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ABSTRACT

Deep learning bears promise for drug discovery problems such as de novo molec-
ular design. Generating data to train such models is a costly and time-consuming
process, given the need for wet-lab experiments or expensive simulations. This
problem is compounded by the notorious data-hungriness of machine learning al-
gorithms. In small molecule generation the recently proposed GFlowNet method
has shown good performance in generating diverse high-scoring candidates, and
has the interesting advantage of being an off-policy offline method. Finding an
appropriate generalization evaluation metric for such models, one predictive of
the desired search performance (i.e. finding high-scoring diverse candidates), will
help guide online data collection for such an algorithm. In this work, we develop
techniques for evaluating GFlowNet performance on a test set, and identify the
most promising metric for predicting generalization. We present empirical results
on several small-molecule design tasks in drug discovery, for several GFlowNet
training setups, and we find a metric strongly correlated with diverse high-scoring
batch generation. This metric should be used to identify the best generative model
from which to sample batches of molecules to be evaluated.

1 INTRODUCTION

Drug development is a lengthy and costly process, with the average clinical development time reach-
ing more than nine years and median development cost nearing 1 billion USD (Wouters et al., 2020).
Preclinical early-stage drug discovery is typically an iterative optimization process that consists of
the generate, assay, learn cycle. In order to proceed to clinical trials, molecules should satisfy mul-
tiple objectives such as binding affinity to the target protein, cost of synthesis, and drug-likeness.
While multiple biological or computational assays are available in a real-world drug discovery set-
ting, we focus on two computational biophysics assays already well-known in literature - docking
and QEDBickerton et al. (2012); Bengio et al. (2021a); Xie et al. (2021). We design GFLowNet
reward separately for each of these objectives in separate experiments.

During the generation process, we typically have access to a dataset of previously evaluated candi-
dates, D = (xi, yi), where xi is the molecule candidate, and yi the value of the property of interest
(e.g., to be maximized). This data is often limited in size, relative to the size of the search space.
When true y = f(x) is not available or is slow to query, the common approach is to train an estima-
tor, such as neural network ŷ = f̂(x), also called proxy, and use ŷ as a target for the generatorLiu
et al. (2020); Bengio et al. (2021a).

Generative Flow Networks (Bengio et al., 2021a;b, or GFlowNets) have recently been proposed as
a method for generating diverse and high scoring candidates. GFlowNets generate diverse and high-
quality molecule candidates by sampling molecules with a probability proportional to their reward.
Bengio et al. (2021a) show promising results for diverse molecule generation for the sEH protein
target compared to previous approaches based on MCMC and RL.

Bengio et al. (2021a) propose a TD-like objective for training GFlowNets, learning a stochastic pol-
icy that samples discrete objects proportionally to a reward. However, like traditional reinforcement
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learning methods, evaluating generalization in this setting is tricky since the training data is gener-
ated from the policy itself. In this work, we exploit the off-policy nature of the GFlowNet learning
objective to define a metric, GFNEval and evaluate the performance of GFlowNets on a test set. We
demonstrate empirically on various tasks and through various experiments the predictive power of
the proposed metric on the downstream metric of interest. The main contributions of this paper are
as follows:

• Empirical validation of an evaluation metric GFNEval to track training and evaluate gener-
alization of GFlowNets

• Qualitative insights on the learning dynamics of GFlowNets derived from the proposed
metric GFNEval

2 BACKGROUND

2.1 PROBLEM SETTING

We consider the problem of generating molecule graphs x ∈ X , sequentially, by combining building
blocks (molecule fragments) from a set A (Jin et al., 2020; Kumar et al., 2012). Each molecule x
has an associated reward R(x), which quantifies the usefulness of the molecule (for instance, the
binding energy with a given target protein). This reward R(x) is a usually a proxy for the actual
values obtained from expensive experiments, so it can be called often and cheaply.

The goal is to generate a diverse set of molecules with high rewards, instead of a single candidate that
maximizes the reward. This is critical in realistic settings where the reward R(x) might not capture
the desired properties. In this scenario, having a diverse high-scoring set improves the odds of
having candidates that satisfy future screening steps. A natural way to get diverse and high-scoring
batches would be to sample from the modes of the reward function R(x).

This problem of molecule generation has been tackled through various approaches. Generative
models like VAEs and Normalizing Flows (Shi et al., 2020; Jin et al., 2020; Luo et al., 2021) rely
on a given set of high-reward (positive) examples for learning a generative model. These method
do not leverage the low scoring (negative) samples leading to poor quality of the generative model.
MCMC based methods (Seff et al., 2019; Xie et al., 2021) can suffer from mode-mixing issues in the
case of high-dimensional well separated modes. Reward maximizing RL (Segler et al., 2017; Cao &
Kipf, 2018; Popova et al., 2019; Gottipati et al., 2020; Angermueller et al., 2020) and evolutionary
methods (Brown et al., 2004; Jensen, 2019; Swersky et al., 2020) tend to focus on one or a few
dominant modes leading to low diversity in the generated molecules (Bengio et al., 2021a).

2.2 GFLOWNETS

Generative Flow Networks (Bengio et al., 2021a;b, or GFlowNets) present a promising approach for
generating diverse and high-scoring molecules. GFlowNets learn a stochastic policy π that generates
objects x with a probability proportional to their reward R(x), π(x) ∝ R(x). We provide a brief
overview of GFlowNets and refer the reader to Bengio et al. (2021b) for a more thorough discussion.

GFlowNets operate on a space X which is compositional, that is, object x ∈ X can be constructed
using a sequence of actions taken from some set A. After each step, we may have a partially con-
structed object s, defining our state space S. Bengio et al. (2021a) use a GFlowNet to sequentially
construct a molecule by inserting a molecule fragment in a partially constructed molecule repre-
sented by a graph. A special action indicates that the object is complete, i.e., s = x ∈ X . Each
transition s→s′ ∈ E from state s to state s′ corresponds to an edge in a directed graph G = (S, E)
where the nodes are the state space S and the edges are the transitions E . Bengio et al. (2021a)
assume that this graph is acyclic, meaning that actions are constructive and cannot be undone. An
object x ∈ X can be constructed by starting from an initial empty state s0 and applying actions
sequentially. All complete trajectories must end in a special final state sf . The fully constructed
objects in X ⊂ S are terminating states. Each object x can be constructed by a trajectory of states
τ = (s0→s1→ . . .→x→sf ), and we can define T as the set of all trajectories. Note that there can
be multiple trajectories leading to the same terminal state.
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Flows A trajectory flow F : T 7→ R+ is a function that assigns a probability mass to every
trajectory τ . Using the trajectory flow, the edge flow for an edge s → s′ ∈ E can be defined as the
sum of the flows of all trajectories containing the edge, F (s→s′) =

∑
s→s′∈τ F (τ), and the state

flow for a state s ∈ S can be defined as F (s) =
∑

s∈τ F (τ). The flow associated with the final
transition in the trajectory F (x→sf ) is called the terminal flow.

The trajectory flow F is a measure over complete trajectories τ ∈ T and it induces a corresponding
probability measure

P (τ) =
F (τ)∑

τ∈T F (τ)
=

F (τ)

Z
(1)

where Z denotes the total flow, and corresponds to the partition function of the the measure F . The
forward transition probabilities PF (s|s′) for each step of a trajectory and the probability PF (s) of
visiting a state can then be defined as

PF (s|s′) =
F (s→s′)

F (s)
, PF (s) =

∑
τ∈T :s∈τ F (τ)

Z
. (2)

Flow Matching Criterion A consistent flow satisfies the following flow consistency equation ∀s ∈
S defined as follows: ∑

s′∈Parent(s)

F (s′→s) =
∑

s′′∈Child(s)

F (s→s′′). (3)

where Parent(s) = {s′ : s′→s ∈ E} denotes the parents for node s and Child(s) = {s′ : s→s′ ∈ E}
denotes the children of node s in G.

A key result underpinning GFlowNets from Bengio et al. (2021a) shows that for a consistent flow
F where the terminal flow is assigned the value of the reward, i.e., F (x→sf ) = R(x), a policy π
defined by the forward transition probability π(s′|s) = PF (s

′|s) constructs object x with probability
proportional to R(x)

π(x) =
R(x)

Z
. (4)

GFlowNets learn to approximate an edge flow Fθ : E 7→ R+ defined over G, such that the terminal
flow is equal to the reward R(x) and the flow is consistent. Bengio et al. (2021a) proposed a temporal
difference-like (Sutton & Barto, 2018) learning objective, called flow-matching:

LFM (s; θ) =

(
log

∑
s′∈Parent(s) Fθ(s

′→s)∑
s′′∈Child(s) Fθ(s→s′′)

)2

(5)

Bengio et al. (2021a) show that given trajectories τi sampled from an exploratory training policy
π̃ with full support, an edge flow F̂ learned by minimizing Equation 5 is consistent. At this point,
the forward transition probability defined by this flow PFθ

(s′|s) = Fθ(s→s′)∑
s′′∈Child Fθ(s→s′′) would sample

objects x with a probability PF (x) proportionally to their reward R(x). In practice, the trajectories
for training GFlowNets are sampled from an exploratory policy that has higher entropy than the
GFlowNet sampler PFθ

, for example by tempering it or mixing it with a uniform policy. In the case
where there is only one trajectory into each state, GFlowNets and maximum-entropy regularized RL
can converge to the same solution, but this condition is not satisfied with our molecule construction
trajectories (since there are many ways to arrive at the same molecule, e.g., by different orders of
adding fragments).

We observe that the objective in Equation 5 is offline and off-policy. The off-policy nature allows us
to train on trajectories that are not sampled from the GFlowNet policy. This allows us to incorporate
ideas from off-policy reinforcement learning, such as prioritized replay (Schaul et al., 2016), where
we can store molecules encountered during training in a buffer, and incorporate trajectories sampled
backward from these molecules in future training batches.

Like other TD based algorithms, the training error alone can be misleading to track training progress
since the trajectories are sampled from the policy itself. Additionally, contrary to standard rein-
forcement learning methods, tracking the reward as a way to measure performance is not suited for
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GFlowNets since that is not the objective being optimized. This disconnect calls for a metric to
evaluate learning progress in GFlowNets. We propose the following properties that are critical for
any such metric.

• Predictive of Downstream Performance: The metric should be correlated with the down-
stream metric of interest, for instance the score and diversity of the top generated molecules.

• Computed Offline: The metric should be computable on a fixed set of data, available a
priori.

In the following sections, we present an evaluation methodology for GFlowNets in the context of
molecule design and present an empirical analysis of the metric.

3 EVALUATING GFLOWNETS

We can compute exactly the sampling probability π(x) of a terminal state x under a GFlowNet
defined by the state flow Fθ by considering all the trajectories terminating at the given terminal
state, and going backward recursively as stated in 6. Note that we operate in the log domain for
numerical stability.

log(πθ(s)) = log

( ∑
s′∈Parent(s)

exp

(
log(PFθ

(s|s′)) + log(πθ(s
′))

))
(6)

where we compute this quantity for s ∈ X . The exact probability of sampling a terminal state x
(π(x)) under a GFlowNet with relatively limited resources is a key component for evaluating the
GFlowNet objective. We can define metrics using the sampling probabilities of molecules from a
test set (that have not been used for training1) to track the progress of training.

A natural way to evaluate the GFlowNet objective of sampling molecules proportionally to their re-
wards is the Spearman’s rank correlation coefficient between the probability of sampling molecules
from a test set under the GFlowNet and their respective rewards, which we call GFNEvalS. Since
we do not have access to the true partition function Z =

∑
x∈X R(x), we cannot compute the error

between the true distribution and the learned distrbution under the GFlowNet objective, however
Spearman’s correlation can evaluate the key aspects of the relation between π and R, thus alleviat-
ing the need to know the true partition function. Note that since we do not have the true partition
function, the scale of the reward R(x) and πθ(x) can be very different, so for numerical stability we
use logR(x) and log πθ(x) instead. Malkin et al. (2022) use this metric to evaluate their proposed
learning objective. In this work, we focus on a more thorough analysis of this metric and how it
relates to the downstream performance on the task of molecule design. We observe that empirically
Spearman’s correlation offers better results, but we note that the Pearson correlation coefficient can
be used as well (we call this GFlowEvalP) given the linear relationship between log(π(x)) and
logR(x).

GFNEvalS = Spearman’s ρlog(π(x)),log(R(x))

GFNEvalP = Pearson’s ρlog(π(x)),log(R(x))

(7)

While this metric might be informative for the learning performance of GFlowNets, it does not
provide a lot of information about the skewness of a future sample from the model. Metrics that are
based on the distribution of the estimated probabilities should contain such information. For the task
of molecule generation we are interested in looking at the high-scoring molecules. For this we can
define the following pHighestkbins metric, which captures whether the high scoring molecules (in
the top 4 bins2) are more likely to be generated by the GFlowNet, with the generated samples binned
into 10 equally sized bins. We can use this metric, for instance, to compare GFlowNets trained with
different reward normalization coefficients, where we expect the peakier rewards to bias the model
to generate higher scoring molecules.

1In practice it might be hard to ensure a test set which contains only unseen molecules, as they could be
sampled during training, even though that might be rare in the high dimensional molecule space. Here we fix a
test set a priori and discard training trajectories which generate molecules from this set during training.

2Note that the choice of k is set to 4 in this paper which worked best empirically.
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pHighestkbins =

∑
x∈Top (10 × k)% scoring states from D π(x)∑

x∈D π(x)
(8)

In this work, we focus on evaluating the performance of GFlowNets for the downstream molecule
design task where the goal is often to propose a set of diverse and high scoring molecules. For
this task, we define the TopKDiverse score that captures the desired properties of a generated set of
samples. TopKDiverse represents the average score of K diverse states picked from a sorted list of
generated candidates in descending order of their scores. The diversity is enforced by considering
candidates from the subset of candidates within a minimum distance to the previously selected high
scoring candidate in the TopKDiverse subset, and computing the average score of the molecules in
the TopKDiverse set. For our experiments we compute diversity based on the Tanimoto similarity
(App. A.2). We compute this metric and other sample statistics on the a set of 10k states sampled
from a given GFlowNet.

4 EXPERIMENTS/ EMPIRICAL RESULTS

4.1 EXPERIMENTAL SETUP

In this section we empirically evaluate the proposed metric GFNEval. We evaluate the robustness of
the metric on different molecule design tasks, with different GFlowNet training strategies and with
access to different types of test sets. We observe that GFNEval is a reliable metric to track training
progress and generalization, as well as derive new insights into the learning dynamics of GFlowNets
using the GFNEval metric.

Tasks: We consider two different types of rewards: QED (Landrum; Bickerton et al., 2012) and
a Neural Network Proxy which approximates the binding energy(AutoDock Vina, Trott & Olson,
2010). The latter covers a common approach used for setups where limited data is available, the
in-silico simulator is expensive, and online samples are desired (Bengio et al., 2021b; Liu et al.,
2020). For more details about the Proxy see A.3.

Test Data: We design our test sets to be approximately uniform based on scores by sub-sampling it
from a bigger set. We generate two different sets of 300k molecules for each objective from which
we sub-sample the 10k test sets.

• Random test set represents an ideal set, with diverse molecules sampled uniformly ran-
domly from the state space (uniform according to molecule size and diverse based on Tan-
imoto similarity).

• In practice, however, it is not always be feasible to construct such a test set, and we need to
rely on a dataset of known candidates, which might be sampled from different approaches.
We thus consider a second test set, the MCMC test set, representing this more practical
scenario, which is sampled using an MCMC algorithm.

Because GFlowNet’s objective is to construct an object x with probability proportional to R(x) we
highlight the importance of having an evaluation dataset which covers the reward landscape. See
App. A.2 for more details about datasets.

Training Methods:

• GFlowNet Bengio et al. (2021b) (Base);
• GFlowNet with a smaller learning rate (lr*0.2);
• GFlowNet (exp+1) that uses a higher exponent for shaping the reward which should result

in higher sampling rate of high scoring states;
• GFlowNet (best50%) which constructs half of the training batch with offline trajectory

samples from a replay buffer of highest scoring molecules encountered during training

See App. A.4 for more implementation details.

Sample statistics: We compute different statistics for a set of 10k states sampled from a given
GFlowNet policy: Top1000Diverse, Top100Diverse, Top1000, Top100 (average score of the top 100
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molecules in the sampled set), Mean Diversity (mean pairwise Tanimoto similarity between every
two states in the sample set), Mean Score (mean score of entire sample set). TopK scores represent
the mean score of the highest K scoring states in the sample set.

Evaluation metrics: We compute different evaluation metrics on the test set: GFNEvalS (7),
GFNEvalP (7), (CE) Cross-entropy between GFlowNet probabilities and rewards −

∑
r(x) ∗

log(pGFN (x)), (Flow Error) Flow matching error LFM (5) computed for 1 random trajectory for
each state in the test set, pHighest4bins (8), pHighest4bins*SP (product of pHighest4bins score and
GFNEvalS).

Protocol: During training we periodically evaluate the GFlowNet model at a constant frequency of
500 optimization steps for the Docking Proxy task and 250 steps for QED. We evaluate a total of
20 checkpoints per experiment with 3 random seeds per experiment, for each GFlowNet training
method.

4.2 BUILDING DRUG-LIKE SMALL MOLECULES

Following Bengio et al. (2021b); Liu et al. (2020) we use their published environment for generating
small molecules. We use a framework that allows an agent to sequentially generate molecules by
parts using a predefined vocabulary of building blocks, also known as fragment-based drug design.
The graph representation of the molecule is constructed as a sequence of additive edits: given a
molecule and constraints of chemical validity, an atom can be chosen to attach a block to. The
action space is thus the product of choosing where to attach a block and choosing which block
to attach. There is an extra action to stop the editing sequence. This sequence of edits yields
a DAG MDP, as there are multiple action sequences that lead to the same molecule graph. The
reward is computed using scores produced by the chosen task (either QED or Docking Proxy) and a
normalization scheme. See App. A.1 for more details.

4.3 EXPERIMENTS

Following the protocol detailed in Sec. 4.1, we empirically demonstrate that the GFNEvalS metric
7 satisfies the properties of a good generalization metric (Sec. 2.2), one predictive of the desired
performance metrics (i.e. finding high-scoring diverse candidates). In Fig. 1 we can observe vi-
sually the correlation between the GFNEvalS score for approximately 660 GFlowNet models and
the Top1000Diverse statistic computed for 10k samples from those models. Except for the models
at the beginning of training (100 optimization steps), which are scattered almost randomly in the
left bottom part of the plot (see Fig.6 where models are colored based on training step), there is an
almost linear trend between the two depicted metrics. In this figure we color each checkpoint based
on the training method which helps us observe a significant difference in Top1000Diverse scores
based on GFlowNet training method.
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Figure 1: Relationship between Top1000Diverse statistic and GFNEvalS test score (Spearman Cor-
relation) for checkpoints across 33 GFlowNet training runs. GflowNet Model checkpoints are col-
ored based on training method.

To quantify the predictive power of the evaluation metrics for statistics of samples generated from
GFlowNet, we can look at the correlation between them. In tables 1a and 1b (for the Docking Proxy
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and QED tasks respectively) we present the Spearman correlation coefficient between different sam-
ple statistics (4.1) and different evaluation metrics (4.1) across all checkpoints saved during training
of several GFlowNet variations. We can see a significant correlation of 0.85 (with p-value lower
that 0.0001) between GFNEvalS and the Top100Diverse scores for both objectives (Tables 1a and
1b). We note that although GFNEvalS is highly correlated with the Top100/Top1000 scores as well,
the coefficient is slightly smaller, supporting the previous findings (Bengio et al., 2021b) of higher
diversity in sampled batches using GFlowNets. We observe a similar trend on the MCMC test set
as seen in Tables 3a and 3b from the Appendix. We also observe that the Flow Error by itself has
very low correlation with all the sample statistics measured, confirming the concern that training
error (TD error) is a bad indicator of performance, as discussed in Sec. 2.2. Finally, our second pro-
posed metric pHighest4bins is moderately predictive of performance when comparing all GFlowNet
models together.

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.85 0.69 0.22 0.32 0.64 0.66
Top 100 Diverse 0.84 0.68 0.22 0.32 0.64 0.66

Top 1000 0.83 0.66 0.31 0.35 0.63 0.65
Top 100 0.83 0.67 0.27 0.33 0.63 0.65

Mean Diversity 0.26 0.15 0.01 0.23 0.24 0.24
Mean Score 0.85 0.71 0.37 0.41 0.64 0.65

(a) Docking Proxy

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.85 0.85 0.17 0.55 0.77 0.81
Top 100 Diverse 0.76 0.76 0.18 0.49 0.78 0.80

Top 1000 0.83 0.84 0.21 0.52 0.81 0.84
Top 100 0.75 0.75 0.19 0.47 0.78 0.81

Mean Diversity 0.10 0.09 0.29 0.02 0.08 0.05
Mean Score 0.55 0.56 0.42 0.34 0.70 0.70

(b) QED

Table 1: Spearman’s rank correlation coefficient between different sample statistics (rows) and dif-
ferent evaluation metrics (columns) computed on the Random test sets using the GFlowNet model
used for sampling.
In addition to being predictive of the final downstream performance, we would also like the metric
to be useful for tracking the progress within a training run. In Fig. 2 and 7 we show the evolution of
both the best evaluation GFlowEvalS metric and a target sample statistic, Top1000Diverse, over the
course of training. In Fig. 2 both metrics have a positive slope during training across experiments
(represented with the blue line). We can also visually observe from 3 randomly sampled runs that
the GFNEvalS is highly correlated within a training run with our desired sample statistic. This is
confirmed by a quantitative analysis across all training runs, by calculating the correlation of our
metrics only for the 20 checkpoints within each training run and reporting the mean across all runs
(see App. Table 4). Although we obtain a smaller average correlation of ∼ 0.64 (across tasks and
test sets) this metric can still distinguish small differences in TopKDiverse scoring GflowNet models.
In this analysis the GFNEvalS, is only outperformed by the pHighest4bins*SP metric on the QED
Task with random test set, which motivates the potential of this metric.

In addition to evaluating the performance of GFlowNets, we can also leverage these metrics to
derive qualitative insights about the learning dynamics of GFlowNets. For instance, from Fig. 3,
where data points are colored based on molecule size, we can clearly observe how probabilities are
highly biased based on the number of blocks (smaller molecules have higher probabilities). This
is intuitive given the sequential nature of the generation and the difficulty of obtaining unbiased
log(πθ(x)) given the significant difference in number of trajectories for different molecule sizes.
This can help us focus more on finding the appropriate neural network architecture, or adjusting the
GFlowNet training distribution uniformly across molecule sizes. This problem is more obvious with
the Docking Proxy distribution of scores being influenced in such a manner by molecule size. In the
case of QED (Fig. 8), where the smaller the molecule the higher the score, this observation can be
easily omitted because of the coincidental relationship of higher π(x) with smaller molecules. This
plot can also give us some intuitions about the very low overall GFNEvalS scores for Docking Proxy
(as observed in Fig. 1a) and especially the negative correlation on the lowest scoring molecules
from the test (9a). Given that the model is biased in training more on higher rewarding trajectories
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Figure 2: Evolution during training for both GFNEvalS and Top1000Diverse scores for the QED
objective. Blue line depicts the average across all training runs with the shaded region representing
the standard deviation interval. Figure also contains individual lines for three randomly sampled
runs.

(because of sampling), in the Docking Proxy task, the model will focus on average size molecules
and might get very biased probabilities for lower scoring molecules. We present further analysis of
other phenomena observed in training in Appendix A.5.
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Figure 3: Docking Proxy task. Qualitative analysis of two GflowNets from two different training
methods. Left ((a) and (b)) visual representation of GFlowNets learned probabilities for the random
test set states. Scatter plots depict relationship between log(π(x)) and scores of x colored based on
molecule size. Right (c) Histogram of scores for the two 10k sets sampled from those models.

From Fig. 3 we can also observe the potential pitfalls of relying on GFNEvalS alone and how it
is not actually influenced by the distribution of log(πθ(x)). This can make it harder, for example,
to differentiate between models which have been trained with different reward shaping coefficients.
For Fig. 3 we hand pick two extreme cases in order to demonstrate this pitfall, where two GFlowNets
are trained with significantly different reward shaping. Although a checkpoint from Proxy_OldNorm
experiment (Fig 3a) has a slightly lower GFNEvalS (−0.220) compared to the one from Proxy_Base
Fig. 3b (−0.184) it has a higher Top1000Diverse score of 11.25 (vs 10.69 for Proxy_Base). In
this particular case the pHighest4bins metric can discriminate between the two models correctly
measuring higher value for Proxy_OldNorm (0.040) compared to Proxy_Base (0.024).

5 LIMITATIONS AND FUTURE WORKS

In this work we present a thorough evaluation of the generalization performance of GFlowNets for
molecule design, using our propsed metrics GFNEval and pHighestKbins. A key limitation of the
metrics presented in this paper is the cost to compute the exact probability of sampling a molecule
under the GFlowNet. This can make evaluation difficult with large test sets and larger training runs.
One direction to explore would be ways to approximate this quantity more efficiently, while still
retaining the properties of the proposed metrics. We also demonstrate the discriminative power of
the metrics within a training run. This property can be helpful in active learning settings with a
GFlowNet generator (Bengio et al., 2021a) for early stopping the generator training. Future work
should also focus on using these metrics for further analysis of GFlowNet learning dynamics, to
make practical recommendations for training.
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A APPENDIX

A.1 MOLECULE DOMAIN DETAILS

The small molecules considered in this paper are constructed from a set of drug-like building blocks,
each of them consisting one or multiple atom sites for linking another building block with a single
bond. These building blocks and substitution sites are chosen based on the frequency of appearance
in the ligand subset of the PDB database (BRICS decomposition and Bemis-Murcko decomposition
of BRICS scaffolds), following our previous works in Liu et al. (2020); Bengio et al. (2021b), where
we chose 131 building blocks here. Each action modifies the resulting molecule by connecting a
new block to the previous substructure. In order to correctly compute parents of a molecule graph
isomorphism must be computed to disregard duplicates and also no duplicate (blocks, stems) can
exist in the list of building blocks.

A.2 DATASET DETAILS

When generating the Random dataset we sample random molecules uniformly according to number
of blocks (between 3 and 8) with the constraint that any two molecules in the dataset must be
different according to a biologically motivated similarity metric. We choose a Tanimoto similarity
of 0.7 as threshold, as it is commonly used in medicinal chemistry to find similar molecules. For
generating the slightly high scoring biased dataset we use a basic MCMC algorithm with uniform
kernel rejecting molecules based on their scores with a given probability. First we generate 300k
molecules for each of these sets according to the previously mentioned procedure and afterwards we
sample from them the corresponding 10k test set molecules relatively uniform according to scores.
In this work we only use the test set molecules to evaluate GFlowNet models. Figures 5 and 4 show
the histogram of scores for these datasets.
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Figure 4: Histogram of QED scores for the two datasets sources (300k molecules) and the sampled
test sets (10k molecules).

−10 −5 0 5
0

500

1000

1500

2000 color
Random dataset
Random test set

Docking Proxy scores

C
ou

nt

(a) Random test set

−10 −5 0 5
0

500

1000

1500

2000 color
MCMC dataset
MCMC test set

Docking Proxy scores

C
ou

nt

(b) MCMC test set

Figure 5: Histogram of Docking Proxy scores for the two dataset sources (300k molecules) and the
sampled test sets (10k molecules).

A.3 AUTODOCK VINA PROXY DETAILS

All molecules in the dataset described in A.2 were subjected to conformer generation (n = 30), all
of which were then optimized via a forcefield (MMFF). The lowest conformer was subsequently
docked by AutoDock Vina for the sEH protein Bengio et al. (2021a); Trott & Olson (2010). All
positive docking scores (indicating ligand dissociation with the protein) were clipped to 0. The av-
erage docking score is -7.78 with a standard deviation of 1.68. The proxy was trained using 280,000
molecules in the generated dataset and validated using 10,000 random molecules in the same dataset,
where an additional 10,000 molecules were reserved as test set for GFlowNet experiments. We fea-
turized the graphs with typical atom and bond featurizers, as used by Gilmer et al. (2017). The proxy
was trained using the recently published E(n) Equivariant Graph Neural Network without edge in-
ference Satorras et al. (2021). Other proxies such as MPNN Gilmer et al. (2017) were also examined
but gave worse performance. The hyperparameters were optimized. We employed 3 layers each with
128 hidden units. the Adam optimizer with a learning rate of 5e − 4 and weight-decay of 1e − 16;
the learning rate followed a cosine annealing schedule of T = 100 (epochs) Loshchilov & Hutter
(2017). Early stopping was implemented based on the validation MSE. The optimized validation
MSE, MAE were 1.76 and 0.82, respectively.

A.4 IMPLEMENTATION DETAILS

For GFlowNet training we follow the same framework and hyperparameters described in Bengio
et al. (2021b). The flow predictor F uses an MPNN (Gilmer et al., 2017), which receives the block
graph as input. Two of the parameters that we change for the GFlowNet training are the minimum
number of blocks allowed for action stop, which is 3 instead of 2, and we use a Minibatch size of
16 trajectories per optimization step. In this work we only work with molecules that have between
3 and 8 blocks. Learning rates for training the models are either the default 5 × 10−4 for Base or
1×10−4 for the Base_lr*0.2 experiments. Reward normalization coefficients used for the two tasks
are described in the following Table 2. For the Best50% experiments we sample for each batch 8
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trajectories backward from the high scoring molecules in the replay buffer and 8 (online) trajectories
from the current GflowNet model.

Table 2: Reward normalization coefficients for the two objectives evaluated (Docking Proxy and
QED).

Docking Proxy QED Docking Proxy OldNorm
Reward T 7 5.9 8
Reward β 8.1 8.9 10

A.5 ADDITIONAL EXPERIMENTS

In the following tables 3 and 4 we describe the Spearman’s rank correlation coefficient between
different sample statistics and different evaluation metrics (See Sec. 4.1). In order to determine the
robustness of our proposed metrics we evaluate two different test sets (Random and MCMC test sets)
and two scoring tasks (QED and Docking Proxy). We can determine from this results that GFNEvalS
is an appropriate generalization evaluation metric for GFlowNets, predictive of the desired search
performance TOPKDiverse. This metric can be used to compare models from different GFlowNet
training methods (with significant correlations above 0.8) or from the same training run (with a
mean correlation of 0.64 across experiments). Not only is GFNEvalS the best metric to predict high
Top1000Diverse scores for a sample set from the model, but is also predicting this score better than
other sample statistics (e.g. TopK).

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.86 0.84 0.19 0.39 0.67 0.69
Top 100 Diverse 0.85 0.82 0.18 0.40 0.67 0.70

Top 1000 0.85 0.84 0.27 0.41 0.66 0.69
Top 100 0.85 0.84 0.24 0.40 0.67 0.69

Mean Diversity 0.30 0.26 0.04 0.20 0.29 0.30
Mean Score 0.84 0.86 0.38 0.43 0.67 0.69

(a) Docking Proxy

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.85 0.85 0.12 0.55 0.59 0.66
Top 100 Diverse 0.75 0.75 0.14 0.49 0.60 0.67

Top 1000 0.82 0.82 0.16 0.52 0.62 0.69
Top 100 0.75 0.75 0.15 0.48 0.60 0.66

Mean Diversity 0.11 0.10 0.25 0.00 0.17 0.13
Mean Score 0.53 0.53 0.36 0.35 0.62 0.64

(b) QED

Table 3: Spearman’s rank correlation coefficient between different sample statistics (rows) and dif-
ferent evaluation metrics (columns) computed on the MCMC test set using the model used for
sampling.
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Figure 6: Top1000Diverse vs GFNEvalS (Spearman Correlation) for 660 GFlowNet models. Data
points colored based on training step.
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GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.58 0.39 0.03 0.23 0.40 0.41
Top 100 Diverse 0.55 0.37 0.02 0.25 0.39 0.40

Top 1000 0.54 0.38 0.02 0.18 0.42 0.43
Top 100 0.53 0.36 0.00 0.21 0.41 0.42

Mean Diversity 0.28 0.10 0.08 0.21 0.18 0.19
Mean Score 0.59 0.54 0.10 0.11 0.41 0.43

(a) Docking Proxy - Random test set

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.61 0.56 0.01 0.28 0.48 0.48
Top 100 Diverse 0.60 0.54 0.00 0.31 0.48 0.49

Top 1000 0.57 0.52 0.06 0.24 0.50 0.51
Top 100 0.58 0.52 0.02 0.29 0.49 0.50

Mean Diversity 0.39 0.24 0.09 0.20 0.31 0.32
Mean Score 0.47 0.55 0.19 0.08 0.48 0.49

(b) Docking Proxy - MCMC test set

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.69 0.68 0.19 0.44 0.68 0.71
Top 100 Diverse 0.57 0.56 0.18 0.38 0.68 0.69

Top 1000 0.66 0.65 0.23 0.38 0.73 0.75
Top 100 0.57 0.56 0.18 0.37 0.69 0.70

Mean Diversity 0.12 0.14 0.30 0.01 0.26 0.26
Mean Score 0.55 0.57 0.38 0.20 0.70 0.71

(c) QED - Random test set

GFNEvalS GFNEvalP Flow Error CrossEntropy pHighest4bins pHighest4bins*SP
Top 1000 Diverse 0.68 0.68 0.17 0.40 0.54 0.58
Top 100 Diverse 0.57 0.56 0.16 0.35 0.53 0.56

Top 1000 0.64 0.63 0.20 0.35 0.59 0.62
Top 100 0.57 0.56 0.16 0.34 0.52 0.55

Mean Diversity 0.06 0.06 0.25 0.05 0.21 0.20
Mean Score 0.49 0.49 0.33 0.21 0.58 0.59

(d) QED - MCMC test set

Table 4: Mean Spearman’s rank correlation coefficient across training runs. Correlation between
different sample statistics (rows) and different evaluation metrics (columns) computed on the two
test sets using the model used for sampling.

From Fig. 7 we can observe that the average GFNEvalS across experiments has the same curvature
as the average Top1000Diverse scores during training, even reproducing a slight decrease at the end
of training. Also correlation between the metrics is strong within the individual training runs across
training steps and between experiments.
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Figure 7: Evolution during training for both GFNEvalS and Top1000Diverse scores for the Docking
Proxy objective. Blue line depicts the average across all training runs with the shaded region rep-
resenting the standard deviation interval. Figure also contains individual lines for three randomly
sampled runs.
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In Fig. 8 we present visually the probabilities of sampling the test set states (Fig. 8a and 8b) and the
histogram of scores for a 10k sample set (Fig. 8c) for two GFlowNet models. Their scores are listed
in Table 5. Both GFNEvalS and pHighest4bins*SP are higher for model QED_Base_exp+1 which
indicate a higher Top1000Diverse score. This can be also expected from the negatively skewed
distributions of scores in Fig. 8c (red).

Table 5: Scores for the two GFN models from Fig. 8 trained on the QED task.

Top 1000 Diverse GFNEvalS pHighest4bins*SP
QED_Base 0.856 0.656 0.471

QED_Base_exp+1 0.886 0.671 0.555
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Figure 8: QED Task. Qualitative analysis of two model checkpoints from two different training
variations. Left ((a) and (b)) visual representation of GFlowNets learned probabilities for the random
test set states. Scatter plots depict relationship between log(πθ(x)) and scores of x colored based on
molecule size. Right (c) Histogram of scores for the two 10k sets sampled from those models.

Figures 9 and 10 show the relationship of the Top100Diverse scores for a 10k sample and the
GFNEvalS score computed for 10 subsets from the evaluation set grouped by scoring bin.
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Figure 9: Relationship between Top100Diverse scores and per bin GFNEvalS score colored based
on Experiment. Bin 0 contains the highest scoring molecules.
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Figure 10: Relationship between Top100Diverse scores and per bin GFNEvalS score colored based
on Training step. Bin 0 contains the highest scoring molecules.
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