ 2(L2,n(bϵ)− L2,n(b

∗)) + 8 ln
(

|Rϵ|
δ

)
− 2(L2,n(bϵ)− L2,n(b)) + 2ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]

= 2(L2,n(b)− L2,n(b
∗)) + 8 ln

(
|Rϵ|
δ

)
+ 2ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]

= 2
(∑

z,r

(b− r)2 −
∑
z,r

(b∗(z)− r)2
)

+ 8 ln
(

|Rϵ|
δ

)
+ 2ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
.

This proves the first inequality. To prove the second inequality, first note that by modifying the proof of Lemma 1 in Russo
and Van Roy 2013, namely setting Zt := f(At)−Rt)

2 − (fθ(At)−Rt)
2 which is the negative of original Zt, we can go

through the same arguments as the proof in Russo and Van Roy 2013 and arrive at the conclusion that with probability at
least 1− δ, for every bϵ ∈ Rϵ we have:

L2,n(bϵ)− L2,n(b
∗) ≤ ∥bϵ − b∗∥22,Dn

+ 4η2 ln

(
|Rϵ|
δ

)
.

To combine this with Lemma 5 of Russo and Van Roy 2013, we decompose as:

L2,n(b)− L2,n(b
∗) = (L2,n(b)− L2,n(bϵ)) + (L2,n(bϵ)− L2,n(b

∗))

=
1

2
∥b− b∗∥22,Dn

− 1

2
∥bϵ − b∗∥22,Dn

+

[
1

2
∥bϵ − b∗∥2 − 1

2
∥b− b∗∥2 + L2,n(b)− L2,n(bϵ)

]
+ (L2,n(bϵ)− L2,n(b

∗))

≤ 1

2
∥b− b∗∥22,Dn

+ ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
+

1

2
∥bϵ − b∗∥22,Dn

+ 4 ln

(
|Rϵ|
δ

)
.

To bound ∥bϵ − b∗∥22,Dn
, note that (bϵ − b∗)2 ≤ 2(bϵ − b)2 + 2(b− b∗)2 and thus we can bound as:

1

2
∥bϵ − b∗∥22,Dn

≤ nϵ2 + ∥b− b∗∥22,Dn
.

Plug in and we obtain the bound:

L2,n(b)− L2,n(b
∗) ≤ 3

2
∥b− b∗∥22,Dn

+ ϵn

[
8 +

√
8 ln

(
4n2|Rϵ|

δ

)]
+ nϵ2 + 4 ln

(
|Rϵ|
δ

)
.

Thus we prove the first part of the lemma. The proof for the second part of the lemma is by using the same arguments,
except replacing the noise variance with η2 = G2, which is simply by adding the extra G2 coefficients to the bound.

Lemma B.3 (Theorem 5.3, Wang et al. 2023). Given a function class Φ defined on Z with |ϕ(x)| ≤ 1 for all (ϕ, z) ∈ Φ×Z ,
and a family of probability measures P over Z . Suppose sequence {ϕk}Kk=1 ⊂ Φ and {pk}Kk=1 ⊂ P satisfy that for all
k ∈ [K],

∑k−1
i=1 |Epi

[ϕk]| ≤ β. Then for all k ∈ [K],

k∑
i=1

|Epi
[ϕi]| ≤ O(DE1(Z,Φ,P, 1/k)β log k)

Next we are going to prove our theorems.

Theorem B.4. Let

βR := 8 log(|Rϵ|/δ) + 2ϵN(8 +
√
8 log(4N2|Rϵ|/δ))

βF := 8G2 log(|Fϵ|/δ) + 2ϵN(8 +
√
8G2 log(4N2|Fϵ|/δ)),

then we have f∗ ∈ Fn and b∗ ∈ Rn for all n w.h.p.



Proof. Recall the definition ofRn and Fn:

Rn ←
{
b :

∑
z,y,r∈Dn

(b(z)− r)2 ≤ min
b′∈R

∑
z,y,r∈Dn

(b′(z)− r)2 + βR

}

Fn ←
{
f :

∑
z,y,r∈Dn

∥f(z)− y∥2 ≤ min
f ′∈F

∑
z,y,r∈Dn

∥f ′(z)− y∥2 + βF

}
.

Following Lemma B.2, we have that for any b ∈ Rn, we have∑
z,y,r∈Dn

(b∗(z)− r)2 −
∑

z,y,r∈Dn

(b(z)− r)2

≤ −1

2

∑
z∈Dn

(b(z)− b∗(z))2 + 8 log(|Rϵ|/δ) + 2ϵn(8 +
√

8 log(4n2|Rϵ|/δ))

≤ 8 log(|Rϵ|/δ) + 2ϵn(8 +
√
8 log(4n2|Rϵ|/δ))

≤ βR

following the definition of βR. Therefore, we have b∗ ∈ Rn. Similarily, we have f∗ ∈ Fn.

We have the following theorem.

Theorem B.5. With probability at least 1− 2δ logN , we have

N∑
n=1

Rn = O(T
√
NdR(log(4N/δ) + log(|Rϵ|/δ)) logN

+ LT ·
√
TN · 2 exp(KT )

√
dFG2(log(4N/δ) + log(|Fϵ|/δ)) logN),

where ϵ = 1
N2 ,K = 1 + d · (1 + Lπ)

2 · L2
g + 2(1 + Lπ)

2 · L2
f , L = Lb(1 + Lπ).

Proof. For simplicity, denote x̂(t) to be the state flow that following fn, πn, qn, and let x(t) denote the state flow following
f∗, πn, qn. We introduce the notion of R(f, b, π, q) to denote

R(f, b, π, q) := E
[ ∫ T

t=0

b(x(t), π(x(t)))dt

∣∣∣∣x(0) ∼ q, dx(t) = f(x(t), π(x(t))dt+ g∗(x(t), π(x(t))dw(t)

]
,

Then we have

Rn : = R(f∗, r∗, π∗, q∗)−R(f∗, r∗, πn, qn)

≤ R(fn, bn, πn, qn)−R(f∗, r∗, πn, qn)

= E
[ ∫ T

t=0

bn(x̂(t), πn(x̂(t)))dt

]
− E

[ ∫ T

t=0

b∗(x(t), πn(x(t)))dt

]
= E

[ ∫ T

t=0

bn(x̂(t), πn(x̂(t)))dt

]
− E

[ ∫ T

t=0

bn(x(t), πn(x(t)))dt

]
+ E

[ ∫ T

t=0

(bn − b∗)(x(t), πn(x(t)))dt

]
≤ Lb(1 + Lπ) · E

[ ∫ T

t=0

∥x̂(t)− x(t)∥2dt
]
+ E

[ ∫ T

t=0

(bn − b∗)(x(t), πn(x(t)))dt

]
,

where the first inequality holds since f∗ ∈ Fn, b
∗ ∈ Rn and the optimism principle, and the last one holds due to Assumption

4.2. By Lemma B.1, we have

E∥x̂n(t)− xn(t)∥22 ≤ 2 exp(Kt) ·
∫ t

s=0

E[∥f∗(xn(s), πn(xn(s)))− fn(xn(s), πn(xn(s)))∥22]ds.



Therefore, we have

Rn ≤ L ·
[ ∫ T

t=0

√
2 exp(Kt) ·

∫ t

s=0

E[∥f∗(xn(s), πn(xn(s)))− fn(xn(s), πn(xn(s)))∥22]ds dt
]

+ E
[ ∫ T

t=0

(bn − b∗)(x(t), πn(x(t)))dt

]

≤ LT

[√
2 exp(KT ) ·

∫ T

s=0

E[∥f∗(xn(s), πn(xn(s)))− fn(xn(s), πn(xn(s)))∥22ds]
]
+ T

√
Bn

= LT
√
2T exp(KT )

√
An + T

√
Bn, (10)

where

An := Exn,t∥f∗(xn(t), πn(xn(t)))− fn(xn(t), πn(xn(t)))∥22,
Bn := Exn,t|bn(xn(t), πn(xn(t)))− b∗(xn(t), πn(xn(t)))|2.

Here, the second inequality holds due to the basic inequality E[x] ≤
√

E[x2]. Taking summation from n = 1 to N , we have

N∑
n=1

Rn ≤
N∑

n=1

LT
√

2T exp(KT )
√

An + T
√

Bn

≤ T

√√√√N

N∑
n=1

Bn + LT ·
√
TN · 2 exp(KT )

√√√√ N∑
n=1

An, (11)

Let pn denote the distribution of zn, where zn = (xn(t), πn(xn(t))) with the following joint distribution:

t ∼ Unif[0, T ], x ∼ X(t, πn, qn).

With a slight abuse of notation, we use f(zn), b(zn) to denote f(xn(t), πn(xn(t))), b(xn(t), πn(xn(t))). Next we just need
to make sure that for both f and b, they satisfy the Eluder dimension. First, note that to train bn and fn, we obtain it from
the following one:

bn ∈ Rn,Rn ←
{
b :

∑
z,y,r∈Dn

(b(z)− r)2 ≤ min
b′∈R

∑
z,y,r∈Dn

(b′(z)− r)2 + βR

}

fn ∈ Fn,Fn ←
{
f :

∑
z,y,r∈Dn

∥f(z)− y∥2 ≤ min
f ′∈F

∑
z,y,r∈Dn

∥f ′(z)− y∥2 + βF

}
.

First, we have for any b ∈ R and f ∈ F , by Lemma E.3 and taking union bound over n, for all n we have with probability
at least 1− 2δ logN :

n−1∑
i=1

Ez′∼pi(b(z
′)− b∗(z′))2 ≤ 8

∑
z∈Dn

(b(z)− b∗(z))2 + 4 log(4N/δ), (12)

n−1∑
i=1

Ez′∼pi
∥f(z′)− f∗(z′)∥2 ≤ 8

∑
z∈Dn

∥f(z)− f∗(z)∥2 + 4 log(4N/δ), (13)

Then taking b = bn, f = fn and using Lemma B.2, we have

n−1∑
i=1

Ez′∼pi
(bn(z

′)− b∗(z′))2 ≤ O

( ∑
z,r∈Dn

(bn(z)− r)2 − inf
b∈R

∑
z,r∈Dn

(b(z)− r)2 + log(4N/δ) + log(|Rϵ|/δ)
)

≤ O(βR + log(4N/δ) + log(|Rϵ|/δ)), (14)



and
n−1∑
i=1

Ez′∼pi
∥f(z′)− f∗(z′)∥2 ≤ O

( ∑
z,y∈Dn

∥fn(z)− y∥2 − inf
f∈F

∑
z,y∈Dn

∥fn(z)− y∥2 + log(4N/δ) + log(|Fϵ|/δ)
)

≤ O(βF + log(4N/δ) +G2 log(|Fϵ|/δ)). (15)

Therefore, taking ϕi(z) = (bi(z) − b∗(z))2 and ϕi(z) = ∥fi(z) − f∗(z)∥2 separately, we can use Lemma B.3 for both
cases and obtain that

N∑
n=1

Bn ≤ O(dR(βR + log(4N/δ) + log(|Rϵ|/δ)) logN) = O(dRβR logN),

N∑
n=1

An ≤ O(dF (βF + log(4N/δ) +G2 log(|Fϵ|/δ)) logN) = O(dFβF logN).

Substituting them into (11) finalizes our proof.

C PROOF OF THEOREM 5.1
Theorem C.1. With high probability, f∗ ∈ Fn, b

∗ ∈ Rn. Meanwhile, the regret of Algorithm 2 is in the same order of
Algorithm 1.

Proof. Define the following confidence sets:

F̂n+1 ←
{
f :

∑
x,u,y,r∈Dn+1

(f(x, u)− y)2 ≤ min
f ′∈F

∑
x,u,y,r∈Dn+1

(f ′(x, u)− y)2 + 5βF

}
.

R̂n+1 ←
{
b :

∑
x,u,y,r∈Dn+1

(bn(x, u)− r)2 ≤ min
b′∈R

∑
x,u,y,r∈Dn+1

(b′(x, u)− r)2 + 5βR

}
.

First, it is easy to see that Theorem B.4 still holds, therefore b∗ ∈ Rn ⊂ R̂n and f∗ ∈ Fn ⊂ F̂n. Next, by our updating
rule, we have for all n, ∑

x,u,y,r∈Dn+1

(fn(x, u)− y)2 ≤ min
f ′∈F

∑
x,u,y,r∈Dn+1

(f ′(x, u)− y)2 + 5βF∑
x,u,y,r∈Dn+1

(bn(x, u)− r)2 ≤ min
b′∈R

∑
x,u,y,r∈Dn+1

(b′(x, u)− r)2 + 5βR.

Therefore, we can follow the proof of Theorem B.5 by changing βR and βF with 5βR and 5βF in (14) and (15), the regret
still holds.

Theorem C.2. The total switching number is O(dF logN + dR logN).

Proof. To begin with, note that for all n, we have∑
x,u,y,r∈Dn

(fn(x, u)− y)2 ≤ min
f ′∈F

∑
x,u,y,r∈Dn

(f ′(x, u)− y)2 + 5βF∑
x,u,y,r∈Dn

(bn(x, u)− r)2 ≤ min
b′∈R

∑
x,u,y,r∈Dn

(b′(x, u)− r)2 + 5βR.

Therefore, by Lemma B.2 and (12), (13), we have

n−1∑
i=1

Ez′∼pi
(bn(z

′)− b∗(z′))2 ≤ 8
∑
z∈Dn

(bn(z)− b∗(z))2 + 4 log(4N/δ),

≤ 16
∑
z∈Dn

(bn(z)− r)2 − min
b′∈R

(b′(z)− r)2 +O(βR)

≤ O(βR),



where the second and third line hold due to the selection of βR. Similarily, we have

n−1∑
i=1

Ez′∼pi∥fn(z′)− f∗(z′)∥2 ≤ O(βF ). (16)

Next we derive the following bound. Consider n1 < n2 < · · · < nl to be some n ∈ [N ] where Fn gets updated. Then at
some ni, we have∑

x,u,y,r∈Dni+1

(fni
(x, u)− y)2 ≥ min

f ′∈F

∑
x,u,y,r∈Dni+1

(f ′(x, u)− y)2 + 5βF ≥
∑

x,u,y,r∈Dni+1

(f∗(x, u)− y)2 + 4βF .

where the second inequality holds since f∗ ∈ Fni+1 due to Theorem C.1. Meanwhile, since fni
is updated at ni-th step,

then fni
∈ Fni

, which is∑
x,u,y,r∈Dni

(fni
(x, u)− y)2 ≤ min

f ′∈F

∑
x,u,y,r∈Dni

(f ′(x, u)− y)2 + βF ≤
∑

x,u,y,r∈Dni

(f∗(x, u)− y)2 + βF .

Therefore, we have ∑
x,u,y,r∈Dni+1

\Dni

[(fni
(x, u)− y)2 − (f∗(x, u)− y)2] ≥ 3βF .

By Lemma B.2, we have

3βF ≤
∑

x,u,y,r∈Dni+1
\Dni

[(fni
(x, u)− y)2 − (f∗(x, u)− y)2] ≤

∑
x,u,y,r∈Dni+1

\Dni

3

2
(fni

(x, u)− f∗(x, u))2 + βF ,

(17)

which suggests that

ni+1−1∑
n=ni

(fn(zn)− f∗(zn))
2 ≥ βF ,

where we use the fact that fn = fni
when ni ≤ n < ni+1. Therefore, taking summation from i = 1, . . . , l, we have

l · βF ≤
N∑

n=1

(fn(zn)− f∗(zn))
2 = O

( N∑
n=1

Ez∼pn
(fn(z)− f∗(z))2 + βF

)
≤ O(dFβF logN),

where the first equality holds due to Lemma E.3, the second inequality holds due to (16) and Lemma B.3. It suggests the
switching number l = O(dF logN). Similarily, the switching number ofRn is also bounded by O(dR logN). Combining
them obtains the final result.

D PROOF OF THEOREM 5.6

The main idea of this proof originates from Xiong et al. [2023]. For the ease of presentation, we denote pn,1, . . . , pn,m = pn.
We divide episodes n = 1, . . . , N/m into disjoint sets Ej , j = 0, 1, . . . , J , where

j = 0, n ∈ E0 :

m∑
i=1

Ezn,i∼pn,i
∥fn(zn,i)− f∗(zn,i)∥2 < 100CT · βF ,

j ≥ 1, n ∈ Ej : 100CT · 2j−1βF ≤
m∑
i=1

Ezn,i∼pn,i
∥fn(zn,i)− f∗(zn,i)∥2 < 100CT · 2jβF . (18)



Apparently, we have J = O(logN) since f ≤ 1 and m ≤ N . Meanwhile, note that by the definition of fn, which is updated
on n-th episode, then we have

n−1∑
n′=1

m∑
i=1

Ezn′,i∼pn′,i∥fn(zn′,i)− f∗(zn′,i)∥2

≤ CT

n−1∑
n′=1

m∑
i=1

Ezn′,i∼PT ,π
n′ ,qn′ (·|zn′,i−1,...,zn′,1)

[
∥fn(zn′,i)− f∗(zn′,i)∥2

]

≤ CT

[
4

n−1∑
n′=1

m∑
i=1

∥fn(zn′,tn′,i)− f∗(zn′,tn′,i)∥
2 + βF

]
≤ 100CT βF , (19)

where the first inequality due to the definition of CT , the second one holds due to Lemma E.2 and the selection of βF , the
last one holds due to Lemma B.2 and the selection of βF . Combining the upper bound in (18) and (19), we have

∀j ≥ 0,∀n ∈ Ej ,

m∑
i=1

Ezn,i∼pn,i
∥fn(zn,i)− f∗(zn,i)∥2 +

n−1∑
n′=1

m∑
i=1

Ezn′,i∼pn′,i∥fn(zn′,i)− f∗(zn′,i)∥2 ≤ 200CT · 2jβF ,

therefore, by Lemma B.3, we have
m∑
i=1

Ezn,i∼pn,i
∥fn(zn,i)− f∗(zn,i)∥2 +

n−1∑
n′=1

m∑
i=1

Ezn′,i∼pn′,i∥fn′(zn′,i)− f∗(zn′,i)∥2 ≤ O(dFCT · 2jβF logN), (20)

Next, for j ≥ 1, we bound (20) from another direction. We have
m∑
i=1

Ezn,i∼pn,i
∥fn(zn,i)− f∗(zn,i)∥2 +

n−1∑
n′=1

m∑
i=1

Ezn′,i∼pn′,i∥fn′(zn′,i)− f∗(zn′,i)∥2

≥
∑

n′∈Ej ,n′<n

m∑
i=1

Ezn′,i∼pn′,i∥fn′(zn′,i)− f∗(zn′,i)∥2

≥ |{n′ ∈ Ej , n
′ < n}| · 100CT · 2j−1βF , (21)

where the second inequality holds due to the definition of Ej . Therefore, combining (20) and (21) and setting n to be the
max element in Ej , we have |Ej | ≤ O(dF logN) for all j ≥ 1. Similarily, for the reward function b, we define Fj similar
to Ej , we can also obtain that

j = 0,∀n ∈ F0 :

m∑
i=1

Ezn,i∼pn,i(bn(zn,i)− b∗(zn,i))
2 +

n−1∑
n′=1

m∑
i=1

Ezn′,i∼pn′,i(bn′(zn′,i)− b∗(zn′,i))
2 ≤ O(dRCT βR logN)

j ≥ 1, ∀n ∈ Fj : |Fj | ≤ O(dR logN).
(22)

Finally we bound the final regret. We look at the bound of the suboptimality gap Rn,i from (10), where

Rn,i ≤ LT
√
2T exp(KT )

√
An,i + T

√
Bn,i, An,i := Ez∼pn,i∥f∗(z)− fn,i(z)∥22, Bn,i := Ez∼pn,i |bn,i(z)− b∗(z)|2.

(23)

Then for the total regret, we have

m∑
i=1

N/m∑
n=1

Rn,i =

m∑
i=1

( ∑
n∈E0∩F0

Rn,i +
∑

n/∈E0∩F0

Rn,i

)

≤
m∑
i=1

∑
n∈E0∩F0

LT
√
2T exp(KT )

√
An,i + T

√
Bn,i + (|E1|+ · · ·+ |F1|+ . . . ) · T

≤ LT
√
2T exp(KT )

√
|E0 ∩ F0|

∑
An,i + T

√
|E0 ∩ F0|

∑
Bn,i +mT logN ·O(dF + dR)

≤ O
(
LT
√
2T exp(KT )

√
NdFCT βF logN + T

√
NdRCT βR logN +mT (dF + dR) logN

)
,

where the first inequality holds due to (23) and the fact Rn,i ≤ T , the second one holds due to Cauchy-Schwarz inequality,
the last one holds due to conditions in (20), (22) and applying them to Lemma B.3. Therefore, our proof holds.



E TECHNICAL LEMMAS
Lemma E.1 (Gronwall’s Inequality [Bellman, 1943]). Let u(t) be a non-negative, continuous function on the interval [a, b].
Suppose that

u(t) ≤ K +

∫ t

a

γ(s)u(s) ds

for all t ∈ [a, b], where K is a non-negative constant and γ(s) is a non-negative, continuous function on [a, b]. Then,

u(t) ≤ K exp

(∫ t

a

γ(s) ds

)
for all t ∈ [a, b].

Lemma E.2 (Zhang et al. 2021b). Let (Fi)i≥0 be a filtration. Let (Xi)i≥1 be a sequence of random variables such that
|Xi| ≤ 1 almost surely, and Xi is Fi-measurable. For every δ ∈ (0, 1), we have

Pr

(
n∑

i=1

E
[
X2

i | Fi−1

]
≥ 8

n∑
i=1

X2
i + 4 ln

(
4

δ

))
≤ (log(n) + 1)δ.

Lemma E.3 (Zhang et al. 2021b). Let (Fi)i≥0 be a filtration. Let (Xi)i≥1 be a sequence of random variables such that
|Xi| ≤ 1 almost surely, and Xi is Fi-measurable. For every δ ∈ (0, 1), we have

Pr

(
n∑

i=1

X2
i ≥ 8

n∑
i=1

E
[
X2

i | Fi−1

]
+ 4 ln

(
4

δ

))
≤ (log(n) + 1)δ.

F ADDITIONAL DETAILS OF EXPERIMENTS FOR DIFFUSION MODEL FINE-TUNING
In this section we introduce additional experiment details in Section 6.1.

F.1 FROM THEORY TO PRACTICE

PURESEIKO offers the first concrete realization of the general update schemes in Algorithms 2 and 3.

How the Theoretical Insights Inform the Design of PURESEIKO Intuitively, Theorem 5.1 suggests that by updating
the policy and initial distribution less frequently, as prescribed by Algorithm 2, we can still maintain a high-probability
confidence set for both the dynamics and the reward; Theorem 5.6 indicates that following Algorithm 3, performing multiple
measurements within each episode–while keeping the total number of measurements unchanged–can yield comparable
results to more rollout baselines.
As mentioned in the main context, SEIKO already adopts a low-switching schedule: training is divided into K batches
with geometrically increasing sizes, Bi+1 = ηbaseBi for i ∈ [K]. Nevertheless, diffusion-model fine-tuning under SEIKO
remains slow. Guided by Theorem 5.1 and Theorem 5.6, we insert extra mid-episode measurements to speed up data
collection without enlarging the sample budget, producing Algorithm 4, the PURESEIKO variant.

How the Experiment Result Backup the Theoretical Results Figure 1a demonstrates that adding in-trajectory measure-
ments markedly shortens sampling time while achieving aesthetic scores comparable to the original SEIKO. This empirical
behavior substantiates the prediction of Theorem 5.6.

F.2 DETAILS OF SEIKO

Progress in SEIKO is primarily evaluated using a pre-trained aesthetic scorer, specifically the LAION Aesthetics Predictor
V2 [Schuhmann, 2022]. Following Uehara et al. [2024], we fix the total number of scorer evaluations (i.e., measurements) at
N = 19200. To address uncertainty in reward estimation, Uehara et al. [2024] propose two versions of the uncertainty oracle:
Bootstrap (bootstrapped neural networks) and UCB (an uncertainty estimate derived from the network’s last layer). We adopt
the UCB variant, as it generally produces superior aesthetic scores. For the backbone diffusion model, SEIKO employs
Stable Diffusion V1.5 [Rombach et al., 2022], which we also adopt as our pre-trained model. While Stable Diffusion V1.5
was originally trained with 1000 discretized denoising steps, we follow SEIKO and reduce it to 50 steps at inference time
for improved sampling efficiency. For notational simplicity, we define the denoising time from 0 (fully denoised) to T (initial
noise), inverting the conventional T -to-0 timeline.



F.3 PURESEIKO ALGORITHM

Building on SEIKO, we introduce a more flexible framework, PURE, which incorporates multiple in-trajectory measure-
ments and allows control over the frequency of policy updates. We refer to this specialized version as PURESEIKO, whose
pseudo-code is presented in Algorithm 4. In brief, at episode n, we begin from an initial state x(t0) ∼ qn and simulate the
trajectory using the following update rule with time step ∆t:

x(tk) = x(tk−1) + fn(tk−1, x(tk−1))∆t+ g∗(x(tk)) (∆w(tk)),

where ∆w(tk) ∼ N (0, (∆t)2 ·I), tk = tk−1+∆t. The trajectory is then used to compute a Riemann sum over intermediate
values of bn—a learned reward function—to approximate the cumulative reward R. The dataset Dn for training bn is
updated continuously across episodes, which ensures that bn converges toward the true reward function b∗ over time. This
approach is commonly used for approximating integrals in diffusion models [Uehara et al., 2024].
To optimize R = R(π, q, f, b) over the confidence sets, we construct upper confidence bounds (UCBs) for f and b based on
their respective confidence sets Fn andRn. Then, we jointly optimize R over π and q with UCBs of fn, bn described above.
In this framework, B1 denotes the batch size in the first outer loop, while the hyperparameter ηbase determines the growth
factor for the number of samples in subsequent outer loops, following the relation Bi+1 = ηbase ·Bi.
Algorithm 4 Policy Update and Rolling Efficient CTRL for OptimiStic finE-tuning of dIffusion with KL cOnstraint
(PURESEIKO)

Require: Total measurement number N , initial distribution class q ∈ Q, pre-trained drift class f pre ∈ F , diffusion term
g∗, ground-truth reward r ∈ R, reward approximation r̂, episode length T , sampler T , diffusion hyperparameter
α, {βn} ∈ R+, counter κ, measurement frequency m, initial batch size B1 ∈ Z+, hyperparameter ηbase ∈ R+.

1: Initialize f1 = f pre, q1 = q, κ = 0.
2: for episode n = 1, . . . , ⌊N/m⌋ do
3: Sample tn,1, · · · , tn,m ∼ T , tn,0 = 0
4: Execute dx(t) = fn−1(t, x(t))dt+ g∗(x(t))dw(t), x(0) ∼ qn−1, receive feedback yn,i = r(x(tn,i)) + ϵ
5: Update Dn+1 ← Dn ∪ ({x(tn,i), yn,i}mi=1).
6: Set r̂n+1 ← r̂n, fn+1 ← fn

// If collected enough samples, update the reward and diffusion once.
7: if ηκ

base·B1

m ≤ n then
8: Train r̂n+1 on Dn+1, and update fn+1, qn+1 by solving

fn+1, qn+1 = argmax
f∈F,q∈Q

EPf,q [r̂(x(T ))] − αKL(Pf,q|Pf1,q1) − βn KL(Pf,q∥Pfn,qn),

using the DDIM optimizer [Song et al., 2020a], where Pf,q ∈ ∆(X ) refers to the marginal distribution at T . Then set
κ← κ+ 1.

9: end for
10: Output: f⌊N

m ⌋+1, q⌊N
m ⌋+1

F.4 ADDITIONAL EXPERIMENT RESULTS

Figure 3 presents a qualitative comparison between samples generated by the diffusion model fine-tuned with SEIKO and
our proposed PURESEIKO. Notably, PURESEIKO achieves a comparable output image quality to SEIKO while requiring
fewer computational resources.

F.5 PURESEIKO EXPERIMENT PARAMETERS

Prompts For a fair comparison with the SEIKO algorithm, we follow the prompt settings from Uehara et al. [2024]’s
image task for both training and evaluation. Specifically, the training phase utilizes prompts from a predefined list of 50
animals [Black et al., 2023, Prabhudesai et al., 2023], while the evaluation phase employs the following unseen animal
prompts: snail, hippopotamus, cheetah, crocodile, lobster, and octopus.

Hyperparameters Table 1 summarizes the key hyperparameters for fine-tuning. We use ADAM [Kingma, 2014] as the
optimizer.



Figure 3: Qualitative comparison between SEIKO and our PURESEIKO approach, with aesthetic scores listed below each
image.

Table 1: Important hyperparameters for fine-tuning.

Method Type

SEIKO Batch size 128
KL parameter β 0.01
UCB parameter C1 0.002
Sampling to neural SDE Euler
Step size (fine-tuning) 50
Epochs (fine-tuning) 100

PURESEIKO λ (temperature parameter in 6.1) 6
N (total measurement number) 19200
m (measurement frequency) 4
B1 (number of samples in the first outer loop) 1280
ηbase (growth factor for subsequent outer loop) 2

G CONTINUOUS-TIME CONTROL EXPERIMENTS

In this section we introduce additional experiment details about continuous-time control tasks.

G.1 FROM THEORY TO PRACTICE

PUREENODE offers the second realization of the general update schemes in Algorithms 2 and 3.

How the Theoretical Insights Inform the Design of PUREENODE Building on ENODE, we introduce a more flexible
framework, PURE, which enables control over the frequency of policy updates. A specialized instance of this framework,
referred to as PUREENODE, is detailed in Algorithm 5. As noted in the main text, ENODE already adopts a low-rollout
strategy. In PUREENODE, we further incorporate a batch-style update scheme inspired by Algorithm 2. Specifically, following
a scheme similar to SEIKO, the batch size Bi doubles at each step according to Bi+1 = 2Bi, while keeping the total sample
budget N fixed.

How the Experiment Result Backup the Theoretical Results Figure 2 demonstrates that reducing the number of policy
updates can significantly shorten training time while maintaining comparable rewards. This empirical observation supports
the insight of Theorem 5.1.



G.2 ADDITIONAL DETAILS OF EXPERIMENTS FOR CONTINUOUS-TIME CONTROL TASKS

We conduct experiments on the Acrobot, Pendulum, and Cart Pole tasks using the OpenAI Gym simulator [Brockman,
2016]. In all tasks, the system begins in a hanging-down state, and the objective is to swing up and stabilize the pole(s) in an
upright position [Yildiz et al., 2021]. We put related parameters in Table 2.

Table 2: Environment specifications

Environment cp ca αmax sbox sgoal

Acrobot 1e-4 1e-2 4 [0.1, 0.1, 0.1, 0.1] [0, 2ℓ]
Pendulum 1e-2 1e-2 2 [π, 3] [0, ℓ]
Cart Pole 1e-2 1e-2 3 [0.05, 0.05, 0.05, 0.05] [0, 0, ℓ]

Acrobot The Acrobot system consists of two links connected in series, forming a chain with one end fixed. The joint
between the two links is actuated, and the goal is to apply torques to this joint to swing the free end above a target height,
starting from the initial hanging-down state. We use the fully actuated version of the Acrobot environment, as no method has
successfully solved the underactuated balancing problem, consistent with Zhong and Leonard [2020]. The control space is
discrete and deterministic, representing the torque applied to the actuated joint. The state space consists of the two rotational
joint angles and their angular velocities.

Pendulum The inverted pendulum swing-up problem is a fundamental challenge in control theory. The system consists of
a pendulum attached at one end to a fixed pivot, with the other end free to move. Starting from a hanging-down position,
the goal is to apply torque to swing the pendulum into an upright position, aligning its center of gravity directly above the
pivot. The control space represents the torque applied to the free end, while the state space includes the pendulum’s x-y
coordinates and angular velocity.

Cart Pole The Cart Pole system comprises a pole attached via an unactuated joint to a cart that moves along a frictionless
track. Initially, the pole is in an upright position, and the objective is to maintain balance by applying forces to the cart in
either the left or right direction. The control space determines the direction of the fixed force applied to the cart. The state
space includes the cart’s position and velocity, as well as the pole’s angle and angular velocity.

Initial State In all environments, the initial position q(0) is uniformly distributed as:

q(0) ∼ Unif
(
−sbox, sbox) ,

where sbox is the position parameter.

Reward Functions For all three tasks, we denote the state by x = (q,p), where q denotes the position and p denotes the
velocity (momentum). Given a state x = (q,p) and a control unit u, the differentiable reward function is defined as:

b(x, u) = exp
(
−∥q− sgoal∥22 − cp∥p∥22 − ca∥u∥22

)
,

where sgoal denotes the goal position, cp and ca denote environment-specific constants. The exponential formulation ensures
that the reward remains within [0, 1], while penalizing deviations from the target state and excessive control effort. The
environment-specific parameters are set following the exact configurations in Yildiz et al. [2021].

Baseline We highlight several unique components of PUREENODE. First, ENODE trains dynamics following an evidence
lower bound (ELBO) [Blei et al., 2017] setup, which aims to minimize the negative log-likelihood function between the true
state and the imagined state generated by the dynamics function. This process can be regarded as an approximation of our
introduced measurement oracle. PUREENODE employs a sampler that generates time steps consisting of several mini-batches,
where each mini-batch comprises consecutive time steps with a randomly selected initial time step. To train the optimal
policy, ENODE adopts the standard actor-critic framework based on the learned dynamics. Further details can be found in
Yildiz et al. [2021].

Neural Network Architectures We adopt the same neural network architecture as described in Yildiz et al. [2021]. The
dynamics, actor, and critic functions are approximated using multi-layer perceptrons (MLPs). The same neural network
architectures were employed across all methods and environments, as detailed below:

• Dynamics: The dynamics function is modeled with three hidden layers, each containing 200 neurons, utilizing Exponential
Linear Unit (ELU) activations. Experimental observations suggest that ELU activations enhance extrapolation on test
sequences.



• Actor: The actor network consists of two hidden layers, each with 200 neurons, using ReLU activations. This design is
motivated by the observation that optimal policies can often be approximated as a collection of piecewise linear functions.
The final output of the network is passed through a tanh activation function and scaled by αmax.

• Critic: The critic network also consists of two hidden layers, each with 200 neurons, but employs tanh activations. Since
state-value functions must exhibit smoothness, tanh activations are more suitable compared to other activation functions.
Empirical results indicate that critic networks with ReLU activations tend to overfit to training data, leading to instability
and degraded performance when extrapolating beyond the training distribution.

Algorithm 5 Policy Update and Rolling Efficient CTRL with Ensemble Neural ODEs (PUREENODE)

Require: Total measurement number N , measurement frequency m, episode length T = 50, sub-episode length T ′ = 5,
true reward r ∈ R, dynamic class F , policy class Π, initial batch size B1, number of initial trajectories to collect
ηinit ∈ Z+, counter κ, sampler T , mini-batch size Nd = 5, time grid ∆t ∈ R+, hyperparameter ηbase ∈ R+

1: Initialize dynamic f , policy π as untrained Neural Network. Initialize an initial measurement dataset D0 =
{{x(ti,j), u(ti,j)}mj=1}

ηinit
i=1, collecting ηinit trajectories with smooth random policies defined in Yildiz et al. [2021];

κ = 0
2: for episode n = ηinit + 1, . . . , ⌊N/m⌋ do
3: Run sampler T and receive tn,i, i ∈ [m = NdT

′/∆t], where {tn,i} consists of Nd number of independent mini-
batches, each mini-batch consists of t0, t0 +∆t, . . . , t0 + T ′ consequent time steps with grid ∆t.

4: Execute policy π and observe at tn,i. Update dataset Dn+1 ← Dn ∪ {x(tn,i), u(tn,i)}mi=1

// If collected enough samples, update the dynamic and actor-critic once.
5: if ηκ

base·B1

m ≤ n− ηinit then
6: Train f by using the ELBO on Dn+1

7: Train π following the actor-critic schedule based on the dynamic f following Algorithm 1 in Yildiz et al. [2021]
8: Set κ← κ+ 1.
9: end if

10: end for
11: Output: Policy π

G.3 CONTINUOUS-TIME CONTROL EXPERIMENT DETAILS

Additional Details We include the batch size information in Table 3. In all experiments, we use DOPRI5 (RK45) as the
adaptive ODE solver, as suggested by Yildiz et al. [2021]. We use the ADAM optimizer [Kingma, 2014] to train all model
components, with the learning rate varying by environment.

Table 3: Data and Policy Updates

Environment Model N/m ηinit Number of Batches Batch Sizes

Acrobot ENODE
87 7

20 [4, . . . , 4] with length 20
PUREENODE 6 [2, 4, 8, 16, 18, 32]

Pendulum ENODE
9 3

6 [1, 1, 1, 1, 1, 1]
PUREENODE 3 [1, 2, 3]

Cart Pole ENODE
80 5

25 [3, . . . , 3] with length 25
PUREENODE 6 [2, 4, 8, 13, 16, 32]



G.4 ABLATION STUDY

For simplicity of presentation, we use Npu to denote the number of batches where the dynamics and policy are only updated
at the beginning of each batch. For all experiments in the ablation study of continuous-time control, we select the Acrobot
environment, as it requires a moderate amount of time to reach success.

G.4.1 Varying Number of Batches Npu

First, we investigate the impact of different batch update scheduling strategies, namely, the policy update times Npu.
In addition to the doubling strategy PURENpu=6

ENODE introduced in Section 6.2, we implement two alternative variations of
PUREENODE: (a) PURENpu=10

ENODE , which maintains a constant batch size Bi at each step (equaling strategy) but reduces the
policy update frequency to half of the original ENODE, and (b) a more aggressive tripling approach PURENpu=4

ENODE, where
the batch size Bi triples at each step, following the rule Bi+1 = 3Bi. In all cases, we ensured that the total sample budget N
remained consistent, and the total episode number is N/m = 87, with each data trajectory containing m = 250 observations
to align with the main experimental setup. Further details are provided in Table 4.
The results, shown in Figure 4a, indicate that overall runtime decreases as the number of policy updates Npu is reduced.
However, the batch update scheduling strategy plays a crucial role in determining the efficiency of policy learning. For
instance, although PURENpu=10

ENODE has a larger Npu than PURENpu=6
ENODE and might be expected to achieve higher average rewards,

it frequently failed to meet the success criteria after exhausting the batch update scheduler in several experiments. We
attribute this phenomenon to the importance of ensuring that high-quality samples dominate the dataset in the later stages of
policy updates. If initial low-quality samples remain prevalent, the agent may struggle to fully leverage the high-quality
samples for effective learning. Conversely, an overly aggressive approach with very few policy updates, as in PURENpu=4

ENODE,
leads to difficulties in processing the large influx of new trajectories in later stages of policy updates, resulting in unstable
final performance.

Table 4: Ablation Study: Batch Update Scheduling Strategy Npu

Model Strategy Npu Ninc

PURENpu=4
ENODE Tripling 4 [2, 6, 18, 54]

PURENpu=6
ENODE Doubling 6 [2, 4, 8, 16, 18, 32]

PURENpu=10
ENODE Equaling 10 [4, . . . , 4] with length 10

G.4.2 Varying Number of Measurements m

Similar to the ablation study in fine-tuning diffusion models (Section 6.1), we analyze the impact of the number of
measurements (m) on effective policy learning. In the Acrobot environment, the total number of measurements for one
policy update is given by m = Nd × ts

∆t = 5× 5
0.1 = 250. In addition to m = 250, we evaluate alternative settings with

m = 125, 500, and 1000 for trajectories included in D. Details of the modified parameters for each setting are provided in
Table 5.
The results, shown in Figure 4b, indicate that increasing m can slightly reduce total training time by decreasing the number
of required trajectories. However, unlike in diffusion model experiments, where data trajectory generation is the primary
computational bottleneck, the bottleneck in continuous-time control experiments lies in the policy iteration process. As a
result, the reduction in training time is relatively small compared to our SEIKO experiments. Moreover, excessively large
values of m can negatively impact model performance, yielding low final rewards when m = 500 and 1000. This highlights
the necessity of selecting an optimal m to balance solving continuous-time control problems effectively while maintaining
training efficiency. These findings align with our claim in Theorem 5.6, reinforcing the importance of appropriately choosing
m to achieve the best trade-off.

Table 5: Ablation Study: Number of Measurements m

Model m Ninc

PUREm=125
ENODE 125 [4, 8, 16, 32, 36, 64]

PUREm=250
ENODE 250 [2, 4, 8, 16, 18, 32]

PUREm=500
ENODE 500 [1, 2, 4, 8, 9, 16]

PUREm=1000
ENODE 1000 [1, 1, 2, 4, 4, 8]
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(a) PUREENODE with varying Npu
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(b) PUREENODE with varying m

Figure 4: Summary of the ablation studies for continuous-time control in the Acrobot environment. Figures 4a and 4b
analyze the impact of the number of policy updates Npu and the number of observations m on the final rewards, respectively,
considering either exhausting the scheduler or achieving success, whichever occurs first.
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